

Microsoft Recommenders
Tools to Accelerate Developing Recommender Systems

Scott Graham
 Cloud + AI
 Microsoft

 Cambridge MA USA
scott.graham@microsoft.com

Jun-Ki Min
 Cloud + AI
 Microsoft

 Cambridge MA USA
 jun.min@microsoft.com

Tao Wu
 Cloud + AI
 Microsoft

 Cambridge MA USA
 tao.wu@microsoft.com

ABSTRACT
The purpose of this demonstration is to highlight the content of the
Microsoft Recommenders repository and show how it can be used
to reduce the time involved in developing recommender systems.
The open source repository provides python utilities to simplify
common recommender-related data science work as well as
example Jupyter notebooks that demonstrate use of the algorithms
and tools under various environments.

CCS CONCEPTS
• Information systems~Recommender systems

KEYWORDS
Recommender Systems; Tools; Python

1 Introduction

The Microsoft Recommenders repository is an open source
collection of python utilities and Jupyter notebooks to help
accelerate the process of designing, evaluating, and deploying
recommender systems. The repository was initially formed by data
scientists at Microsoft to consolidate common tools and best
practices developed from working on recommender systems in
various industry settings. The goal of the tools and notebooks is to
show examples of how to effectively build, compare, and then
deploy the best recommender solution for a given scenario.
Contributions from the community have brought in new algorithm
implementations and code examples covering multiple aspects of
working with recommendation algorithms. The repository is
actively maintained and constantly being improved and extended.
It is publicly available on GitHub and licensed through a permissive
MIT License to promote widespread use of the tools. The
repository maintainers encourage data scientists and developers to
contribute their own algorithm implementations, tools, and best

practices to continuously improve the content and quality of tools
available to the recommender community.

2 Repository Components

In this section we describe four main components of the Microsoft
Recommenders repository. The first component is the reco_utils
package, which is sub-divided into separate modules based on
different stages of developing recommender systems. While the
key capabilities are described below, this is not an exhaustive list.
More details on the latest set of functions available and how to use
them can be found in the documentation provided with the code.
Second is the set of implementations for classical and deep
learning-based recommender algorithms. Third, we list the groups
of Jupyter notebook examples showing how to use those
algorithms. And lastly, we describe the suite of tests used to ensure
the utilities and notebooks work as expected.

2.1 Recommender Utilities

2.1.1 Common Utilities. This submodule contains high-level
utilities for defining constants used in most algorithms as well as
helper functions for managing aspects of different frameworks:
GPU, Spark, and Jupyter notebooks. Helper utilities for common
functions dealing with Pandas DataFrames, TensorFlow, and
timing algorithm performance are also provided.

2.1.2 Dataset Utilities. The dataset submodule includes
functions for interacting with Azure Cosmos databases as well as
pulling different sizes of sample data to test with, such as the
MovieLens [1] and Criteo Display Advertising Challenge [2]
datasets. There are methods for splitting data for training, testing,
and validation based on random sampling, chronological sampling,
or stratified sampling to ensure the same set of users (or items) are
in each split. The dataset operations are designed to work with both
Pandas and Spark based DataFrames.

2.1.3 Evaluation Utilities. The evaluation submodule includes
functions for calculating common metrics to evaluate model
performance (both in python and Spark). There is a collection of
offline test metrics [3] that can be used to evaluate both rating and
ranking based approaches.

2.1.4 Tuning Utilities. Hyperparameter tuning tools are
available to get the best performance out of the algorithms, whether

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s).
RecSys '19, September 16–20, 2019, Copenhagen, Denmark
© 2019 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6243-6/19/09.
https://doi.org/10.1145/3298689.3346967

RecSys’19, Stockholm Sweden Scott Graham, Jun Ki Min, and Tao Wu

the implementation is on Spark, GPU or CPU. This includes the use
of the Neural Network Intelligence toolkit [4], HyperOpt, and
Azure HyperDrive service which enable a variety of optimization
approaches including: Random Search, Grid Search, Bayesian
Optimization and many others.

2.2 Recommender Algorithms

The recommender module contains implementations of algorithms
and integrations with external packages that can be used to evaluate
and develop new recommender systems. The following algorithms
are currently implemented or integrated using supporting utilities.

Table 1: List of Implemented Algorithms

Algorithm Type
Alternating Least Squares Collaborative Filtering
Deep Knowledge Aware Network Content-based Filtering
Extreme Deep Factorization Machine Hybrid
Fast AI Embedding Dot Bias Collaborative Filtering
LightGBM Content-based Filtering
Neural Collaborative Filtering Collaborative Filtering
Reimannian Low-Rank Matrix Completion Collaborative Filtering
Restricted Boltzman Machines Collaborative Filtering
Simple Algorithm for Recommendation Collaborative Filtering
Surprise (Singular Value Decomposition) Collaborative Filtering
Vowpal Wabbit Hybrid
Wide and Deep Hybrid

2.3 Jupyter Notebook Examples

In the repository notebooks folder, there are examples of building
recommendation systems written as Jupyter notebooks. The folder
structure is broken down to highlight specific aspects of working
with recommender systems.

 Quick Start: Simplified workflows for developing
recommender models

 Prepare Data: Options for data preparation
 Model: Deep dives on various classical and deep

learning recommender algorithms
 Evaluate: Different evaluation approaches for

recommender models
 Select and Optimize: How to leverage hyperparameter

tuning to improve model performance
 Operationalize: End-to-end examples for putting a

recommender model into production and ensuring it
satisfies real-world requirements

2.4 Testing

Tests are developed for both the utilities and the notebooks to
ensure high code quality and functionality for all examples. This
project uses unit, smoke, and integration tests with python files and
notebooks. Papermill [5] is used extensively when testing the
notebooks within the repo. This tool supports adjusting parameters
within each notebook then executing and collecting metrics to

ensure test cases are passing. Every time a developer makes a pull
request to the repository a battery of unit tests is executed to
maintain code functionality. Smoke tests and integration tests are
run nightly to ensure combinations of components work together
and end-to-end examples are functioning.

3. Workflow

Figure 1: Example workflow leveraging Recommenders tools

Figure 1 shows a general workflow for using the tools in Microsoft
Recommenders. The first step is to setup the development
environment. Several tools are available to automate this process
for local development using Anaconda or Docker to manage
dependencies for the specific environment desired. Also, scripts are
available to simplify setup for using the utilities on Azure
Databricks. The Dataset utilities support loading and splitting the
data as described earlier. Then the user can select one of the
implemented algorithms to train a model. Next the user can tune
the hyperparameters used during training and evaluate the
performance of the model. Several iterations of algorithm selection
and tuning/evaluation can be performed to compare performance
across multiple algorithms then select the best approach for the
dataset and business needs. The example notebooks can then be
adjusted to deploy the selected model for the desired end
production environment.

ACKNOWLEDGMENTS
This work is supported by Microsoft Cloud + AI group in
collaboration with both internal and external contributors [6].
Special thanks to Andreas Argyriou, Miguel González-Fierro, and
Le Zhang for their work in the development of the repository.

REFERENCES
[1] F. Maxwell Harper and J. A. Konstan. (2015). The MovieLens Datasets: History

and Context. ACM Transactions on Interactive Intelligent Systems (TiiS ‘15) 5,
4, Article 19, 19 pages.

[2] Criteo Labs, (2014) Kaggle Display Advertising Challenge Dataset.
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

[3] G. Shani and A. Gunawardana, (2015). Evaluating Recommendation Systems,
Recommender Systems Handbook, Springer.

[4] Neural Network Intelligence (2019). https://nni.readthedocs.io/en/latest/

[5] Papermill (2019). https://papermill.readthedocs.io/en/latest/

[6] Microsoft Recommenders Authors (2019).
https://github.com/microsoft/recommenders/blob/master/AUTHORS.md

