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Abstract
Emerging fast, non-volatile memories will enable systems
with large amounts of non-volatile main memory (NVMM)
attached to the CPU memory bus, bringing the possibility
of dramatic performance gains for IO-intensive applications.
This paper analyzes the impact of state-of-the-art NVMM
storage systems on some of these applications and explores
how those applications can best leverage the performance
that NVMMs offer.
Our analysis leads to several conclusions about how sys-

tems and applications should adapt to NVMMs. We propose
FiLe Emulation with DAX (FLEX), a technique for moving
file operations into user space, and show it and other simple
changes can dramatically improve application performance.
We examine the scalability of NVMM file systems in light
of the rising core counts and pronounced NUMA effects in
modern systems, and propose changes to Linux’s virtual
file system (VFS) to improve scalability. We also show that
adding NUMA-aware interfaces to an NVMM file system can
significantly improve performance.
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1 Introduction
Non-volatile main memory (NVMM) technologies like 3D
XPoint [44] promise vast improvements in storage perfor-
mance, but they also upend conventional design principles
for the storage stack and the applications that use them. Soft-
ware designed with conventional design principles in mind
is likely to be a poor fit for NVMM due to its extremely low
latency (compared to block devices) and its ability to support
an enormous number of fine-grained, parallel accesses.
The process of adapting existing storage systems to

NVMMs is in its early days, but important progress has
been made: Researchers, companies, and open-source com-
munities have built native NVMM file systems specifically
for NVMMs[17, 21, 37, 63, 67, 68], both Linux and Windows
have created adapted NVMM file systems by adding support
for NVMM to existing file systems (e.g., ext4-DAX, xfs-DAX
and NTFS), and some commercial applications have begun
to leverage NVMMs to improve performance [1].

System support for NVMM brings a host of potential ben-
efits. The most obvious of these is faster file access via con-
ventional file system interfaces (e.g., open, read, write, and
fsync). These interfaces should make leveraging NVMM
performance easy, and several papers [19, 37, 67, 68] have
shown significant performance gains without changing ap-
plications, demonstrating the benefits of specialized NVMM
file systems.

A second, oft-cited benefit of NVMM is direct access (DAX)
mmap, which allows an application to map the pages of an
NVMM-backed file into its address space and then access it
via load and store instructions. DAX removes all of the sys-
tem software overhead for common-case accesses enabling
the fastest-possible access to persistent data. Using DAX
requires applications to adopt an mmap-based interface to
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storage, and recent research shows that performance gains
can be significant [15, 43, 52, 64].
Despite this early progress, several important questions

remain about how applications can best exploit NVMMs and
how file systems can best support those applications. These
questions include:

1. How much effort is required to adapt legacy applica-
tions to exploit NVMMs? What best practices should
developers follow?

2. Are sophisticated NVMM-based data structures neces-
sary to exploit NVMM performance?

3. How effectively can legacy files systems evolve to ac-
commodate NVMMs? What trade-offs are involved?

4. How effectively can current NVMM file systems scale
to many-core, multi-socket systems? How can we im-
prove scalability?

This paper offers insight into all of these questions by an-
alyzing the performance and behavior of benchmark suites
and full-scale applications on multiple NVMM-aware file
systems on a many-core machine. We identify bottlenecks
caused by application design, file system algorithms, generic
kernel interfaces, and basic limitations of NVMM perfor-
mance. In each case, we either apply well-known tech-
niques or propose solutions that aim to boost performance
while minimizing the burden on the application programmer,
thereby easing the transition to NVMM.
Our results offer a broad view of the current landscape

of NVMM-optimized system software. Our findings include
the following:

• For the applications we examined, FiLe Emulation
with DAX (FLEX) provides almost as much benefit
as building complex crash-consistent data structures
in NVMM.

• Block-based journaling mechanisms are a bottleneck
for adapted NVMM file systems. Adding DAX-aware
journaling improves performance on many operations.

• The block-based compatibility requirements of
adapted NVMM file systems limit their perfor-
mance on NVMM in some cases, suggesting that
native NVMM file systems are likely to maintain a
performance advantage.

• Poor performance in accessing non-local memory
(NUMA effects) can significantly impact NVMM file
system performance. Adding NUMA-aware interfaces
to NVMM file systems can relieve these problems.

The remainder of the paper is organized as follows. Sec-
tion 2 describes NVMMs, NVMM file system design issues,
and the challenges that NVMM storage stacks face. Section 3
evaluates applications on NVMM and recounts the lessons
we learned in porting them to NVMMs. Section 4 describes
the scalability bottlenecks of NVMM file systems and how
to fix them, and Section 5 concludes.

2 Background
This section provides a brief survey of NVMM technolo-
gies, the current state of NVMM-aware file systems, and the
challenges of accessing NVMM directly with DAX.

2.1 Non-volatile memory technologies
This paper focuses on storage systems built around non-
volatile memories attached to the processor memory bus
that appear as a directly-addressable, persistent region in the
processor’s address space. We assume the memories offer
performance similar to (but perhaps slightly lower than)
DRAM.
Modern server platforms have supported NVMM in the

form of battery-backed NVDIMMs [27, 45] for several years,
and Linux and Windows include facilities to access these
memories and build file systems on top of them.
Denser NVDIMMs that do not need a battery have been

announced by Intel and Micron and use a technology termed
“3D XPoint” [44]. There are several potential competitors
to 3D XPoint, such as spin-torque transfer RAM (STT-
RAM) [34, 48], phase change memory (PCM) [7, 12, 38, 53],
and resistive RAM (ReRAM) [23, 58]. Each has different
strengths and weaknesses: STT-RAM can meet or surpass
DRAM’s latency and it may eventually appear in on-chip,
last-level caches [71], but its large cell size limits capacity and
its feasibility as a DRAM replacement. PCM, ReRAM, and 3D
XPoint are denser than DRAM, and may enable very large,
non-volatilemainmemories. Their latencywill beworse than
DRAM, however, especially for writes. All of these memories
suffer from potential wear-out after repeated writes.

2.2 NVMM File Systems and DAX
NVMMs’ low latency makes software efficiency much more
important than in block-based storage systems [3, 8, 65,
69]. This difference has driven the development of several
NVMM-aware file systems [17, 19, 21, 37, 63, 66–68].

NVMM-aware file systems share two key characteristics:
First, they implement direct access (DAX) features. DAX lets
the file system avoid using the operating system buffer cache:
There is no need to copy data from “disk” into memory since
file data is always in memory (i.e., in NVMM). As a side effect,
the mmap() system call maps the pages that make up a file
directly into the application’s address space, allowing direct
access via loads and stores. We refer to this capability as
DAX-mmap. One crucial advantage of DAX-mmap is that it
allows msync() to be implemented in user space by flushing
the affected cachelines and issuing a memory barrier. In
addition, the fdatasync() system call becomes a noop.

One small caveat is that the call to mmap must include the
recently-added MAP_SYNC flag that ensures that the file is
fully allocated and its metadata has been flushed to media.
This is necessary because, without MAP_SYNC, in the disk-
optimized implementations of msync and mmap that ext4 and
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xfs provide, msync can sometimes require metadata updates
(e.g., to lazily allocate a page).

The second characteristic is that they make different as-
sumptions about the atomicity of updates to storage. Current
processors provide 8-byte atomicity for stores to NVMM in-
stead of the sector atomicity that block devices provide.
We divide NVMM file systems into two groups. Native

NVMM filesystems (or just “native file system”) are designed
especially for NVMMs. They exploit the byte-addressability
of NVMM storage and can dispense with many of the opti-
mizations (and associated complexity) that block-based file
systems implement to hide the poor performance of disks.
The first native file system we are aware of is BPFS [17],

a copy-on-write file system that introduced short-circuit
shadow paging and proposed processor architecture exten-
sions to make NVMM programming more efficient. Intel’s
PMFS [21], the first NVMM file system released publicly,
has scalability issues with large directories and metadata
operations.
NOVA [67, 68] is a log-structured file system designed

for NVMM. It gives each inode a separate log to ensure
scalability, and combines logging, light-weight journaling
and copy-on-write to provide strong atomicity guarantees
to both metadata and data. NOVA also includes snapshot
and fault-tolerance features. NOVA is the only native DAX
file system that is publicly available and supported by recent
kernels (Intel has deprecated PMFS). It outperforms PMFS
on all the workloads for which we have compared them.
Strata [37] is a “cross media” file system that runs partly

in userspace. It provides strong atomicity and high perfor-
mance, but does not support DAX1.
Adapted NVMM file systems (or just “adapted file sys-

tems”) are block-based file systems extended to implement
NVMM features, like DAX and DAX-mmap. Xfs-DAX [11],
ext4-DAX [66] and NTFS [25] all have modes in which they
become adapted file systems. Xfs-DAX and ext4-DAX are
the state-of-the-art adapted NVMM file systems in the Linux
kernel. They add DAX support to the original file systems
so that data page accesses bypass the page cache, but meta-
data updates still go through the old block-based journaling
mechanism [9, 10].
So far, adapted file systems have been built subject to

constraints that limit how much they can change to support
NVMM. For instance, they use the same on-“disk” format in
both block-based and DAXmodes, and they must continue to
implement (or at least remain compatible with) disk-centric
optimizations.

1We have been working to include a quantitative comparison to Strata in
this study, but we have run into several bugs and limitations. For example, it
has trouble with multi-threaded workloads [36] and many of the workloads
we use do not run successfully. Until we can resolve these issues, we have
included qualitative discussion of Strata where appropriate.

Adapted file systems also often give up some features in
DAX mode. For instance, ext4 does not support data journal-
ing in DAX mode, so it cannot provide strong consistency
guarantees on file data. Xfs disables many of its data integrity
features in DAX mode.

2.3 NVMM programming
DAX-mmap gives applications the fastest possible access
to stored data and allows them to build complex, persis-
tent, pointer-based data structures. This usage model has the
application create a large file in a NVMM file system, use
mmap() to map it into its address space, and then rely on a
userspace persistent object library [15, 52, 64] to manage it.
These libraries generally provide persistent memory al-

locators, an object model, and support for transactions on
persistent objects. To ensure persistence and consistency,
these libraries use instructions such as clflushopt and clwb
to flush the dirty cachelines [28, 72] to NVMM, and non-
temporal store instructions like movntq to bypass the CPU
caches and write directly to NVMM. Enforcing ordering be-
tween stores requires memory barriers such as mfence.

Usingmapped NVMM to build complex data structures is a
daunting challenge. Programmers must manage concurrency,
consistency, and memory allocation all while ensuring that
the program can recover from an ill-timed system crash.
Even worse, data structure corruption and memory leaks
are persistent, so rebooting, the always-reliable solution to
volatile data structure corruption and DRAM leaks, will not
help. Addressing these challenges is the subject of a growing
body of research [2, 15, 43, 52, 62, 64, 70].

3 Adapting applications to NVMM
The first applications to use NVMM in production are likely
to be legacy applications originally built for block-based
storage. Blithely running that code on a new, faster storage
system will yield some gains, but fully exploiting NVMM’s
potential will require some tuning and modification. The
amount, kind, and complexity of tuning required will help
determine how quickly and how effectively applications can
adapt.

We gathered the first-hand experience with porting legacy
applications to NVMM-based storage systems by modifying
five lightweight databases and key-value stores to better uti-
lize NVMMs. The techniques we applied for each application
depend on how it accesses the underlying storage. Below,
we detail our experience and identify some best practices
for NVMM programmers. Then, based on these findings,
we propose a DAX-aware journaling scheme for ext4 that
eliminates block IO overheads.
We use a quad-socket prototype HPE Scalable Persis-

tent Memory server [26] to evaluate these applications. The
server combines DRAM with NVMe SSDs and an integrated
battery backup unit to create NVMM. The server hosts four
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Figure 1. SQLite SET throughput with different jour-
naling modes. Preallocating space for the log file using
falloc avoids allocation overheads and makes write ahead
logging (WAL) the clearly superior logging mode for SQLite
running on NVMM file systems.

Xeon Gold 6148 processors (a total of 80 cores), 300 GB of
DRAM, and 300 GB of NVMM. We evaluate all the applica-
tions on Linux kernel 4.13.

3.1 SQLite
SQLite [57] is a lightweight embedded relational database
that is popular in mobile systems. SQLite stores data in a
B+tree contained in a single file.
To ensure consistency, SQLite uses one of four different

techniques to log operations to a separate log file. Three of
the techniques, DELETE, TRUNCATE and PERSIST, store
undo logs while the last, WAL stores redo logs.
The undo logging modes invalidate the log after every

operation. DELETE and TRUNCATE, respectively, delete
the log file or truncate it. PERSISTS issues a write to set an
“invalid” flag in log file header.

WAL appends redo log entries to a log file and takes pe-
riodic checkpoints after which it deletes the log and starts
again.
We use Mobibench [29] to test the SET performance

of SQLite in each journaling mode. The workload inserts
100 byte long values into a table. Figure 1 shows the re-
sult. DELETE and TRUNCATE incur significant file system
journaling overhead with ext4-DAX and xfs-DAX. NOVA
performs better because it does not need to journal opera-
tions that affect a single file. PERSIST mode performs equally
on all three file systems.

WAL avoids file creation and deletion, but it does require
allocating new space for each log entry. Ext4-DAX and xfs-
DAX keep their allocator state in NVMM and keep it con-
sistent at all times, so the allocation is expensive. Persistent
allocator state is necessary in block-based file systems to
avoid a time-consuming (on disk) media scan after a crash.

Scanning NVMM after crash is much less costly, so NOVA
keeps allocator state in DRAM and only writes it to NVMM
on a clean unmount. As a result, the allocation is much faster.
This difference in allocation overhead limits WAL’s per-

formance advantage compared to PERSIST to 9% for ext4-
DAX, reduces performance by 53% for xfs-DAX, but improves
NOVA’s performance by 107%.

We modified SQLite to avoid allocation overhead by using
fallocate to pre-allocate the WAL file. This is a common
optimization for disk-based file systems, and it works here
as well: The change closes the gap between the three file
systems.
To improve performance further, we use a technique we

call FiLe Emulation with DAX (FLEX) to avoid the kernel
completely for writes to the WAL file. To implement FLEX,
SQLite DAX-mmaps the WAL file into its address space and
uses non-temporal stores and clwb to ensure the log entries
are reliably stored in NVMM. We study FLEX in detail in Sec-
tion 3.4. Implementing these changes required changing just
266 lines of code but improved performance by between 15%
and 38%, and further narrows the performance gap between
the three file systems.

This final DAX-aware version of SQLite outperforms the
PERSIST version by between 2.5× and 2.8×.
Other groups have adapted SQLite to solid-states stor-

age as well. Jeong et al. [30] and WALDIO [39] investigate
SQLite I/O access patterns and implement optimizations
in ext4’s journaling system or SQLite itself to reduce the
cost of write-ahead logging. Our approach is similar, but it
leverages DAX to avoid the file system and leverage NVMM.
SQLite/PPL [49], NVWAL [35] use slotted paging [55] to
make SQLite run efficiently on NVMM. A comparison to
these systems would be interesting, but unfortunately, none
of them is publicly available.

3.2 Kyoto Cabinet and LMDB
Even without DAX, some applications access files via mmap,
and this makes them a natural match for DAX file systems.
However, maximizing the benefits of DAX still requires some
changes. We select two applications to explore what is re-
quired: Kyoto Cabinet and LMDB.
Kyoto Cabinet Kyoto Cabinet [24] (KC) is a high perfor-
mance database library. It stores the database in a single file
with database metadata at the head. Kyoto Cabinet memory
maps the metadata region, uses load/store instructions to
access and update it, and calls msync to persist the changes.
Kyoto Cabinet uses write-ahead logging to provide failure
atomicity for SET operations.
Figure 2 shows the impact of applying optimizations to

KC’s database file and its write-ahead log. First, we change
KC to use FLEXwrites to update the log (“WAL-FLEXmsync”
in the figure). The left two sets of bars in Figure 2 (a) show
the impact of these changes. The graph plots throughput for
SET operation on Kyoto Cabinet HashDB. The key size is
8 bytes and value size is 1024 bytes. FLEX write improves
performance by 40% for NOVA, 20% for ext4-DAX, and 84%
for xfs-DAX.
Kyoto Cabinet calls msync frequently on its data file to

ensure that updates to memory-mapped data are persistent.
DAX-mmap allows userspace to provide these guarantees
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Figure 2. Kyoto Cabinet (KC) and LMDB SET through-
put. Applications that use mmap can improve performance
by performing msync in userspace.

using a series of clwb instructions followed by a memory
fence. Flushing in userspace is also more precise since msync
operates on pages rather than cache lines. Avoiding msync
improves performance further by 3.4× for NOVA, 7.2× for
ext4-DAX, and 7.7× for xfs-DAX (“WAL-FLEX clwb”).
By default, Kyoto Cabinet only mmaps the first 64 MB

of the file, which includes the header and ∼63 MB of data.
It uses write to append new records to the file. Our final
optimization uses fallocate and mremap to resize the file
(“WAL-FLEX clwb + falloc + mremap”). It boosts the through-
put for all the file systems by between 7× to 25×, compared
to the baseline implementation that issued msync system
calls without WAL optimization.
Implementing all of these optimizations for both files re-

quired changing just 181 lines of code.
LMDB Lightning Memory-Mapped Database Manager
(LMDB) [59] is a Btree-based lightweight database manage-
ment library. LMDB memory-maps the entire database, so
that all data accesses directly load and store themappedmem-
ory region. LMDB performs copy-on-write on data pages to
provide atomicity, a technique that requires frequent msync
calls.
For LMDB, using clwb instead of msync improves the

throughput by between 11× to 14× (Figure 2 (b)). Ext4-DAX
out-performs xfs-DAX and NOVA by about 11% because
ext4-DAX supports super-page (2 MB) mmap which reduces
the number of page faults. These changes entailed changes
to 101 lines of code.

3.3 RocksDB and Redis
Since disk is slow, many disk-based applications keep data
structures in DRAM and flush them to disk only when nec-
essary. To provide persistence, they also record updates in
a persistent log, since sequential access is most efficient for
disks.We consider two such applications, Redis and RocksDB,
to understand how this technique can be adapted to NVMM.
Redis Redis [54] is an in-memory key-value store widely
used in web site development as a caching layer and for
message queue applications. Redis uses an “append only file”
(AOF) to log all the write operations to the storage device.
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Figure 3. Redis MSET throughput. Making Redis’ core
data structure persistent in NVMM (P-Redis) improves per-
formance by 27% to 2.6×.

At recovery, it replays the log. The frequency at which Redis
flushes the AOF to persistent storage allows the administra-
tor to trade-off between performance and consistency.

Figure 3 measures Redis MSET (multiple set) performance.
As we have seen with other applications, xfs-DAX’s jour-
naling overheads hurt append performance. The graph also
shows the potential benefit of eliminating AOF (and giving
up persistence): It improves throughput by 2.8×, 59%, and
38% for xfs-DAX, ext4-DAX, and NOVA, respectively.

The hash table Redis uses internally is an attractive target
for NVMMconversion, sincemaking it persistent would elim-
inate the need for the AOF. We created a fully-functional per-
sistent version of the hash table in NVMM using PMDK [52]
by adopting a copy-on-write mechanism for atomic updates:
To insert/update a key-value pair, we allocate a new pair to
store the data, and replace the old data by atomically updat-
ing the pointer in the hashtable. We refer to the resulting
system as Persistent Redis (P-Redis).
The throughput with our persistent hash table is 27% to

2.6× better than using synchronous writes to the AOF, and
∼9% worse than skipping persistence altogether. Implement-
ing the persistent version of the hash table took 1529 lines
of code.

Although Redis is highly-optimized for DRAM, porting it
to NVMM is not straightforward and requires large engineer-
ing effort. First, Redis represents and stores different objects
with different encodings and formats, and P-Redis has to be
able to interpret and handle the various types of objects prop-
erly. Second, Redis stores virtual addresses in the hashtable,
and P-Redis needs to either adjust the addresses upon restart
if the virtual address of the mmap’d hashtable file has changed,
or change the internal hashtable implementation to use offset
instead of absolute addresses [16]. Neither option is satisfy-
ing, and we choose the former solution for simplicity. Third,
whenever Redis starts, it uses a random seed for its hash-
ing functions, and P-Redis must make the seeds constant.
Fourth, Redis updates the hashtable entry before updating
the value, and P-Redis must persist the key-value pair before
updating the hashtable entry for consistency. Finally, P-Redis
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Figure 4. RocksDB SET throughput. Appends to the
write-ahead log (WAL) file limit RocksDB throughput on
NVMM file systems. Using FLEX writes improves perfor-
mance by 2.2× to 18.7×. Replacing the skip-list and the
log with a crash-consistent, persistent skip-list improves
throughput by another 19% on average.

hashtable does not support resizing as it requires journaling
mechanism to guarantee consistency.
RocksDB RocksDB [22] is a high-performance embedded
key-value store based on log-structured merge trees (LSM-
trees). When applications write data to a LSM-tree, RocksDB
inserts the data to a skip-list in DRAM, and appends the data
to a write-ahead log (WAL) file. When the skip-list is full,
RocksDB writes it to disk and discards the log file.

Figure 4 measures RocksDB SET throughput with 20-byte
keys and 100-byte values. RocksDB’s default settings perform
poorly on xfs-DAX and ext4-DAX, because each append
requires journaling for those file systems. NOVA performs
better because it avoids this cost.

RocksDB benefits from FLEX as well. It improves through-
put by 2.2× - 18.7× and eliminates the performance gap
between file systems.
Since the skip-list contains the same information as the

WAL file, we eliminate the WAL file by making the skip-list a
persistent data structure, similar to NoveLSM [32] based on
LevelDB. The final bars in Figure 4 measure the performance
of RocksDB with a crash-consistent skip-list in NVMM. Per-
formance improves by 11× compared to the RocksDB base-
line but just 19% compared to optimizing WAL with FLEX.

3.4 Evaluating FLEX
In general, FLEX involves replacing conventional file opera-
tions with similar DAX-based operations to avoid entering
the kernel. We have applied FLEX techniques by hand to the
SQLite, RocksDB, and Kyoto Cabinet, but they could easily
be encapsulated in a simple library.
FLEX replaces open() with open() followed by DAX-

mmap() to map the file into the application’s address space.
Then, the application can replace read() and write() sys-
tem calls with userspace operations.
A FLEX write first checks if the file will grow as a result

of the write. If so, the application can expand the file using
fallocate() and mmap() or mremap() to expand the map-
ping. To amortize the cost of fallocate(), the application
can extend the file by more than the write requires.
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Figure 5. The Impact of FLEX File Operations. Emulat-
ing file accesses in user space can improve performance
for a wide range of access patterns. Note that the Y axes
have different scales. “-2 MB” and “-4 MB” denote different
fallocate() sizes.

Once space is available, a FLEX write uses non-temporal
stores to copy data into the file. If the write needs to be
synchronous the application issues an sfence instruction to
ensure the stores have completed. FLEX also uses an sfence
instruction to replace fsync().
FLEX reads are simpler: They simply translate to

memcpy().
FLEX requires the application to track a small amount of

extra state about the file, including its location in memory,
its current write point, and its current allocated size.
FLEX operations provide semantics that are similar to

POSIX, but there are important and potentially subtle dif-
ferences. First, operations are not atomic. Second, POSIX
semantics for shared file descriptors are lost. We have not
found these differences to be relevant for the performance-
critical file operations in the workloads we have studied. We
elaborate this point in Section 3.4.1.

To understand when FLEX improves performance, we con-
structed a simple microbenchmark that opens a file, and per-
forms a series of reads or writes each followed by fsync().
We vary the size and number of operations and the amount
of file space we pre-allocate with fallocate(). Figure 5
shows results for two different cases: “Append and extend”
uses FLEX to emulate append operations that always cause
the file to grow. “Circular append” reuses the same file area
and avoids the need to allocate more space. The applications
we studied use both models to implement logging: RocksDB
uses “append and extend” whereas SQLite and Kyoto Cabinet
use “circular append.”

The data show that FLEX outperforms normal write oper-
ations by up to 61× for append and extend and up to 11× for
circular append. The larger speedup for append and extend
is due to the NVMM allocation overhead. Performance gains
are especially large for small writes, a common case in the
applications we studied.

For use cases that must extend the file, minimizing the cost
of space allocation is critical. The results in the figure use
2 MB pages to minimize paging overheads. With 4 KB pages,
FLEX only provides speedups for transfers under 4 KB.
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Our experience with applying FLEX to RocksDB, SQLite,
and Kyoto Cabinet shows that it can provide substantial
performance benefits for very little effort. In contrast to re-
implementing data structures to be crash-consistent, FLEX
requires little to no changes to application logic and requires
no additional logging or locking protocols. The only sub-
tleties lie in determining that strict POSIX semantics are not
necessary.

These results show that FLEX can provide an easy, incre-
mental, and high-value path for developers creating new
applications for NVMM or migrating existing code. It also
reduces the importance of using a native NVMM file system,
further easing migration, since FLEX performance depends
little on the underlying file system.
The Strata file system [37] provides some of the same

advantages as FLEX through userspace logging through a
library that communicates with the in-kernel file system.
Their results show that coupling the user space interface to
the underlying file system leads to good performance. Their
interface makes strong atomicity guarantees while FLEX lets
the application enforce the semantics it requires.

3.4.1 Correctness
Since FLEX is not atomic, applying it to applications that
assume atomic writes is likely to cause a correctness problem.
To our knowledge, SQLite, RocksDB, and Kyoto Cabinet do
not assume the atomicity of write system calls [51], thereby
applying FLEX does not break their application logic. Only
LMDB assumes that 512 bytes sector writes are atomic [13].
Therefore, running it on NVMM file systems introduces the
correctness problem since only 8 bytes are atomic on NVMM.
To solve this problem, we added a checksum for the LMDB
metadata: When a checksum error is detected, LMDB falls
back to the previous header.

3.5 Best Practices
Based on our experiences with these five applications, we
can draw some useful conclusions about how applications
can profitably exploit NVMMs.
Use FLEX Emulating file operations in user space pro-
vides large performance gains for very little programmer
effort.
Use fine-grained cache flushing instead of msync Ap-
plications that already use mmap and msync to access data
and ensure consistency, can improve performance signifi-
cantly by flushing cache lines rather than msync’ing pages.
However, ensuring that all updated cache lines are flushed
correctly can be a challenge.
Use complex persistent data structure judiciously
For both of the DRAM data structures we made persistent,
the programming effort required was significant and likely
performance gains were relatively small relative to FLEX.
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Figure 6. JDD performance. Fine-grained, DAX-optimized
journaling on NVMM improves performance for metadata-
intensive applications.
This finding leads us to two conclusions: First, it is critical to
make building persistent data structures in NVMM as easy
as possible. Second, it is wise to estimate the potential perfor-
mance impact the persistent data structure will have before
investing a large amount of programmer effort in developing
it [41].
Preallocate files on adapted NVMM file systems Sev-
eral of the performance problems we found with adapted
NVMM file systems stemmed from storage allocation over-
heads. Using fallocate to pre-allocate file space eliminated
them.
Avoid meta-data operations Directory operations (e.g.,
deleting files) and storage allocation incurred journaling
overheads in both xfs and ext4. Avoiding them improves
performance, but this is not always possible.

3.6 Reducing journaling overhead
Several of the best practices we identify above focus on avoid-
ing metadata operations since they are often slow. This can
be awkward and some metadata operations are unavoidable,
so improving their performance would make adapting to
NVMMs easier and improve performance.
NOVA’s mechanism for performing consistent metadata

updates is tailored specifically for NVMMs, but ext4 and xfs’
journaling mechanisms were built for disk, and this legacy
is evident in their poorer metadata performance.
Ext4 uses the journaling block device (JBD2) to perform

consistent metadata updates. To ensure atomicity, it always
writes entire 4 KB pages, even if the metadata change affects
a single byte. Transactions often involve multiple metadata
pages. For instance, appending 4 KB data to a file and then
calling fsyncwrites one data page and eight journal pages: a
header, a commit block, and up to six pages for inode, inode
bitmap, and allocator.

JDB2 also allows no concurrency between journaled oper-
ations, so concurrent threads must synchronize to join the
same running transaction, making the journaling a scala-
bility bottleneck [56]. Son et al. [56] and iJournaling [50]
have tried to fix ext4’s scalability issues by reducing lock
contention and adding per-core journal areas to JBD2.
Previous works [9, 10] has identified the inefficiencies of

coarse-grain logging and proposed solutions in the context
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Native techniques Optimizations (Lines changed)
WAL mmap+msync FLEX CLWB+fence Persistent Objects

SQLite × - 266 - -
Kyoto Cabinet × × 133 48 -
LMDB - × - 101 -
Redis × - - - 1326
RocksDB × - 56 - 380

Table 1. Application Optimization Summary The applications we studied used a variety of techniques to reliably store
persistent state. All the optimizations we applied improved performance, but the amount of programmer effort varied widely.
The data Figures 1, 2, 3, and 4 show that programmer effort does not correlate with performance gains.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Latency (microsecond)

NOVA RocksDB

ext4-DAX-JDD RocksDB

ext4-DAX-jbd2 RocksDB

NOVA append

ext4-DAX-JDD append

ext4-DAX-jbd2 append

jbd2 commit
fsync

memcpy
ext4 map blocks

ext4 zeroout
nova append entry

nova update tree
MemTable insert

JDD log cleaner

Figure 7. Latency break for 4KB append and RocksDB SET. JDD significantly reduces journaling overhead by eliminating
JBD2 transaction commit, but still has higher latency than NOVA’s metadata update mechanism.

of block-based file systems. FSMAC [10] maintains data in
disk/SSD and metadata in NVMM, and uses undo log jour-
naling for metadata consistency. The work in [9] journals
redo log records of individual metadata fields to NVMM dur-
ing transaction commit, and applies them to storage during
checkpointing.
To understand how much of ext4’s poor metadata per-

formance is due to coarse-grain logging, we apply these
fine-grain logging techniques to develop a journaling DAX
device (JDD) for ext4 which performs DAX-style journaling
on NVMM and provides improved scalability.

JDD makes three key improvements to JBD2. First, it jour-
nals individual metadata fields rather than entire pages. Sec-
ond, it provides pre-allocated, per-CPU journaling areas so
CPUs can perform journaled operations in parallel. Third, it
uses undo logging in the journals: It copies the old values
into the journal and performs updates directly to the meta-
data structures in NVMM. To commit an update it marks
the journal as invalid. During recovery from a crash, the

file system rolls back partial updates using the journaled
data. These changes provide for very lightweight transaction
commit and make checkpointing unnecessary.
JDD differs from the previous works by focusing on

NVMM file systems. FSMAC aims to accelerate metadata up-
dates for disk-based file systems by putting the metadata sep-
arately in NVMM. To handle the performance gap between
NVMM and disk, FSMAC maintains multiple versions of
metadata. The work in [9] optimizes ext4 using fine-grained
redo logging on NVMM journal. We built JDD to improve
the performance of adapted NVMM file systems using fine-
grained undo logging, avoiding the complexity of previous
works – managing versions in FSMAC or transaction com-
mitting and checkpointing in [9].

Strata [37] and Aerie [63] take a more aggressive approach
and log updates in userspace under the control of file system-
specific libraries. Metadata updates occur later and off the
critical path. This approach should offer better performance
than the techniques described above since it avoids entering
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the kernel for metadata updates. However, it also involves
more extensive changes to the application.
Figure 6 shows JDD’s impact on a microbenchmark

that performs random 4 KB writes followed by fsync,
Filebench [60] Varmail (which is metadata-intensive), and
the three databases and key value stores we evaluated earlier
that perform frequent metadata operations as part of WAL.
The JDD improves themicrobenchmark performance by 3.7×
and varmail by 40%. For applications that use write-ahead
logging, the benefits range from 11% to 2.6×.
We further analyze the latency of JDD for 4 KB ap-

pends and RocksDB SET operation and show the latency
breakdown in Figure 7. In ext4-DAX, JBD2 transaction
commit (jbd2_commit) occupies 50% of the total latency.
JDD eliminates this overhead by performing undo logging.
JDD also reduces ext4 overheads such as block allocation
(ext4_map_blocks). The remaining performance gap between
ext4 and NOVA (46%) is due to ext4’s more complex design
and its need to keep more persistent states in storage media.
In particular (as discussed in Section 3.1) ext4 keeps its data
block and inode allocator state continually up-to-date on
disk.
The performance improvement on Redis and SQLite are

smaller, because they have higher internal overheads. Redis
spends most of its time on TCP transfers between the Redis
server and the benchmark application, and SQLite spends
over 40% of execution time parsing SQL and performing
B-tree operations.

4 File System Scalability
We expect NVMM file systems to be subject to more onerous
scalability demands than block-based filesystems due to the
higher performance of the underlying media and the large
amount of parallelism that modern memory hierarchies can
support [4]. Further, since NVMMs attach to the CPU mem-
ory bus, the capacity of NVMM file systems will tend to scale
with the number sockets (and cores) in the systems.

Many-core scalability is also a concern for conventional
block-based file systems, and researchers have proposed
potential solutions. SpanFS [31] shards file and directories
across cores at a coarse granularity, requiring developers
to distribute the files and directories carefully. ScaleFS [4]
decouples the in-memory file system from the on-disk file
system, and uses per-core operation logs to achieve high
concurrency. ScaleFS was built on xv6, a research prototype
kernel, which makes impossible to perform a good head-
to-head comparison with our changes. However, we expect
that applying its techniques and the Scalable Commutativity
Rule [14] systematically to NVMM file systems (and the VFS
layer) might yield further scaling improvements.
This section first describes the FxMark [46] benchmark

suite. Then, we identify several operations that have scala-
bility limitations and propose solutions.
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Figure 8. Concurrent 4KB read and write throughput.
By default, Linux uses a non-scalable reader/writer lock to
coordinate access to files. Using finer-grain, more scalable
locks improves read and write scalability.

4.1 FxMark scalability test suite
Min et al. [46] built a file system scalability test suite called
FxMark and used it to identify many scalability problems in
both file systems and Linux’s VFS layer. It includes nineteen
tests of performance for data and metadata operations under
varying levels of contention.

Min et al. use FxMark to identify scalability bottlenecks
across many file systems. Interestingly, it is their analysis
of tmpfs, a DRAM-based pseudo-file system that reveals the
bottlenecks that are most critical for ext4-DAX, xfs-DAX,
and/or NOVA.

We repeat their experiments and then develop solutions to
improve scalability. The solutions we identify are sufficient
to give good scalability with NVMM, but would probably
also help disk-based file systems too.

FxMark includes nineteen workloads. Below, we only dis-
cuss those that show poor scalability for at least one the
NVMM file systems we consider.

4.2 Concurrent file read/write
Concurrent read and write operations to a shared file are a
well-known sore spot in file system performance. Figure 8
shows scalability problems for both reads and writes across
ext4-DAX, xfs-DAX, and NOVA. The root cause of this poor
performance is Linux’s read/write semaphore implementa-
tion [5, 6, 33, 40]: It is not scalable because of the atomic
update required to acquire and release it.
The semaphore protects two things: The file data and

the metadata that describes the file layout. To remove this
bottleneck in NOVA, we use separate mechanisms to protect
the data and metadata.

To protect file data, we leverage NOVA’s logs. NOVAmain-
tains one log per inode. Many of the log entries correspond
to write operations and hold pointers to the file pages that
contain the data for the write. Rather than locking the whole
inode, we use reader/writer locks on each log entry to pro-
tect the pages to which it links. Although this lock resides in
NVMM, its state is not necessary for recovery and is cleared
before use after a restart, so hot locks will reside in processor
caches and not usually be subject to NVMM access latency.
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Figure 9. Concurrent create and unlink throughput.
The create and unlink operations are not scalable even if
performed in isolated directories, because Linux protects the
global inode lists and inode cache with a single spinlock.
Moving to per-cpu structures and fine-grain locks improves
scalability above 20 cores.

NOVA’s approach to tracking file layout makes protecting
it simple. NOVA uses an in-DRAM radix tree to map file
offsets to write entries in the log.Write operations update the
tree and both reads andwrites query it. Instead of using a lock
we leverage the Linux radix tree implementation that uses
read-copy update [42] to provide more scalable, concurrent
access to a file.
Figure 8 shows the results (labeled “NOVA-lockfree”) on

our 80-core machine. 4 KB read performance scales from
2.9 Mops/s for one thread to 183 Mops/s with 80 threads
(63×). The changes improve write performance as well, but
write bandwidth saturates at twenty threads because our
NVMM is attached to one of four NUMA nodes and each
node has twenty threads.

Adding fine-grain locking for ranges of a file is possible for
ext4-DAX and xfs-DAX, and it would improve performance
when running on any storage device.

Using the radix tree to store file layout information would
be more challenging since ext4 and xfs make updates to file
layout information immediately persistent in the file’s inode
and indirect blocks. This is necessary to avoid reading the
data from disk when the file is opened, which would be slow
on block device. Since NVMM is much faster, NOVA can
afford to scan the inode’s log on open to construct the radix
tree in DRAM.
An alternative solution for ext4 and xfs would be to re-

place VFS’s per-inode reader/write semaphore with a CST
semaphore [33] (or some other more scalable semaphore).
The ext4-CSTlock line in the figure shows the impact on ext4-
DAX: Performance scales from 2.1 Mops/s for one thread
to 45 Mops/s for eighty threads (21×). The gains are not as
large as the approach we implemented in NOVA, and they
only apply to reads. Both of these approaches could coexist.

4.3 Directory Accesses
Scalable directory operations are critical in multi-program,
data intensive workloads. Figure 9 shows that creating files
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Figure 10. NUMA-awareness in the file system. Since
NVMM is memory, NUMA effects impact performance. Pro-
viding simple controls over where the file system allocates
NVMM for a file lets application run threads near the data
they operate on, leading to higher performance.

in private directories only scales to twenty cores. Min et al.
identify the root cause, but do not offer a solution: VFS takes
a spinlock to add the new inode to the superblock’s inode
list and a global inode cache. The inode list includes all live
inodes, and the inode cache provides a mapping from inode
number to inode addresses.
We solve this problem and improve scalability for the

inode list by breaking it into per-CPU lists and protecting
each with a private lock. The global inode cache is an open-
chaining hash table with 1,048,576 slots. We modify NOVA
to use a per-core inode cache table. The table is distributed
across the cores, each core maintains a radix tree that pro-
vides lock-free lookups, and threads on different cores can
perform inserts concurrently. In Figure 9, the “NOVA + scal-
able inode” line shows the resulting improvements in scaling.

Updates to shared directories also scale poorly due to VFS
locking. For every directory operation, VFS takes the inode
mutexes of all the affected inodes, so operations in the shared
directories are serialized. The rename operation is globally
serialized at a system level in the Linux kernel for consistent
updates of the dentry cache. Fixing these problems is be-
yond the scope of this paper, but recent work has addressed
them [4, 61].

4.4 NUMA Scalability
Intelligently allocating memory in NUMA systems is critical
to maximizing performance. Since a key task of NVMM file
systems is allocating memory, these file systems should be
NUMA-aware. Otherwise, poor data placement decisions
will lead to poor performance [20].

We have added NUMA-aware features to NOVA to under-
stand the impact they can have. We created a new ioctl
that can set and query the preferred NUMA node for the file.
A NUMA node represents a set of processors and memory
regions that are close to one another in terms of memory
access latency. The file system will try to use that node to
allocate all the metadata and data pages for that file. A thread
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can use this ioctl along with Linux’s CPU affinity mecha-
nism to bind itself to the NUMA node where the file’s data
and metadata reside.
Figure 10(left) shows the result of Filebench workloads

running with fifty threads. The NVMM is attached to NUMA
node 0. Without the new mechanism, threads are spread
across all the NUMA nodes, and some of them are accessing
NVMM remotely. Binding threads to the NUMA node that
holds the file they are accessing improves performance by
2.6× on average.
The other two graphs in Figure 10 measure the impact

on RocksDB and MongoDB [47]. We modified RocksDB to
schedule threads on the same NUMA node as the SSTable
files using our ioctl, and ran db_bench readrandom bench-
mark with twenty threads. Similarly, we modified MongoDB
to enable NUMA-aware thread scheduling, and ran read-
intensive (95% read, 5% update) YCSB benchmark [18] with
twenty threads. For both workloads, the data set size is 30 GB.
The graphs show the result: NUMA-aware scheduling im-
proves RocksDB and MongoDB performance by 68% and
21%, respectively.

5 Conclusion
We have examined the performance of NVMM storage soft-
ware stacks to identify the bottlenecks and understand how
both applications and the operating system should adapt to
exploit NVMM performance.
We examined several applications and identified several

simple techniques that provide significant gains. The most
widely applicable of these use FLEX to move writes to user
space, but implementing msync in userspace and assidu-
ously avoiding metadata operations also help, especially on
adapted NVMM file systems. Notably, our results show that
FLEX can deliver nearly the same level of performance as
building crash-consistent data structures in NVMM but with
much less effort.

On the file system side, we evaluated solutions to the prob-
lems of inefficient logging in adapted NVMM file systems,
multicore scaling limitations in file systems and the Linux’s
VFS layer, and the novel challenge of dealing with NUMA
effects in the context of NVMM storage.

Overall, we find that although there are many opportuni-
ties for further improvement, the efforts of systems designers
over the last several years to prepare systems for NVMM
have been largely successful. As a result, there are a range
of attractive paths for legacy applications to follow as they
migrate to NVMM.
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