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ABSTRACT
Although deep learning models perform remarkably well

across a range of tasks such as language translation and ob-

ject recognition, it remains unclear what high-level logic,

if any, they follow. Understanding this logic may lead to

more transparency, better model design, and faster experi-

mentation. Recent machine learning research has leveraged

statistical methods to identify hidden units that behave (e.g.,

activate) similarly to human understandable logic, but those

analyses require considerable manual effort. Our insight is

that many of those studies follow a common analysis pattern,

which we term Deep Neural Inspection. There is opportunity

to provide a declarative abstraction to easily express, execute,

and optimize them.

This paper describes DeepBase, a system to inspect neural

network behaviors through a unified interface. We model

logic with user-provided hypothesis functions that annotate
the data with high-level labels (e.g., part-of-speech tags, im-

age captions). DeepBase lets users quickly identify individual

or groups of units that have strong statistical dependencies

with desired hypotheses. We discuss how DeepBase can ex-

press existing analyses, propose a set of simple and effective

optimizations to speed up a standard Python implementation

by up to 72×, and reproduce recent studies from the NLP

literature.
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1 INTRODUCTION
Neural networks (NNs) are revolutionizing a wide range

of machine intelligence tasks with impressive performance,

such as language understanding [23], image recognition [21],

and program synthesis [17]. This progress is partly driven by

the proliferation of deep learning libraries and programming

frameworks that drastically reduce the effort to construct,

experiment with, and deploy new models [7, 14, 35].

However, it is still unclear how and why neural networks

are so effective [18, 41]. Does a model learn to decompose its

task into understandable sub-tasks? Does it memorize train-

ing examples [65], and can it generalize to new situations?

Grasping the internal representation of neural networks is

currently a major challenge for the machine learning com-

munity. While the field is still in its infancy, many hope that

increasing our understanding of trained models will enable

more rapid experimentation and development of NN models,

help identify harmful biases, and explain predictions [18]—all

critical in real-world deployments.

A prevailing paradigm is to study how individual or groups

of hidden units (neurons) behave when the model is eval-

uated over test data. One approach is to identify if the be-

havior of a hidden unit mimics a high level functionality—if

a unit only activates for positive product reviews, then it

potentially recognizes positive sentiment. Numerous papers

have applied these ideas by manually inspecting visualiza-

tions of behaviors [21, 31, 50] or writing analysis-specific

scripts [6, 56], and in domains such as detecting syntax and

sentiment in language [31, 50], parts and whole objects from

images [21, 37], image textures [6], and chimes and tunes in

audio [5].

This class of analysis is ubiquitous in the deep learning

literature [3, 6, 8, 28, 32, 43, 46], it is particularly well rep-

resented in neural net interpretability workshops [61], yet

each analysis is implemented in an ad-hoc, one-off basis.

In contrast, we find that they belong in a common class of

analysis that we termDeep Neural Inspection (DNI). Given
user-provided hypothesis logic (e.g., “detects nouns”, “detects
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keywords”), DNI seeks to quantify the extent that the be-

havior of hidden units (e.g., the magnitude or the derivative

of their output) is similar to the hypothesis logic when run-

ning the model over a test set. These DNI analyses share a

common set of operations, yet each analysis currently re-

quires considerable engineering (hundreds or thousands of

lines of code) to implement, and often runs inefficiently. We
believe there is tremendous opportunity to provide a declara-
tive abstraction to easily express, execute, and optimize DNI
analysis.

Our main insight is that DNI analyses primarily use statis-

tical measures to quantify the affinity between hidden unit

behaviors and hypotheses, and simply differ in the specific

NN models, hypotheses, or types of hidden unit behaviors

that are studied. Section 2.1 illustrates how existing DNI

analyses fit this pattern [3, 31, 66]. To this end, we designed

DeepBase, a system to perform large-scale Deep Neural In-

spection through a declarative interface. Given groups of

hidden units, hypotheses, and statistical affinity measures,

DeepBase quickly computes the affinity score between each

(hidden units group, hypothesis) pair. The aim is for Deep-

Base to accelerate the development and usage of this class

of neural network analysis in the ML community.

Designing a fast DNI system is challenging because the

cost is cubic with respect to the size of the dataset, the num-

ber of hidden units, and the number of hypotheses. Even

trivial examples are computationally expensive. Consider

analyzing a character-level recurrent neural net (RNNs) with

128 hidden units over a corpus of 6.2M characters [31]. As-

suming each activation is stored as a 4-byte float, each RNN

model requires 3.1GB to store its activations. While this fits

in memory, the process of extracting these activations, stor-

ing them, and matching them with hundreds of hypotheses

can be incredibly slow.

To address this challenge, DeepBase uses pragmatic opti-

mizations. First, users provide hypothesis logic as functions

evaluated over input data, which may be computationally

expensive. DeepBase can cache the output of hypothesis

functions and reuse their results when re-running the same

DNI analysis on new models. Second, users can specify con-

vergence thresholds so that DeepBase can terminate quickly

while returning accurate but approximate scores. DeepBase

natively provides popular measures such as correlation and

linear prediction models. Third, DeepBase reads the dataset,

extracts unit behaviors, and evaluates the user-defined hy-

pothesis logic in an online fashion, and can terminate the

moment the affinity scores have converged. Finally, Deep-

Base leverages GPUs—commonplace in deep learning—to

offload and parallelize the costs of extracting unit behav-

iors and computing affinity metrics based on e.g., logistic

regression.

Our primary contribution is to formalize Deep Neu-
ral Inspection and develop a declarative interface to
specify DNI analyses. We also contribute:

• The design and implementation of an end-to-end DNI

system called DeepBase, along with simple pragmatic op-

timizations, including caching, early stopping via conver-

gence criteria, streaming execution, and GPU execution.

• A walk-through of how to generate hypothesis functions

from existing ML libraries.

• Extensive performance experiments based on a SQL auto-

completion RNN model. We show that with all optimiza-

tions including caching, DeepBase outperforms a standard

Python baseline by up to 72X, and an in-RDBMS imple-

mentation using MADLib [24] by 100 – 419×, depending

on the specific affinity measure.

• Experimental results using DeepBase to analyze a state-

of-the-art Neural Machine Translation model architec-

ture [33] (English to German). We compare DeepBase to

existing scripts [8] and validate the results of recent NLP

research [2, 56].

This paper focuses the discussion and application of Deep-

Base on Recurrent Neural Networks (RNNs), a widely used

class of NNs used for language modeling, program synthesis,

image recognition, and more. We do this to simplify the expo-

sition while focusing on an important class of NNs, however

DeepBase also Convolutional Neural Networks (CNNs). See

Appendix G for a results comparison with a recent system

called NetDissect [66], and our prior work for more CNN

and Reinforcement Learning examples [12].

2 BACKGROUND AND USE CASES
This section introduces current examples of DNI analyses

and how they are implemented. These uses cases serve as the

motivation for the system described in the rest of the paper.

Appendix A provides a quick primer on Neural Networks

(NNs) and explains the terminology. The important concept

is that a NN is composed of hidden units, and when a NN is

evaluated over an input record (e.g., a sequence of characters

that form a sentence, or amatrix of pixels that form an image),

each hidden unit performs an action that emits a behavior

value (e.g., an activation, or the derivative of an activation)

for each element of the record (e.g., character or pixel). We

refer the reader to Appendix A for details.

2.1 Motivating Example
We use a recurrent model that performs SQL query auto-

completion as a motivating example. Given a SQL string,

the model can read a window of 100 characters (padded if

necessary) and predict the character that follows. Technically,

the neural net comprises three layers: one input layer that

reads one-hot-encoded characters, one recurrent (LSTM)
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Figure 1: Activations over time for the SQL auto-
completion model. What is the model learning?

layer with 500 hidden units, and one fully connected layer

for the final output. The analysis focuses on the recurrent

layer.

The model achieve 80% prediction accuracy on a held-out

test set of 1,152 queries, as compared with random guess

accuracy of
1

32
. The statistics indicate that the model can

reliably predict the next character, but what did the model
really learn? One hypothesis is that the model “memorized”

all possible queries. Another is that it learns anN-grammodel

that uses the previous N – 1 characters to predict the next.

Or the model learned portions of the SQL grammar, e.g., it

learned that column references tend to follow the SELECT
keyword and that table names usually come after FROM but
not before LIMIT. Ideally, we would also like to check these

hypotheses across models with different architectures or

training parameters, or for a specific set of hidden units.

2.2 Approaches for Interpretation
The machine learning community has developed a variety

of approaches for interpretation, which we discuss below.

Manual Visual Inspection: Manual approaches [31, 59],

such as LSTMVis [59], visualize each unit’s activations and

let users manually check that the units behave as expected.

For instance, if a unit only spikes for table names, it suggests

that the model behaves akin to that grammar rule and possi-

bly has “learned” it. Unfortunately, visual inspection can turn

out to be challenging, even for simple settings. Figure 1 plots

the activations of 4 units on the prefix of a query. We easily

observe that units are inactive when reading the padding

character “˜”. However, interpreting the fluctuations is diffi-

cult. u12 appears to spike down on whitespaces (highlighted),

mirrored by u86. u97 tends to activate within the words FROM
and table. But those observations are simply guesses on

a small string; scaling this manual analysis to all units and

all queries is impractical. Ideally, we would express these

hypotheses and formally test them at scale.

Saliency Analysis: This approach seeks to identify the

input symbols that have the largest “effect” on a single or

group of units. For instance, an NLP researcher may want to

find words that an LSTM’s output is sensitive to [38], or the

image pixels that most activates a unit [21]. This analysis

may use different behaviors, such as the unit activation or

its gradient. Typically, the procedure collects a unit’s behav-

iors, finds the top-k highest value behaviors, and reports the

corresponding input symbols. For instance, whitespaces and

periods trigger the five highest activations for u86 in Figure 1.

This DNI approach has been used to analyze image object

detection [55, 57, 67], in NLP models [38] and sentiment

analysis [50].

Statistical Analysis: Many datasets are annotated: text doc-

uments are annotated with parse trees or linguistic features,

while image pixels are annotated with object information.

Such annotations can help analyze groups of units.

In our SQL example, we could parse the query and an-

notate each token with the name of its parent rules (e.g.,

where_clause or variable_name). If we find a strong cor-

relation between the activations of a hidden unit and the

occurrence of a particular rule while running the model (e.g.,

“hidden unit 99 has a high value for every token inside WHERE
predicates”), then we have some evidence that the hidden

unit acts as a detector for this rule [31]. We could take the

analysis further and test groups of hidden units: if we build

a classifier on top of their activations and find that it can

predict the occurrence of grammar rules with high accuracy,

then we have evidence that those neurons behave collectively
as a detector [3, 8].

Statistical analysis of hidden unit activations is a wide-

spread practice in the machine learning literature. For in-

stance, Kim et. al [32] use logistic regression to predict an-

notations of high-level concepts from unit activations. Net-

Dissect [6] finds the image pixels that cause a unit to highly

activate (similar to saliency analysis), and computes the Jac-

card distance between those pixels and annotated pixels of

e.g., a dog. In general, these techniques compute a statisti-

cal measure between unit behaviors and annotations of the

input data, and have been used to e.g., find semantic neu-

rons [43], compare models [51] or more generally evaluate

to what extent neural nets learn high-level concepts such as

textures or part-of-speech tags [3, 6, 8, 46].

Inspection in Practice: Although the model interpretation

literature is extremely active, the software ecosystem of tools

to support Deep Neural Inspection is very limited. Authors

have focused on reproducibility in the narrow sense, rather

than usability, and it is likely that a ML engineer will have

to implement her own version of a given approach
1
.

We searched online for software used in publications that

perform deep neural inspection [3, 6, 8, 28, 32, 43, 46, 50, 56,

64, 67]. Of these, six papers provided code repositories and

four of them target computer vision models. In all cases, the

1
These remarks don’t apply to the NN visualization community, which

publishes and maintains several important software packages [47, 59].
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Figure 2: Lines of code (approx) from available code
for papers that perform DNI.

scripts (in various languages) are tailored to only reproduce

the experiment described the corresponding papers—that is,

they are custom implemented for one type of model, one

type of analysis, and for one type of dataset. All scripts have

different APIs, and several rely on outdated/unsupported

versions of deep learning frameworks (LuaTorch, PyTorch,

Caffe, or Tensorflow). Popular approaches such as [64] also

have “unofficial” implementations that exhibit similar issues.

Figure 2 summarizes the lines of code in each repository af-

ter manually removing non-essential code (e.g., non-analysis

visualization or imported libraries). Every analysis is at least

several hundred lines of code, and in some cases thousands

of lines. Although this is an imperfect measure, it provides a

sense of the complexity of current DNI methods.

2.3 Desiderata of a DNI System
DNI analysis using the existing approaches is powerful and

spans many domains of application. Unfortunately, each

analysis currently requires custom, ad-hoc implementations

despite following a common analysis goal: the user wants
to measure the extent that groups of hidden units in
one ormore trainedmodels behave in amanner that is
similar to, or indicative of, a human-understandable
function, when evaluated over the same test dataset.
For instance, we may want to measure to what extent the

activations of each hidden unit in our SQL auto-completion

model correlateswith the output of a function that detects the

presence SQL keywords by emitting 1 for keyword characters

and 0 otherwise.

DeepBase is a system that provides a declarative abstrac-

tion to efficiently express and execute these analyses. Deep-

Base takes as input a test set, a trained model, a set of Python

functions that encode hypotheses of what the model may

be learning (we call them hypothesis functions), and a scor-

ing function, e.g., a measure of statistical dependency. From

those inputs, DeepBase produces a set of scores that quantify

the affinity between the hypotheses and the model’s hidden

units. Such a system should support:

Arbitrary Hypothesis Logic: Different applications and
domains care about different hypotheses. In auto-completion,

does the model learn to count characters? In machine trans-

lation, do units learn sentiment or language nuances such

as relational dependencies? In visual object recognition, pix-

els correspond to different types of objects—do units detect

pixels containing dogs or cats? A system should be flexible

about the types of logic that can be used as queries.

Many Models and Units: Modern neural network mod-

els can contain tens of thousands of hidden units, and re-

searchers may want to compare across different model ar-

chitectures, training epochs, parameters, datasets, or groups

of units. A DNI system should allow users to easily specify

which combination of hidden units and models to inspect.

Different AffinityMeasures:Different use cases and users
may define affinity differently. They may correlate activa-

tions of individual units [31], compute mutual information

between a unit’s behavior and annotations [43], use a linear

model to predict high-level logic from unit activations [3, 32],

or use another measure. A DNI system should be fast for

common measures, and support user-defined measures.

Mix and Match: Users should be able to easily specify the

combination of hypothesis functions, models, hidden units,

and datasets that they want to inspect.

Analyze Quickly: Developers use inspection functionality

to interactively debug and understand the characteristics of

their models. Thus, any system should both scale to a large

number of models, test data, and queries, while maintaining

acceptable query performance.

3 PROBLEM DEFINITION
We now define the deep neural inspection problem, using the

SQL auto-completion model in Section 2.1 as the example.

Problem Setup: Let a dataset D be a nd × ns matrix of

symbols where di is the i
th

row (or record) of size 1 × ns

(Appendix B presents a table with all our notations). In our

SQL auto-completion example, each record is a 100-symbol

vector where each symbol is a one-hot encoded character
2
.

For other data types, a symbol may be an image pixel, a word,

or a vector depending on the model. Records are null-padded

to ensure that all records are the same size.

A model M is a vector of nM hidden units, where u
M

i
is the

i
th
unit. Logically, M(d) is evaluated on a record d by reading

each input symbol one at a time; each symbol si triggers

a single behavior bi ∈ R from each hidden unit u
3
. Thus

the Unit Behavior u(d) ∈ Rns is the vector of behaviors for
unit u when the models evaluated over all symbols in d. Let

U(d) ∈ R|U|×ns be the Group Behavior for a subset of units
U in a model. An example of U may be the units in the first

layer, or simply all units in a model.

2
Each character is represented by a sparse binary vector, where a 1 at

position i indicates that the character is set to the ith value from the alphabet.
3
In the context of windowing over streaming data, the RNNmodel internally

encodes a dynamically size sliding window over the symbols seen so far.
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Each line graph in Figure 1 plots behavior as a unit’s ac-

tivation when reading each character in the input query.

This paper reports results based on unit activations, however

DeepBase is agnostic to the specific definition of behavior

extracted from the model. This flexibility is important be-

cause some papers use the gradient of the activations instead

of their magnitude [67].

We model high level logic in the form of a Hypothesis
Function, h(d) ∈ Rns , that outputs a Hypothesis Behavior
when evaluated over d. In practice, those functions are either

written by the user or provided in a library. There is no

restriction on the complexity of a hypothesis function and

Section 4.2 describes example functions; the only constraint

is that the hypothesis behavior is size ns so that it matches

the size of a unit behavior.

To illustrate, a hypothesis that the model has learned to

detect the keyword “SELECT” could be a Python function

that emits 1 for those characters and 0 otherwise. Thus

for the query SELECT 1 FROM a, the hypothesis would

be 111111000000000. The hypothesis behavior need not be

binary, and can encode integers or floating point values as

well. For instance, a hypothesis that the model counts the

number of characters in an input string may return a number

between 0 an 100. Further examples are given in Section 4.2

and Appendix E.

We quantify the affinity between a group of units U and a

hypothesis h with a user-defined statistical affinity measure

l(U, h, D) = (R|U|,R). The first element contains a scalar affin-

ity score for each unit in the group, and the second element

is a score for the group as a whole. Either element may be

empty. For instance, we may replicate [31] by computing the

correlation each unit’s activation and a grammar rule such

as “SELECT” keyword detection. Alternatively, we may fol-

low [8] and use a linear classifier to predict the occurrence

of the keyword from the behavior of all units in the first

layer; the model’s F1 score is the group affinity, and each

unit’s score is its model coefficient. Although l(U, h, D) is

user-defined, DeepBase provide 8 common measures (see

4.3) and leverage their approximation properties to optimize

the analysis runtime (Section 5).

Basic Problem Definition: Given the above definitions,

we are ready to define the basic version of DNI:

Definition 1 (DNI-Basic). Given dataset D, a subset of
units U ⊆ M of an RNN model M, hypothesis h, statistical
measure l, return the set of tuples (u, su, sU) where the score su
is defined as l(U, h, D) = ([su|u ∈ U], sU).

Note that we specify as input a set of units U rather than

the full model M. This is because the statistical measure

l() may assign different affinity scores depending on the

group units that it analyzes. For instance, if the user inspects

units in a single layer using logistic regression, then only the

behaviors of those units will be used to fit the linear model

and their coefficients will be different than when inspecting

all in the model. This highlights the value of embedding

DeepBase within a SQL-like language.

Although the above definition is sufficient to express the

existing approaches in Section 2.1, it is both inconvenient

and inefficient. Developers often train and want to compare

many groups of units to understand e.g., what hypotheses

the model learns across training epochs. For space consid-

erations, we present the generalized problem definition in

Appendix C.

4 DEEPBASE API AND OVERVIEW
This section describes our Python API, how to create hypoth-

esis functions, DeepBase’s native affinity measures, and a

comment on false positives. The next section describes the

system design and optimization.

4.1 Python API
DeepBase is implemented in Python and exposes a Python

API. We will use the API to perform two analyses using the

SQL-autocompletion example: 1) compute the correlation

between every unit’s activations and binary hypotheses that

indicate the occurrence of grammar rules (as described in

Section 2.2), and 2) report the F1 accuracy of a logistic regres-

sion classifier that predicts the binary hypothesis behaviors

from all hidden unit activations [3, 8]:

import deepbase
model = load_model('sql_char_model.h5')
dataset = load_data('sql_queries.tok')
scores = [CorrelationScore('pearson'),

LogRegressionScore(regul='L1',score='F1')]
hypotheses = gram_hyp_functions('sql_query.grammar')
deepbase.inspect([model], dataset, scores, hypotheses)

This code loads the deepbase module, NN model, and

test dataset. It specifies that we wish to compute per-unit

correlation scores as well as logistic regression F1 accuracy

with L1 regularization. hypotheses is a list of binary hypoth-
esis functions that each returns the presence of a specific

grammar rule. Finally, we call deepbase.inspect(), which
returns a Pandas data frame (i.e., table) that contains an

affinity value for each model, score, hypothesis, and hidden

unit:

model_id, score_id, hyp_id, h_unit_id, val

The variable scores points to a list of DBScores objects.

Currently, DeepBase’s standard library includes 8 scores (see

4.3) and 2 naive baselines (random class, majority class). The

list hypotheses contains arbitrary Python functions, which

output formats are checked during execution (we defined

the specifications in 3).

In practice, the users will often post-process the table re-

turned by inspect. For instance, they may wish to return
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Figure 3: Example parse tree (left) and hypothesis
functions. Each hi is the behavior over each input char-
acter symbol.

only the top scores (e.g., to find the “sentiment neuron” in

[50]), combine the results with other statistics (e.g., to repro-

duce Figure 2 in [8]), or group the scores by layer and count

the number of hidden units with a high score (Figure 5 in

[6]). This observation, combined with the fact that the inter-

mediate and final outputs can be very large (multiple GBs for

even simple cases) calls for tight integration with a DBMS.

A full treatment is outside the scope of this paper, however

Appendix D describes how SQL can be extended to support

DNI using a new INSPECT clause. In addition, Section 5.1.1

describes a baseline built upon a database engine rather than

the Python and Tensorflow scripts used in existing papers.

4.2 Hypotheses
Hypotheses are the cornerstone of DNI analyses, as they

encode the logic that we search for. Although numerous

language-based models, grammars, parsers, annotations, and

other information already exist, many do not fit the hypoth-

esis function abstraction. For example, parse trees (Figure 3)

are a common representation of an input sequence that char-

acterizes the roles of different subsequences of the input.

What is an appropriate way to transform them into hypoth-

esis functions?

This section provides examples for generating hypothesis

functions from common machine learning libraries that we

used in our experiments; additional examples are found in

Appendix E. We note that the purpose of DeepBase is to

simplify the use and inspection of hypothesis functions—

developing appropriate hypothesis functions to answer NN

analysis questions continues to be an open area of research.

Parse Trees: A common use of RNNs is language analysis

and modeling. For these applications, there are decades of re-

search on language parsing, ranging from context free gram-

mars for programming languages to dependency and con-

stituency parsers for natural language. Figure 3 illustrates an

example parse tree for a simple algebraic expression within

nested parentheses ((1+2)). The corresponding parse tree
contains leaf nodes that represent characters matching termi-

nals, and intermediate nodes that represent non-terminals.

Given a parse tree, we map each node and node type to a

hypothesis function. To illustrate, the red root in Figure 3’s

parse tree corresponds to the outer () characters. It can

be encoded as a time-domain representation that activates

throughout the characters within the parentheses (h3), or

a signal representation that activates at the beginning and

end of the parentheses (h5). Similarly, h2 and h4 are time and

signal representations generated by hypothesis functions for

the inner blue parentheses. Finally, h1 is a composite of h2

and h3 that accounts of the nesting depth for the parentheses

rule. Note that a given parse tree generates a large number

of hypothesis functions, thus the cost of parsing is amortized

across many hypothesis functions.

This form of encoding can be used for other parse struc-

tures such as entity-relationship extraction.

Annotations: Existing machine models are trained from

massive corpus of manually annotated data. This ranges from

bounding boxes of objects in images to multi-word anno-

tations for information extraction models. Each annotation

type is akin to a node type in a parse tree and can be trans-

formed into a hypothesis function that emits 1 when the

annotation is present and 0 otherwise.

Similarly, image datasets (e.g., Coco [39], ImageNet [15])

contain annotations in the form of bounding boxes or individ-

ual pixel labels. Both can be modeled as hypotheses functions

that map a sequence of image pixels to a Boolean sequence

of whether the pixel is labeled with a specific annotation.

4.3 Natively Supported Measures
DeepBase supports two types of statistical measures.

Independent Measures: measure the affinity between a

single unit and a hypothesis function and are commonly

used in the RNN interpretation literature. Examples in prior

work include Pearson’s correlation, mutual information [43],

difference of means, Jaccard coefficient [66], all available

in DeepBase by default. In general, DeepBase supports any

UDF that takes two behavior vectors as input. Independent

measures are amenable to parallelization across units, which

DeepBase enables by default.

Joint Measures: compute the affinity between a group of

units U and a hypothesis h, and scores for each unit u ∈ U.

For instance, when using logistic regression, we jointly com-

pute one score for the whole group of units (e.g., prediction

accuracy), and we assign individual scores based on model’s

coefficients. The current implementation supports convex

prediction models that implement incremental train and

predict methods. By default, we the use the logistic regres-

sion with L1 regularization trained with SGD (we use the

optimizer Adam and Keras’ default hyper-parameters), and

we report the F1 on 5-fold cross-validation. DeepBase also
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supports arbitrary Keras and ScikitLearn models, as well as

a multivariate implementation of mutual information.

4.4 Verification
We note that DNI is fundamentally a data mining procedure

that computes a large number of pairwise statistical mea-

sures between many groups of units and hypotheses. When

looking for high-scoring units, the decision is susceptible

to multiple hypothesis testing issues and can lead to false

positives. Most current DNI analysis either do not perform

verification (e.g., are best effort), or use one of a variety of

methods. One method is to ablate the model [31, 43] (“re-

move” the high scoring units) and measure its effects on

the model’s output. An alternative, described in our techni-

cal report [53] perturbs symbols in the input record akin to

randomized control trials, and measures the effects on the

resulting affinity scores. Verification is a key concern for any

DNI, and a full treatment is left to future work.

5 SYSTEM DESIGN
DeepBase is implemented in Python and Keras, however it

is also possible to embed DNI analysis into an ML-in-DB

system such as MADLib [24] through judicious use of UDFs

and driver code. This section describes two baseline designs—

MADLib-based design and the naive DeepBase design—and

their drawbacks. It then introduces pragmatic optimizations

to accelerate DeepBase.

5.1 Baseline Designs
5.1.1 DB-oriented Design. Using a database can help man-

age the massive unit and hypothesis behavior matrices that

can easily exceed the main memory [63]. Also, as discussed

in Section 4.1, it can be easier for users to post-process DNI

results with relational operators (filtering, grouping, joining).

We now describe our DB-oriented implementation that uses

the MADLib [24] PostgreSQL extensions to perform DNI.

ML-in-database systems [20, 24, 36] such as MADLib ex-

press and execute convex optimization problems (e.g., model

training) as user-defined aggregates. The following query

trains a SVM model over records in data(X, Y) and inserts

the resulting model parameters in the modelname table.

SELECT SVMTrain(‘modelname’, ‘data’, ‘X’, ‘Y’);

Note that the relation names are parameters, and the UDA

internally scans and manipulates the relations. An external

process still needs to extract unit and hypothesis behav-

iors from the test dataset and materialize them as the rela-

tions unitsb and hyposb, respectively. Their schemas (id,
unitid/hypoid, symbolid, behavior) contain the be-

havior value for each unit (or hypothesis) and input symbol.

This can be quite expensive. After loading, a Python driver

then submits one or more large SQL aggregation queries

to compute the affinity scores. For example, the correlation

between each unit and hypothesis can be expressed as:

SELECT U.uid, H.h, corr(U.val, H.val)
FROM unitsb U, hyposb H GROUP BY U.uid, H.h

The first challenge is behavior representation. Deep learn-

ing frameworks [1, 13, 48] return behaviors in a dense format.

Reshaping the matrices into a sparse format is expensive,

and this representation is inefficient because it needs to store

a hypothesis or unit identifier for each symbol. To avoid

this cost, we can store the matrices in a dense representa-

tion where each unit (U.uid_i) or hypothesis (H.h_j) is an
attribute. We compute the metrics as follows:

SELECT corr(U.uid1, H.h_1),...corr(U.uidn, H.h_m)
FROM unitsb_dense U JOIN hyposb_dense H ON

U.symbolid = H.symbolid

Unfortunately, there can easily be > 100k pairs of units/hy-

potheses to evaluate, while existing databases typically limit

the number of expressions in a clause to e.g., 1,600 in Post-

greSQL by default. We could batch the scores (i.e., the sub-

expressions corr(U.uid, H.h_m)) into smaller groups and

run one SELECT statement for each batch, but this would

force PosgesSQL to perform hundreds of passes over the be-

havior relations (one full scan for each query). The problem

is even more acute with MADLib’s complex user-defined

functions, such as SVMTrain, which incurs a full scan of the

behavior tables and a full execution of the UDF for every hy-

pothesis (see Section 6.2). This leads to our second challenge:

how to efficiently evaluate hundreds, potentially thousands

of units/hypotheses pairs without incurring duplicate work?

The third challenge is that extracting the behavior matri-

ces can be expensive [62]. Unit behaviors require running

and logging model behaviors for each record, while hypoth-

esis behaviors require running potentially expensive UDFs.

For instance, our experiments use NLTK [9] for text parsing,

which is slow and ultimately accounts for a substantial por-

tion of execution costs. Furthermore, users often only want

to identify high affinity scores, thus the majority of costs may

compute low scores that will eventually be filtered out. Thus,

it is important to reduce: the number of records that must

be read, the number of unit behaviors to extract and materi-

alize, the number of hypotheses that must be evaluated, and

affinity score computation that are filtered out.

Our experiments find that this baseline is far slower than

all versions of DeepBase, and point to the bottlenecks to

address in order to support deep neural inspection within a

database system.

5.1.2 Naive DeepBase Design. Figure 4 presents the naive
DeepBase architecture. Its major drawback is the need to

excessively materialize intermediate matrices. The design

will be optimized in the next subsection.
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Figure 4: DeepBase Architecture.

DeepBase first materializes all behaviors from the dataset

D. The Unit Behavior Extractor takes one or more unit groups

as input, and generates behaviors for each unit in each

group—the assumption is that each group is a subset of units

from a single model. Similarly, the Hypothesis Behavior Ex-
tractor takes a set of hypothesis functions as input and runs

them to generate hypothesis behaviors. We concatenate the

sequences together, so the extractors emit matrices of di-

mensionality |D| · ns × |U| (for Units) and |D| · ns × |H| (for

Hypotheses). Since the number and length of records (|D| ·ns)

can dwarf the number of units and hypotheses, these matri-

ces are “skinny and tall”. The Inspector takes as input these
two matrices and desired statistical measures, and computes

affinity scores for each unit, hypothesis, and measure triplet.

DeepBase natively supports activation extraction for Keras

models, but can be extended with custom Unit Extractors

for other frameworks such as PyTorch, or to simply read

behaviors from pre-extracted files. For instance, our exper-

iments in Section 6.3 use on a custom PyTorch extractor

for the OpenNMT model. Any object that inherits our class

Extractor and that exposes the following method may be

used in DeepBase:

extract(model, records, hid_units) → behaviors

The input records is a list of records, and hid_units is a list
of integers that uniquely identify hidden units. The output

behaviors is a NumPy array with one row per symbol and

one column per hidden unit. The user may pass additional

arguments (e.g., batch size) in the constructor of the class.

Note that this is the minimal API, a few additional methods

must be written to support the optimizations presented in

following sections.

DeepBase extracts unit activations using a GPU, which

accelerates activation extraction as compared to a single

CPU core. Hypotheses are executed using a single CPU core.

DeepBase trains logistic regression models, and more gener-

ally all affinity measures based on linear models, as a Keras

neural network model on a GPU. Finally, DeepBase can cache

the hypothesis behavior matrix in cases where the model

repeatedly changes. Our implementation uses simple LRU to

pin the matrix in memory, and integrating caching systems

such as Mistique [62] for unit and hypothesis behaviors is a

direction for future work.

5.2 Optimizations
Below we outline the main optimizations.

5.2.1 Shared Computation via Model Merging. Although
affinity score measures are typically implemented as Python

User Defined Aggregates, DeepBase also supports Keras com-

putation graphs. For instance, the default Logistic Regression

measure is implemented as a Keras model. This enables a

shared computation optimizationwe call modelmerging. The

naive approach trains a separate model for every hypothe-

sis, which can be extremely expensive. Instead, DeepBase

merges the computation graphs of all |H| hypotheses into a

single large composite model. The composite model has one

output for each hypothesis rather than |H| models with one

output each. This lets DeepBase make better use of Keras’

GPU parallel execution. It also amortizes the per-tuple over-

heads across the hypotheses—such as shuffling and scanning

the behavior relations, and data transfer to the GPU. This

optimization is exact, it does not impact the final scores.

DeepBase produces one composite model for each affinity

measure. For a given measure’s Keras model, it duplicates

the intermediate and final layers for each hypothesis and en-

forces them to share the same input layers. Thus they share

the input layer, but maintain separate outputs. If the model

doesn’t have a hidden layer (as in logistic regression), Deep-

Base can further merge all output layers into a single layer

with one or more units (if the categorical output is hot-one

encoded) per hypothesis; DeepBase then generates a global

loss function that averages the losses for each hypothesis.

This optimization does not degrade the results: since there

is no dependency between the models and their parameters,

minimizing the sum of the losses is equivalent to minimiz-

ing each loss separately. We do however lose the ability to

early-stop the training for the individual hypotheses, as we

cannot freeze individual hidden units in Keras.

Model merging is applicable when the scoring function
provided by the user is based on Keras (e.g., the logistic re-

gression score in our experiments). This is orthogonal to the

framework of the model to inspect—the optimization could

very well support custom extractors for other frameworks,

e.g., PyTorch.

5.2.2 Early Stopping. Much of machine learning theory

assumes that datasets used to train machine learning models

are samples from the “true distribution” that the model is

attempting to approximate [19]. DeepBase assumes that the

dataset D is a further sub-sample. Thus, the affinity scores

are actually empirical estimates based on sample D.
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A natural optimization is to allow the user to directly

specify stopping criteria to describe when the scores have

sufficiently converged. To do so, a statistical measure l() can

expose an incremental computation API:

l.process_block(U, h, recs)→(scores, err)

The API takes an iterator over records recs as input and

returns both the group and unit scores in scores, as well
as an error of the group score err. Users can thus specify a

maximum threshold for err. If this API is supported, then
DeepBase can terminate computation for the pair of units

and hypothesis function early. Otherwise, DeepBase ignores

the threshold and computes the measure over all of D.

We expose an API rather than make formal error guar-

antees because such guarantees may not available for all

statistical measures. For example, tight error bounds are not

well understood for training non-convex models (e.g., neural

nets), and so in practice machine learning practitioners check

if the performance of their model converges with empirical

methods (i.e., comparing the last score to the overage over

a training window [49]). There exists however formal error

bounds for statistical measures such as correlation [19].

By default DeepBase implements this API for pairwise

correlation and logistic regression models. To estimate error

of the correlation score, we use Normal-based confidence

intervals from the statistical literature (i.e., Fisher transfor-

mation [19]). For logistic regression, we follow established

model training procedures and report the difference between

the model’s current validation score and the average scores

over the last N batches, with N set up by default to cover

2,048 tuples.

Early stopping is implemented by iteratively loading and

processing blocks of pre-materialized unit and hypothesis

behavior matrices in blocks of nb records. Records on disk

are assume to have been shuffled record-wise. It loads for all

units in each group U, and for as many hypotheses as will

fit into memory, and checks the error for every statistical

measure after each block. We shuffle the blocks symbol-

wise in-memory before running inspection. The SGD based

approaches shuffle the behaviors further during training.

Note that the moment the score for a given hypothesis and

unit group has converged, then there is no need to continue

reading additional blocks for that hypothesis. Thus, there

is a natural trade-off between processing very small blocks

of rows, which incurs a the overhead of checking conver-

gence more frequently, and large blocks of rows, which may

process more behaviors than are needed to converge to ε.

Empirically, we find that setting nb = 512 works well because

most measures converge within a few thousand records. This

optimization ensures that the query latency is bound by the

complexity of the statistical measure, rather than the size of

the test dataset.

5.2.3 Streaming Behavior Extraction. A consequence of

employing approximation is that DeepBase does not need to

read all of the materialized matrices. Our third optimization

is to materialize the behavior and hypothesis matrices in an

online fashion, so that the amount of test data that is read

is bound by how quickly the confidence of the statistical

measures converge. To do so, we read input records in blocks

of nb and extract unit and hypothesis behaviors from them

in parallel. An additional benefit of this approach is that

affinity scores can be computed and updated progressively,

similar to online aggregation queries, so that the user can

stop DeepBase after any block.

Figure 4 illustrates streaming execution using the orange

blocks. The input D contains 5 blocks of records, and only

two blocks of unit and hypothesis behaviors have been ex-

tracted so far. When all affinity scores have converged, then

DeepBase can stop. Although it is possible to further opti-

mize by terminating hypothesis extraction for hypotheses

that have converged, we find that the gains are negligible.

This is because 1) training the composite model from model

merging costs the same for one hypothesis as it does for

all, and 2) some hypothesis extractors, such as creating a

parse tree for NLP, incurs a single cost amortized across all

parsing-based hypotheses derived from the parse tree.

6 EXPERIMENTS
Our experiments study the scalability of DeepBase, as well

as its ability to generate DNI scores that are comparable to

prior DNI analyses. To this end, we first present scalability

experiments using a SQL auto-completion RNN model to

show how the baselines, DeepBase, and its optimizations

scale as we vary the number of hidden units, hypotheses,

and records. We then use DeepBase to analyze a real world

English-to-German translation model from OpenNMT [33],

and report results from reproducing DNI analysis from Be-

linkov et al [8]. Additional details and benchmarks are in

Appendix F.

6.1 Setup Overview
We ran DeepBase on two types of RNN models: the first

predicts the next symbol (character) for SQL query strings

generated from a subset of the SQL grammar, while the sec-

ond is a sequence-to-sequence English to German translation

model called OpenNMT.

Datasets: We used two language datasets: a collection of

SQL queries for the scalability benchmark, and a publicly

available English-to-German translation dataset for the real-

world experiment
4
. To generate synthetic SQL queries, we

sample from a Probabilistic Context Free Grammar (PCFG)

of SQL. We choose subsets of the grammar (between 95 to

4
http://statmt.org/wmt15
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171 production rules) to vary the language complexity, as

well as the number of hypothesis functions. The task is to

take a window of 30 characters and predict the character

that follows.

Models: The SQL use-case is based on custom models: a

one-hot encoded input layer, a LSTM layer, and a fully con-

nected layer with soft-max loss for final predictions (details

below). The OpenNMT model [33] is publicly available, it

uses an encoder-decoder architecture, where both the en-

coder and decoder contain two LSTM layers of 500 units,

with an additional attention module for the decoder.

Hypotheses: For the SQL experiment, we follow the pro-

cedure in Section 4.2 to transform parse trees into a set of

hypothesis functions. By default, we use the time-domain

representations for each node type (e.g., production rule,

verb, punctuation). In our experiments, we do not run the

parser until one of the hypothesis functions is evaluated;

at that point the other hypothesis functions based on the

parser do not need to re-parse the input text. To increase the

number of hypotheses, we also generate hypothesis func-

tions using the signal representation. We use NLTK’s chart

parser [9] to sample and parse the SQL grammar. For the

translation experiments, we use Part-of-Speech tagger of

CoreNLP[40], which we can directly use as a hypothesis.

6.2 Scalability Benchmarks
We now report scalability results on the SQL grammar bench-

mark. To do so, we vary the number of records in the in-

spection dataset, hidden units in the model and rules in the

grammar used to generate the data and the features. The

default setup contains 29,696 records
5
, 512 hidden units and

142 grammar rules. Each record has ns = 30 symbols, so

there are 890,880 behaviors for each unit and hypothesis.

We build two hypotheses per non-terminal in the grammar.

The first one returns “1” for each symbol for which the rule

is active (the symbol is consumed by the rule or a descendant

rule). The second only returns “1” for the first and last symbol

and returns “0” otherwise. This yields 190 hypotheses.

Systems: We start with the Python baseline implementa-

tion PyBase, then cumulatively add the optimizations de-

scribed in Section 5: model merging (+MM), early stopping

(+MM+ES), and online extraction (DeepBase). In addition, we

measure the benefits of the GPU by comparing the model-

merging baseline with a GPU (+MM (GPU)) and without (+MM
(CPU)). We compare against the MADLib implementation,

which fully materializes the behavior matrices, and then

computes affinity scores using PostgreSQL native (for corre-

lation) and MADLib (for logistic regression) functions.

5
Recall that each record in DeepBase is a window of symbols of length ns

as defined by a sliding window of size ns and stride 5.

We run each configuration 3 times report and the average.

For each experiment, we run the smallest-scale baseline to

completion, and then enforce a 30-minute timeout for larger-

scale settings.

Setup: All our experiments are based on 6 Google Cloud

virtual machines with 32GB RAM running Ubuntu 16.04,

and 8 virtual CPUs each, where each virtual CPU is a hyper-

thread on a 2.3 GHz Intel Xeon E5 CPU. Each VM includes

a nVidia Tesla K80 GPUs with 12 GB GDDR5 memory. All

models are based on Keras with Tensorflow 1.8. MADLib

uses PostgreSQL 9.6.9, with the shared buffer size, effective

cache size, and number of workers tuned following to the

manual’s guidelines. Hypothesis extraction is performed by

creating a parse tree using NLTK [9] and transforming the

tree into many hypotheses.

We extract behaviors in blocks of 512 records, and set the

Keras batch size to 512 records. All the models are trained

for up to 50 epochs with Keras early stopping. Their average

classification accuracy is 49.7%, and 53-69% of randomly

generated queries can be parsed (based on the grammar

complexity). The approximation defaults use ε = 0.025 and

95% confidence for correlation, and error threshold of 0.01

for logistic regression (cf. Section 5.2.2).

Figure 5: Runtime of MADLib and Python baselines
as compared to DeepBase with all optimizations for
logistic regression measure.

Comparing Baselines: Figure 5 compares the MADLib and

Python baseline systems for both affinity measures (rows)

as we vary the number of hypotheses, records, and hidden

units in the model (columns). We also include DeepBase with

all optimizations for reference.

Correlation (top row) is generally expensive because it

must be computed for every unit-hypothesis pair (up to

194,560 pairs in the experiments). MADLib incurs a large num-

ber of passes over the behavior relations (up to 121). Both

MADLib and PyBase incur considerable full table scan and
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aggregation costs. Logistic regression (bottom row) is domi-

nated by the cost to fit logistic regression models for each

pair of hypothesis and unit group.

Overall, we find that PyBase performs faster than MADLib
on the smallest experimental settings. We believe this is

largely because of the overheads of using PostgreSQL ex-

tensions and the fact that the in-memory Python implemen-

tation of logistic regression is quite fast. DeepBase’s opti-

mizations avoids unnecessary extraction costs once all the

scores have converged. DeepBase improves upon PyBase by

72× on average, and by up to 96×; it outperforms MADLib by

200× on average, and by up to 419×.

Figure 6: Runtime of DeepBase with different opti-
mizations enabled for correlation measure.

OptimizationBenefits forCorrelationMeasure: Figure 6
reports runtimes for three variants of DeepBase for corre-

lation. Correlation is a cheap measure to compute and is

executed on the CPU. Since we use a CPU, model merging

(which is an GPU-oriented optimization) is disabled. Thus

we compare PyBase, with early stopping, and with lazy ex-

traction.

We find that the primary performance gains are due to the

early stopping optimization, while lazily extracting behav-

iors provides considerable, but smaller benefit. We see that

lazy extraction provides a benefit as the number of records

increases (middle plot), and similarly, the benefit of lazy

extraction reduces as the number of hidden units increases

(right plot) because the bottleneck becomes the large number

of pair-wise correlation computations.

Figure 7: Runtime of DeepBase with different opti-
mizations enabled for logistic regression measure.

OptimizationBenefits for LogisticRegressionMeasure:
Figure 7 reports the results when adding optimizations based

on early stopping, lazy extraction as well as GPU-based op-

timizations. We see that model merging (+MM) provides a
considerable benefit by reducing the number of logistic re-

gression models that need to be trained for each hypothesis.

The benefits of using a GPU appear for models with many

hidden units. We find that early stopping (+MM+ES) does not
provide any speedup because materializing the behavior ma-

trices is a large bottleneck; adding lazy extraction (DeepBase)

reduces the runtime by 6× on average and by up to 11× as

compared to +MM+ES.

Figure 8: Runtime breakdown of extraction and in-
spector costs for correlation and logistic regression.

Runtime Breakdown: Figure 8 shows the cost breakdown
by system component: the hypothesis and unit extractors,

and the inspector. The +MM+ES column shows that inspector

cost is much higher for correlation, while extraction behave

nearly identically. The DeepBase column shows that runtime

savings are primarily due to lower extraction costs thanks

to online extraction.

Figure 9: Runtime comparing the effects of cached hy-
pothesis behavior.

Cached Hypothesis Extraction: We found that hypothe-

sis extraction due to a slow parsing library can dominate the

runtime. However, during model development or retraining,

the developer typically has a fixed library of interesting hy-

pothesis functions and wants to continuously inspect how
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the model behavior is changing. Figure 9 examines this case:

the left column incurs all runtime costs, while the right col-

umn shows when hypothesis behavior has been cached. We

see that it improves correlation somewhat, but its cost is

dominated by inspection; whereas for logistic regression,

DeepBase converges to ≈ 20s. Caching improves correlation

by 1.9× on average, and logistic regression by 12.4× on aver-

age and up to 19.5×. Overall, DeepBase outperforms MADLib
by up to 413×.
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Figure 10: Runtime when varying error threshold for
early stopping. Note different Y-axis scales.

Sensitivity to Error Threshold: Figure 10 examines the

sensitivity to varying the error threshold (x-axis) for cor-

relation and logistic regression, using the default experi-

ment parameters. The top row shows correlation: +MM+ES
only reduces the inspector costs as the threshold is relaxed,

while DeepBase reduces the extraction costs considerably

because it only extracts behaviors when necessary. The bot-

tom row shows logistic regression, which exhibits similar

trends, though it is far less sensitive to the error threshold

because the optimization converges slowly.

Takeaways: Independent measures such as correlation are
computed on a per-unit basis, and the cost is dominated by
inspection costs. In contrast, joint measures such as logistic
regression are computed for each unit-group are dominated by
extraction costs. Early stopping improves independent measure
performance, while online extraction enables DeepBase to run
nearly independently of dataset size. DeepBase outperforms
the MADLib and Python baselines by two orders of magnitude
and took at most 10.3 minutes for the slowest setting.

6.3 Neural Machine Translation
We reproduce the analysis of existing studies by applying

DeepBase on an public English-German translation model.

We first replicate the methodology of Belinkov et al. [8] and

verify that our results are consistent with those returned by

their scripts
6
. We then broaden the analysis and show that

we can make observations that are similar in spirit to those

presented in related work [2, 56] with only a few queries.

6
github.com/boknilev/nmt-repr-analysis

In addition to those results, we present a comparison

of DeepBase with NetDissect [6], a recent interpretation

method for convolutional Neural Nets in Appendix G.

6.3.1 Comparison with Belinkov et al. Belinkov et al. have
shown that sequence-to-sequence neural translation models

learn part-of-speech tags as a byproduct of translation. They

train a classifier from the encoder’s hidden layer activations

and observe that they can predict the tags of the input words

with high accuracy. This section replicates this analysis.

We ran DeepBase and the baseline scripts on the same

datasets, using the same 46 POS tags and the same score

function. We used an English-to-German translation corpus

available online
7
, annotated with the Stanford CoreNLP tag-

ger
8
. We use 4,823 sentences for training, 636 for validation

and 544 for testing (each sentence contains 24.2 words in

average). Our score is the precision of a multi-class logis-

tic regression model trained on the encoder’s hidden unit

outputs, as described in the the original paper. We limit to

35 training epochs, with a patience (i.e., number of epochs

without improvement before early-stopping) of 5, the scripts’

default.

Experimental SetupDifferences:An important difference

between the two approaches is that they run in different en-

vironments. Belinkov et al. supports seq2seq-attn models,

a legacy library that runs on top of Torch for Lua. Unfortu-

nately, we found no way to import seq2seq-attn models

into Python. After consulting the library’s authors, we chose

to support seq2seq-attn’s successor, OpenNMT, which runs

in PyTorch for Python. We extended DeepBase extraction

library to support this model. Because of this incompatibility,

we run each system on a different model. For DeepBase, we

use a public model from OpenNMT, a sequence-to-sequence

model with 2 LSTM layers of 500 hidden units each, avail-

able online
9
. For Belinkov et al., we use a custom model

trained with seq2seq-attn and strived to replicate Open-

NMT’s setup as closely as possible: we used the same NN

architecture and training data, and similar training param-

eters. We expect the results of the analysis to be strongly

correlated, but not identical, because the training and exper-

iments environment is not identical, and the two models are

implemented differently.

Results: Figure 11 presents the affinity scores for every POS

tag computed by the two approaches. The strong correlation

(0.84) between the approaches suggest analysis consistency.

Belinkov et al.’s scripts ran in 1 hour and 10 minutes, while

DeepBase ran in 55.1 minutes. Aside from the differences in

frameworks, we explain the difference as follows. Belinkov et

al. modify the NMT model in-place by freezing the weights

7
drive.google.com/file/d/0B6N7tANPyVeBWE9WazRYaUd2QTg/view

8
stanfordnlp.github.io/

9
opennmt.net/
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Figure 11: Precision for every tag, computed by Be-
linkov et al. and by DeepBase. We filtered out the tags
that cover less than 1.5% of the data. The sample Pear-
son correlation is r=0.84.

of the translation model and inserting the POS tag classifier

directly in the encoder. Since the dataset is relatively small,

they must make many passes over the data before the classi-

fier converges (at least 35), running the full translation model

each time. By contrast, DeepBase extracts the activations

once (this takes 38.3 minutes) and makes the subsequent

passes on the cached version (7.4 minutes), which amortizes

the activation extraction time. Note that none of DeepBase’s

optimizations apply to this use case: model merging is irrel-

evant because there is only one hypothesis (the function is

not binary, it returns one the 42 distinct POS speeches at

each step), and early stopping/lazy materialization does not

help because the dataset is small.

Takeaways: DeepBase can easily express the analysis pre-
sented [8], its scores are consistent with the scripts provided by
the authors and its runtime is competitive.

6.3.2 Additional Results. We now broaden our analysis,

and show that we can replicate and verify the conclusion of

recent work [2, 31, 56] with only a few additional queries. For

the remainder of those experiments, we add 7 hypotheses for

phrase-level structures (NP, VP, PP, etc.) to the POS presented

previously.

Individual Units: We first use correlation to study individ-

ual units. Prior work found individual interpretable units in

character-level language models [31], and we find similar

units at the word-level. They learn low-level features (e.g.,

periods, commas, etc) along with one unit that tracks the sen-

tence length. Going beyond past studies, we find that high

affinity units are only present in the trained model and not

in an untrained model of the same architecture (Figure 12a).

Encoder Level: We then use logistic regression with L2

regularization to study all 1000 units in a trained and un-

trained model (Figure 12b). We first confirm recent work

showing that model architecture can act as a strong prior [2].

Similarly, the untrained model has high affinity with some

low level language features (e.g, periods), but low affinity for

almost all high-level features. On the other hand, the trained

0
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# 
U
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(a) Histogram of correlations for all encoder units
in OpenNMT. High correlations are only found in
the trained model.
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(b) L2 Logistic Regression F1 measure for different
hypotheses. Both models learn low-level hypothe-
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level concepts.

Figure 12:Deepneural inspection onOpenNMT translation
model. Results compared against an untrained OpenNMT
model.

model has far higher affinity to various POS tags (e.g., CD,

RB, VBD, etc.) and phrase structure (e.g., VP, NP) than the

untrained model.

Unit groups: We now inspect each layer separately, and

use Logistic Regression with L1 to identify unit groups with

non-zero coefficients. Previous work [8, 56] showed that

both encoder layers learn POS features, but layer 0 is slightly

more predictive and more distributed (spread over more

units). Similarly, we find that layer 0 yields higher F1 scores

and selects more units for most hypotheses. Going beyond

prior work, we find that the unit group size varies widely

depending on the language feature. In layer 1 for example,

372 units are found to detect verbs, 62 units to detect coordi-

nating conjunctions (e.g. ‘and’, ‘or’, ‘but’), while only 9 units

to detect punctuation such as “.”.

Takeaways: DeepBase expresses and computes results that
are consistent with analyses in recent NLP studies that seek
to understand neural activations in machine translation [8,
56, 56], with orders of magnitude less engineering effort. Our
library of natural language hypothesis functions automates
model inspection for syntactic features that NLP researchers are
commonly interested in, and is easy to extend. Our declarative
API lets users easily inspect and perform different analyses by
comparing different models at the granularity of individual,
groups of, and layers of hidden units.
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7 RELATEDWORK
Interpreting Neural Networks: Many approaches were

proposed for model interpretation. Section 2 reported three

methods: visualization of the hidden unit activations [25, 31,

59], saliency analysis [21, 38, 55, 57, 60, 67] and statistical

neural inspection [3, 6, 28, 32, 43, 46]. These methods are

common in the neural net understanding literature, and mo-

tivate the design of DeepBase. Other approaches generate

synthetic inputs by inverting the transformation induced

by the hidden layers of a neural net (the most compelling

example reveal e.g., textures, body parts or objects) [44, 45].

However, most of the literature focuses on computer vision,

and the process relies heavily on human inspection. Another

form of analysis is occlusion analysis, by which machine

learning engineers selectively replace patches of an image

by a black area and observe which hidden units are affected

as a result [64]. Currently, most studies that fall under this

category are ad-hoc and target image analysis. Our verifica-

tion method 4.4 is an attempt to generalize and automate this

process by defining input perturbations (of which occlusion

is one type of input perturbation) with respect to the desired

hypothesis function.

Because the field is still in its infancy [18, 27], the majority

of existing implementations are specialized research proto-

types and there is a need for general software systems in the

sameway TensorFlow and Keras simplifymodel construction

and training. A notable example is Lucid [47], which bundles

feature inversion, saliency analysis, with visualization into a

larger grammar. Lucid has similar goals as DeepBase, how-

ever it focuses on images and still relies on manual analysis.

Visual Neural Network Tools: Numerous visualization

tools have been developed to inspect the architecture of

deep models [29, 58], do step debugging to check the valid-

ity of the computations [11], visualize the convergence of

gradient descent during training [30] and drill into test sets

to understand where models make errors [30].

Machine Learning Interpretation: A related field of re-

search seeks to augment machine learning predictions with

explanations, to help debugging or augment software pro-

duces based on classifier. A common, classifier-oblivious ap-

proach is surrogate models, which approximates a complex

model by a simpler one (e.g., classification tree or logistic

regression). They train a simple, often linear, model over

examples in the neighborhood of a test data point so that

users can interpret the rationale for a specific model deci-

sion [4, 52]. Other approaches modify the machine learning

model so that predictions are inherently interpretable, such

as PALM [34]. In contrast, DeepBase seeks to identify gen-

eral behaviors with respect to a test dataset by inspecting

individual and groups of unit behaviors.

Databases and Models: A number of database projects

have proposed integrating machine learning models, train-

ing, and prediction into the database [10, 16, 20, 24, 35]. Re-

cent projects such as ModelDB [63] and Modelhub [42] pro-

pose to manage historically trained models and can be used

by DeepBase to select models and hidden units to inspect.

Similarly, systems such as Mistique [62] can be used in con-

junction with DeepBase to manage the process of extracting

and caching unit activations.

8 CONCLUSION AND DISCUSSION
Programming frameworks for deep learning have enabled

machine learning to impact a large set of applications. Yet

efforts to understand and inspect the behaviors of hidden

units in NN models are largely manual and one-of, and re-

quire considerable expertise and engineering effort. Better

NN analysis tools will contribute to a better understanding of

how and why neural networks work. Towards this goal, this

paper defined Deep Neural Inspection to characterize existing
inspection analyses, and presented DeepBase, a system to

quickly inspect neural network behavior through a declar-

ative API. With a few lines of code, DeepBase can express

a large fraction of existing deep neural inspection analyses,

but improves the analysis run-times by up to 72× as com-

pared to existing baseline designs. Further, we reproduced

results consistent with prior NLP research [8] on real-world

translation models [33].

We intend to extend DeepBase with more statistical mea-

sures and deeper integration with GPUs, support distributed

environments, and apply DeepBase to a broader range of

applications (e.g., bias detection, reinforcement learning).

Looking further, we envision Deep Neural Inspection as a

core primitive of a larger neural network verification and

inspection framework [54]. DeepBase allows users, or auto-

mated processes to query neural network models using high

level hypotheses. We imagine curating libraries of hypotheses
based on decades of existing models, features, and annota-

tions across application domains. In addition, these tools

may be used to decompose NNs into smaller components,

enforce activation behavior for unit groups, and ultimately

open up NN black boxes.
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A NEURAL NETWORK PRIMER
We provide a brief review of neural networks. For an exten-

sive overview, we refer readers to Goodfellow et al. [22].

Neural networks are mappings that transform an input

vector s to an output vector y. The mapping is parameterized

by a vector of weights w, which is learned from data. To

capture nonlinear relationships between s and y, we can

stack linear transformations followed by nonlinear functions:

y = w
T

n+1
hn (1)

hn = σ

(
w
T
nhn–1

)
(2)

h0 = s (3)

where hn is a vector of hidden units in the nth layer that

represent intermediate states in the neural network, which

are also frequently called activations or “neurons”. The func-

tion σ must be nonlinear for the model to learn nonlinear

mappings, and today most neural networks use the rectified

linear unit σ(x) = max(0, x). When interpreting neural net-

works, we are often interested in understanding what the

hidden units hn are learning to detect, which is the focus of

this paper.

Recurrent neural networks (RNNs) are popular models

for operating on sequences, for example processing text as a

sequence of words. Given an input sequence where st is the

t-th element in the sequence, a recurrent network follows

the recurrence relation:

yt = w
T

2
ht (4)

ht = σ

(
w
T

1
[st, hi–1]

)
(5)

h0 = 0 (6)

where the intermediate hidden units ht are a function of

the tth element in the sequence and the previous hidden

units from the previous element in the sequence. Impor-

tantly, the parameters w are independent of the position

in the sequence, allowing the model to process arbitrary

length sequences. Modern recurrent networks use a more so-

phisticated update mechanism to stabilize optimization, for

example with LSTMs [26], which we use in our experiments.

However, the high-level question of interpretation remains

the same: we are interested in analyzing and understanding

the intermediate activations hi in the network.
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Recall that ht is a vector with multiple dimensions. For

clarity, we refer to a specific dimension in ht as ui, which

represents a single hidden unit. We call any value that can

be computed for ui at each time step a behavior. For example,

we can compute measures such as ui’s gradient with regards

to the input (the derivative
δui

δst
).

B NOTATIONS

Notation Description

D A nd × ns matrix of symbols.

di The i
th
row in D. Called a record.

M A model M is a vector of hidden units.

u
M

i
i
th
hidden unit in M.

U A group of units in a model.

u(d) ∈ Rns Unit u returns vector of behaviors.

h(d) ∈ Rns Hypothesis function h returns vector of behaviors.

nd, ns, nM Number of records, symbols/record, units in M

Table 1: Summary of notations used in the paper.

Table 1 summarizes the notations used throughout the paper,

and more specifically in Section 3.

C GENERAL DNI PROBLEM DEFINITION
Let U be a set of unit groups. Similarly, users may curate a

large corpus of hypotheses H and want to find hypotheses

learned by a model. Users may also want to evaluate different

or multiple statistical measures L to have different perspec-

tives of the units. We present a more general definition that

is amenable to optimizations across models, hypotheses, and

measures:

Definition 2 (DNI-General). Given dataset D, set of unit
groups U, hypotheses H, and measures L, return the set of
tuples (u, h, l, su,h,l, sU,h,l) where
• l(U, h, D) = ([su,h,l|u ∈ U], sU,h,l)

• l ∈ L, U ∈ U, h ∈ H

D SQL EXTENSIONS VIA INSPECT
This section describes how DNI can be integrated into a

SQL-like language as a new INSPECT clause. We introduce

a separate clause because DNI is neither a scalar UDF nor

an user defined aggregation (UDA). Instead, it outputs a

set of records for each input group (UDAs return a single

record per group), and the INSPECT operator needs to flatten
the groups into a single relation before sending to other

relational operators.

NNs as Relations: DeepBase models hidden units, hypothe-

ses, and model inputs as relations (or views) in a database.

Let units be a relation representing hidden units (uid) and

their models (mid), and hypotheses represent hypothesis

functions (h). These relations may contain additional meta-

data attributes—e.g., unit layer, training epoch, or the source

of the hypothesis function—for filtering and grouping the

hidden units.

INSPECT: The syntax specifies unit ids and hypothesis func-

tions to compare, optional affinity measures (e.g., logistic

regression), and the dataset of input sequences used to ex-

tract unit and hypothesis behaviors. By default, DeepBase

measures correlation between individual units and hypothe-

ses:

INSPECT <unit>, <hypothesis> [USING metric, ...]
OVER <sequences>

The clause is evaluated prior to the SELECT clause and out-

puts a temporary relation with schema (uid, hid, mid,
group_score, unit_score) containing unit, hypothesis,

and model ids, and two affinity scores. group_score is the
affinity between a group of units U and the hypothesis h,

whereas unit_score specifies the affinity of each unit u ∈ U;

groups are defined using GROUP BY. These scores are inter-
preted depending on the type of statistical measure. For

instance, correlation is computed for individual units (each

group is a single unit), so the two scores are the same. In

contrast, when using logistic regression, the model F1 score

represents the affinity of the group, while the coefficients

are the individual unit scores. This relation can be renamed

but only referenced in later clauses (e.g., SELECT, HAVING).

SQL Integration: Users often inspect models as part of

debugging. We now show the full query syntax to express

the DNI analysis from the motivating example in Section 2.1.

The query groups hidden units by the sql parser model’s

training epochs, computes the correlation between each unit

in layer 0 with a hypothesis that recognizes SQL keywords

(e.g., “SELECT”, “FROM“), and returns the epoch and id of

high scoring units:

SELECT M.epoch, S.uid
INSPECT U.uid AND H.h USING corr OVER D.seq AS S

FROM models M, units U, hypotheses H, inputs D
WHERE M.mid = U.mid AND M.mid = 'sqlparser' AND

U.layer = 0 AND H.name = 'keywords'
GROUP BY M.epoch

HAVING S.unit_score > 0.8

The user can easily change the layer or types of models to

inspect with slight modifications of the query, or further join

the output with other analysis queries:

E HYPOTHESES
The following are additional examples of hypothesis function

generation.

Finite State Machines: Regular expressions, simple rules,

and pattern detectors are easily expressed as finite state

machines that explicitly encode state logic. Since each input
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symbol triggers a state transition, an FSM can be wrapped

into a hypothesis function that emits the current state label

after reading the symbol. Similarly, the state labels can be hot-

one encoded, so that each state corresponds to a separate

hypothesis function that emits 1 when the FSM is in the

particular state, and 0 otherwise.

General Iterators: More generally, programs that can be

modeled as iterative procedures over the input symbols can

be featurized to understand if units are learning characteris-

tics of the procedure. As an example, a shift-reduce parser is a

loop that, based on the next input character, decides whether

to apply a production rule or read the next character:

initialize stack
until done
if can_reduce using A->B // reduce

pop |B| items from stack
push A

else // shift
push next char

Any of the expressions executed, or the state of any vari-

ables, between each push next char statement that reads

the next character, can be used to generate a label for the

corresponding character. For instance, a feature may label

each character with the maximum size of the stack, or repre-

sent whether a particular rule was reduced after reading a

character.

F SQL AUTO-COMPLETE INSPECTION
This section extends the scalability experiments in Section 6.2

with an analysis of the inspection results. We can use Deep-

Base to study what the model learns through its training

process by executing a query akin to the example in Sec-

tion D. We train the SQL auto-completion model by perform-

ing several passes of gradient descent over the training data,

called epochs. We repeat the process until the model’s per-

formance converges or starts to decrease (after 13 epochs in

our case). We capture a snapshot of the model after random

initialization (then the accuracy is 1.1%), 1st epoch (41% acc),

and 4th epoch (45% acc), and perform neural inspection to

understand what the model learned.

Figure 13 shows a few of the highest affinity hypotheses.

These hypotheses correspond to fundamental SQL clauses

that should be learned in order to generate valid SQL, and the

model appears to learn them (rather than arbitrary N-grams)

even in the first training epoch. Further, the F1 is higher for

detecting the string “ORDER”, which we expect is needed to

learn the ordering expression ordering_term.

G DEEPBASE FOR CNNS
NetDissect is a recent DNI tool developed specifically for

CNN models [6]. It detects groups of hidden units which

act as object and texture detectors (e.g., "the hidden units

Figure 13: F1 scores for highest affinity hypotheses during
training.

or layer 2 channel 12 activate specifically for chairs"). To

do so, it runs the CNN models on images with pixel-level

annotations, and checks which hidden units have activations

that correlate with the occurrence of the labels. The affinity

measure of the Intersection over Union (i.e., Jaccard simi-

larity), after discretizing the hidden unit activations with

quantile-binning.

We replicated this experiment with DeepBase on over 10K

images from the Broden dataset
10
. We compare our results

with those returned by a public version of NetDissect
11
. We

used a pretrained VGG 16 model, trained on the Imagenet

corpus and available online
12
. Figure 14 presents the result

of the analysis. We find that DeepBase’s scores are strongly

correlated with NetDissect’s, which shows that DeepBase’s

declarative interface can express the analysis and the system

can produce consistent results. We explain the difference in

scores by the fact that several components of the pipeline are

non deterministic (among others, the online quantile approxi-

mation algorithm and the image up-sampling algorithm used

to align the masks with the activations) and environment

differences.

Figure 14: Comparison of NetDissect and DeepBase inspec-
tion scores.

10
http://netdissect.csail.mit.edu/data/broden1_227.zip

11
http://netdissect.csail.mit.edu

12
http://netdissect.csail.mit.edu/dissect/vgg16_imagenet/
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