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ABSTRACT 
Implicit feedback (e.g., clicks) is widely used in content recommen-
dations. However, clicks only refect user preferences according to 
their frst impressions. They do not capture the extent to which 
users continue to engage with the content. Our analysis shows 
that more than half of the clicks on music and short videos are 
followed by skips from two real-world datasets. In this paper, we 
leverage post-click feedback, e.g. skips and completions, to improve 
the training and evaluation of content recommenders. Specifcally, 
we experiment with existing collaborative fltering algorithms and 
fnd that they perform poorly against post-click-aware ranking 
metrics. Based on these insights, we develop a generic probabilis-
tic framework to fuse click and post-click signals. We show how 
our framework can be applied to improve pointwise and pairwise 
recommendation models. Our approach is shown to outperform 
existing methods by 18.3% and 2.5% respectively in terms of Area 
Under the Curve (AUC) on the short-video and music dataset. We 
discuss the efectiveness of our approach across content domains 
and trade-ofs in weighting various user feedback signals. 
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1 INTRODUCTION 
Content recommendation systems have become increasingly impor-
tant to help users discover information items such as videos, music, 
news, and podcasts [2, 10, 12, 23, 29]. Existing recommenders are 
often built on implicit feedback signals (e.g. click [5] and watch [2]) 
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that are readily available in large volume; but implicit feedback is 
notoriously hard to interpret [7, 13]. Prior literature assumes that 
a click indicates positive preference, while a lack of that signal is 
a negative indicator [5, 16, 21]. Such a simplifed assumption can 
result in misinterpretations of user preferences, because implicit 
feedback is often logged before content consumption, and thus is 
only a refection of user’s frst impressions or impulsive response 
to clickbait content. Consequently, recommenders built on implicit 
feedback alone can be signifcantly biased and vulnerable [7, 15, 34]. 

In this paper, we propose to leverage post-click signals such as 
skips and completions to disambiguate clicks and improve content 
recommendation performance. Skips can be perceived as a form 
of user feedback that naturally appears after user clicks, e.g., skip-
ping a song or video as opposed to consuming it to completion. 
Intuitively, “click-complete” is a stronger positive signal than “click” 
and “click-skip”, which implicitly encodes users’ negative feedback. 
Through extensive experiments with large-scale music and short-
video datasets, we fnd that post-click signals capture important 
preference signals that are not learned by existing systems trained 
on the click data alone. For example, more than half of clicks are 
followed by skips in music and short video consumption; skip rates 
are negatively correlated with item popularity; and recommenders 
trained only on click data perform poorly on post-click-aware rank-
ing metrics. 

Building on the insights above, we develop a generic probabilis-
tic framework to incorporate post-click signals in training and 
evaluating content-recommenders. In our framework, clicks are 
disentangled into positive and negative observations, and the conf-
dence levels for diferent types of feedback are modeled through the 
variances of Gaussian distributions. We show that such a framework 
can be readily applied to existing pointwise [5] and pairwise [21] 
recommendation algorithms. Our main contributions in this paper 
are as follows: 

• We show empirical evidence that although existing recom-
mendation algorithms predict user clicks reliably, they pre-
dict post-click preferences rather poorly. This problem has 
been highlighted in a lab study to measure multi-phrase user 
preferences in online news consumption [15]. Our experi-
ment is the frst to study the performance gap empirically, 
using large-scale real-world datasets. 

• We propose a generic probabilistic framework to fuse click 
and post-click feedback. We demonstrate its applications 
in improving pointwise and pairwise collaborative fltering 
models. Our framework achieves an average of 18.3% perfor-
mance improvements in terms of Area Under Curve (AUC) 
for short video and 2.5% for music recommendations. We 
discuss the efectiveness of our approach across diferent 
content domains. 
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• We demonstrate that our framework enables fexible trade-
ofs between confdence levels placed on the various post-
click signals. This is useful in those scenarios when users’ 
negative feedback are especially undesirable. We discuss 
how this relates to balancing exploitation and exploration 
in recommendations. 

2 RELATED WORK 
There have been few studies of post-click feedback for content 
recommender systems. Most relevant work addresses web search-
ing and browsing tasks, where clicks are noisy indicators of item 
relevance. Below, we briefy review the literature on leveraging 
negative feedback to improve performance on several Information 
Retrieval (IR) tasks. They share some similarities in terms of model-
ing implicit feedback from user logs, but would require substantial 
modifcations to be applied in our problem setting. This motivated 
us to take a step further into post-click behavior in content con-
sumption. 

2.1 Mismatch between clicks and preferences 
User clicks have long been used in recommendation systems to 
predict user preferences [5, 21]. However, previous research has 
pointed out that click data may be confounded by factors like po-
sition bias [7] and presentation [7, 32]. These problems are raised 
in the specifc context of web searching and browsing. In a recent 
laboratory study of online news reading, Lu et al. [15] show that 
click signals often do not align with users’ true preferences towards 
content. They fnd that more than half of the clicked articles are 
disliked by users. Inspired by these fndings, we aim to understand 
how informative post-click signals are in content consumption and 
how they could be leveraged to improve user preference modeling 
by mitigating the gaps between clicks and user preferences. 

2.2 Dwell time as engagement metric 
Previous work used dwell time (the time a user spends browsing a 
website before she moves away from it) as an alternative evalua-
tion metric to clicks for measuring user satisfaction. It has shown 
improved performance in many IR tasks, such as searching and 
document retrieval [8, 11, 31]. A key challenge for dwell time is 
that the reliability of the signal often relies on heuristic criterion 
to decide whether an item is relevant or not. For example, clicks 
on search results with over 30 seconds dwell time are considered 
to be relevant [11]. Using skips to measure engagement in content 
consumption is related to the idea of dwell time. Yang et al. [26] 
implemented a music recommendation system in which various 
implicit feedback were collected, such as search, archive, and com-
pletion. They found that completion was a strong indicator of posi-
tive preference. However, similar to dwell time in web browsing, 
which is impacted by the speed of reading and webpage presenta-
tion, skips could also be infuenced by confounding factors such as 
user context. For example, skip patterns while listening to music in 
the background could be very diferent from those when actively 
searching for new songs. Our focus in this work is to examine user 
skips in real-world content consumption and address the challenges 
in learning from such noisy data. 

2.3 Learning from negative feedback 
Wang et al. [25] conducted an overview of algorithms that can 
learn from negative feedback signals, specifcally in the context 
of search query retrieval. They investigated language models and 
vector-space models where non-clicked documents were treated 
as negative relevance feedback. In their learning framework, the 
relevance score given to each (document, query) pair is:Õ1

® ® ® ®S(Q®, D) = QD® − γ × Dn D,
|N | 

Dn ∈N 

where Q®, D® are query and document vectors respectively, N is 
the set of negative documents related to the query, and γ is the 
weight of negative feedback. Similar strategies are leveraged for 
query expansions where not-selected query suggestions are used 
as negative feedback [33]. 

However, the proposed approaches cannot be directly applied to 
content recommendations, since each item can only receive a posi-
tive or a negative feedback at interaction time, while in the above 
setting each query is accompanied by a combination of positive 
and negative feedback. Instead of re-computing the relevance score 
for each (Q, D) pair, we propose a probabilistic approach to model 
the infuence manifested by sets of positive and negative feedback 
across users and items through collaborative fltering. In practice, 
our approach can be implemented through re-sampling during 
batch training, without the need to change the objective function 
for optimizations, making it generalizable to many pointwise and 
pairwise models. 

3 ANALYSIS OF POST-CLICK FEEDBACK 
Previous work has raised the concern that clicks are noisy estima-
tors of user preferences in web browsing and searching [7, 15, 31]. 
In this section, to understand the gap between click and post-click 
feedback on content platforms, we analyze two large-scale real-
world datasets. The datasets were collected for two public chal-
lenges: the Spotify Sequential Skip Prediction Challenge [1] and 
the ByteDance Short Videos Understanding Challenge.1 

The Spotify dataset contains hundreds of millions of listening 
sessions across Spotify users. Each session consists of at most 20 
songs, and a user may skip or complete listening to each song. 2 

We randomly sampled a subset of nine million listening sessions 
for our experiments. Similarly, the ByteDance dataset provides 
details of user interactions with short videos (10 seconds in length), 
including whether or not each video was completed. We used a 
subset of the data that contains over 13 million records. 

3.1 Properties of post-click feedback 
Our analysis shows that post-click feedback is pervasive across 
domains. We observed that 51% and 56% of the clicks on music and 
short videos are followed by skips, respectively. In other words, 
more than half of all clicks lead to potential user dissatisfaction. This 
aligns with fndings from a user study on online news consumption 
in which only 51% of clicked news are preferred by users post-
read [15]. 
1https://biendata.com/competition/icmechallenge2019/
2A song is skipped if it is consumed less than a duration threshold defned by the 
challenge. 
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Figure 1: Distributions of skip rates across users and items 
on Spotify and ByteDance. The frst column illustrates the 
distribution of user-wise skip rate, ranked from high to low. 
The second column illustrates the distribution of item-wise 
skip rate. The area flled with dark shades refer to “click-
skip” and lighter shades refer to “click-complete.” We ob-
served diferent skip behavior across the two content do-
mains. 

We also observed that such skip behavior manifests diferent 
patterns for music and short videos. As shown in Fig. 1, the per-
centage of music skipped by each individual user (i.e., user-wise 
skip rate) is uniformly randomly distributed. However, for short 
videos, the skip rates are distributed normally, with most users 
skipping 50%-55% of the content. In terms of item-wise skip rates, 
both datasets manifest similar patterns. 

We hypothesize that the diferences in skip rates may be due to 
domain-specifc consumption behavior. Skips might be dependent 
on the context of use, as users may have constrained access to the 
player when listening to songs (e.g., during running). Also, since 
in general video content is more engaging and requires more user 
attention, skips may be less noisy as indicators of user preferences 
for this content. 

Another hypothesis concerns time thresholds. The timing of 
a skip can further determine the underlying user preferences in 
content consumption, similar to the heuristics for interpreting dwell 
time in web searches [11]. The skips provided by the Spotify dataset 
are derived from pre-defned bucketed time thresholds [1], while 
time may be less of an issue for videos as the duration of these 
videos is relatively short. 

We further investigated the relationship between skip rate and 
item popularity (Fig. 2). For this analysis, we only included items 
that received more than 100 user clicks. For both datasets, we found 
that as an item gets less popular (i.e., receives fewer clicks), its skip 
rate tends to become higher (r = 0.15, p < 10−64). 

The above empirical results demonstrate that post-click feedback 
such as skips potentially capture signifcant information about 
user preferences that are unrefected in the click data. Next, we 
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Figure 2: Relationship between skip rate and item popular-
ity as indicated by user clicks. In general, skip rates increase 
as items become less popular. 

conducted a pilot experiment to quantify the gap between click and 
post-click feedback signals. 

3.2 Gap between click and post-click feedback 
To measure the gap, we trained several existing recommendation 
models using click data alone, and then evaluated the performance 
of these algorithms on the task of ranking “click-complete” items 
against “click-skip” ones. If the gap between click and post-click 
feedback is large, we expect to observe poor performance on the 
post-click-aware ranking task. 

3.2.1 Dataset preprocessing. We chronologically split both datasets 
into training, validation and testing sets. We held out fve items from 
each user for validation and testing sets respectively. We ensured 
both “click-skip” and “click-complete” signals were included in the 
validation and test set for each user. The rest of the items from the 
user were used for training. The statistics of the processed datasets 
are summarized in Table 1. After preprocessing, we verifed that 
the distribution of skips was unchanged. 

3.2.2 Evaluations. We trained two widely-used recommenders, 
Weighted Regularized Matrix Factorization (WRMF) [5] and Bayesian 
Personalized Ranking (BPR) [21], using clicks as implicit feedback 
on the training set [5]. We then evaluated the performance of the 
recommenders on two ranking tasks: 

• Task 1: A standard ofine evaluation task in which a rec-
ommender aims to rank held-out clicked items above unob-
served items. 

• Task 2: A post-click-aware ranking task in which the rec-
ommender is evaluated against ranking held-out completed 
items above skipped items. 

For both tasks, we used Area under the ROC curve (AUC) to 
evaluate the ranking quality of recommenders:Õ Õ1 1

AUC = δ (p̂ui > p̂uj ),
|U | |E(u)| u (i, j)∈E(u) 

where δ is an indicator function and p̂ denotes the user preference 
scores predicted by the recommender (more details in Section 4). 
For Task 1, the evaluation pairs for user u are defned as: E(u) := 
{(i, j)|(u, i) ∈ Stest ∧ (u, j) < (Stest ∪ Strain)}. For Task 2, E(u) := 
{(i, j)|(u, i), (u, j) ∈ Stest, i ∈ Scompleted ∧ j ∈ Sskipped}. AUC for 
random guessing is 0.5 and for perfect ranking would equal 1. 
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Dataset # of users # of items # of records Density Percentage of skips % 

Spotify 229,792 100,586 4,090,895 0.018% 51.05% 
ByteDance 37,043 271,259 9,391,103 0.093% 55.13% 
Table 1: Summary of datasets used for experiments after pre-processing. 

Method ByteDance Spotify 
Task 1 Task 2 Task 1 Task2 

WRMF 0.789 0.521 0.925 0.540 
BPR 0.791 0.527 0.919 0.541 

Table 2: Performance of WRMF and BPR on two person-
alized ranking tasks measured by AUC. We observed that 
state-of-the-art recommenders based on clicks perform well 
on ranking held-out clicked items against unobserved items, 
but poorly on ranking completed items against skipped 
items, indicating a signifcant gap between user clicks and 
post-click preferences. 

3.2.3 Results. We observed a signifcant performance gap between 
the two ranking tasks, shown in Table 2. In predicting whether 
users tend to click on certain items, WRMF and BPR performed 
reasonably well on both datasets. However, both recommenders 
performed rather poorly in predicting whether or not users would 
later complete or skip the items. For the post-click-aware ranking 
task, AUC drops to 0.52 and 0.54 respectively on ByteDance and 
Spotify datasets. The results of this pilot experiment demonstrate 
that existing recommenders trained on click data alone do not ef-
fectively learn user preferences embedded in post-click feedback 
data. Therefore, we can potentially improve recommendation per-
formances by enabling recommenders to incorporate these new 
data sources. In the next section, we present a generic probabilistic 
framework to achieve this objective. 

4 MODELING USER PREFERENCES WITH 
POST-CLICK FEEDBACK 

Our main insight is that post-click feedback provides an additional 
layer of granularity for user preferences, and preference indications 
from click and post-click signals can have diferent levels of reli-
ability. In this section, we describe the details of our framework 
and show how it can be applied to improve pointwise and pair-
wise recommendation models. The notations used in this paper are 
summarized in Table 3. 

4.1 General framework 
We considered the problem of building recommendation algorithms 
using a set of observations on user preferences, denoted as O = 
{o1, o2, .., on }. Each ok represents an instance of observation de-
rived from user interaction records. 

For example, in the pointwise setting, O can refer to interactions 
between user-item pairs (u, i), such as “click” and “no-click”; in the 
pairwise setting, O can refer to the interactions among (user, item, 
item) triplets (u, i, j), where (u, i) and (u, j) indicate positive and 

negative interactions respectively. The model parameters Θ of a 
recommender are optimized to maximize P(O|Θ) using Maximum 
Likelihood Estimation (MLE), i.e., 

nÖ 
ΘMLE = arg max P(O|Θ) = arg max P(ok |Θ) (1)

Θ Θ 1 

With post-click feedback, we divided O into three disjoint types 
of observations: positive observations (denoted as OP and ok = 
1, ∀ok ∈ OP ), negative observations (denoted as ON and ok = 
0, ∀ok ∈ OP ), and no observations (denoted as OM and ok = 
0, ∀ok ∈ OM ). In other words, O = OP ∪ ON ∪ OM . 

We assume all three types of observations satisfy Gaussian dis-
tributions with diferent variances. This refects the confdence of 
an observation being correctly interpreted (e.g., clicks and skips 
are noisy indicators of user preferences), i.e.,  N(µo , σP 

2 ), o ∈ OP 
o ∼ N(µo , σN 

2 ), o ∈ ON  N(µo , σM 
2 ), o ∈ OM 

Under the above assumptions for observations, the MLE estima-
tor of Θ (eqn. 1) can be written as:Ö Ö Ö 

ΘMLE = arg max P(1|Θ) P(0|Θ) P(0|Θ)
Θ 

o ∈OP o ∈ON o ∈OMÕ Õ Õ1 1 1 
= arg min (1−µo )

2+ (µo )
2+ (µo )

2 ,
Θ 2σ 2 2σ 2 2σ 2 

P o ∈OP N o ∈ON M o ∈OM 
(2) 

which defnes a generic probabilistic framework for learning from 
post-click user feedback (eqn. 2). Specifcally, for pointwise obser-
vations, OP consists of (u, i) pairs where user u “click-complete” 
item i; ON contains pairs where user u “click-skip” item i; and other 
pairs in which user u does not interact with item i are included in 
OM . Under this pointwise setting, µo can be calculated as: 

µo := p̂ui , ∀u ∈ U, i ∈ I 

where p̂ui are preference scores predicted by a recommendation 
model. Eqn. 2 can then be interpreted as minimizing the euclidean 
distances between predicted scores and ground truth scores. 

For pairwise observations, OP consists of (u, i, j) triplets where 
item i is implicitly ranked higher than item j by user u; ON con-
tains triplets where item i is ranked lower than j; and other triplet 
combinations are in OM . With such form of observations, µo can 
be defned as: � 

p̂ui j o ∈ OP ∪ ON µo := 0 o ∈ OM 
where p̂ui j is the probability of item i being ranked above item j
for user u. The MLE objective in this setting is to maximize the 
probability of correctly ranking items. Notice we only defne µo on 
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U, I set of users and items 
O observations of user preference 

positive, negative and missing observations OP , ON , OM 
Iu 
+ , I− set of items user u interacts/not interacts with u 

set of items user u indicates positive feedback Pu 
set of items user u indicates negative feedback Nu 
defned preference score between user u and item ipui 
model predicted preference score p̂ui 
model hyperparameters for pointwise models λp , λn 
model hyperparameters for pairwise models λp,n 

Table 3: Notations used in the paper. 

subsets of O, since for the missing observations we lack enough 
information about their relative rankings. We describe other details 
of pointwise and pairwise models in Sections 4.3 and 4.4. 

The key diference between our framework and the classical 
approach to learning from implicit feedback [5] is that we break the 
ties among clicked or not-clicked items by incorporating post-click 
feedback signals. In addition, we leverage the variances of Gaussian 
distributions to control the confdence levels placed on diferent 
types of user feedback signals. This allows our models to adapt 
across diverse recommendation environments. 

4.2 Preliminary 
In this section, to show how our framework can be realized con-
cretely in pointwise and pairwise recommendation settings, we frst 
defne notations to represent the structure of click and post-click 
data. 

For user u ∈ U and item i ∈ I, Hu et al. [5] interpreted user 
preferences using clicks as following:� 

1, u clicks on i,
pui = 0, u does not click on i, 

For simplicity, we defned I+ := {i |i ∈ I ∧ pui = 1} and 
I− := I \ I+ to denote clicked and not-clicked items for user u. 

u 
u u 
To refect user preferences indicated by post-click feedback, we 
introduced a set of binary variables, sui : � 

1, u clicks and skips i,
sui = 0, u clicks and completes i, 

Based on such interpretations, we further disambiguated inter-
acted items into two sets: 

Pu := {i |i ∈ Iu 
+ ∧ sui = 0}, Nu := {i |i ∈ Iu 

+ ∧ sui = 1}, 

where Pu and Nu denote positive and negative feedback from user 
u. Note that Pu , Nu , Iu are diferent from OP , ON , OM defned in 
the previous subsection: Pu , Nu , Iu are sets of items with which a 
user indicates her preferences, while OP , ON , OM are abstractions 
of observations (pointwise or pairwise) across all users and items. 

4.3 Pointwise recommendation model 
A representative approach under the pointwise category is low-rank 
Matrix Factorization. The classical matrix factorization framework 
aims to learn latent user vectors x ∈ R |U |×l and latent item vectors 
y ∈ R |I |×l by factorizing the sparse user-item matrix through 

singular value decomposition (SVD) [19]. Users’ preference scores 
on items are given by the dot products between user and item 
vectors: 

T p̂ui = xu yi . (3) 
However, the classical MF model can easily overft implicit feed-

back signals. To address this problem, Weighted Regularized MF [5, 
18] was proposed. The main contributions of WRMF are: (1) reg-
ularizing model parameters and (2) reweighting pointwise loss to 
balance the impact of positive feedback. Specifcally, WRMF opti-
mizes the following objective function:Õ 

min cui (pui − p̂ui )2 + λR(x ,y), (4) 
x ∗ y ∗ 

u,i 

where R(x ,y) = | |x | |2 + | |y | |2 represents the Frobenius norms for f f 
user and items matrices, λ is regularization parameter, and cui is the 
confdence level for each observation. Specifcally, Pan et al. [18] 
used cui = 1 for i ∈ I+ and chose a lower constant for i ∈ Iu 

−. Huu 
et al. estimated cui for positive items with additional data, such as 
the number of clicks, and set cui = 1 for the unobserved items. This 
pointwise approach is a special instance of our general framework 
(eqn. 2). Specifcally, with click data only, the observations O are: 

OPclick = {(u, i)|u ∈ U, i ∈ Iu 
+}, OMclick = {(u, i)|u ∈ U, i ∈ Iu 

−} 

Notice that ONclick = ∅, as there is no negative interactions with 
click data alone. The MLE estimation (eqn. 2) can be written as:Õ Õ1 1 2arg min (1 − p̂ui )2 + p̂ (5)ui x,y 2σ 2 2σ 2 

P M(u,i)∈OPclick (u,i)∈OMclick 

With post-click signals, we can extend the defnition of Oclick to 
incorporate negative feedback, i.e.: 

OP = {(u, i)|u ∈ U, i ∈ Pu }, 

ON = {(u, i)|u ∈ U, i ∈ Nu }, 

= {(u, i)|u ∈ U, i ∈ I−}OM u 
1 1 1Let α = , β = ,γ = , our objective function in eqn. 2 2σ 2 2σ 2 2σ 2 
P N M

can be simplifed as (the regularization term is omitted): Õ Õ Õ
2 2arg min α (1 − p̂ui )2 + β p̂ p̂ui +γ ui x ∗ y ∗ 

(u,i)∈OP (u,i)∈ON (u,i)∈OM 
(6) 

where α , β,γ are model parameters and can be tuned through val-
idations [24]. Intuitively, we would want α > γ and β > γ to 
refect the assumptions that positive and negative feedback are 
given higher weights than missing observations. However, how 
to determine the weights for positive feedback and negative feed-
back is not clear. This is because in some cases we may put higher 
weights on negative feedback, as recommending items that users 
negatively interacted with can lead to detrimental outcomes. In 
other cases where negative feedback signals are weak and noisy, 
we may want to prioritize positive feedback. Our model is fexible 
enough to account for these diverse scenarios. Throughout the rest 
of this paper, we refer to this model as WRMF-NR, which is short 
for WRMF with Negative feedback Re-weighting. 

WRMF-NR is a generalization of the classic WRMF [5, 18]. How-
ever, setting β = 0 reduces eqn. 6 to a naive extension of WRMF to 
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incorporate post-click feedback. This naive model considers “click-
complete” as positive feedback and “non-click” as missing feedback, 
without directly learning from negative feedback (skips). We refer 
to this baseline model as WRMF-BL. 

4.4 Pairwise recommendation model 
In addition to training recommendation models using pointwise 
observations, pairwise data [21] is also commonly used in prior lit-
erature. For example, under our framework, Bayesian Personalized 
Ranking (BPR) can be viewed as leveraging the following sets of 
pairwise data: 

OPclick := {(u, i, j)|i ∈ Iu 
+ ∧ j ∈ Iu 

−}, ONclick = OMclick = ∅ (7) 

The underlying assumption is that users prefer clicked items over 
not-clicked ones. Therefore, BPR is optimized to maximize the 
diferences of preference scores between observed and unobserved 
items, i.e.: Õ 

max ln σ (p̂ui j ) − λθ | |θ | |f 
2 , (8)

θ 
(u,i, j)∈OPclick 

where θ denotes the model parameters, σ denotes the logistic sig-
moid function, and p̂ui j denotes the preference estimator for (u, i, j)
triplets, defned as p̂ui j = p̂ui − p̂uj . A standard embedding-based 
collaborative fltering model can be used to predict p̂ui and p̂uj , 
as in eqn. 3. Notice that the vanilla BPR model is a special case ofq
our general framework by setting µo = 1 − ln σ −1(p̂ui j ), where 

−xσ −1(x) = 1 + e . 
To improve the pairwise BPR model with post-click data, we 

extended the triplets defned in eqn. 7 to the following sets: 

OP := {(u, i, j)|i ∈ Pu ∧ j ∈ Nu }, 

ON := {(u, i, j)|i ∈ I− ∧ j ∈ Pu },u 
where OP assumes that user prefer “click-complete” items over 
“click-skip” ones, and ON assumes that user prefer “click-complete” 
items over “not-clicked” ones. The MLE objective in eqn. 2 can then 
be written as follows (the regularization term is omitted):Õ Õ 

arg max α ln σ (p̂ui j ) + β ln σ (p̂uji ), (9)
θ 

(u,i, j)∈OP (u,i, j)∈ON 

where α , β are tuning parameters that refect the variances of OP 
and ON under Gaussian assumption. We refer to this model as BPR-
NR, which is short for BPR with Negative feedback Re-weighting. 
Similar to WRMF-BL, if we set β = 0, BPR-NR reduces to a naive 
model that learns from positive-unobserved item pairs only. We 
refer to this naive model as BPR-BL. 

4.5 Implementations 
We used the Adam optimizer [9] with a learning rate of 0.001 to 
optimize for pointwise and pairwise models. To implement the 
weights proposed in the MLE objectives, we used stratifed sam-
pling techniques to over- or under-sample observations of diferent 
types. Specifcally, to train WRMF-NR, we defned parameters λp
and λn to control the proportion of positive and negative items 
being sampled into a mini-batch. Tuning these two parameters is 
equivalent to changing the weights α , β, andγ in eqn. 6. Similarly, 

we set λp,n as the hyperparameter to control the proportion of 
positive-negative pairs in a mini-batch for BPR-NR. Such a resam-
pling technique makes our framework readily adaptable to other 
types of recommendation algorithms, e.g., content-based [14, 20] or 
Nerual Network-based recommenders [2, 3], as these models rely on 
pointwise or pairwise sampling during training. We used the Open-
Rec [27] framework to implement and evaluate recommendation 
models. Our code is available at https://github.com/whongyi/post-
click-contentRecSys. 

5 EXPERIMENTS 
We evaluated our framework and competitive baseline methods 
against the post-click-aware ranking metrics described in Section 3.2 
(Task 2). Below is a brief summary of the methods used. 

• WRMF: Standard WRMF implementation proposed by [5]. 
• WRMF-BL: Baseline extension of WRMF to use post-click 
feedback as corrections for preference labels. Treats “click-
complete” as positive feedback and unobserved items as 
negative feedback. 

• WRMF-NR: Our proposed approach to probabilistically 
sample from positive, negative, and unobserved items. 

• BPR: Standard BPR implementation proposed in [21] using 
matrix factorization as preference predictor. 

• BPR-BL: Baseline extension of BPR to incorporate post-click 
feedback. Treats “click-complete” items as positive feedback 
and unobserved items as negative feedback during pairwise 
sampling. 

• BPR-NR: Our proposed method to explicitly distinguish be-
tween positive, negative and unobserved items. Adjusts the 
weights of positive- negative triplets and positive-unobserved 
triplets during pair-wise sampling. 

5.1 Hyperparameters 
We trained all models up to 10K iterations with a mini-batch size of 
1000. We used an embedding size of l = 100 for both user and item 
vectors. For BPR-NR with negative re-weighting, we tuned λp,n ∈ 
{0.2, 0.4, 0.6, 0.8, 1.0}. For WRMF-NR, we selected combinations of 
λp and λn ∈ {0.2, 0.4, 0.6, 0.8, 1.0} that satisfed λp + λn ≤ 1. We 
tuned the L2-regularization parameter λ ∈ {0.1, 0.01, 0.001, 0.0001}. 
All hyperparameters were tuned on the validations set and the best 
parameters were selected for evaluations on the test set. 

5.2 Distinguishing positive and negative items 
Overall, our purposed approach achieves the best performance on 
both datasets (Table 4). Compared to WRMF, WRMF-NR has a 17.3% 
relative improvement on ByteDance and 2.2% on Spotify. Similarly, 
BPR-NR has 19.4% and 2.7% improvements over BPR on ByteDance 
and Spotify, respectively. Interestingly, WRMF-BL and BPR-BL both 
show minor improvements over WRMF and BPR, which demon-
strates that by simply leveraging user completions as a criteria for 
positive feedback, the models learn improved user preference on 
content to some extent. However, our proposed models are shown 
to learn content-wise user preferences more efectively by explicitly 
learning from user post-click feedback through re-weighting their 
impacts on the objective functions. 
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Method ByteDance Spotify 

WRMF 0.521 0.540 
WRMF-BL 0.549 0.548 
WRMF-NR 0.610 0.552 
WRMF-NR v.s. WRMF +17.3%∗∗∗∗ +2.2%∗∗∗∗ 
WRMF-NR v.s. WRMF-BL +11.1%∗∗∗∗ +0.7%∗∗∗ 

BPR 0.527 0.541 
BPR-BL 0.556 0.547 
BPR-NR 0.633 0.555 
BPR-NR v.s. BPR +19.4%∗∗∗∗ +2.7% ∗∗∗∗ 
BPR-NR v.s. BPR-BL +13.8%∗∗∗∗ +1.5%∗∗∗∗ 

Table 4: Performance of ranking “click-complete” against 
“click-skip” items using baseline models and our pro-
posed models. Bold numbers indicate the best performance 
achieved under pointwise and pairwise models, respectively. 
Asterisks represent the signifcance level under t-test (***: 
p < 0.001, ****: p < 10−11). Our proposed approach, which 
incorporates post-click feedback, shows improvement over 
models and baseline extensions that only learn from clicks. 

Performance improvements on ByteDance are more signifcant 
than on Spotify. This indicates that the efectiveness of skips be-
havior as post-click preference indicators could be dependent on 
specifc content domains. We speculate that since videos require 
more engagement than audio, skips are stronger indicators of neg-
ative preference in video watching than in music listening. Further 
research is needed to comprehensively understand skip behavior 
across various content domains. 

5.3 Efectiveness of post-click feedback 
To understand which factors contribute to performance improve-
ments, we examined the rankings of positive and negative items 
by diferent algorithms. An ideal recommender would rank posi-
tive items higher and negative items lower. Table 5 illustrates the 
rankings (AUC) produced by baseline models and our proposed 
models. For BPR and BPR-BL, we observed only a minor ranking 
diference between positive and negative items. This means BPR 
and its naive extension hardly learn from negative feedback, as 
they still rank negative items very high in the recommendation 
lists. In real-world applications, this means that these recommen-
dations have an almost equal chance of being liked or disliked by 
users, which could be an explanation for the high skip rates in both 
datasets. In contrast, our proposed BPR-NR model is able to push 
the rankings of negative items below positive items by increasing 
the weights on negative feedback signals. With λp,n = 0.8, the 
AUC for negative items on ByteDance is 0.519, which is close to 
the random guessing AUC of 0.5. Similar observations are found 
for WRMF and their extensions. 

At the same time, the rankings for positive items go down as we 
increase λp,n and λn . Such a trade-of is expected as weights for 
positive-unobserved pairs are lowered. In those cases, positive items 
have a higher chance of showing up in top recommendations than 
negative items, while some unobserved items may also be presented. 

This is not necessarily a bad outcome, as such explorations may pre-
vent recommendation systems from accelerating the degeneration 
of user interests [6] and alleviate fltering bubble problems [4, 17]. 
Our framework provides fexible controls of the trade-of between 
exploration and exploitation in recommendations. 

6 DISCUSSION AND FUTURE WORK 
In this section, we discuss the implications of our fndings and 
directions for future work, particularly on understanding post-click 
feedback across content domains and other available user feedback 
beyond clicks and skips. 

Data sparsity. User feedback are sparse for training recommenda-
tion systems, especially for deep-learning-based systems. Implicit 
feedback (e.g. clicks) are preferred over explicit feedback (e.g. rat-
ings), due to their large volume and reduced bias. Such an advantage 
also manifests in post-click feedback, as they can be collected with 
implicit feedback without imposing extra burdens on users. In other 
words, post-click feedback do not increase data sparsity and capture 
fner-grained user preferences. 

Skips in various content domains. As we observe from the above 
analyses, skipping behavior can be context-dependent, and their 
strengths as negative preference indicators vary across content 
domains. Our proposed framework learns more efectively from 
user skips in short videos than in music. Such diferences may be 
associated with the intrinsic properties of video and audio as difer-
ent media. We note that podcasts [22, 28, 30] may be an attractive 
domain for further work on skip signals. User engagement levels for 
podcasts lie somewhere between video and music, since podcasts 
are presented in audio but require more user attention than music. 
User skips could also be very informative in understanding user 
preferences on podcasts. 

Negative feedback beyond user skips. In this paper, we specifcally 
investigated user skips as negative post-click feedback for content 
recommendations. There exists a broader range of user behavior 
that capture negative user preferences; for example, social network 
platforms such as Twitter and Instagram enable users to fag items 
that they are “not interested” in. On e-commerce platforms (e.g., 
on Amazon), users can identify specifc items as “do not use for 
recommendations.” Our proposed approach should be able to in-
corporate those types of user feedback as well. Future work could 
systematically characterize diferent types of feedback captured in 
user interactions with recommendation systems and propose novel 
learning algorithms to better understand user preferences beyond 
clicks. 

7 CONCLUSION 
In this work, we highlight the mismatches between user clicks 
and user preferences in content recommendation. We show em-
pirical evidence of how existing collaborative fltering algorithms 
that focus on optimizing user clicks fail to predict user post-click 
engagement. To address such misalignment, we propose a frame-
work that incorporates post-click feedback such as skips. Through 
investigations of real-world music and short video datasets, we 
demonstrate how our framework can be applied to improve exist-
ing pointwise and pairwise recommendation models. We hope this 
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Model ByteDance Spotify 
AUCp AUCn AUCp − AUCn AUCp AUCn AUCp − AUCn 

WRMF 0.778 0.760 0.018 0.937 0.930 0.007 
WRMF-BL 0.791 0.751 0.040 0.915 0.905 0.011 
WRMF-NR(λp = 0.2, λn = 0.4) 
WRMF-NR(λp = 0.2, λn = 0.6) 
WRMF-NR(λp = 0.2, λn = 0.8) 
WRMF-NR(λp = 0.4, λn = 0.2) 
WRMF-NR(λp = 0.4, λn = 0.4) 
WRMF-NR(λp = 0.4, λn = 0.6) 

0.706 
0.759 
0.737 
0.709 
0.783 
0.661 

0.666 
0.682 
0.678 
0.634 
0.745 
0.574 

0.041 
0.076 
0.059 
0.074 
0.038 
0.086 

0.753 
0.855 
0.829 
0.907 
0.870 
0.841 

0.733 
0.835 
0.805 
0.894 
0.851 
0.820 

0.020 
0.020 
0.024 
0.013 
0.019 
0.021 

BPR 0.806 0.785 0.021 0.923 0.915 0.008 
BPR-BL 0.804 0.760 0.044 0.915 0.903 0.012 
BPR-NR(λp,n = 0.2) 0.785 0.728 0.057 0.898 0.884 0.014 
BPR-NR(λp,n = 0.4) 0.759 0.682 0.076 0.884 0.867 0.018 
BPR-NR(λp,n = 0.6) 0.717 0.614 0.103 0.861 0.839 0.021 
BPR-NR(λp,n = 0.8) 0.651 0.519 0.131 0.807 0.778 0.029 
BPR-NR(λp,n = 1.0) 0.567 0.429 0.138 0.546 0.512 0.034 

Table 5: Ranking of positive items (Pu ) and negative items (Nu ) against unobserved items(I−). Higher AUCp and lower AUCn isu 
better. AUCp − AUCn indicates the ranking performance diferences between positive items and negative items. We observed 
larger margins on ByteDance compared to Spotify, which explains why the improvements on ByteDance are much more 
signifcant. 

work will inspire future studies on understanding comprehensive 
user feedback in recommendation systems across various content, 
as well as applications in other domains. 
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