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Abstract

Let K be a field and A a matrix with entries in K. It is well known that if det(z/ — A)
splits in K, there exists a regular matrix P with entries in K, such that P~1AP is a diagonal
matrix of Jordan blocks. Two problems arise that have been well treated in the literature.
What should be done if the roots of I — A do not belong to K? How can one compute P?
In this note, I answer these questions in a unified way.

1 Introduction

Let A be a matrix with entries in a field K. One of the classical problems in linear algebra is to find
canonical representatives in the similarity class of A. Canonical stands for two things: 1) it is the
most simple (perhaps sparse) possible and 2) it is uniquely determined by A, up to permutations of
diagonal blocks. Among these representatives, the most classical are the Frobenius' form and the
Jordan form of A (see [GF], [GE], [GE2], [GI], [GT], [J], [K], [L], [MF], [MK], [OJ], [OP], [S]).

A non-canonical representative, which is still interesting for its simplicity and efficiency in com-
putation, is any cyclic? form C of A (see [GF], [K], [MF], [MK], [OJ], [OP]); that is, a block-diagonal
C = diag[C(f1),...,C(f,)] of companion matrices, similar to A. There are in the literature several
polynomial algorithms (see [D], [MF], [0J], [OP]) of low degree to obtain a regular matrix @ such
that Q 'AQ is a cyclic form C of A. In order to compute the Jordan form J of A, once we have
computed @ and C, it suffices to find for each companion matrix a regular matrix 7; such that

TAC(f)Ti = J; - (1)

is the Jordan form of C(f;). In fact, letting 7' = diag[T},...,T;], and P = QT', one can show that
P 'AP = diag|J,,...,J,] = J is the Jordan form of A.

For the algebraically closed case, several authors have published efficient algorithms to find 7;
(see [GI], [GT], [OP]). However, what should be done for the cases that is not algebraically closed?
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A first step is to reduce the size of the companion matrices. It is known that if f = p™' ---p[™ is
the irreducible factorization of f, there exists a regular matrix S such that

S7IC(f)S = diag[C(p"),- .-, C(p]"™)] - (2)

Once we know an algorithm to find S, it will be straightforward, for any matrix A, to obtain a
regular matrix P such that P~'AP = G is a block-diagonal matrix of the companion matrices
associated with the elementary divisors of A. This matrix G is known as the irreducible canonical
form of A (see [OJ]). In consequence, it would be very interesting to have a unified algorithm to
solve both problems (1) and (2).

This is the aim of the first section of these notes; the regular change matrix obtained contains
in its columns the coefficients of certain polynomials uniquely determined by f (see theorem (1.5)
and definition (1.1)). In the second section, the same method is used to quasi-split by similarity,
with no restriction over the field, a companion matrix C(p"), given m = deg(p) in

C(p)
E  C(p)

Gi= e n

C(p)
E C(p)

where E is the zero matrix, except for the element E,, = 1; moreover, the matrix () such that
Q 'C(p")Q = G is easily described: its columns contain the coefficients of p*, £ = 0,...,n — 1
suitably moved down (see theorem (2.1)).

Finally in the third section, for the real case, similarity operations are stated which yield, as the
canonical representation for C'((z — ¢)? + d?)"), its real-Jordan form
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So, assuming a polynomial factorization in the field of real numbers, theorem (3.2) yields as canonical
representation of any real matrix a block-diagonal matrix of Jordan-blocks and real-Jordan blocks.

2 The irreducible and Jordan forms of a companion matrix

Let K be a field. For any monic polynomial f, the companion matrix of f will be denoted C'(f).

Definition 2.1 Given f € K|[z| of degree n, a factor p of f of degree > m and t € K we define a
(t,p, m)-pillar of f to be the n x m matriz whose k-th column contains the coefficients, padded with
0 if necessary, of the polynomial (z — t)*'(f/p).
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Examples

1. Let f = (22 4+ 2)(z? — 2). The (0, 2% + 2, 2)-pillar of f is

-2 0
0 -2
Pl b | 1 0 ]
0 1
and the (0, 2% — 2, 2)-pillar of f is

253
052
P=119
[§ patel

Settiﬂg 2= [pl-.- _PQ]:

ity b CY($2 + 2) 0
~ CU)P‘( 0 }C(xz—Q))

splitting, as it is well known, the companion matrix C'(f) into two smaller companion matrices
(see [GF] chapter VII, section 2, theorem 1).

2. Let f = (22 — 62+ 9)(z — 2)(z + 2). The (3,2% — 6z +9,2)-pillar of [ is

the (2,z — 2,1) pillar of f is

and the (—=2,z + 2,1) pillar of f is

Setting P = [Py, Ps, Ps],
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P-IC(f)P =
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the well known Jordan form of the companion matrix C(f).



As is well known, swapping the columns of the pillar P, gives

. 1L B -0
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0 00 -2

the preferred Jordan form for some authors.

. Let f = (2% + 2z + 5)*. The (0, (z* + 2z + 5)%, 2)-pillar of f is

e R e Y e Y e Y e T

the (0, (2 + 2z + 5)?, 2) pillar of f is

e

S =D O

and the (0, (z% + 2z + 5), 2) pillar of f is

P =

Setting P = [Py, P», P3],
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PIC(f)P =

o O O O &

0:. 00" 0
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which is called the quasi-Jordan form of the companion matrix C'(f).



Definition (1.1) gives the following

Procedure PILLAR:
Input: (t,p,m, f), where p is a factor of a monic polynomial f € K|z], t € K, m < deg(p)
Output: The (t,p, m)-pillar of f
[P1]: n := deg(f); @ := matrix(n, m)
[P2]: q:= f/p
For i from 1 to n do Q[i, 1] := coeff(q, 2" ")
[P3]: For k from 2 to m do
[P3.1]: ¢ := (z —t)q
[P3.2]: for i from 1 to n do Q[i, k] := coeff(g, 2"~ ")

Remark 2.2 The above examples show that the processes to split or to obtain the Jordan form
or the quasi-Jordan form of any companion matrix are essentially the same. It is the aim of the
following results:

Lemma 2.3 Let C = C(f), a companion matriz. If degg < deg f, the first column of g(C)
contains the coefficients of g.

Proof: Let g =Y d,z* and e, = (0,...,1,...,0)f, then
9(Cley = stcsf?] € stfisﬂ .

Lemma 2.4 The k-th column of the (t,p,m)-pillar Q of f is (C — tI)*'Qe;.

Proof: 1 argue by induction on k, the case & = 1 being obvious. By the above lemma, the kth
column is

(C —tD)* ' f/p(C)ey = (C = tD[(C — t1)**f/p(C)ei]
but (C — tI)*"2f /p(C)e; is the preceding column and by induction is (C' — t1)*7?Qe;.

Theorem 2.5 Let C = C(f) a companion matriz and f = p,---p, a coprime factorization of f.
For j =1,...,r let mj = deg(p;), t; € K and P; the (t;,p;, m;)-pillar of f. Let P = e o Bk
then P 1is regular and

P~'CP = diag[t,] + C(q1), ..., t-1 + C(g)], where ¢; = p;(z +1t;)

Proof: Let p; = 2™ + Y10 aj,a%;
Step 1): p;j(C)Pjes = (0),Vj=1,...,r:

0) = (0)er = f(C)er = (;£/p)(O)) &1
= (pif/pi(C))er = p;(C) (f/p;(C)) 1 ‘=) p;(C) Pyes .
Step 2): If ¢ = 2™ + Y ¢j,z® then (C — t;,1)™ P} + o o g ¢js(C — t;I)° P} = (0):
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This is a direct consequence of the hypothesis g;(z — t;) = p;j(z) and the above step.

—cjo
Step 3): (C — t;I)™ P} = P, : E R AN,
?ijj—l
By lemma (1.4),
—Cj0 i
P; ; = [PL(C-t;)P},...,(C—t;I)™~'P]]
—ijj-—'l —Cjm,;—1
‘ﬂ’lj—l
2 .
= Y —ci(C—t;1)°P} 2 (C — ;)™ P}
5=0

Step 4) CPJ = Pj(tjf i C((}J)),j —7 | e
By lemma (1.4),
(C-=-6DHP;={C- t‘}-I)le, (C - th)Qle, ..., (C - tJ-I)mJ'P;]
and

__cjo
PiC(g;) = |(C-t;I)P},(C—-4IY°P,..., (C — t;I)™' P}, P;

J ? ’
_ijj -1

It suffices to apply the above step.
Step 5): CP = Pdiag[t,] + C(q1),....t,I +C(q)]:
CPaiCR. ol lh
Pdiag[t,I + C(q1), ..., t-1 + C(q,)]

= [Pt ] + C(q1)), .- -, Pi(t;] + C(g5)), - -, Pr(t:I + Clar))]
It suffices to apply 4).

Step 6): P is a regular matrix.
Since (py,...,p,) is a coprime factorization of f, by means of the extended Euclidean algorithm,
we may compute polynomials g; such that

L=ag(f/p1)+ -+ g.(f/pr)
So, I = g (C)(f/p1)(C) + -+ + g:.(C)(f/pr)(C) and

e =q(C)Pe;+---+g.(C)P,e;
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Letting g;(z) = h;(z —t;),

9;(C)Pjey = h;(C — t,1)Pje; 2 dy + dy(C = t;I)Pjey + - - - + dym, .1 (C = t;,])™ ' Pje, .

This shows that e; is a linear combination of the columns of the whole matrix P, and there must
be a vector B! € K™ such that e, = PB!. Finally,

€i+1 — Ciel = CT;PBl 2 PC"IBl = Bi

and, letting B = [B',...,B"], I, = PB.
We obtain the following (see also [GF] chapter VII, section 2, theorem 1) known

Corollary 2.6 Let C = C(f) a companion matriz and f = p,---p, a coprime factorization of f.
Fork=1,...,r let my = deg(px) and Py the (0, px, my)-pillar of f. Let P = [Py,...,P,]; then P is
reqular and

P~'CP = diag[C(p),-..,C(p,)] -

Proof: It suffices to see that, for t, = 0, g = p&.

This result yields

Procedure SPLIT:
Input: A coprime factorization p, - - - p, of a monic polynomial f € K|z] .
Output: A regular matrix P over K such that P~'C(f)P = diag[C(py),...,C(p)]

[SP1]: For k from 1 to r do P, := PILLAR(0, p;, deg(px), f)
ISP PEUCTPE o0 P,

Definition 2.7 For a complete factorization of f, the above matriz is called the irreducible form

of C(f)-

We must note that it is uniquely determined by f, up to permutations of blocks.

Notation 2.8 Given a natural number m and ¢ € K, we denote by the t-Jordan block of order m

the matrix
Im(t) = tl, + C(z™) .

Corollary 2.9 Let C = C(f) a companion matriz and assume that f splits in K as
f=(@—-t)™ ---(x—t,)™. Fork =1,...,r let P, the (t,(x — tx)™,my)-pillar of f. Let
P = [Py,...,P]; then P is regular and

P~'CP =diag[Ja(t1),. . Im.(t)] = J,
the Jordan form of C(f).

12



Proof: It suffices to note that pi(z + tx) = 2™*.

This result yields

Procedure JORDAN:
Input: A monic polynomial f splitting as (z —#,)™ -+ (z — t,)™ in K|z]

Output: A regular matrix P over K such that P~1C(f)P = diag[Jm, (t1),-- -, Jm, (t/)]

[J1]: For k from 1 to r do

pr = (T — ty)™

Pk L= PILLAR(tkﬂpka mg, f)
[J2]: P:=[P,,...,P,]

Remark 2.10 As we have stated, if we swapped the columns of Py in the above corollary and
procedure, we obtain J!, the preferred Jordan form for some authors.

We must note that our theorem applies to any matrix, by means of its cyclic form (see [MK],
[0J], [OP]), giving not only a unified proof for the existence of its irreducible and Jordan forms,
but a unified® method to obtain them, with their change matrix.

3 The quasi-Jordan form of a companion matrix

Let C = C(p") a companion matrix. The above results do not permit the splitting of C' into a
block-diagonal matrix of lower size companion matrices. However, the same method of suitable
pillars yields the following:

Theorem 3.1 Let p be a monic polynomial of degree m over K and C the companion matriz C(p").
Forj=1,...,n let Q; the (0,p" 7, m)-pillar of p". Let Q = [Q1,..., Qn); then Q is reqular and

C(p)
E C(p)

Q7CQ = PP i

where E is the zero matriz m x m, except for Ey, = 1.
Proof: The sketch of proof is very similar to the above theorem (1.5).

Step 1): Q is regular; in fact, recalling that, for k = 1,...,m the k-th column of the pillar @Q;
contains the coefficients of z¥~1p?~1; so, it is clear that @ is upper triangular with @Q;; = 1, for all 7.

3Note the close analogy between the procedures SPLIT and JORDAN
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Step 2): Qj161 = p?(C)e;: It is the lemma (1.3).

Step 3) Q:H'i = [I)J(C)(’l,cp]( )(’l, T . Cm 1])J Pj]
By lemma (1.4) Q; = [Q,e1,CQjey, ..., C™ 'Q;e;]. Tt suffices to apply the above step.

Step 4): Let p=2™ + Y. a,z°. Then

o (4.1) CQuem = Qn
—Qm—1

L (42) CQj(fm = Q_-j o Qj+1EBms fUI‘j <n
—Qm-1

Since p’ = pp'~! = (2™ + 325 agzt)pl,
m—1

P(C) = (C™ + 3 a,C*)p1(C) = Cmp/! (Zacw-l(m)

therefore
cmpi(C) = (Z —ascspf'—l(o)) +(C)

and for its first column:

C(C™'p~1(C)e,) = (Z_ —U,,;Cspj_](C)el) + P (C)ey

s=0
2 (Z —astes—i-l) —1-—pj(C)€1
=0
—ag
= @ : +p(C)ey
—Qm—1

e For j =n, p"(C) = (0) and, by step 3), C"™ 'p"1(C)e; = Qnem; we obtain (4.1).
e Lor j < n,

— C(C™ P~ 1(C)er) = CQjem, by step 3).
— By step 2), p/(C)e, is the first column of Q; 44, i.e., Q1 Fenm

which yields (4.2)
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Step 5) CQ‘R - an(p) and CQJ = Qjc(p) ¥ Qj+IE} .? e 1: BAR=dy
directly from step 4).

Step 6): CQ = QG , directly from step 5).

Note that the first pillar always contains the m first vectors of the canonical basis; so the above
statement yields the following

Procedure QUASI_JORDAN_AUX:
Input: A monic polynomial p".

Output: A regular matrix @ over K such that Q 'C(p")Q =

C(p)
- 1!
E  C(p) E
=t e , where FE = :
C(p) '
0 610
E C(p)

[QJA1]: m := deg(p)
[QJA2]: To assign to @, the zero matrix mn x m
[QJA3]: For j from 1 to m do Q1[j,j] :=1
[QJA4]: For j from 2 to n do

Q; := PILLAR(0, p"7*', m,p")
[QJAS): Q :&= [Gh, ..., Qn)

We must note the simplicity of the matrix Q. On the other hand, some readers will probably
prefer the following version of (2.1):

Theorem 2.1 bis Let p be a monic polynomial of degree m over K and C' the companion matrix

C(p"). For j = 1,...,n let Q; the (0,p’,m)-pillar of p. Let Q = [Q1,...,Qx]; then Q is regular
and

Q_]'CQ — i : = G
Cp) E
C(p)
where E is the zero matrix m x m, except for Ey,, = 1.

Proof: It suffices to note that we have swapped the pillars, which yields the new canonical form.

15



Corollary 3.2 Let C = C(f) a companion matriz and f = p" ---p™ the complete factorization
of f over K. Then it is possible to compute a regular matriz P such that

P~ICP = dinglG) . .1iGela

where G; is the correlative matriz obtained in the theorem (2.1).
Proof: By corollary (1.6), by means of the suitable pillars, we compute @ such that Q 'CQ =
diag[C(p1)™),...,C(pj™)] = D.

Now applying (2.1) to every one of the above companion matrices, we compute R; such that
R_;lc(pj)mj)Rj - Gj.

Letting R = diag[R,, ..., R,], R"'DR = diag[G}, ..., G,]. Finally, taking P = QR,

P~'CP = R'Q"'CQR = R~ DR'= diag|Gyj: . s Ge)

Remark 3.3 We must note that we do not need the irreducibility of p in the above results. On
the other hand, if all factors p; are linear in the above corollary, we obtain the Jordan form of C(f).

This suggest the following

Definition 3.4 Given a monic polynomial f, the matriz G obtained in (2.1) is called the quasi-

Jordan form of C(f).
We must note that is uniquely determined by f, up to permutation of blocks. We have obtained

the following

Procedure QUASI_JORDAN:

Input: The complete factorization pi"* - - - pI*r
of a monic polynomial f € K|z]

Output: A regular matrix P over K such that
P~'C(f)P is the quasi-Jordan form of C(f)

(QI): Q = SPLIT(H™ -+ p)
[QJ2]: For j from 1 to r do
[Q12.1]: R, := QUASI.JORDAN _AUX(p")
[QJ3]: R:= diag[Ry,..., R,]
[QJ4]: P:=QR

Remark 3.5 In the real case several irreducible factors may be linear and others may be of the
form (z — ¢)? + d*. The theorem (2.1) yields also an interesting canonical form for a companion
matrix. This is the object of the next section.
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4 The real-Jordan form of a companion matrix

The quasi-Jordan form of a real matrix will have some Jordan blocks® and some blocks that are
companion matrices of (z — ¢)? + d? = 22 — 2cx + (® + d?), d # 0:

(o)

But this companion matrix is similar to the most geometric®

(47¢)

Lemma 4.1 Letp = (z — ¢)* + d*,0 #d € K and G the 2n x 2n matriz

01
L

E where E=(

C(p)
E C(p)

obtained in (2.1).

Then, letting T = (H?:l sz—l,:aj(—f?)) ( }:ll sz(l/dj)szH(l/d‘f)) Q2n(1/d"),

¢ —d
/ d C \
1{c —d
d C
T 'GT = 1 = (RJ).(c,d)
1le —-d
\ d c )

Proof: It is straigthforward to see that letting R = (l—[?:l ng_l}gj(—(:))

(C —d? \
}= Ho
1 e —¢@*
1 a
R '!GR = | 5 ]
RET

\

4corresponding to linear irreducible factors
5a rotation for ¢ + d? = 1
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Now letting Sy = (]_[f;ll ng(l/dj)ngH(l/dj)) Q.x(1/d*), an easy inductive argument over
k=1,...,n—1 yields

- \

1le —d
d c
Sk_lHSk: 1 :Hk
1/d* | ¢ —d?
I r

\ i
SO, Sn_1HSn_1 T Hn—l and
T_IGT - Q2n(dn)Q2n—l(dﬂ_l)Hn-—lQ‘Zn—l (1/dn_1)Q2n(1/dﬂ) = (R.})H(C, d]
Theorem 4.2 Let C = C(f) a companion matriz and assume that f splits over K as
7 =11 -t [l - ) + 1™ di # 0
J=3 k=1

Then it is possible to compute a reqular matriz P such that

P'CP = diag[my (1), ! .+ I (&), (R )y (1, ), - - -, (R, (€2 )] = (RI)(f)
Proof: By corollary (1.6), by means of the correspondant pillars, we may compute @ such that
Q-'CQ = diag[C((z — t)™), ., C((@ — t-)™),
C(l(z — a)* +dI™),...,C(l(z — ¢;)* +d]™)] = D
By applying (2.1) to any one of the above companion matrices, we compute R such that
R 'DR =diag[Jn,(t1),.. ., Jm. (&), G1,...,Gs) = F

where

C(Pk)
E  C(p) . &

= E and E:(O U)pk=(:c—ck)2+di.

C(Pk)
E C(m)

Now, in the above lemma we have computed 7} such that T, 'GiTi = (RJ)n, (ck, d)
Letting T = diag|ly, -} odbadyili-adah

T'FT = diag[Jm, (t1); - - - » I, (tr), (R )n, (€1, 1), - . -, (RS )n, (5, ds)] = (RT)(f)
Finally, taking P = QRT,
P \CP=T'R'Q'CQRT =T 'R'DRT =T"'FT = (RJ)(f)
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Definition 4.3 The matriz (RJ)(f) obtained above is called the real Jordan form of C(f).

We must note that it is uniquely determined by f, up to the permutation of blocks. The
procedure to compute P is

Procedure REAL_JORDAN:

Input: The complete factorization [[7_, (z — ;)™ [[;_,[(z — &) + d7]™
of a monic polynomial f € R[z]

Output: A real matrix P such that P~'C(f)P is the real-Jordan form of C(f)

[RJ1]: @ := SPLIT([]._,(z.~ t:)® Fliei [(z.= cs)? +d2]™)
[RJ2]: For j from 1 to r do R; == QUASI_.JORDAN_AUX((z —t;)™)
[RJ3]: For k from 1 to s do Sy := QUASI.JORDAN_AUX([(z — ¢)* + di]™)

T := S (T Pas-vi(—ce)) (TT7%s Qas (1/ ) Qaion (1/ ) Qany (1/d5?)
[RJ4]: R := diag[R,,...,R,,T1,...,T]
[RIG}: P:=QR

Remark 4.4 We must emphasize the symbolic character of the above procedure, which assumes a
real factorization of the polynomial f € R|z].

References

(B] E.T. Browne. On the reduction of a matriz to a canonical form. American Mathematical
Monthly, pp. 437-450. Vol. 47 (1940).

[BU] A. Bujosa et al. Jordan Normal Form via elementary transformations, SIAM REV. pp. 947-
956. Vol. 40 (1998).

(D] A. Danilevski. On a numerical solution of Vekua’s equation. Mat. Sb. Vol. 2, pp. 169-171
(Russian) (1937).

(GF] F.R. Gantmacher. Theory of Matrices. Vol. 1. Chelsea Publishing Company. New York (1977).

(GE|] M. Giesbrecht. Nearly optimal Algorithms for Canonical Matriz Forms. SIAM J. of Comput-
ing, Vol. 24, pp. 948-969 (1995).

(GE2] M. Giesbrecht. Fast Algorithms for Rational Forms of Integer Matrices. Proc. ISSAC’94, pp
305-311.

[GI] 1. Gil. Computation of the Jordan Canonical Form of a Square Matriz (Using the Aziom
Programming Language). ISSAC’92-7/92/CA USA.

19



[GT] T. Gémez-Diaz. Quelques applications de l'evaluation dynamique. Doctoral Thesis. University
of Limoges (1994).

[J]  N. Jacobson. Lectures in Abstract Algebra. Vol. II. Linear Algebra. Springer-Verlag (1953).

K] E. Kaltofen et al. Parallel Algorithms for Matriz Normal Forms. Linear Algebra and its
Applications, Vol. 136, pp. 189-208 (1990).

[L] H. Liineburg. On the Rational Normal Form of Endomorphisms. Mannheim: BI-
Wissenschaftverlag (1981).

[MF] M. Mathieu and D. Ford. On p-adic Computation of the Rational Form of a Matriz. J. Symb.
Comput. Vol. 10, pp. 453-464 (1990).

IMK] K. Martin Cdlculo simbdlico de la forma racional de una matriz. Doctoral Thesis. University
of Cantabria (1994).

[ML] T.M.L. Mulders and A.H.M. Levelt A package for the computation of several matriz normal
forms. Share Library. MAPLE V. (1993)

[OJ] J. M. de Olazébal. Procedimientos simbdlicos en Algebra Lineal. Servicio de Publicaciones de
la Universidad de Cantabria. Santander, Spain (1998).

[OP] P. Ozello. Calcul Ezact des formes de Jordan et de Frobenius d’une Matrice. Doctoral Thesis.
University of Grenoble (1987).

[S]  A. Stojohann. An O(n®) algorithm for the Frobenius Normal Form. Proc. ISSAC’98, pp. 101-
104.

20



