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ABSTRACT 

The phase unwrapping is recovering true phase from its 2
modulo observations which are related to some discrete 
optimization problems. The challenge is to exactly solve the 

discrete optimization problem arising from noisy data. In this 
paper, we propose a new continuous minimization method for 
phase unwrapping. Using the Lovász extension we transform the 
discrete problem to equivalent continuous problem. In contrast to 
conventional continuous minimization methods, our method can 
solve this discrete optimal problem exactly. In addition, one 
regularization term is added to the energy function to deal with 

noisy images. By using 1L  norm for both data term and 
regularization term our method performs well for discontinuous 
images.  Moreover, its implementation is very simple. A set of 

experiment results illustrates the effectiveness of the proposed 
method. 
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manipulation ➝ Image processing 
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1. INTRODUCTION 
Phase unwrapping is the process of attempting to reconstruct the 

true phase from modulo 2  phase values. It is motivated by a 

variety of applications. Interferometric synthetic aperture radar 
(InSAR) uses two or more radars to form maps of deformation for 
an object which is applied into geodesy and remote sensing [1], 
[2]. In X-ray phase imaging, phase shift caused by the object is 
not measured directly, but resulted in some variations in intensity 

images. By recovering the phase shift, the internal structure of 

biological soft tissues can be observed which is difficult for 
conventional X-ray CT [3], [4]. Phase unwrapping is also useful 
for water and fat separation problem in MRI [5]. In these 
applications, the phase information of object is included in some 
periodic signals. Then the phase is determined only in the 

principal value range of   , as shown in Figure 1. It is called 

as phase unwrapping- recovering true phases with wrapped ones. 

        

(a)                                                                (b) 

Figure 1. (a) Continuous phase (b) Wrapped phase 

In general, without additional conditions it is impossible to 
recover the true phase exactly from the measured signal that is 
affected by noise and is wrapped into principle value range. And 
the most common assumption is that the gradient (differences 

between neighboring pixels) of unwrapped phases is less than     
  (Itoh condition) [6]. If this assumption is valid in every pixel, 

unwrapping is simply completed by the path-following method as 
following. 

We can start at an arbitrary point of arbitrary path to plus (or 

minus) some integer multiple of 2 for each pixel such that the 

phase differences between neighboring pixels are less than  .  

Then unwrapping is completed while those paths cover the entire 

image.   

In practical applications, Itoh condition might fail. It can be 
caused by the discontinuity in the true phase or noise. Then for 2D 
phase unwrapping, different paths may result in different 
unwrapped phase values for one pixel. It means a closed loop 
exists there with non-zero line integrals which is known as the 
residue. To solve the path depending problem, several techniques 
with path-following methods have been developed such as branch 

cuts and minimum cost flow (MCF) etc. [7]-[9]. 

In branch cuts, all residues are computed firstly by searching all 
the smallest closed paths i.e. 2×2 sample box. Then define cut 
lines by finding pairings of neighboring opposite residues.  It will 
give unique unwrapped phase image by prevent paths crossing 
these cut lines [9]. 

Flynn proposed minimum cost flow method that also defines the 
path using the positive and negative residues. Different with 
branch cuts it detects the discontinuities point by point to 

determine the path explicitly. These discontinuous points are 
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decreased by plus (or minus) integer multiple of 2  along the 

path. Then discontinuity is minimized by iteration. This method 

can reach a global optimal solution and works robustly in many 
cases with low noisy image.  

However, the counts of pixels with non-zero residue will increase 
rapidly for the high level noisy images. Then for path-following 
methods, it is not obvious to find the best path or exact cut lines, 
and it makes unwrapping difficult.    

Another important development is minimum norm (energy 
minimization) method which is path independent. These methods 
try to find the unwrapped phase image by minimizing the 

difference between the gradient of the true phase and that of the 

wrapped phase according to a pL  norm.  For p=2, it is least 
squares problem and can be solved using the fast Fourier 
transform [9]. For general p, this problem is related to a partial 
differential equation (LP-PDE) by calculus of variations and it is 
solved using weighted least-squares algorithms [10]. Similar 
technique is developed to unwrapping 4D MR flow data [11]. In 
addition, some techniques with regularization terms are also 
developed for the wrapped signal with high level noise [12], [13]. 
These path independent methods aim the global optimal solution 

and are more robust for the noisy image than path-following 
methods generally. More details on typical minimum norm 
methods will be given in the following section. 

Note that there is an important congruent constraint in phase 
unwrapping i.e. 

Rewrapping unwrapped image should be identical to the 

original wrapped image.                                                       (CC)  

Strictly speaking, the (CC) condition causes a discrete 

optimization problem. Most minimum norm methods is to solve 
continuous minimization problem directly and leading the 
solution to fail the congruent test. This difficulty is solved by 
using the Graph cuts method which is currently considered state 
of the art [14]. Note that the Graph cuts method needs to increase 
memory usage for additional variables such as node and it is 
related to the techniques such as construction of Graph and 
network flow etc.  It is not easy extends the method to the higher 

dimension problem which is related to more complex Graph and 
which force us to increase memory usage rapidly [15-17].  

In this paper, we propose a new path independent method with 
continuous submodular minimization. Its derivation is outlined as 
follows. First we define an energy function consisting of data term 
and weighted regularization term. Then transform the 
minimization problem from the discrete optimization to 
equivalent continuous one using Lovász extension [18, 19]. Note 
that after extension we will have a non-differential function to 

minimize. Therefore, the double averaging subgradient method 
was used [20].  

Our contribution consists of three parts. 

 a) Solve a continuous minimization problem and reach 
optimal solution with (CC) condition which is the first result for 
phase unwrapping.  

b) It is robust for noisy images by additional L1 norm 
regularization term. Note that the regularization term lets adjacent 

points have the same 2  jump as much as possible to 

effectively act as a denoising process. But unlike usual denoising 

technique it can preserve the (CC) condition because it changes 

unwrapped function by only integer multiple of 2  .  

c) Unlike previous network flow methods it does not need to 
increase additional memory usage. Moreover, its way of 
implementation is very simple and can be extended to the 3D 
phase unwrapping problem easily.  

This paper is organized as follows. In section 2, we review 
existing typical minimum norm methods. In section 3, we derive 
the proposed method. In section 4, we show several experiment 
results. The conclusion is given in section 5. 

2. ENERGY MINIMIZATION  
In this subsection, we review existing typical methods with energy 
minimization. 

In many applications, phases are extracted from both sin and cos 
signal using an extended arctangent functions that give the 
wrapped phase. And then we need to recover the true phase from 

the wrapped phase. Formally, we have 

       1,01,0,,2 ,,,,  NMjiWl ji

def

jijiji  ,   (1) 

where 
jil ,
 is integer, 

ji , and 
ji,  are the true phase and wrapped phase 

respectively. The wrapping operator  W  maps functions into the 

principal value range   , .  

2.1 Energy Function 
In path following methods, the unwrapping is completed to plus 

(or minus) integer multiple of 2  pixel by pixel for wrapped 

image. Different with it most minimum norm methods to deal 
with difference function directly for both unwrapped phase and 
wrapped phase. Denote horizontal and vertical direction 
difference by    

,1,,,1,   Mijijiji

h                               (2) 

1,,1,,   Njjijiji

v  ,                             (3) 

respectively.   

In the following with one dimensional example we explain how to define 
a suitable energy function. Consider one wrapped function that is formed 
using wrapping operation for one continuous function as in Figure 1. 
From its difference image Figure 2. (a), we find that the absolute value of 
difference function in wrapped point is bigger than other points. Hereby 
we can determine the map of wrapped points from difference image. 
Formally  

     2)()(,)()(  BWBAWA hhhh

,     (4) 

and it vanishes for other points. On the other hand, for true phase, 
it will vanish for every point.  In this sense, unwrapping is 
equivalent to find one integer function 

il  so that it will minimize 

the following problem  

 
  

i

i

h

i

h

i

h

l
Wl

i

2min                             (5) 
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(a)                                  (b)                             (c) 

Figure 2. (a) Difference image h  (b) Wrapped difference 

image  hW   (c) Second order difference   hh W   

For two dimensional images, consider both horizontal and vertical 
direction, the energy minimization problem can be written as 

following 

 
 

 
    p

ji

ji

h

jiji

h

l

def

ji
l

WllE
jiji

 
,

,,,, 2minmin
,,



 

     

 ji

p

ji

v

jiji

v lSWl ,,,,2 
 ,             (6) 

jil , is integer,                                           (7) 

 

where 1p is constant. The last term in equation (6) is the 

regularization term with 0  as its weight. The regularization 

term is added in order to prevent noises 

The energy function in equation (6) takes two-dimensional 
information with horizontal and vertical direction simultaneously 

to solve the global minimum which is different with path 
following methods.  

2.2 Priori work 
The equation (7) comes from (CC) condition means phase 
unwrapping is a discrete optimization problem. It is well known 

that is difficult to be solved by continuous minimization methods. 
And many of minimum norm methods could only solve equation 
(6). When p=2, it is solved by weighted and unweighted least-
squares method respectively. In unweighted least-squares method, 
it is transformed to Poisson equation and can be implemented with 
the fast Fourier transform (FFT) at high speed. Note that, solving 
Poisson equation means it will give smoother solution than the 
true phase generally. In weighted least-squares method (PCG), 
the weight is added for decreasing the influence of low quality 

area such as high level noise areas etc. For general p, based on 
Euler–Lagrange equation, equation (6) is transformed to a 
nonlinear partial differential equation. Taking the nonlinear part 
as a weight in the iteration process, we can solve this problem. In 
addition, other continuous minimization methods with 
regularization term are solved by iteration process.  

Note that these solutions could not satisfy equation (7). It is 
obvious that we can impose this (CC) condition after unwrapping 

using round up (or down) process as following 

)int( ,, ji

new

ji ll  .                                          (8) 

 
However it raises concern that the new function may not minimize 
the energy function. 

The Graph-cuts method can solve equation (6) and (7) 
simultaneously and gives good results in many applications. In the 
Graph-cuts method, first construct a graph with vertices and edges 
corresponding to each pair of adjacent points. These vertices are 

divided into two disjoint sets (source and sink) by a cut process. 
Using given energy function, we can define the weight for the 
graph to calculate the cost for every cut. It is important that the 
minimum cut on the graph also minimizes the energy function by 
a specialized graph construction. Then unwrapping problem is 

solved by finding minimum cut with max flow algorithms.   

Example A Numbers of variable for graph cuts 

 
In the Graph cuts method, the inflow and outflow for one pixel are 
different generally. Then we need approximately 

 n (vertices)+ n4  (edges) variables where n  is image size (see 

Figure 3.). It needs   n9  variables when we also use the diagonal 

edges.  In contrast, minimum norm methods require only n  

variables generally. It is obvious that for 3D problem we have to 
use more variables which means more memory usage and need to 
construct more complex graphs [15].  

 

Figure 3. Variable for graph cuts 

 

Table1. Energy minimization methods 

 
Least-

Squares 
LP-
PDE 

Gragh 
Cuts 

Proposed 

algorithm 

(CC) condition 
(exact solution) 

No No Yes Yes 

More memory 
usage 

No No Yes No 

 
In this paper, we will propose new continuous minimization 
method that can solve equation (6) and (7) simultaneously and 
then give the exact global minimum solution.   

3. CONTINUOUS SUBMODULAR 

MINIMIZATION 
In this subsection we derive the proposed method. First, the 
Lovász extension is introduced which have been applied in many 
submodular optimal problems. Next, we will transform phase 
unwrapping problem (discrete) to equivalent continuous 
minimization problem.  Then, the double averaging subgradient 
method is described to solve the minimization problem. Finally, 
introduce our algorithm combining these techniques. 

3.1 Lovász extension 
Lovász extension can extend a set function (or equivalent discrete 
function) to a continuous function which is used in integer 
programming etc. 
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For finite set   ,)1(,,2,1  kk  consider set functions   Rf 2:  

where  2  denote the power set of  .  We say f  is submodular 

function, if for every 21,TT , 

       212121 TfTfTTfTTf   .                          (9) 

Note that the submodular function related to the convex function 
by Lovász extension.  

Lovász extension Given a set function f with 

  0f ,                                    (10) 

the Lovász extension 
~

f  is defined as follows.  

For nRX  , order the components in decreasing order 

niii xxx  
21

,  

        
nkk inii

n

k

k xiiifxxiiiff ,,,,,, 21

1

21

~

1
 




X

.          (11) 

Example B Lovász extension 

For set  2,1 , its power set may be associated to a vertex of the 

hypercube    1,01,0   as follows  

             1,12,1,1,02,0,11,0,0  .                        (12) 

Now, consider set function f with  

        11,00,1,01,10,0  ffff .                              (13) 

Then its Lovász extension  

  2121

~

, xxxxf   .                                       (14)   

 

 
Figure 4. Lovász extension 

 

From Figure 4. we understand that the image of extended function 
is two hyperplanes on 

21 xx   and 
21 xx  , respectively. 

Theorem A [18, 19]: 

For set  2,1 , without loss of generality assume the set 

function f defined on vertices of the hypercube    1,01,0  . 

Suppose 
~

f  is its Lovász extension.  Then 

(i) if f  is submodular function then 
~

f is convex function, 

(ii) 
  

  
  

  21

~

1,0
21

1,0
,min,min xxff

ii x 




, 

(iii) the set of minimizers of 
~

f  on ]1,0[]1,0[   is the convex hull of 

minimizers of f  on    1,01,0  . 

In the Example B, from Figure 4. we understand the extended 

function is convex function. In fact, f  is a submodular function 

with   

       1,00,11,10,0 ffff   ,                              (15) 

and then the extended function 
~

f is convex function by (i) of 

Theorem A. 

In minimum norm methods we have to solve a discrete 
optimization problem (6)-(7). Benefiting from above Theorem 
with use of Lovász extension, we only need to solve one 
continuous convex problem. However, there are more convex 
optimal methods for continuous optimal problems compared to 

discrete ones. The solution of original problem will be given 
through simple process of projecting for the solution of extended 
problem.  

3.2 Continuous Energy Function for 

Proposed Method 
In equation (6) the wrap count 

jil ,
 can be arbitrary integer. But we 

can solve it step by step such that in every step 
jil ,
 can only take 0 

or 1 [14]. The energy function with L1 norm performs better than 
L2 norm in when discontinuity preserving is concerned. In eq. (6) 

and (7), we take both data term and regularization term according 
to 1L norm, then  

 ,1,0

,

,

,

,1,,



 

ji

ji

jijiji

l

termverticalllEE 

                 (16) 

where 

 ji

h

ji

hh

ji Wa ,,,   ,                                  (17) 

is the jump count for wrapping point and  

    .2,
,

,,1,,1,,,   

ji

h

jijiji

def

jijijiji allllEE 

           (18) 

It should be emphasized that our regularization term changes the 

unwrapped function only by integer multiple of 2 to satisfy 

congruent constraint. This is different with previous methods with 
regularization term.  

In Lovász extension, the set function is required to satisfy eq. (9) 

that corresponding to  

  .00,0, jiE                                         (19)   

Therefore, we replace    jijiji llE ,1,, , 
 by    0,0, ,,1,, jijijiji EllE 

 in eq. 

(18). Since the function  0,0, jiE  is independent of variable 
jil ,
, this 

operation will preserve the same minimum point in eq. (16). 

Now, by Lovász extension we have new continuous energy 
function as following    

 ,1,0, ,,1,

,

,

~~

  jijiji

ji

ji xtermverticalxxEE 

       (20) 

 where  
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     
     













otherwisexxEE

xxxxEE
E

jijijiji

jijijijijiji
ji

,0,01,0

,0,00,1

,,1,,

,1,,1,,,
,

~

        (21) 

Using the convexity of the 1L norm, it is easily proved that the 

function 
jiE ,
 satisfy equation (15) and is the submodular function. 

By Theorem A, the extended function 
~

E  is convex function. 
Therefore, it is sufficient to solve a convex optimal problem with 

continuous energy function for unwrapping which can reach 
global minimum. 

3.3 Double Simple Averaging Subgradient 

Method 
 

Note that the function given by Lovász extension is non-
differential function. Then we can’t use usual methods such as 
gradient method to minimize extended problem. Recently, many 
methods have been reported to solve minimization problem with 
non-differential function such as Chambolle’s projection 
algorithm or other dual method [21]. However, compared with 
these methods, the subgradient method is very simple. 

  Specifically we use the double averaging subgradient method to 

solve the minimization problem which can make the iteration 
converge stably [20]. Using this method, the minimum point is 
given by iteration procedure as follows  

         ,1,0,
2

1

2

1

0

~
01 
















 



 nE
nn

n n

k

knn XXXX 
    (22) 

where vectors  jix ,X  ,   denote the subgradient of the function 

and    is the stepsize. 

We leave the details of this method to Appendix A. 

3.4 Algorithm 

Initialization 
  ,5.0,,

~

,  jiji ll
,  

improvement = 1 

1 while improvement do 

2 Combining eqs. (20) and (21), compute the subgradient of 

energy functional 
~

E  with given  .,

)0(

jilX . 

3 Compute the minimal point  min

, jix  by iteration eq. (22).  

4. let 
 


 min

,,,

~

jijiji xll
. 

5 if 
 jiji lElE ,

~

,

~~










  then 

6 jiji ll ,

~

, 
 go to step 2. 

else 

7 improvement = 0 

8 end if 

9 end while 

In step 3, step size  is given by eq. (A3) (Appendix A)  with 

sizeimageM *5.0 .                                         (23) 

 
The projection 

 
 
















.,5.0int

0,0

1,1

wiseothery

y

y

y

 
used in step 4, in order to solve integer minimum from the 
solution of extended continuous problem.    

4. EXPERIMENTS 
In this section we show some experiment results. We will 
compare the results of our algorithm against to the three typical 
methods those are Branch Cuts, weighted least-squares (PCG) and 

LP-PDE with 1L  norm. These algorithms are available at 
ftp://ftp.wiley.com/public/sci_tech_med/phase_unwrapping.  

4.1 Noise free images (Without regularization 

term) 
In this subsection some unwrapping results are given using 

noise free images In these simulations, we have used a set of 6 
grayscale 321×481 shown in Figure5., these are available at 

Berkeley segmentation dataset [22] 

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds. 

 

 
Figure 5. Test images. Bridge, Mountain, Ski, Boat, Falls 

 

Note that the grey level of test images are rescaled into [0, 2.3 ] 

and multiplied a Gaussian function and then be wrapped into 
[  ,  ] by wrapping operation as in equation (1). 

    

 
Figure 6. Unwrapping results for Bridge and Mountain. From 

left to right: Branch Cuts, PCG, LP-PDE, and proposed 
algorithm 

Figure 6. shows unwrapping results with Bridge and Mountain 
image respectively. For Bridge image, some errors in bridge and 
building are produced by Branch Cuts method, while errors in 
bridge are produced by LP-PDE method respectively. The PCG 
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method gives image of incorrect contrast. The proposed method 
recovered image almost exactly. Figure 6. shows, the proposed 
method successfully unwraps of the Mountain image for which all 
other three methods produce some errors. 

In Table 2. , for the quantitative comparison, we show the root-

mean-square error (RMSE) defined by 

 

sizeimage
RMSE

ji

correct

ji

unwrap

ji 


,

2

,, 
,                               (24) 

where unwrap

ji,
 denotes the pixel value of unwrapped image and 

correct

ji,  denotes the pixel value of correct image. Then we find that 

for all the six images, proposed method gives unwrapping images 
with smallest errors. 

Table 2. Error of unwrapping results (RMSE) 

 
Branch 

Cuts 
PCG 

LP-PDE 

1L  norm 

Proposed 

algorithm 

Bridge 0.95 2.91 0.76 0.30 

Mountain 1.59 2.78 2.18 0.73 

Ski 0.84 2.82 0.42 0.36 

Boat 0.70 2.97 1.37 0.35 

Falls 0.20 2.78 0.40 0.17 

4.2 With regularization term for noisy images 
We also have done several simulations with regularization term 
with noisy images in order to illustrate the robustness of our 
algorithm to noise.  

However, it is difficult to simply compare unwrapping images 
with noises. Hence, we will compare these corresponding label 

images instead. The label image is given by 
jil ,2 that is related to 

the unwrapped image as following  

jijiji l ,,, 2  .                             (25)  

where  ji,  denotes the unwrapped image and  ji,  denotes 

the wrapped (measured) image. Then unwrapping procedure is 
equivalent to solving correct label images. 

    
(a)                                        (b)                                    (c) 

   
d)                                       (e)                                    (f) 

 
(g) 

Figure 7. (a) Phase image with noise, (b) Correct Label image, 

(c) Branch-Cuts, (d) PCG, (e) LP-PDE (
1L  norm), (f) Proposed 

algorithm without regularization term, (g) Proposed 
algorithm with regularization term 

Figure 7. (a) shows original phase image (size:128×128) formed 
by Gaussian elevations with 8 height where Gaussian noise (the 
standard deviation 1.4)were added.  

Figure 7. (b) shows correct label image. Figure 7. (c), (d), and (e) 

show unwrapped images by Branch-Cuts, PCG and LP-PDE ( 1L  
norm) respectively. Compared with Figure 7. (b), these images are 
either incomplete or incorrect with making some additional holes. 
Figure 7. (f) and (g) show unwrapped images by proposed method. 
These two images are close to Figure 7. (b) which means the 

unwrapping is correct approximately. 

    
(a)                                     (b)                                      (c) 

   
 (d)                                 (e)                                        (f) 

Figure 8. Penguin (a) Label image with true image, (b) 

Branch-Cuts, (c) PCG, (d) LP-PDE (
1L  norm), (e) Proposed 

algorithm without regularization term, (f) Proposed algorithm 

with regularization term 

 
We also have done experiment with photo of a penguin. This 

image used in Figure 8.  is available at the Berkeley segmentation 
dataset. 

The noise is added to the image, after rescaling its grey level. 
Figure 8. (a) shows correct label image. Figure 8. (b), (c), and (d) 

are given by Branch-Cuts, PCG and LP-PDE ( 1L  norm) 
respectively. Thereby we can hardly see the penguin. Figure 8. (e) 
is given by proposed method without regularization term. Here the 
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penguin is visible but affected by the noise greatly. Comparison 
with Figure 8. (f), we learn that our regularization term leads the 
image to prevent noises satisfactorily. 

Note that in our compared experiments we skip two state of the art 
methods, the MCF in path-following and Graph-cuts method. 

These two methods can also reach global minimum of energy 
function with 1L norm. Theorem A in section 3) guarantees that 
the proposed method without regularization term will give the 

same solution with those methods. That is the reason why 
corresponding comparison is skipped. 

5. CONCLUTION 
In this paper, we proposed a new minimum norm method for 
phase unwrapping. Benefiting from Lovász extension, it will solve 

the continuous energy minimization problem and can also reach a 
global optimal solution with congruent constraint (CC). This is 
the first result in phase unwrapping. Moreover, the Algorithm is 
very simply implemented and robust for noisy images. It can be 
also easily extended to the higher dimension situation to solve the 
3D or 4D unwrapping problem. The simulation verified the 
effectiveness of the proposed method.  

Appendix A:  

Double simple averaging subgradient method 

The vector F  is subgradient of the function g  at 
0x , if 

)()()( 00 xxxgxg T  F for all x .                        (A1) 

When g is differentiable, the only possible choice for F is )( 0xg . 

For non-differential function, the subgradient is not unique 
generally. Now, given non differential convex function g , we can 

solve its minimum by subgradient method as following 

       ,1,0,1  ng nnn
XXX  ,                    (A2) 

where g  is any subgradient of g at  nX and  0X  is initial value. 

Note that for nonsmooth functuions we cannot expect 
subgradients be vanishing in a neighborhood of the optimal 
solution. Hence the step size is given as  

1


nL

M
 ,                                      (A3) 

wherer M  is an upper bound for initial point to the optimal 

solution and L  is given by  

Lg 
2

,                                          (A4) 

 It is well known, for differential function, the subgradient method 
will reduce to the gradient method. But the subgradient method is 
not a descent method generally. In some steps, the subgradient 

  ng X  may be ascent direction. That means  

     nn gg XX 1 ,                                (A5) 

and results the convergence of subsequence becomeing unstable. 
This difficulty can be solved by using Double simple averaging 
subgradient method. In there the iteration procedure (A2) is 
replaced by following ones 

         ,1,0,
2

1

2

1

0

01 















 



 ng
nn

n n

k

knn XXXX 

,      (A6) 

Theorem B  [20]: 

Suppose g  is a closed convex function and its domain Q is a 

closed convex set with smooth boundary. Assume that sequence 
   )0( nnX  be generated by iteration (A6) for   Qint0 X . Then  

    XX gg
Q

n

n
minlim 



.                                        (A7) 
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