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ABSTRACT

Personalization plays an important role in many services. To evalu-

ate personalized rankings, online evaluation, such as A/B testing, is

widely used today. Recently, multileaving has been found to be an

efficient method for evaluating rankings in information retrieval

fields. This paper describes the first attempt to optimize the mul-

tileaving method for personalization settings. We clarify the chal-

lenges of applying this method to personalized rankings. Then, to

solve these challenges, we propose greedy optimized multileaving

(GOM) with a new credit feedback function. The empirical results

showed that GOM was stable for increasing ranking lengths and

the number of rankers. We implemented GOM on our actual news

recommender systems, and compared its online performance. The

results showed that GOM evaluated the personalized rankings pre-

cisely, with significantly smaller sample sizes (< 1/10) than A/B

testing.
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1 INTRODUCTION

Personalization plays an important role in various web services,

such as e-commerce, streaming, and news [4, 5, 7]. A/B testing has

been widely adopted to evaluate the effectiveness of personaliza-

tion algorithms. For a precise evaluation, however, A/B testing re-

quires a large number of users; the more the number of algorithms

for A/B testing increases, the more users are needed.
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Recently, multileaving has been found to be an efficient method

for evaluating rankings in information retrieval fields [3]. Inter-

leaving evaluates two rankings with a small sample size, while mul-

tileaving extends the evaluation to three or more rankings. How-

ever, studies that examine the application of multileaving for per-

sonalized rankings are limited [1].

This paper describes our first attempt to optimize multileaving

for personalized rankings. The paper’s contributions are as fol-

lows:

• NewProblems: Clarifies the challenges of applying themul-

tileaving method to personalized rankings;

• Algorithm: Proposes the greedy optimizedmultileaving (GOM)

methodwith the personalization credit function to solve these

problems; and

• Stability and Sensitivity: Confirms the stability and sen-

sitivity of GOM throughout offline and online experiments.

We achieved high sensitivity with low computation cost on the

personalized rankings, which differed for each user and each time.

In addition, we ensured stability over the number of rankers and

ranking length. These results show that the proposed method can

evaluate many algorithms or hyperparameters efficiently in practi-

cal environments, such as Social Network Service (SNS), news, and

Consumer to Consumer (CtoC) market services.

2 RELATED WORK AND CHALLENGES

2.1 Multileaving Method

Multileaving is a method that evaluates multiple rankings using

user click feedback [10]. The typical steps of a multileaving evalu-

ation are as follows.

The first step is to inputmultiple ranking sets I = {I1, I2, . . . , In}.

These input rankings are generated from rankers. The second step

is to generate output ranking setsO = {O1,O2, . . . ,Om}. The third

step is to show each output ranking Ok to users with probability

pk . The fourth step is to aggregate the user click credit and evaluate

which input ranking is better. Basically, the ranking is evaluated as

better when the sum of credit is higher.

Each multileaving method consists of three components: (1) a

way to constructO from I , (2) probability pk for each output rank-

ing Ok , and (3) a credit function δ . In this paper, we represent the

i-th item of ranking Ij and Oj as Ij,i and Oj,i ; the user click credit

as δ (Ok, i, Ij); and the length of Ok as l . In the next section, we

describe two established multileaving methods, team draft multi-

leaving (TDM) [10] and optimized multileaving (OM) [8], in detail.

2.2 Team Draft Multileaving

TDM is a method that selects an input ranking randomly and adds

an item to the output ranking that was not previously chosen [9].

This process is then repeated until the multileaved ranking is of
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sufficient length. In the credit aggregation of TDM, rankers are

credited for each click on an item drawn from the corresponding

ranker; however, because rankers are credited only for clicks on

items drawn from the corresponding ranker, TDM tends to be un-

stable over increasing ranker sizes [2].

2.3 Optimized Multileaving

OMgenerates the output rankings, and solves an optimization prob-

lem formulated by sensitivity and bias [8]. The output ranking’s

sensitivity discriminates the differences in effectiveness between

input rankings; meanwhile, the bias of the output rankings mea-

sures the differences between the expected credits of the input

rankings for random clicks [6, 10]. In OM, the sensitivity that con-

strains the bias is maximized. By solving this optimization prob-

lem, OM achieves more sensitivity than TDM. In this paper, sim-

ilar to [6, 10], we use insensitivity instead of sensitivity. Insensi-

tivity (σ ) is defined by the credit sum and the mean of credit µk .

σ2
k
=

∑n
j=1

(
∑l
i=1 f (i)δ (Ok, i, Ij

)

− µk
)2
, where f (i) is the proba-

bility with which a user clicks on the i-th item, and the mean of

credit µk =
1
n

∑n
j=1

∑l
i=1 f (i)δ (Ok, i, Ij

)

. The formulation of OM is

as follows [6]:

min
pk

α

l
∑

r=1

λr +

m
∑

k=1

pkσ
2
k

subject to

(∀r , j, j ′)|

m
∑

k=1

pk

r
∑

i=1

δ (Ok, i, Ij) −

m
∑

k=1

pk

r
∑

i=1

δ (Ok, i, Ij′)| ≤ λr

m
∑

k=1

pk = 1, 0 ≤ pk ≤ 1 (k = 1, . . . ,m).

(1)

We follow the original work [10], and use f (i) = 1/i . The bias

term is added to the objective function, and is adjusted with hy-

perparameter α . α is the only hyperparameter in this formulation.

λr is the maximum difference of the expected credits in any input

rankings pairs, and represents the bias. If λr is close to zero, the

bias becomes small.

In previous studies, the click credit function was defined by the

input ranking’s position [6, 8, 10]. For example,

δ (Ok, i, Ij) =
1

rank(Ok, i, Ij)
, (2)

where rank(Ok, i, Ij) represents the position of item Ok, i in rank-

ing Ij . If there is no item Ok, i in ranking Ij , then the credit value

is 1/(|Ij | + 1). We call this credit function inverse credit. By defini-

tion, the deeper the click position, the weaker the credit. Another

well-known definition is δ (Ok, i, Ij) = −rank(Ok, i, Ij) if Ok,i ∈ Ij ;

otherwise, −(|Ij |+1). In this case, the credit difference between the

top and bottom items is too big, compared to (top item, top item)

or (bottom item, bottom item). This difference induces noise for

the credit evaluation. The empirical results, described in Section

4, indicated that when credit above is used, OM tended to become

unstable as the ranking length increased.

2.4 Challenges

The challenges of applying the multileaving method to personal-

ization are as follows:

C1: Achieving high sensitivity with low computation cost for

the rankings, which differed for each user and each time;

and

C2: Ensuring stability over the number of rankers and the rank-

ing length.

OM maximizes sensitivity by assuming that the same rankings

are inputtedmultiple times. In personalization, however, input rank-

ings differ for each user. Furthermore, input rankings vary accord-

ing to time stamps in environments where new items rapidly in-

crease, such as SNS, news, and CtoC market services. Therefore,

the ranking differs for each user and each time. In these cases,

OM cannot be pre-calculated, and requires low computation cost

to show multileaved output rankings to users in real-time.

Unstability over the number of rankers is known to occur in

TDM [2, 10]. This is a serious problem for personalization, because

there are usuallymany algorithm candidates and hyperparameters.

In addition, the empirical results showed that OM was unstable

over the ranking length when ordinary click credit is used. This is

critical becausemany services have long ranking length to show as

many personalized items as possible. Thus, for personalization, we

should ensure stability over the number of rankers and the ranking

length.

3 GREEDY OPTIMIZED MULTILEAVING

3.1 Formulation

To solve the first challenge, we propose a new formulation using

the characteristic of personalized ranking. Personalized ranking is

shown to the user a few times, because it differs for each user and

each time in the situation when the number of new items increase

rapidly. In other words, the problem in OM for personalization is

to select a output ranking Ok from overall output rankingO. There-

fore, we can consider ranking output probability as a one-hot vec-

tor, pk = 1, if Ok is selected; otherwise, p−k = 0. Equation (1) can

be simplified as follows:

arg min
k

α

l
∑

r=1

λr + σ
2
k

subject to

(∀r , j, j ′)|

r
∑

i=1

δ (Ok, i, Ij) −

r
∑

i=1

δ (Ok, i, Ij′)| ≤ λr .

To solve this problem, we can use the greedy strategy. In this pa-

per, we call this formulation greedy optimizedmultileaving (GOM).

GOM has a low computation cost, because it does not need to solve

a linear problem. This strategy is fast enough to compute in real-

time in production recommender systems. Also, our implementa-

tion is publicly available 1.

1https://github.com/mathetake/intergo
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3.2 Assigning Credit

To solve the second challenge, we propose a new definition for the

credit function:

δ (Ok, i, Ij) = −|{j
′

|rank(Ok, i, Ij′ ) ≤ rank(Ok, i, Ij)}|, (3)

If there is no item Ok, i in ranking Ij , then the credit value is −(|Ij |+

1). We call this credit personalization credit.

This definition is interpreted as considering a mutual interac-

tion with input rankings, and gives credit to multiple rankings per

click. Because relative ranking orders are used instead of the rank-

ings’ absolute position, the credits are calculated without position

noise. For example, we set I1=[1,2,. . . ,99,100,101,102], I2=[1,2,. . . ,99,101,102,100],

I3=[1,2,. . . ,99,102,100,101], andOk=[1,2,. . . ,99,102,101,100].When

101 is clicked, the personalization credit values are δ (101, I1) = −2,

δ (101, I2) = −1, and δ (101, I3) = −3. Conversely, the inverse cred-

its are δ (101, I1) = 1/101 = 0.0099, δ (101, I2) = 1/100 = 0.01, and

δ (101, I3) = 1/102 = 0.0098. Each absolute inverse credit value is

much smaller and closer than personalization credits.

4 EXPERIMENTS

4.1 Offline Experiment Settings

In the offline experiment, we simulated user clicks, and evaluated

several methods, which are compared below:

• TDM: Described in Section 2;

• GOM-I: GOM, using the inverse credit (2); and

• GOM-P: GOM, using the personalization credit (3).

These experiments assumed a practical environment that requires

a low computation cost to generate rankings in real-time; there-

fore, we did not use OM for the performance comparisons. We

used TDM for the performance comparison described in Section

4 because TDM has been examined in online settings[6].

Algorithm 1: User click simulation in personalized setting

input : the number of rankers n, ranking length l

win = 0

for i = 1, . . . ,numeval do
Select ranking index r randomly from 1 to n

for k = 1, . . . ,n do credit[k] = 0;

for j = 1, . . . ,numclick do
InitialRankinд = generateRankingRandomly(l )

for k = 1, . . . ,n do Ik = Shuffle(InitialRankinд);

Get MultileavedRanking O from I

Select one item from Ir at the top x% position

randomly

Click item in O and update sum of credit for all I

end

win += |{k|credit[k] > credit[r ] } |

end

accuracy =win/(numeval ∗ (n − 1))

return accuracy;

The simulation steps are shown in Algorithm 1. We fixed the

constant valuesnumeval = 100,numclick = 100, number of output

rankings = 10, and click bias probability x = 80%.We evaluated the

accuracy over the number of rankers 2, 3, ...20 when the ranking

length was fixed at 10. We also evaluated the accuracy of ranker

lengths 5, 15, ..., 195 when the number of rankers was fixed at 3.
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Figure 1: Accuracy versus

the number of rankers

for the fixed ranking

length fixed at 10 using

the random click simula-

tion (averaged over 100

runs).
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Figure 2: Accuracy ver-

sus the ranking lengths

for the fixed number of

rankers fixed at 3 using

the random click simula-

tion (averaged over 100

runs).
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Figure 3: Insensitivity
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rankers and the ranking

lengths (averaged over

100 runs) .
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Figure 4: Bias distribu-

tion on generating GOM-

P rankings 10,000 times.

Next, we evaluated insensitivity and bias. Insensitivity σk was

divided by the square of the average credit µ2
k
, because the insen-

sitivity is proportional to it.

4.2 Offline Experiment Results and Discussion

Figure 1 shows that GOM-P and GOM-I were more accurate com-

pared to TDM. When the number of rankers increased, TDM’s ac-

curacy decreased. TDM credit caused this inaccuracy.

Figure 2 shows that the GOM-P and TDM methods had higher

accuracy compared to GOM-I. When the ranking length increased,

GOM-I’s accuracy decreased. The noise of the inverse credit at the

ranking’s deep position of the ranking induced this inaccuracy. In

contrast, TDM and GOM-P were stable over the ranking lengths.

Figure 3 shows the insensitivity for the number of rankers and

the ranking length. GOM-P was sensitive compared to GOM-I in

these cases; therefore, personalization credit achieved high sensi-

tivity over the number of rankers and ranking lengths. This sensi-

tivity resulted in the higher accuracy of GOM-P.

Figure 4 shows the bias distribution of GOM-P, which appears

to be a normal distribution. The ideal bias distribution is that all

biases are the same value at some point. The standard deviation of

GOM-P was 0.039422, and the mean was 0.298570.

Interestingly, we found that hyperparameter α did not affect the

accuracy, insensitivity, or standard deviation of bias. This means
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Table 1: Differences between the sum of credits. The values of GOM-P and TDMwere all positive, while some values of GOM-I

(written in blue) were negative. The GOM-P and TDM’s results were consistent with previous CTR results of A/B testing (algo-

A < algo-B < algo-C < algo-D < algo-E), but GOM-I was inconsistent. This means that the inverse credit function which was

often used in previous studies is not appropriate for long ranking.

GOM-I GOM-P TDM

algo-A algo-B algo-C algo-D algo-A algo-B algo-C algo-D algo-A algo-B algo-C algo-D

algo-B -14,962 21,111 615

algo-C -21,642 -6,680 36,561 15,450 1,259 644

algo-D -24,179 -9,217 -2,537 44,484 23,373 7,923 1,812 1,197 553

algo-E -5,246 9,716 16,396 18,933 52,597 31,486 16,036 8,113 2,117 1,502 858 305

that we can set α = 0. Then, to get a multileaved ranking, we only

have to minimize the insensitivity in GOM; no parameter tuning

is needed.

4.3 Online Experiment Settings

We conducted an online experiment on Gunosy,2 one of the most

popular news applications in Japan. On this service, we recom-

mend personalized news articles using a user click log [11]. The

topics of the news articles are broad, ranging from entertainment

to political opinions.

We prepared five personalization algorithms, and evaluated the

effectiveness for each multileaving method. According to previous

A/B testing, we knew the effectiveness of the algorithms as algo-A

< algo-B < algo-C < algo-D < algo-E. In this A/B testing, we used

the click-through rate (CTR) as the effectiveness of the personal-

ization algorithms. CTR is a metric that divides article clicks by

article impressions.

The online experiment was carried out for one week. We pre-

sented multileaved rankings for a particular portion of user re-

quests, and received 10,826,923 article impressions. The deepest

ranking length was up to 120.

4.4 Online Experiment Results and Discussion

Table 1 shows the credit differences between the evaluated algo-

rithms in GOM-P, GOM-I, and TDM. The value 21, 111 for GOM-P

indicates the credit difference between algo-B and algo-A. The dif-

ferences of sum credit for GOM-P and TDM were all positive val-

ues, which means that the GOM-P and TDM’s results were consis-

tent with previous CTR results. In contrast, some values of GOM-I

written in blue were negative, and inconsistent with previous out-

comes. In this online experiment setting, the number of rankers

was five, and the ranking length was longer than 100. According

to the offline experiments, this small number of rankers caused the

consistent TDM results, while the long ranking length caused the

inconsistent GOM-I results.

Figure 5 shows that the multileaving methods converged much

faster than A/B testing (< 1/10). These p-values were calculated

using bootstrap subsampling (sampling size = 50). The x-axis rep-

resents user number N , and the y-axis represents the p-value aver-

aged over all pairs of the algorithms. The multileaving p-value was

from paired t-tests. In the A/B testing, N /2 users were assigned per

algorithm, and the p-value came from unpaired t-tests.

2https://gunosy.com

One of the reasons for the slow convergence of A/B testing

was group bias. The users assigned to algo-C in the A/B testing

tended to be inactive. The multileaving method did not suffer from

this group bias, because different algorithms were examined in the

same user groups.

101 102 103 104 105

Number of users
0.0
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0.6

0.8

1.0

p-
va

lu
e

GOM-P
TDM
A/B

Figure 5: P-values versus the number of users. The multi-

leaving methods converged much faster than A/B testing (<

1/10).

5 CONCLUSION

In this paper,we proposed a newmultileavingmethod for personal-

ized rankings that requires a high degree of freshness, many hyper-

parameters, and a long ranking length for a rich user experience.

To the best of our knowledge, few theoretical multileaving studies

have been conducted for these personalized settings.

We clarified the challenges of applying this method for person-

alized rankings. We then formalized this personalized multileav-

ing problem, and introduced a new credit feedback function. We

also conducted an offline experiment, which showed that the pro-

posed method was stable, regardless of the number of rankers or

ranking length. Finally, we conducted an online experiment in the

large-scale recommender system. We confirmed that the proposed

method could evaluate rankings precisely using a significantly smaller

sample size than A/B testing.

In future work, we will conduct further offline click simulations

for various types of click bias. In addition, we will try to apply

GOM’s feedback schema to speed up online learning for ranking.

We will also investigate whether the GOM results agree with spe-

cific measures, such as Normalized Discounted Cumulative Gain

(NDCG).
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