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ABSTRACT
In this work, we present the findings of an online study, where
we explore the impact of utilizing embeddings to recommend job
postings under real-time constraints. On the Austrian job platform
Studo Jobs, we evaluate two popular recommendation scenarios: (i)
providing similar jobs and, (ii) personalizing the job postings that are
shown on the homepage. Our results show that for recommending
similar jobs, we achieve the best online performance in terms of
Click-Through Rate when we employ embeddings based on the most
recent interaction. To personalize the job postings shown on a user’s
homepage, however, combining embeddings based on the frequency
and recency with which a user interacts with job postings results in
the best online performance.

KEYWORDS
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1 INTRODUCTION
Job recommender systems have become an integral part of both
academia and industry for a few decades now [23], which is also
illustrated by the fact that XING1 has organized two recent RecSys
Challenges [1, 2]. In the past, research on job recommendations has
mainly employed various Collaborative- and Content-Based Filter-
ing approaches or their hybrid combinations [3, 26] to improve the
recommendation accuracy. Recently, learning latent item represen-
tations (i.e., embeddings) for recommender systems has become a
popular technique and has shown state-of-the-art performance in
the job domain. For example, the authors of [25] use Doc2Vec [17]
to create job embeddings based on job-related content features. To
test their approach, they conduct an offline evaluation, where they
manually score the quality of similar jobs from a small subset of

*Both authors contributed equally to this work.
1https://www.xing.com
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100 randomly selected jobs. Other works [5, 16, 22] define the task
at hand as an item-to-item recommendation problem and evaluate
embedding approaches also in offline studies.

However, whether a user indeed accepts a recommendation can
only be measured with either user studies or online evaluations. User
studies are to date rarely used as they require active participation of
users over a period of time [6] and online evaluations are expensive
to set up, as they need a fully functional system with a significant
userbase [7]. As a consequence, related work that reports on on-
line studies of job recommender systems is scarce. For example,
recent work [12] explored in an online study how to increase the
engagement toward underserved jobs. Besides, in the case of the
RecSys 2017 Challenge, the top-25 participating teams were allowed
to publish their solutions once per day to be rolled out on the XING
platform [2]. In line with recent research [8, 11], recommendation
approaches used in an online evaluation usually need to consider
real-time constraints [9, 24], such as having response times, which
are below 100-200 milliseconds or immediately considering data
updates in the next recommendation request.

The present work. In this work, we contribute to the sparse line of
research on evaluating job embeddings under real-time constraints
in an online setting. For this, we learn job embeddings using the
popular Doc2Vec approach. We obtain fixed-length vectors from
the job description text and investigate their impact on the online
performance of recommending job postings in real-time. Similarly,
as in the offline setting of [16], we further represent a user’s browsing
behavior by combining the extracted embeddings using a model
from human memory theory, that integrates factors of frequency and
recency of job posting interactions. To measure the real impact of
such an approach, we perform several A/B tests on the Studo Jobs
platform. That is, we compare against two popular recommendation
use-cases that we tackle under the real-time constraint: (i) providing
content-based recommendations for similar job postings to the one
currently viewed by the user and, (ii) personalizing the homepage
with job postings using collaborative filtering. Our findings suggest
that in situations when we recommend similar job postings, using
embeddings based on the most recent interaction tends to improve
the online performance. In contrast, combining embeddings based
on the frequency and recency with which a user interacts with job
postings improves the online performance when we personalize the
job postings on the homepage.
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Test User Count Reco Count Days Approach CTR ↗ Runtime (ms) ↘

Si
m

ila
r

Jo
bs

Impact of embeddings 8,576 31,968 32
CBF 0.0194

18.04%
51

23.53%
LAST 0.0229∗ 39∗∗

Influence of frequency and recency 4,715 18,464 15
LAST 0.0249∗∗

75.35%
67∗∗

28.72%
BLL 0.0142 94

Merit of recency 3,375 11,992 15
BLLd=0.6 0.0174∗

35.94%
97

2.06%
BLLd=0.4 0.0128 95

H
om

ep
ag

e Influence of frequency and recency 9,620 26,334 25
BLL 0.0671∗

15.69%
114∗∗

13.64%
CF 0.0580 132

Combining frequency and recency 9,313 24,907 19
HYBBLL 0.0471∗∗

33.05%
172

38.37%
CF 0.0354 106∗∗

Table 1: We report the mean Click-Through Rate (CTR) and the mean Runtime of the approaches utilized in the corresponding A/B
tests. The increase ↗ in accuracy and decrease ↘ in runtime is reported for the best performing approach. Moreover, we use the ∗
symbol to indicate it the results are significantly better with a p-value < 0.05 and the ∗∗ for results with a p-value < 0.0005.

2 RECOMMENDATION STUDY
Our study is carried out in the Studo Jobs2 platform. We tackle
two distinguished recommendation scenarios, which the platform
supports. First, we recommend similar jobs. Second, we personalize
the ranked list of all possible job postings in the system to improve
engagement on the homepage of Studo.

As shown in an offline study in [16], learning embeddings on the
textual description of job postings can improve both the accuracy and
diversity of content-based recommendations. In the present work,
we learn embeddings of job postings by utilizing Doc2Vec [17], a
variation of the widely popular Word2Vec [19] approach. In order to
investigate the online performance of the extracted job embeddings3

under real-time constraints, we employ two variants for performing
content-based recommendation of job postings, which are described
in this section. For evaluation, we measure both Click Through Rate
(CTR) and runtime.

Utilizing the most recent job interaction (LAST). A natural way
of using embeddings is to apply them in a content-based manner
(e.g., [20]). That is, given a reference vector representation, the
task is to find the top-k similar vectors (i.e., job postings) using the
Cosine similarity. As in [16], to obtain this reference vector, we
use the embedding of the last (i.e., most recent) job posting with
which the user has interacted. With this recommendation strategy,
we can study the online performance of the recommender when
we recommend jobs that are similar to the one the user is currently
viewing.

Integrating interaction frequency and recency (BLL). One issue
of the previously mentioned LAST recommendation strategy is that
it solely focuses on the factors of interaction recency. However,
related work has shown that past interaction frequency and recency
are crucial factors for personalization [13, 16]. In this respect, the
cognitive architecture ACT-R defines the Base-Level Learning (BLL)
equation, which integrates these two factors to model the information
access in human memory. Thus, to simultaneously account for both
frequency and recency factors of job posting interactions, we use the

2https://studo.co/jobs
3We obtain the embeddings using a Doc2Vec model that we train with a window size of
20, a learning rate of 0.025 and 10 negative samples.

BLL equation to model a user’s browsing behavior:

BLLu, j = ln(
n∑
i=1

(TSr ef −TSj,i )−d ) (1)

where BLLu, j is the BLL value for a given user u and a given job
j, and n states the number of times u has interacted with j in the
past. Moreover, TSj,i is the timestamp (in seconds) of when u has
interacted with j for the i-th time andTSr ef is a reference timestamp
such as the time when the job recommendations are requested. The
parameter d is used to set the time-dependent decay of item exposure
in human memory and unless stated otherwise, we set it to its default
value of 0.5 (i.e., according to Anderson et al. [4]).

In this work, we use Anderson’s model of human memory the-
ory to create a reference vector representation that can be used in
a content-based manner (i.e., to find similar job postings). For that,
we first normalize the BLL values using a softmax function and then
multiply them with the vector representations assigned to the individ-
ual job postings from a user’s browsing history. This way, we form a
weighted sum of embeddings based on how frequently and recently
the user has interacted with the particular job postings. As previous
offline experiments have shown [16], utilizing embeddings in such a
way results in a recommendation performance with lower accuracy
but higher diversity when compared to the previously mentioned
LAST approach.

Adapting for real-time job recommendations. In practice, response
times of recommendations need to be below 100-200 milliseconds
[9, 24]. To adapt the LAST and BLL approaches for an online setting
(i.e., to provide recommendations in real-time), we further propose
to store the learned job embeddings in the form of payloads in
Apache Lucene4. Payloads are a general purpose array of bytes that
are associated with a Lucene token at a particular position. Each
job posting is thus annotated with multiple positions of the latent
vector dimensions. The latter positional information can be used for
fast retrieval and calculation of vector similarities (i.e., utilizing the
Cosine similarity) at runtime. For the online study on the Studo Jobs

4An example of how to implement this functionality in Elastic Search, a search engine
that is built on top of Apache Lucene can be found at the following link: https://github.
com/lior-k/fast-elasticsearch-vector-scoring.

https://studo.co/jobs
https://github.com/lior-k/fast-elasticsearch-vector-scoring
https://github.com/lior-k/fast-elasticsearch-vector-scoring
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(c) Merit of recency

Figure 1: Analysis of incorporating job embeddings to recommend similar jobs. The reported results show a daily CTR and the
distribution of the measured runtime performance.

platform, we use Apache Solr5 to store, retrieve and calculate the
similarity of job embeddings in real-time.

Experimental setup. In our experiments, we measure the Click-
Through Rate (CTR) and the runtime performance. To obtain the
CTR, we compute the percentage of recommended job postings with
which the users have interacted. For the runtime analysis, we mea-
sure the time it takes to generate each recommendation in millisec-
onds. We compare two approaches at a time (i.e., conduct an A/B
test) to avoid being subject to periodical changes and other anom-
alies. For this reason, we divide our userbase into two equal groups
and assign them to one of the two approaches that we evaluate. We
further perform a chi-squared test on the measured recommendation
outcome (i.e., a user either did or did not engage with a recom-
mendation) and a t-test on the runtime performance to determine
if the differences in the reported results are statistically significant.
Concerning real-time constraints, all recommendation approaches in
the Studo Jobs platform calculate new recommendations for every
request and filter out those job postings that the user has already
interacted with in the current session.

3 SIMILAR JOBS
When users view a particular job posting in the Studo Jobs platform,
recommendations with similar, alternative jobs are shown to them.
The location of the shown recommendations depends on the layout
of the device used. On the desktop, the recommendations appear
in the sidebar, while on a mobile device they will appear under the
job posting description. Furthermore, this type of recommendations
only suggests a short list of 3 alternative job postings.

Baseline: Content-Based Filtering (CBF). A popular method in
many systems for recommending similar items (i.e., jobs) is Content-
Based Filtering [3, 21]. This method analyses item metadata to
identify other items that could be of interest for a specific user. In
Studo, this is done using TF-IDF on the description text of the job
posting with which the user currently interacts. Besides being a
typical pick for recommending similar items, another reason for

5A search engine that, similar as Elastic Search, is built on top of Apache Lucene:
https://lucene.apache.org/solr/.

using CBF is that it can easily be adapted for an online setting,
where recommendations need to be served in real-time6.

Impact of embeddings. The initial aim of this work is to investigate
if utilizing embeddings, which we learn from the textual content of
job postings, can outperform traditional content-based recommenda-
tions when used in a similar item scenario. For this, we first did a
preliminary A/B test of the LAST approach to evaluate the impact
of the embedding size. We found that in the case of Studo, having an
embedding size larger than 100 did not contribute to a higher CTR,
but did increase the overall runtime performance. Table 1 reports
on all A/B tests, for which, we use 100 as the dimension size of job
embeddings.

In Figure 1a, we report the performance of the LAST approach
when compared to the CBF baseline. As seen, the CTR varies over
the 32-day testing period, but overall, using the job embedding from
the currently viewed job posting leads to a significant increase of
the CTR by 18.04%. Moreover, utilizing embeddings in such a way
resulted in a 23.53% lower runtime (i.e., as reported in Table 1),
which is a desirable effect when providing recommendations in
real-time.

Influence of frequency and recency. Building upon the insights on
the impact of using embeddings, we evaluate the model of human
memory theory during a shorter, 15-day period. That is, we inves-
tigate if we can further enhance the recommendation performance
by using the proposed BLL equation from Section 2 to create the
reference job vector. Interestingly enough, Figure 1b clearly shows
that modeling a user’s browsing behavior in this manner did not re-
sult in better performance than the LAST approach in terms of both
CTR and runtime. As seen in Table 1, we get the highest relative
difference in CTR which did not justify the increased computational
overhead, that resulted in higher runtime performance.

Merit of recency. We hypothesize that the BLL approach did not
exhibit a better performance due to the specific recommendation
scenario where it was applied in (i.e., showing similar jobs to the
currently viewed one). This suggests that factors of recency are
especially influential in this setting and as such, we perform an
additional experiment to confirm this effect.

6As shown in [15], we leverage the built-in functionality of the Apache Solr search
engine to recommend jobs with the most similar textual content.

https://lucene.apache.org/solr/
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(b) Combining frequency and recency

Figure 2: Online performance of job embeddings when used to
personalize the homepage.

In our previous experiment, we set the time parameter d from
the BLL equation to have the default value of 0.5. However, this
parameter changes the rate at which things will be "forgotten." Thus,
it controls the decay of the impact of consumed items at an expo-
nential rate. The question is therefore on whether a shorter memory
(i.e., higher time decay) or a long memory is better for the setting
of recommending similar job postings. For this experiment, the ex-
ponents d = 0.6 (shorter memory) and d = 0.4 (longer memory)
were compared. As seen in Figure 1c and Table 1, favoring shorter
memory (i.e., recency) when calculating the BLL equation resulted
in a significantly better CTR. Indeed, this confirms the described
effect where users expect recommendations which are similar to the
more recent browsing behavior.

4 HOMEPAGE
As in many other systems, personalization in the Studo Jobs platform
starts already on the homepage. The homepage consists of a list of
25 job postings from which the first 5 are the calculated recommen-
dations. The advantage in this setting is the seamless integration of
recommendations with the list of available job postings. Moreover,
users not only first visit the homepage when they access the Studo
Jobs portal, but also often come back to it after they stop exploring
a given job posting. Such behavior results in the homepage being
responsible for more than 80% of all recommendations that the user
has interacted with and thus suggests to be a better fit for applying
the model of human memory theory to represent the user’s browsing
behavior.

Baseline: Collaborative Filtering (CF). To this day, one of the
most explored and utilized techniques for personalizing a system
in real-time is Collaborative Filtering [10, 15, 18]. The Studo Jobs
portal uses the User-Based Collaborative Filtering approach to per-
sonalize the job postings on the homepage. In that setting, a target
user will get those job postings recommended that have been previ-
ously interacted with by similar users (i.e., the neighbors). As shown
by [14], to provide recommendations in real-time, the inverted-index
structure available in the Apache Solr search engine is used to find
the k-nearest neighbors using the Cosine similarity metric.

Influence of frequency and recency. As previously stated, we hy-
pothesize that by incorporating the factors of frequency and recency
from a user’s browsing behavior, we can further enhance the online
performance of recommendations on the homepage. For this, we
use the BLL equation on the extracted embeddings from the user’s

interaction history to create a reference vector representation and
recommend the top-k similar job postings. To account for cold-start
users, we utilize the most popular job postings as a fallback7.

As seen in Figure 2a and the second part of Table 1, using the
BLL equation on embeddings from the user’s job history manages
to significantly outperform the CF baseline for both, the CTR and
the runtime performance. Such results suggest that the scenario
of personalizing the homepage is indeed a setting where the user
expects the recommendations to consider both, factors of frequency
and recency of her browsing behavior.

Combining frequency and recency. Instead of replacing the CF
baseline with the BLL approach, we further explore the efficacy of
a hybrid combination which uses these two approaches in a round-
robin fashion. We assume that for the homepage, where the user
interacts most with the provided recommendations, it would make
sense to allow picking from multiple sources of relevant job postings
since such a recommendation strategy has often lead to the best
performance in offline evaluation settings (e.g., [16, 26]).

As seen in Figure 2b and the last row of Table 1, the hybrid
combination of the BLL approach and the CF baseline also per-
forms significantly better than the CF baseline concerning CTR.
The relative improvement of 33.05% for the CTR in this A/B test is
much better than in the case when we just used the BLL approach
on its own. This, however, comes with a trade-off, namely, with a
significant increase in the runtime.

5 CONCLUSION
In this work, we contributed to the sparse line of research on evaluat-
ing job embeddings under real-time constraints in an online setting.
We performed a variety of A/B tests on the Studo Jobs platform
and ran evaluations concerning CTR and runtime for two different
recommendation scenarios, namely, recommending similar jobs and
personalizing the job postings that are shown on the homepage.

We found that for the case of recommending similar jobs, using
embeddings based on the most recent interaction provides the best
online performance. In contrast, combining embeddings based on the
frequency and recency with which a user interacts with job postings
significantly improves the online performance when we personalize
the jobs on the homepage.

Limitations and Future Work. While Doc2Vec is a popular choice
for learning item embeddings, other deep learning methods such
as, e.g., Autoencoders or Convolutional Neural Networks might
also perform well for this task. Furthermore, we did not explore the
impact of using additional user or job-related metadata on the quality
of learned embeddings. We also did not study the effects of the time-
dependent decay parameter d from the model of human memory
theory to a greater extent for personalizing the jobs shown on the
homepage. As such, we aim to tackle these points as future work.
Finally, the data we used for this study is proprietary and owned by
Moshbit, the owner of Studo. Currently, we cannot release this data
to the research community due to Moshbit’s terms of service.

7Such a fallback strategy is used for every recommendation approach on the homepage
of the Studo Jobs portal (including the CF baseline).
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