
Verifying Text Summaries of Relational Data Sets
Saehan Jo

Cornell University
sj683@cornell.edu

Immanuel
Trummer

Cornell University
itrummer@cornell.edu

Weicheng Yu
Cornell University
wy248@cornell.edu

Xuezhi Wang
Google Research

xuezhiw@google.com

Cong Yu
Google Research

congyu@google.com

Daniel Liu
Cornell University
dl596@cornell.edu

Niyati Mehta
Cornell University
nbm44@cornell.edu

ABSTRACT
We present a novel natural language query interface, the
AggChecker, aimed at text summaries of relational data sets.
The tool focuses on natural language claims that translate
into an SQL query and a claimed query result. Similar in spirit
to a spell checker, the AggChecker marks up text passages
that seem to be inconsistent with the actual data. At the heart
of the system is a probabilistic model that reasons about the
input document in a holistic fashion. Based on claim key-
words and the document structure, it maps each text claim
to a probability distribution over associated query transla-
tions. By efficiently executing tens to hundreds of thousands
of candidate translations for a typical input document, the
system maps text claims to correctness probabilities. This
process becomes practical via a specialized processing back-
end, avoiding redundant work via query merging and result
caching. Verification is an interactive process in which users
are shown tentative results, enabling them to take corrective
actions if necessary. We tested our system on 53 publicly
available articles containing 392 claims. Our tool revealed
erroneous claims in roughly a third of test cases. Also, Ag-
gChecker compares favorably against several automated and
semi-automated fact checking baselines.

ACM Reference Format:
Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi Wang, Cong
Yu, Daniel Liu, and Niyati Mehta. 2019. Verifying Text Summaries
of Relational Data Sets. In 2019 International Conference on Man-
agement of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3300074

Netherlands. ACM, New York, NY, USA, 18 pages. https://doi.org/
10.1145/3299869.3300074

1 INTRODUCTION
We present a tool for verifying text summaries of relational
data sets. Our tool resembles a spell checker and marks up
claims that are believed to be erroneous. We focus on natural
language claims that can be translated into an SQL query
and a claimed query result. More precisely, we focus on
claims that are translated into aggregation queries on data
subsets. Hence the name of our system: AggChecker. Our
analysis shows that this claim type is at the same time very
common and error-prone. The following example illustrates
the concept.
In contrast to prior work [22], our focus is not mostly

on adversarial fact checking. We also want to support text
authors (e.g., data journalists or scientists) or third persons,
collaborating with authors (e.g, a lector or reviewer), in cre-
ating accurate data summaries. The motivation for using our
tool is similar to the motivation for using a spell checker in
those cases. However, publishing erroneous numbers can in
some cases have more serious consequences than spelling
mistakes (e.g., corrections or even retractions, erroneous
numbers might even have legal consequences if they appear
in business reports). Hence, the need for specialized verifica-
tion tools. Note that some of our assumptions, e.g. having
access to the data set associated with text, are motivated by
this focus (even though we also report results on determining
suitable data sets via our tool later in this paper).

Example 1. Consider the passage “There were only four
previous lifetime bans in my database - three were for re-
peated substance abuse” taken from a 538 newspaper arti-
cle [13]. It contains two claims that translate into the SQL
queries SELECT Count(*) FROM nflsuspensions WHERE
Games = ‘indef’ (with claimed result ‘four’) and SELECT
Count(*) FROM nflsuspensions WHERE Games = ‘indef’
AND Category = ‘substance abuse, repeated offense’
(with claimed result ‘three’) on the associated data set. Our
goal is to automatically translate text to queries, to evaluate

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

299

https://doi.org/10.1145/3299869.3300074
https://doi.org/10.1145/3299869.3300074
https://doi.org/10.1145/3299869.3300074
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3299869.3300074&domain=pdf&date_stamp=2019-06-25


Table 1: AggChecker: primary design choices and un-
derlying motivation.

Component Design Choice Goal

Text Analysis Keyword-based High-recall
heuristic

Processing Engine Batch-Optimized High-
throughput
verification

User Interface Interactive Integrate user
feedback

Claim Checker Probabilistic Model Leverage het-
erogeneous
feedback

Expectation Maxi-
mization Learning

Exploit Seman-
tic Correlation

those queries, and to compare the evaluation result against
the claimed one.

Internally, the system executes the following, simplified
process to verify a claim. First, it tries to translate the natural
language claim into an SQL query reflecting its semantics.
Second, it executes the corresponding query on the rela-
tional database. Third, it compares the query result against
the value claimed in text. If the query result rounds to the
text value then the claim has been verified. Otherwise, the
claim is considered erroneous. Color markup indicates the
verification result to users. Additionally, users may obtain in-
formation on the verification process and can take corrective
actions if necessary (similar to how users correct erroneous
spell checker markup).
The most challenging step is of course the translation of

a natural language claim into an SQL query. Among the
challenges we encountered when studying real-world test
cases are the following. First, the claim sentence itself is
often missing required context. This context can only be
found when analyzing preceding paragraphs or headlines
(assuming a hierarchical input text document). Second, claim
sentences often contain multiple claims which make it hard
to associate sentence parts to claims. Third, claim sentences
are often long and contain parts which do not immediately
correspond to elements in the associated query. This makes
it hard to map the claim sentence parse tree to a similar
SQL query tree. Fourth, data sets often contain entries (e.g.,
abbreviations) that are not found immediately in the claim
text. Altogether, this makes it hard to map claim sentences
unambiguously to database elements.

The high-level design of AggChecker is motivated by those
challenges. We acknowledge that translating text claims to

queries, based on text analysis alone, is inherently unreli-
able. Hence, we seek to exploit additional signals to reduce
our uncertainty in translation. First, as opposed to natural
language querying, we are not only given a query but also
a claimed, numerical result. The probability that the result
of a random query matches a claimed number is typically
low. Also, correct claims are in practice more likely than
incorrect claims for the type of claim we are considering (as
evaluated in more detail later). This makes query candidates
whose result matches the claimed value more likely as claim
translations. Of course, to exploit this signal, we first need to
execute the candidate query. Second, as we analyze in more
detail later, claims in the same text document are often simi-
lar. Authors tend to use the same aggregation functions, and
similar aggregates and predicates, in their claims throughout
a document. Hence, if we can translate a few claims with
high confidence, it can help us to translate the others. Third,
if all else fails, it might be necessary to get help from users.
The goal is of course to limit user intervention to the most
difficult cases (similar to a spell checker, which needs correc-
tive action only very occasionally). Also, we want to make
the most out of the user’s time by “transferring” feedback
we obtain for one claim to others.

AggChecker is designed to exploit various signals in claim
to query translation. Table 1 gives an overview of its compo-
nents, the primary design choices made in each component,
and the motivation for doing so. In order to exploit addi-
tional signals in translation, we first need to obtain a space
of possible query translations for each given claim. As rank-
ing and filtering steps follow, this space can be large but it
needs to contain the correct query to enable a successful
translation. Hence, we use a high-recall (but low precision)
heuristic for analyzing the input text and matching claim
text to database entries. This heuristic is based on keyword
matching and the input document structure (we exploit doc-
ument structure to associate claims with keywords from
other document parts). As discussed before, a first signal
comes from executing query candidates and comparing their
results to claimed values. To enable us to verify the large
query candidate space, resulting from the first stage, we use
an execution engine that is tailored for executing batches
of similar queries with high throughput. To enable users to
take corrective actions if necessary, AggChecker features an
interactive user interface that exploits partial verification
results to minimize overheads for users (e.g., by showing
likely translations for single-click feedback).
AggChecker exploits heterogeneous features for claim

to query translation. We need to integrate feedback from
different sources in a principled manner to come to a ten-
tative verification result. We use a probabilistic model to
do so, integrating feedback from text analysis, query ex-
ecutions, user feedback, and (as discussed next), semantic

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

300



correlations between claims. We assume (and experimentally
verify later) that documents typically have a common theme,
which can be represented by an a-priori probability distri-
bution over query fragments (e.g., aggregation functions,
specific columns in the data set, etc.). Knowing the docu-
ment theme helps in query translations and knowing (some)
query translations helps in inferring the document theme.
This circular dependency motivates an iterative expectation-
maximization approach, in which we infer document theme
and likely translations at once, thereby exploiting semantic
correlations between claims.

Our contributions lie in the high-level design of the system
(which is novel and tailored to our specific scenario), as well
as in the design of each single component.
We evaluated our system on a variety of real-world test

cases, containing 392 claims on relational data sets. Our test
cases cover diverse topics and derive from various sources,
reaching from Wikipedia to New York Times articles. We
generated ground truth claim translations by hand and con-
tacted the article authors in case of ambiguities.We identified
a non-negligible number of erroneous claims, many of which
are detected by our system. We compare against baseline
systems and perform a user study. The user study demon-
strates that users verify documents significantly faster via
AggChecker than via standard query interfaces.

In summary, our original scientific contributions are the
following:
• We introduce the problem of translating natural lan-
guage claims on relational data to SQL queries, without
using prior training or manual annotations.
• We propose a first corresponding system whose design
is tailored to the particularities of our scenario.
• We compare our system against baselines in fully au-
tomated checking as well as in a user study.

The remainder of this paper is organized as follows. We
formalize our problem model in Section 2. Next, we give an
overview of our system in Section 3. The following three sec-
tions describe specific components of our system: keyword
matching, probabilistic reasoning, and massive-scale candi-
date query evaluations. After that, we present experimental
results in Section 7. Finally, we compare against related work
in fact-checking and natural language query interfaces in
Section 8. In the appendix, we provide more experimental
results and list all our test cases.

2 PROBLEM STATEMENT
We introduce our problem model and related terminology.
We generally assume a scenario where we have a relational
Database together with a natural language Text summarizing
it. The relational database might be optionally associated
with a data dictionary (mapping database elements such as

columns and values to text descriptions). The text document
may be semi-structure, i.e. it is organized as a hierarchy of
sections and subsections with associated headlines. Also, the
text contains Claims about the database.

Definition 1. A Claim is a word sequence from the input
text stating that evaluating a query q on the associated data-
base D yields a rounded result e . We focus on SQL queries
with numerical results (e ∈ R). We call q also the Matching
Query or Ground Truth Query with regards to the claim. A
claimmay be a sentence part or a sentence (one sentencemay
contain multiple claims). A claim is Correct if there is an ad-
missible rounding function ρ : R→ R such that the rounded
query results equals the claimed value (i.e., ρ(q(D)) = e).

We currently consider rounding to any number of signifi-
cant digits as admissible. The approach presented in the next
sections can be used with different rounding functions as
well. We focus on Simple Aggregate Queries, a class of claim
queries defined as below.

Definition 2. A Simple Aggregate Query is an SQL query
of the form SELECT Fct(Agg) FROMT1 E-JOINT2 ...WHERE
C1 = V1 AND C2=V2 AND ..., calculating an aggregate
over an equi-join between tables connected via primary key-
foreign key constraints. The where clause is a conjunction
of unary equality predicates.

Claims of this format are very popular in practice and
at the same time error-prone (see Section 7). Currently, we
support the following aggregation functions: Count, Count
Distinct, Sum, Average, Min, Max, Percentage, and Con-
ditional Probability1 (we plan to gradually extend the
scope). The ultimate goal would be to perform purely Auto-
matic Aggregate-Checking (i.e., given a text document and a
database, identify claims automatically and decide for each
one whether it is correct). This would however require near-
perfect natural language understanding which is currently
still out of reach. Hence, in this paper, we aim for Semi-
Automatic Aggregate-Checking in which we help users to
verify claims without taking them out of the loop completely.

Definition 3. Given input ⟨T ,D⟩, a text T and a database
D, the goal of Semi-Automatic Aggregate-Checking is
to identify claims and to map each claim c to a probability
distribution Qc over matching queries. This probability dis-
tribution can be exploited by a corresponding user interface
to quickly verify text in interaction with the user. The quality
of a corresponding approach can be measured based on how
1For conditional probability, we assume that the first predicate is the condi-
tion and the rest form the event. That is, (SELECT ConditionalProbabil-
ity(Agg) FROM T1 E-JOIN T2 ... WHERE C1 = V1 AND C2=V2 AND ...) =
(SELECT Count(Agg) FROM T1 E-JOIN T2 ... WHERE C1 = V1 AND C2=V2
AND ...) * 100 / (SELECT Count(Agg) FROM T1 E-JOIN T2 ... WHERE C1 =
V1).

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

301



Figure 1: Overview of AggChecker system.

often the top-x likely query candidates in Qc contain the
matching query.

3 SYSTEM OVERVIEW
Figure 1 shows an overview of the AggChecker system. The
input to the AggChecker consists of two parts: a relational
data set and a text document, optionally enrichedwith HTML
markup highlighting the text structure. The text contains
claims about the data. Our goal is to translate natural lan-
guage claims into pairs of SQL queries and claimed query
results. The process is semi-automated and relies on user
feedback to resolve ambiguities. Finally, we enrich the input
text with visual markup, identifying claims that are incon-
sistent with the data.
For each newly uploaded data set, we first identify rele-

vant query fragments (see Figure 2(c)). The system focuses on
Simple Aggregate Queries as defined in Section 2. Query frag-
ments include aggregation functions, aggregation columns,
or unary equality predicates that refer to columns and values
in the data set. We associate each query fragment with key-
words, using names of identifiers within the query fragment
as well as related keywords that we identify using Word-
Net [11, 35]. We index query fragments and the associated
keywords via an information retrieval engine (we currently
use Apache Lucene [17]).

Next, we parse the input text using natural language anal-
ysis tools such as the Stanford parser [33]. We identify po-
tentially check-worthy text passages via simple heuristics
and rely on user feedback to prune spurious matches. Then,
we associate each claim with a set of related keywords (see
Figure 2(d)). We use dependency parse trees as well as the
document structure to weight those keywords according to

their relevance. We query the information retrieval engine,
indexing query fragments, using claim keywords as queries.
Thereby we obtain a ranked set of query fragments for each
claim.
Query fragments with relevance scores form one out of

several inputs to a probabilistic model. This model maps
each text claim to a probability distribution over SQL query
candidates, representing our uncertainty about how to trans-
late the claim (see Figure 2(e)). The model considers the
document structure and assumes that claims in the same
document are linked by a common theme. The document
theme is represented via model parameters capturing the
prior probabilities of certain query properties. We infer doc-
ument parameters and claim distributions in an iterative
expectation-maximization approach. Furthermore, we try
to resolve ambiguities in natural language understanding
via massive-scale evaluations of query candidates. The Ag-
gChecker uses evaluation strategies such as query merging
and caching to make this approach practical (we currently
use Postgres [19] to evaluate merged queries). We typically
evaluate several tens of thousands of query candidates to
verify one newspaper article.

Example 2. Figure 2 provides a concrete running example
demonstrating the inputs and outputs of the main compo-
nents. Figure 2(a) depicts the raw relational data where query
fragments and their associated keywords are extracted as
in Figure 2(c). Figure 2(b) illustrates a text passage from a
538 newspaper article [13]. It contains three claimed results
(colored in blue) where we focus on the claimed result ‘one’
in this example. In Figure 2(d), we extract relevant keywords
for this claimed result and weigh them based on the text
structure. Then, we calculate relevance scores for pairs of
query fragments and claims based on their keywords. The
probabilistic model takes into account the relevance scores as
well as two other inputs to infer the probability distribution
over query candidates. Figure 2(e) captures this concept. First,
‘Keyword Probability’ is derived from the relevance scores.
Second, ‘Prior Probability’ encapsulates the model parame-
ters that embrace all claims in the text document in a holistic
fashion. Third, green or red color under ‘Evaluation Result’
shows whether the query result matches the value claimed
in text. Lastly, ‘Refined Probability’ illustrates the final prob-
ability distribution over query candidates, considering all
three inputs. After expectation-maximization iterations have
converged, the system verifies the claim according to the
query with the highest probability. We provide more detailed
explanations in each section where all following examples
refer to this figure.

After an automated verification stage, the system shows
tentative verification results to the user. Claims are colored
based on their probability of being erroneous (see Figure 3(a)).

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

302



(a) Raw relational data. (b) Text document. Claims
colored in blue. We focus on

claimed result ‘one’.

(c) Query fragments. (d) Keywords and their weights
(specific to claimed result ‘one’).

(e) Probability distribution and evaluation results of query candidates.
Green indicates a match between query result and claimed result while red

indicates the opposite (specific to claimed result ‘one’).

Figure 2: Running example of AggChecker system.

(a) Marked up claims after
initial processing.

(b) Query description shown
upon hovering.

(c) Select query from top-5
likely candidates.

(d) Construct query by
selecting fragments.

Figure 3: Screenshots from AggChecker interface.

Users can hover over a claim to see a natural language de-
scription of the most likely query translation (see Figure 3(b))
and may correct the system if necessary. Alternatively, users
may pick among the top-k most likely query candidates (see
Figure 3(c)) or assemble the query from query fragments
with high probability (see Figure 3(d)).

4 KEYWORD MATCHING
In the first processing phase, we extract query fragments and
claim keywords from the inputs and match them together to
calculate relevance scores.

4.1 Keyword Matching Overview
We calculate relevance scores for pairs of claims and query
fragments. The higher the relevance score, the more likely
the fragment to be part of the query matching the claim. We
consider aggregation functions, aggregation columns, and
predicate parts as query fragments. Given an input database,
we can infer all potentially relevant query fragments (i.e.,
we introduce an equality predicate fragment for each literal
in the database, an aggregation column fragment for each
column containing numerical values etc.). Furthermore, we
can associate query fragments with relevant keywords (e.g.,
the name of a literal, as well as the name of the contain-
ing column and synonyms for a fragment representing an
equality predicate).

On the other side, we can associate each claim in the input
text with relevant keywords, based on the document struc-
ture. Having query fragments and claims both associated
with keyword sets, we can use methods from the area of
information retrieval to calculate relevance scores for spe-
cific pairs of query fragments and claims. For instance, we
use Apache Lucene in our current implementation, index-
ing keyword sets for query fragments and querying with
claim-specific keyword sets. While keyword-based relevance
scores are inherently imprecise, they will form one out of
several input signals for the probabilistic model described in
the next section. The latter model will associate each claim
with a probability distribution over query candidates.

4.2 Indexing Query Fragments
When loading a new database, we first form all potentially
relevant query fragments. Function IndexFragments (we
describe its implementation without providing pseudo-code)
traverses the database in order to form query fragments that
could be part of a claim query. We consider three types of
query fragments: aggregation functions, aggregation columns,
and equality predicates. All aggregation function specified
in the SQL standard are potentially relevant (we could easily
add domain-specific aggregation functions). We consider all

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

303



1: // Extract keywords for claim c from text T .
2: function ClaimKeywords(c,T )
3: // Initialize weighted keywords
4: K ← ∅
5: // Add keywords in same sentence
6: forword ∈ c .sentence do
7: weiдht ← 1/TreeDistance(word, c)
8: K ← K ∪ {⟨word,weiдht⟩}
9: end for
10: // Add keywords of sentences in same paragraph
11: m ← min{1/TreeDistance(k, c)|k ∈ c .sentence}
12: K ← K ∪ {⟨k, 0.4m⟩|k ∈ c .prevSentence}
13: K ← K ∪ {⟨k, 0.4m⟩|k ∈ c .paraдraph. f irstSentence}
14: // Add keywords in preceding headlines
15: s ← c .containinдSection
16: while s , null do
17: K ← K ∪ {⟨k, 0.7m⟩|k ∈ s .headline .words}
18: s ← s .containinдSection
19: end while
20: return K
21: end function

Algorithm 1: Extracts a set of keywords for a claim.

numerical columns in any table of the database as aggrega-
tion columns (in addition, we consider the “all column” *
as argument for count aggregates). Finally, we consider all
equality predicates of the form c = v where c is a column
and v a value that appears in it.
We associate each query fragment with a set of relevant

keywords. Keyword sets are indexed via an information re-
trieval engine (togetherwith a reference to the corresponding
fragment). We associate each standard SQL aggregation func-
tion with a fixed keyword set. The keywords for aggregation
columns are derived from the column name and the name of
its table. Column names are often concatenations of multiple
words and abbreviations. We therefore decompose column
names into all possible substrings and compare against a
dictionary. Furthermore, we use WordNet to associate each
keyword that appears in a column name with its synonyms.
The keywords for an equality predicate of the form c = v are
derived from the column name c (and from the name of the
containing table) as well as from the name of valuev . Finally,
the AggChecker also offers a parser for common data dictio-
nary formats. A data dictionary associates database columns
with additional explanations. If a data dictionary is provided,
we add for each column the data dictionary description to
its associated keywords.

4.3 Extracting Keywords from Text
Next, we associate each claim in the input text with aweighted
set of keywords. More precisely, we iterate over each number
in the input text that is likely to represent a claimed query

Document

Sections

Subsections
Paragraphs

Sentences

. . . . . .

. . . . . .

. . . . . .

Claim Sentence

Figure 4: Keyword context of claim sentence: keyword
sources in red, the claim sentence in blue.

result. We describe in Section 3 how they are identified. Algo-
rithm 1 associates each such claim with weighted keywords,
extracted from the containing text. First, we consider key-
words in the claim sentence itself (i.e., the sentence in which
the claimed result number is found). One sentence might
contain multiple claims and we must decide what keywords
are most relevant to one specific claim. For that, we con-
struct a dependency parse tree of the claim sentence. We
make the simplifying assumption that sentence parts are
more closely related, the lower their distance (i.e., number
of tree edges to traverse) is in the parse tree. Hence, for each
numerical aggregate representing the result of a claim, we
weight the surrounding keywords based on their distance
from the numerical aggregate in the dependency tree (de-
noted by TreeDistance in Algorithm 1).
Considering keywords in the same sentence is often in-

sufficient. In practice, relevant context is often spread over
the entire text. We exploit the structure of the text document
in order to collect potentially relevant keywords. Our cur-
rent implementation uses HTML markup but the document
structure could be easily derived from the output format
of any word processor. We assume that the document is
structured hierarchically into sections, sub-sections etc. For
a given claim sentence, we “walk up” that hierarchy and
add keywords in all headlines we encounter. In addition, we
add keywords from the first and preceding sentences in the
same paragraph. Figure 4 illustrates keyword sources for an
example claim.

Example 3. To provide a concrete example, we refer to the
paragraph in Figure 2(b). The second sentence contains two
claimed results (‘three’ and ‘one’) that translate into queries
of the form: SELECT Count(*) FROM T WHERE Games =
‘indef’ AND Category = V. We illustrate two difficulties
associated with these claims.
First, there are two claims in one sentence. The system

needs to distinguish keywords that are more relevant to each
claim. Let’s consider the keyword ‘gambling’. According
to the dependency parse tree of the second sentence, the
distance from ‘three’ to ‘gambling’ is two while the distance
from ‘one’ to ‘gambling’ is one. Then, we assign weights

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

304



by taking the reciprocal of the distance (see Figure 2(d)).
This helps the system to understand that ‘gambling’ is more
related to ‘one’ than ‘three’.
Second, no keyword in the second sentence explicitly

refers to the restriction Games = ‘indef’. Rather, it can be
implicitly inferred from the context where only the first sen-
tence has the keywords ‘lifetime bans’. Thereby, considering
the keyword context of a claim sentence enables us to iden-
tify important and relevant keywords from other parts of
the text. In Section 7, we conduct an experiment to measure
the effect of keyword context (see Figure 8).

4.4 Constructing Likely Query Candidates
Having associated both, query fragments and claims, with
keywords, we can map claims to likely query candidates. We
indexed keyword sets associated with query fragments in an
information retrieval engine. For a given claim, we use the
associated keyword set to query that information retrieval
engine. The returned results correspond to query fragments
that are associated with similar keywords as the claim. Fur-
thermore, each returned query fragment is associated with a
relevance score, capturing how similar its keywords are to
the claim-related keywords. Combining all returned query
fragments in all possible ways (within the boundaries of the
query model described in Section 2) yields the space of claim-
specific query candidates. Each candidate is characterized
by a single aggregation function fragment, applied to an
aggregation column fragment, in the SQL select clause. In
addition, each candidate is characterized by a set of unary
equality predicates that we connect via a conjunction in
the SQL where clause. The SQL from clause can be easily
inferred from the other query components: it contains all ta-
bles containing any of the columns referred to in aggregates
or predicates. We connect those tables via equi-joins along
foreign-key-primary-key join paths.

5 PROBABILISTIC MODEL
We map each natural language claim to a probability distri-
bution over matching SQL queries. Based on the most likely
query for each claim, we can decide which claims are likely
to be wrong and focus the user’s attention on those.

5.1 Probabilistic Model Overview
Our probabilistic model is based on a fundamental property
of typical text documents (we quantify this effect in Appen-
dix A): text summaries tend to have a primary focus. The
claims made in a text are not independent from each other
but typically connected via a common theme. If we find out
the common theme, mapping natural language claims to
queries becomes significantly easier.

1: // Calculate for each claim in C a distribution over
2: // matching queries on database D using relevance
3: // scores S via expectation maximization.
4: function QueryAndLearn(D,C, S)
5: // Initialize priors describing text document
6: Θ←Uniform
7: // Iterate EM until convergence
8: while Θ not converged yet do
9: // Treat each factual claim
10: for c ∈ C do
11: // Calculate keyword-based probability
12: Qc ←TextProbability(S,Θ)
13: end for
14: // Refine probability via query evaluations
15: Q ←RefineByEval({Qc |c ∈ C},C,D)
16: // Update document-specific priors
17: Θ←Maximization({Qc |c ∈ C})
18: end while
19: return {Qc |c ∈ C}
20: end function

Algorithm 2: Learn document-specific probability dis-
tribution over queries and refine by evaluating query
candidates.

We represent the common theme as a document-specific
probability distribution over queries.We use that distribution
as a prior when inferring likely queries for each claim. Be-
yond the prior distribution, the likelihood of queries depends
on the keyword-based relevance scores that are associated
with each claim (we described how those relevance scores
can be calculated in the last section).
We face a circular dependency: if we had the document

theme, we could use it as prior in our search for the most
likely query for each claim. On the other side, if we had the
most likely query for each claim, we could infer the docu-
ment theme. This motivates an expectation-maximization
approach [9] in which model parameters (describing here the
document-specific query distribution) and values of latent
variables (describing claim-specific query distributions) are
iteratively refined, using tentative values for one of the two
to infer estimates for the other.
Algorithm 2 describes how the AggChecker infers prob-

ability distributions over query candidates. Starting from a
uniform document distribution (captured by parameter Θ
whose precise components are described in the following),
the algorithm iterates until convergence. In each iteration, a
claim-specific probability distribution over query candidates
is calculated for each claim, based on the relevance scores
provided as input and the model parameters.

Strong evidence that a query candidate matches a natural
language claim can be obtained by evaluating the query and
comparing its result to the claimed one. However, evaluating
queries on potentially large data sets may lead to significant

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

305



Specific to
Claim 1

Specific to
Claim n

p Model
parameter

V
Latent
Variable

V
Observable
Variable

pf 1 . . . pa1 . . . pr1 . . .

Q1 Qn. . .

S1 E1 Sn En

Figure 5: Simplified probabilistic model for query in-
ference: parameters describe prior probabilities of
query characteristics, claim queries (Qc ) are latent
while relevance scores (Sc ) and evaluation results (Ec )
are observable.

processing overheads. Myriads of queries are possible for a
given data set and we cannot execute all of them. This is why
we use a preliminary, claim-specific query distribution to
select promising query candidates for execution. In the next
section, we describe efficient processing strategies enabling
us to execute hundreds of thousands of query candidates
during learning. The evaluation of promising candidates
is encapsulated in Function RefineByEval in Algorithm 2.
The result is a refined probability distribution over query
candidates for a given claim that takes evaluation results into
account. Finally, the model parameters are updated based on
the claim-specific distributions. In the following subsections,
we provide details on our probabilistic model. A simplified
version of the model is illustrated in Figure 5.

5.2 Prior Probabilities
We need to keep that model relatively simple for the fol-
lowing reason: having more parameters to learn typically
requires a higher number of iterations until convergence. In
our case, each iteration requires expensive data processing
and hence we cannot afford an elevated number of steps.
We therefore introduce only parameters that describe the
probability of certain coarse-grained query features:

Θ = ⟨pf 1,pf 2, . . . ,pa1,pa2, . . . ,pr1,pr2, . . .⟩ (1)

Here, pf i is the prior probability of selecting the i-th ag-
gregation function (such as an average or a sum), pai is the
probability of selecting the i-th numerical column to aggre-
gate, and pr i is the probability that a restriction (i.e., equality
predicate) is placed on the i-th column. We can only have a
single aggregation function and a single column to aggregate
over, the corresponding parameters must therefore sum up
to one. This does not apply to the parameters describing the
likelihood of a restriction as a query might restrict multiple
columns at the same time. During the maximization step
of Algorithm 2 (line 17), we simply set each component of

Table 2: Changing priors during EM iterations until
convergence (for the example in Figure 2).

Query Fragment Initial Prior ... Final Prior

Count(*) 0.025 ... 0.150
Sum(Games) 0.025 ... 0.012
...
Games = (any value) 0.143 ... 0.417
Category = (any value) 0.143 ... 0.297
...

Θ to the ratio of maximum likelihood queries with the cor-
responding property, scaled to the total number of claims
in the document. For instance, for updating ri , we divide
the number of maximum likelihood queries (summing over
all claims) placing a restriction on the i-th column by the
number of claims.

Example 4. Table 2 shows the convergence of priors Θ for
the example in Figure 2. Note that all three claims in this
example have ground truth queries of the form: SELECT
Count(*) FROM T WHERE Games = ‘indef’ (AND Cate-
gory = V). In Table 2, priors successfully reflect this pattern
after several EM iterations. For instance, the final priors im-
ply the fact that a query with Count(*) is more likely to be
the correct one among query candidates. An experimental re-
sult in Section 7 demonstrates that the system truly benefits
from the prior probabilities (see Table 4).

5.3 Claim-specific Probability Distribution
Next, we show how to calculate claim-specific probability
distributions over queries, assuming given values for the pa-
rameters above. We introduce random variable Qc to model
the query described in claim c . Hence, Pr(Qc = q) is the
probability that the text for claim c describes a specific query
q. VariableQc depends on another random variable, Sc , mod-
eling relevance scores for each query fragment. Those rele-
vance scores are generated by an information retrieval en-
gine, as discussed in the last section, based on keywords in
claim text. If a query fragment has high relevance scores (i.e.,
many related keywords appear in the claim), the probability
ofQc for queries containing that fragment increases. Also, if
a query evaluates to the claimed result, the probability that
the claim describes this query should intuitively increase.
We model by Ec evaluation results for a set of promising
query candidates and Qc depends on Ec . According to the
Bayes rule, we obtain:

Pr(Qc |Sc ,Ec ) ∝ Pr(Sc ∧ Ec |Qc ) · Pr(Qc ) (2)
Pr(Qc ) denotes prior query probabilities, derived from a

document-specific theme. Assuming independence between
relevance scores and evaluation results, we obtain:

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

306



Pr(Sc ∧ Ec |Qc ) = Pr(Sc |Qc ) · Pr(Ec |Qc ) (3)
We assume independence between different query charac-

teristics. This is a simplification (as certain aggregation func-
tions might often be used with certain aggregation columns
for instance), but modeling dependencies would require ad-
ditional parameters and our prior remark about model com-
plexity applies. Via independence assumptions, we obtain:

Pr(Sc |Qc ) = Pr(SFc |Qc ) · Pr(SAc |Qc ) · Pr(SRc |Qc ) (4)

Variable SFc represents the relevance scores assigned to
each aggregation function by the information retrieval en-
gine, based on keywords surrounding claim c . By SAc , we
denote relevance scores for aggregation columns, and by
SRc scores for query fragments representing restrictions (i.e.,
equality predicates). The probability Pr(SAc |Qc ) is for instance
the probability that we obtain relevance scores SAc , assuming
that the text author describes queryQc in claim c . Obtaining
a high relevance score for a query fragment (be it aggre-
gation function, column, or predicate) means that related
keywords appear prominently in the claim text. Hence, query
fragments that are part of the claim query should tend to
receive higher relevance scores than the others.
We use a simple model that complies with the latter in-

tuition: the probability to receive certain relevance scores
is proportional to the relevance scores of the fragments ap-
pearing in the claim query. E.g., assume that claim query q
aggregates over column a ∈ A (where A designates the set
of all candidate columns for aggregates in the database). We
denote by SAc (a) the relevance score for the query fragment
representing that specific column a. We set Pr(SAc |Qc = q) =
SAc (a)/

∑
a∈A S

A
c (a), scaling relevance scores to the sum of rel-

evance scores over all query fragments in the same category
(i.e., aggregation columns in this case).

Correct claims are more likely than incorrect claims in typ-
ical text documents. Hence, if a query candidate evaluates to
the claimed value, it is more likely to be the query matching
the surrounding text. It is typically not feasible to evalu-
ate all candidate queries on a database. Hence, we restrict
ourselves to evaluating queries that have high probabilities
based on relevance scores alone (line 14 in Algorithm 2). Let
Ec be the evaluation results of promising queries for claim
c . We set Pr(Ec |Qc = q) = pT if the evaluations Ec map
query q to a result that rounds to the claimed value. We set
Pr(Ec |Qc = q) = 1−pT otherwise. Parameter pT is hence the
assumed probability of encountering true claims in a docu-
ment. Different settings realize different tradeoffs between
precision and recall (see Section 7).
We finally calculate prior query probabilities, assuming

again independence between different query characteristics:

Pr(Qc ) = Pr(QF
c ) · Pr(Q

A
c ) ·

∏
r ∈R

Pr(Qr
c ) (5)

Prior probabilities of specific aggregation functions, ag-
gregation columns, and restrictions (Pr(QF

c ), Pr(QA
c ), and

Pr(Qr
c )) follow immediately from the model parameters Θ. In

summary, letq be an SQL query with aggregation function fq
and aggregation column aq , containing equality predicates
restricting the i-th column to value Vq(i) (with Vq(i) = ∗
if no restriction is placed on the i-th column). The prob-
ability Pr(Qc = q) that query q is described in claim c is
proportional to the product of the following factors: the
prior probability of q appearing in the current document (i.e.,
pfq ·pfa ·

∏
i :Vq (i),∗ pri ), the likelihood to receive the observed

keyword-based relevance scores for q’s query fragments (i.e.,
Sc (fq) · Sc (aq) ·

∏
i Sc (ri = Vq(i)) where Sc () generally maps

fragments to their scores for claim c), and pT if the rounded
query result matches the claim value (or 1 − pT otherwise).
We can use this formula to map each claim to a maximum
likelihood query (line 12 in Algorithm 2). Note that it is not
necessary to scale relevance scores since the scaling factor
is constant for each specific claim. We only compare query
candidates that have been selected for evaluation based on
their keyword and prior-based probabilities alone (line 15
in Algorithm 2). Before providing further details on query
evaluation, we present the following example to elaborate
on the benefit of RefineByEval at line 15 in Algorithm 2.

Example 5. Let’s again use the example with claimed result
‘one’ introduced in Figure 2. Without near-perfect natural
language understanding, it is almost impossible to map the
phrase “lifetime bans” to query fragment Games = ‘indef’.
Nevertheless, the learned priors during EM iterations will
at least tell us that a restriction is usually placed on col-
umn Games (11 out of 13 claims in this article [13] have
ground truth queries with restriction on Games). By eval-
uating many related query candidates, the system can find
out that SELECT Count(*) FROM nflsuspensions WHERE
Games = ‘indef’ AND Category = ‘gambling’ yields the
same result as claimed in text (and largely no other queries
do). Since we boost the probability of queries that evaluate
to the claimed value, this query gets a higher refined proba-
bility (see Figure 2(e)). It is noteworthy to mention that this
is possible only when the system has learned the correct
priors reflecting the common theme of ground truth queries.
Nevertheless, articles typically have some easy cases (i.e.,
claims with distinctive keywords nearby) where the system
can correctly translate into queries. Then, the system can
also cope with other more difficult cases as the information
gained from easy cases spreads across claims through EM
iterations. Thus, the system benefits from easy cases and
successfully learns the correct priors. In summary, the over-
all effect of RefineByEval on our test cases is presented in
Section 7 (see Table 4).

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

307



1: // Calculate aggregates SFA on data D for row sets
2: // defined by predicates on columns G with non-zero
3: // probability according to query distribution Q .
4: function Cube(Q,D,G, SFA)
5: // Collect directly referenced tables
6: T ← {Table(x )|⟨f ,x⟩ ∈ SFA ∨ x ∈ D}
7: // Add tables and predicates on join paths
8: T ← T ∪ {JoinPathTables(t1, t2)|t1, t2 ∈ T }
9: J ← {JoinPathPreds(t1, t2)|t1, t2 ∈ T }
10: // Collect relevant literals for any claim
11: L← {Literals(r )|r ∈ D ∧ ∃c ∈ C : Pr(l |Qc ) > 0}
12: return ExecuteQuery(D, “

SELECT SFA,D FROM
( SELECT SFA,InOrDefault(P ,L)
FROM T WHERE J ) CUBE BY P ”)

13: end function

14: // Refine probabilities Q for claims C on data D.
15: procedure RefineByEval(Q,C,D)
16: // Evaluate likely queries for each claim
17: for c ∈ C do
18: // Pick scope for query evaluations
19: ⟨SF , SA, SR ⟩ ←PickScope(Q,C,D)
20: // Initialize query evaluation results
21: E ← ∅
22: // Iterate over predicate column group
23: for G ⊆ SR : |G | = nG (|SR |) do
24: // Form likely aggregates
25: SFA ← F ×A
26: // Exploit cache content
27: for f a ∈ SFA |IsCached(f a,G) do
28: E ← E∪CacheGet(f a,G)
29: SFA ← SFA \ { f a}
30: end for
31: // Generate missing results
32: E ← E∪Cube(Q,D,G, SFA)
33: // Store in cache for reuse
34: CachePut(SFA,G,E)
35: end for
36: // Refine query probabilities
37: Qc ←Refine(Qc ,E)
38: end for
39: return Q
40: end procedure

Algorithm 3: Refine query probabilities by evalua-
tions.

6 QUERY EVALUATION
In fact-checking, we can partially resolve ambiguities in
natural language understanding by evaluating large numbers
of query candidates. As we show in Section 7, the ability to
process large numbers of query candidates efficiently turns
out to be crucial to make fact-checking practical.

The expectation maximization approach presented in the
previous section relies on a sub-function, RefineByEval, to

refine query probabilities by evaluating candidates. Algo-
rithm 3 implements that function. The input is an unrefined
probability distribution over query candidates per natural
language claim, as well as the claim set and the database
they refer to. The output is a refined probability distribution,
taking into account query evaluation results.

6.1 Prioritizing Query Evaluations
Ideally, we would be able to evaluate all query candidates
with non-zero probability based on the initial estimates. By
matching the results of those queries to results claimed in
text, we would be able to gain the maximal amount of in-
formation. In practice, we must select a subset of query can-
didates to evaluate. To make the choice, we consider two
factors. First, we consider the a-priori likelihood of the query
to match the claim. Second, we consider the processing effi-
ciency of evaluating many queries together.

Queries are characterized by three primary components in
our model: an aggregation function, an aggregation column,
and a set of predicates. In a first step (line 19 in Algorithm 3),
we determine the evaluation scope as the set of alternatives
that we consider for each query characteristic. To determine
the scope, we use a cost model that takes into account the
size of the database as well as the number of claims to verify.
Function PickScope exploits the marginal probabilities of
query characteristics. It expands the scope, prioritizing more
likely alternatives, until estimated evaluation cost according
to our cost model reaches a threshold.

6.2 Merging Query Candidates
As a naive approach, we could form all query candidates
within the scope and evaluate them separately. This would
however neglect several opportunities to save computation
time by avoiding redundant work. First, alternative query
candidates for the same claim tend to be quite similar. This
means that the associated query plans can often share in-
termediate results, thereby amortizing computational over-
heads. Second, even the query candidates for different claims
in the same document tend to be similar, thereby enabling
us to amortize cost again. This relates to our observation
(quantified in Section 7) that different claims in the same doc-
ument are often semantically related. Finally, Algorithm 3
will be called repeatedly for the same document (over dif-
ferent iterations of the expectation maximization approach).
In particular in later iterations, topic priors change slowly
and likely query candidates for the same claim change only
occasionally between iterations. This enables us to reuse re-
sults from previous iterations. Algorithm 3 exploits all three
opportunities to avoid redundant work.

At the lowest layer, we use cube queries to efficiently cal-
culate aggregates for different data subsets. Each data subset

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

308



is associated with one specific combination of query predi-
cates. One cube query can therefore cover many alternative
query candidates as long as their equality predicates refer
to a small set of columns (the cube dimensions). Executing
a cube query on a base table yields aggregates for each pos-
sible value combination in the cube dimension. The result
set can be large if cube dimensions contain many distinct
values. In the context of fact-checking, we are typically only
interested in a small subset of values (the ones with non-zero
marginal probabilities, meaning that corresponding matches
are returned after keyword matching). We can however not
filter the data to rows containing those values before apply-
ing the cube operator: this would prevent us from obtaining
results for query candidates that do not place any predicate
on at least one of the cube dimensions. Instead, we apply
the cube operator to the result of a sub-query that replaces
all literals with zero marginal probability by a default value
(function InOrDefault). This reduces the result set size
while still allowing us to evaluate all related query candi-
dates. Note that evaluating multiple aggregates for the same
cube dimensions in the same query is typically more effi-
cient than evaluating one cube query for each aggregate.
Hence, we merge as many aggregates as possible for the
same dimensions into the same query.

6.3 Caching across Claims and Iterations
Furthermore, we avoid redundant computation by the use
of a cache. The cache is accessed via functions IsCached,
CacheGet, and CachePut with the obvious semantics. The
cache persists across multiple iterations of the main loop in
Algorithm 3 and across multiple invocations of Algorithm 3
for the same document (during expectation maximization).
We avoid query evaluations if results are available in the
cache and cache each generated result. We can choose the
granularity at which results are indexed by the cache. Index-
ing results at a coarse granularity might force us to retrieve
large amount of irrelevant data. Indexing results at a very fine
granularity might create overheads when querying the cache
and merging result parts. We found the following granularity
to yield a good performance tradeoff: we index (partial) cube
query results by a combination of one aggregation column,
one aggregation function, and a set of cube dimensions. The
index key does not integrate the set of relevant literals in
the cube columns, although the set of literals with non-zero
marginal probability may vary across different claims or it-
erations. We generate results for all literals that are assigned
to a non-zero probability for any claim in the document (this
set is equivalent to the set of literals in predicates returned
during keyword matching). This simplifies indexing and is
motivated by the observation that different claims tend to
have high overlap in the sets of relevant literals for a given
column.

To create more opportunities to share partial results, we
cover the query scope via multiple cube queries, iterating
over subsets of cube dimensions. Additionally, this prevents
us from generating results for cube queries with an unrealis-
tically high number of cube dimensions (e.g., we expect at
most three predicates per claim in typical newspaper articles
while the query scope may include several tens of predicate
columns). On the other hand, we increase the total number
of queries and generate redundant results. We use function
nG (x) to pick the number of dimensions for each cube query.
We chose nG (x) = max(m,x −1) for our Postgres-based cube
operator implementation wherem is the maximal number
of predicates per claim (we usem = 3). Function Cube in Al-
gorithm 3 constructs the cube query (we use simplified SQL
in the pseudo-code), executes it, and returns the result. It
uses function Table to retrieve associated database tables for
aggregates and predicates. It exploits join paths to identify
connecting tables and join predicates. Our approach assumes
that the database schema is acyclic.

7 EXPERIMENTAL EVALUATION
We evaluated the AggChecker on 53 real articles, summariz-
ing data sets and featuring 392 claims. Those test cases range
from New York Times and 538 newspaper articles to sum-
maries of Internet surveys. Test case statistics and details on
the test case collection process can be found in Appendix A.
Using our tool, we were able to identify multiple erroneous
claims in those articles, as confirmed by the article authors.

7.1 Evaluation Metrics
We utilize two different metrics to evaluate the performance
of fact-checking systems, top-k coverage and F1 score. Top-k
coverage is defined over a set of claims with respect to a pos-
itive integer k as follows. Top-k coverage is the percentage
of claims for which the right query is within the top-k likely
query candidates. F1 score measures a system’s performance
on identifying erroneous claims. We calculate the F1 score
based on these definitions of precision and recall. Precision
is the fraction of truly erroneous (according to ground truth)
claims that the system has tentatively marked as erroneous.
Recall is the fraction of claims identified by the system as
erroneous among the total set of truly erroneous claims.

7.2 User Study
We performed an anonymized user study to see whether the
AggChecker enables users to verify claims more efficiently
than generic interfaces. We selected six articles from diverse
sources (538, the New York Times, and Stack Overflow). We
selected two long articles featuring more than 15 claims [12,
43] and four shorter articles with five to ten claims each [5,
14, 15, 42]. Users had to verify claims in those documents,

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

309



0
5
10

#V
er
ifi
ed

0
2
4
6

0
1
2
3
4

0 500 1,000
0

5

10

Time (s)

#V
er
ifi
ed

0 100 200 300
0
2
4
6

Time (s)
0 100 200 300

0
1
2

Time (s)

AggChecker (Avg) SQL (Avg)

Figure 6: Number of correctly verified claims as a func-
tion of time, using different tools on different articles.
Articles left-to-right then top-to-bottom: [43], [42],
[14], [12], [5], [15].

Table 3: Verification by used AggChecker features.

Top-1 Top-5 Top-10 Custom
(1 click) (2 clicks) (3 clicks)

44.5% 38.1% 4.6% 12.8%

either by executing SQL queries on the associated database
or by using the AggChecker. We gave a time limit of 20
minutes for each of the two longer articles and five minutes
for each of the shorter ones. Users were alternating between
tools and never verified the same document twice. We had
eight participants, seven of which were computer science
majors. We gave users a six minute tutorial for AggChecker.

Figure 6 reports the number of correctly verified claims for
different articles and tools as a function of time. We collected
timestamps from the AggChecker interface and analyzed
SQL logs to calculate times for SQL queries. We count a
claim as verified if the user selected the right query in the
AggChecker interface or if the right query was issued via
SQL. Clearly, users tend to be more efficient when using
the AggChecker in each single case. Table 3 shows that this
speedup is mainly due to our ability to automatically map
claims to the right query in most cases (in 82.6% of cases,
users selected one of the top-5 proposed queries).

7.3 Automated Checking Accuracy
We evaluate the AggChecker in fully automated mode. We
demonstrate the impact of various design decisions on the
text to query translation accuracy. Fully automated fact-
checking is not our primary use case as user feedback can
help to improve checking accuracy. Still, the first phase of
fact-checking (inferring probability distributions over claim

0 10 20
0
20
40
60
80
100

Top-k Queries

Co
ve
ra
ge

(%
)

Total
Correct Claims
Incorrect Claims

Figure 7: Percentage of claims for which correct
queries were in the N most likely queries.

Top-1 Top5 Top-10

55
60
65
70

Co
ve
ra
ge

(%
)

Claim Sentence
+Previous Sentence
+Paragraph Start

+Synonyms
+Headlines

Figure 8: Top-k coverage as a function of keyword con-
text.

Table 4: Top-k coverage versus probabilistic model.

Version Top-1 Top-5 Top-10

Relevance scores Sc 10.7% 31.6% 41.1%

+ Evaluation results Ec 53.1% 64.8% 65.8%

+ Learning priors Θ 58.4% 68.4% 68.9%

queries) is purely automated and can be benchmarked sepa-
rately. The higher the accuracy of the first phase, the smaller
the number of corrective actions required from users.

To put the following results into perspective, note that our
test cases allow in average to form 3.76×1010 query candidates
that comply with our query model. Figure 7 shows top-k
coverage of claims using fully automated verification. The
most likely query (which is used for tentative fact-checking
before user intervention) is in 58.4% of claims the right one.
For 68.4% of the test claims, the right query is within the top-
5 recommendations (each of those queries can be selected
with only two clicks total by users).

Besides total coverage, Figure 7 reports top-k coverage
for correct and incorrect claims (according to ground truth)
separately. Clearly, coverage is higher for correct claims as
matching the evaluation result of the query to the text value
provides us with strong evidence. Note however that, even if
we cannot recognize the right query for an incorrect claim,
it will still often be marked as probably incorrect (since no
matching query candidate can be found either).

Finally, we validate our design decisions by examining the
factors that contribute towards higher accuracy as follows:

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

310



Table 5: Run time for all test cases.

Version Total (s) Query (s) Speedup

Naive 2587 2415 -

+ Query Merging 151 39 ×61.9

+ Caching 128 18 ×2.1

Keyword context. Figure 8 illustrates the impact of key-
word context on text to query translation coverage. Clearly,
in particular for determining the most likely query, each
keyword source considered by the AggChecker is helpful
and improves top-k coverage.

Probabilistic model. Table 4 demonstrates the benefits
of the probabilistic model. Compared to using keyword-
based relevance scores alone (variables Sc ), we successively
improve top-k coverage by first integrating query evalua-
tion results (variables Ec ) and then document-specific priors
(parameters Θ).

Effect of massive processing.We evaluate a large num-
ber of query candidates to refine verification accuracy. An
efficient processing strategy is required to avoid excessive
computational overheads. Table 5 demonstrates the impact
of the optimizations discussed in Section 6 (we used a laptop
with 16 GB RAM and a 2.5 GHZ Intel i5-7200U CPU run-
ning Windows 10). We report total execution times and also
only the query processing times for fact-checking our entire
set of test cases. Processing candidates naively yields query
processing times of more than 40 minutes. Merging query
candidates and caching query results yield accumulated pro-
cessing time speedups of more than factor 129.9.

7.4 Comparison against Baselines
Table 6 compares all baselines in terms of precision, recall,
F1 score, and run time. We also compare different variants
of the AggChecker. We simplify, in multiple steps, differ-
ent parts of the system and evaluate the performance. The
first section of Table 5 analyzes the impact of the keyword
context. In our main AggChecker version, we consider key-
words from multiple sources beyond the claim sentence:
keywords from the previous sentence, the first sentence in a
paragraph, we consider synonyms of other keywords, and
keywords from preceding headlines. In Table 5, we add those
keyword sources successively, resulting in significant im-
provements in precision and F1 score. Next, we consider
simplifications to our probabilistic model. Our main version
considers random variables associated with keyword-based
relevance scores (Sc ), query evaluation results (Ec ), and pri-
ors (Θ). We add those variables step by step, demonstrating
significant improvements in F1 scores. Any simplification
of our probabilistic model therefore worsens performance.

Next, we analyze tradeoffs between processing time and
result quality. We vary the number of query fragments, re-
trieved via Lucene, that are considered during processing.
Considering higher number of fragments increases the F1
score but leads to higher processing overheads. We use 20
query fragments per claim in our main AggChecker version,
realizing what we believe is the most desirable tradeoff be-
tween result quality and processing overheads. Altogether,
our results demonstrate that each component of our system
is important in order to achieve best performance.

Next, we compare against another system that focuses on
automated fact checking. ClaimBuster [21, 22] is a recently
proposed system for automated fact-checking of text docu-
ments. ClaimBuster supports a broader class of claims while
we specialize to numerical aggregates. We demonstrate in
the following that this specialization is necessary to achieve
good performance for the claim types we consider. Still, both
systems realize Pareto-optimal tradeoffs between generality
and performance on numerical claims. ClaimBuster comes
in multiple versions. ClaimBuster-FM matches input text
against a database containing manually verified statements
with truth values. ClaimBuster-FM returns the most simi-
lar statements from the database, together with similarity
scores. We tried aggregating the truth values of the returned
matches in two ways: ClaimBuster-FM (Max) uses the truth
value of the statement with maximal similarity as final re-
sult. ClaimBuster-FM (MV) uses the weighted majority vote,
weighting the truth value of each returned statement by its
similarity score.
Another version of ClaimBuster (ClaimBuster-KB) trans-

forms an input statement into a series of questions, generated
by a question generation tool [23, 24]. Those questions are
sent as queries to knowledge bases with natural language
interfaces (e.g, Wolfram Alpha and Google Answers). The
bottleneck however is that the required data for our test
cases is not available in these generic knowledge bases. Nev-
ertheless, a natural language query interface running on a
database with all our data sets can be used as an alternative
knowledge base for ClaimBuster-KB instead. To do so, we
use NaLIR [28, 29], a recently proposed natural language
database query interface. We cannot directly use NaLIR for
fact-checking as its input format only allows natural lan-
guage queries (not claims). Thus, we use the same question
generation tool as ClaimBuster-KB to transform claims into
question sequences and send them (including the original
sentence) as queries to NaLIR. Then, we compare the results
from NaLIR with the claimed value in text to see if there is
a match on at least one of the queries. If so, we verify the
claim as correct and if not, as wrong. Note that, using the
original code of NaLIR, less than 5% of sentences are trans-
lated into SQL queries while others throw exceptions during
the translation process. We extended the code to support a

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

311



Table 6: Comparison of AggChecker with baselines.

Tool Recall Precision F1 Time

AggChecker - Keyword Context (Figure 8)
Claim sentence 70.8% 29.3% 41.7% -
+ Previous sentence 68.8% 31.1% 42.9% -
+ Paragraph Start 70.8% 31.8% 43.9% -
+ Synonyms 70.8% 34.3% 46.3% -
+ Headlines (current
version)

70.8% 36.2% 47.9% -

AggChecker - Probabilistic Model (Table 4)
Relevance scores Sc 93.8% 13.3% 23.3% -
+ Evaluation results Ec 70.8% 32.7% 44.7% -
+ Learning priors Θ
(current version)

70.8% 36.2% 47.9% -

AggChecker - Time Budget by Lucene Hits (Figure 11)
# Hits = 1 79.2% 20.1% 32.1% 108s
# Hits = 10 70.8% 33.7% 45.6% 121s
# Hits = 20 (current ver-
sion)

70.8% 36.2% 47.9% 128s

# Hits = 30 68.8% 36.3% 47.5% 133s

Baselines
ClaimBuster-FM (Max) 34.1% 12.3% 18.1% 142s
ClaimBuster-FM (MV) 31.7% 15.9% 21.1% 142s
ClaimBuster-KB +
NaLIR

2.4% 10.0% 3.9% 18733s

AggChecker Auto-
matic

70.8% 36.2% 47.9% 128s

broader range of natural language queries (e.g., by imple-
menting a more flexible method for identifying command
tokens in parse trees) which increased the translation ratio
to 42.1%. Still, only 13.6% of the translated queries return
a single numerical value which can be compared with the
claimed value in text.
In Table 6, the AggChecker outperforms the other base-

lines by a significant margin. The reasons vary across base-
lines. ClaimBuster-FM relies on manually verified facts in a
repository. This covers popular claims (e.g., made by politi-
cians) but does not cover “long tail” claims. We verified that
the relatively high recall rate of ClaimBuster-FM is in fact
due to spurious matches, the necessary data to verify those
claims is not available.

Prior work on natural language query interfaces has rather
focused on translating relatively concise questions that a
user may ask. The claim sentences in our test data tend to
be rather complex (e.g., multi-line sentences with multiple
sentence parts). This makes it already hard to derive rele-
vant questions for verification. Also, sentence parse tree and
query tree tend to have a high edit distance (which hurts ap-
proaches such as NaLIR that assume high similarity). Further,
many claims (30%) do not explicitly state the aggregation

Table 7: Properties of AggChecker and ClaimBuster.

AggChecker ClaimBuster

Task Fact-checking Claim identification,
Fact-checking

Claims Numerical Generic

Data Structured Unstructured, Struc-
tured

Summary Specialized to claims on
numerical aggregates

Broader task and claim
scope

function (in particular for counts and sums) or there are
multiple claims within the same sentence (29%). All of those
challenges motivate specialized approaches for fact-checking
from raw relational data.

8 RELATEDWORK
ClaimBuster [21, 22] supports users in fact-checking natu-
ral language texts. ClaimBuster verifies facts by exploiting
natural language fact checks prepared by human fact check-
ers, natural language query interfaces to existing knowledge
bases, or textual Google Web query results. In short, Table 7
gives a comparison of the two systems.

We focus on facts (i.e., numerical aggregates) that are not
explicitly given but can be derived from the input data set.
Most prior work on fact-checking [4, 21, 22, 27, 37, 40, 41, 46–
48, 50] assumes that entities a claim refers to are readily
available in a knowledge base [3]. Prior work on argument
mining [10, 20, 30–32, 38] identifies complex claims and sup-
porting arguments in text. We link text claims to structured
data instead. Prior work tests the robustness of claim queries
against small perturbations [49, 51–53]. Techniques such as
query merging and caching can be used in this context as
well. However, as the claim SQL query is given as input,
this line of work avoids the primary challenge that we ad-
dress: the translation of natural language claims into SQL
queries. The problem of translating natural language queries
or keyword sets to SQL queries has received significant at-
tention [1, 28, 29, 39]. Fact-checking differs as users spec-
ify queries together with claimed results, allowing new ap-
proaches. Also, we are operating on entire documents instead
of single queries.

9 CONCLUSION
We introduced the problem of fact-checking natural lan-
guage summaries of relational databases. We have presented
a first corresponding approach, encapsulated into a novel
tool called the AggChecker. We successfully used it to iden-
tify erroneous claims in articles from major newspapers.

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

312



ACKNOWLEDGMENT
This project was supported by Huawei.

REFERENCES
[1] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. 2002. DBXplorer:

a system for keyword-based search over relational databases. In ICDE.
5–16. https://doi.org/10.1109/ICDE.2002.994693

[2] Amazon. [n. d.]. https://www.mturk.com/mturk/welcome.
[3] Mevan Babakar andWill Moy. 2016. The state of Automated Factcheck-

ing. Full Fact (2016).
[4] Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis Mateus Rocha,

Johan Bollen, FilippoMenczer, and Alessandro Flammini. 2015. Compu-
tational fact checking from knowledge networks. CoRR abs/1501.03471
(2015).

[5] The New York Times Company. 2014. Looking for John McCain?
Try a Sunday Morning Show. https://www.nytimes.com/2014/09/06/
upshot/looking-for-john-mccain-try-a-sunday-morning-show.html

[6] The New York Times Company. 2014. Race in ‘Waxman’ Primary
Involves Donating Dollars. https://www.nytimes.com/2014/04/24/
upshot/race-in-waxman-primary-involves-donating-dollars.html

[7] The New York Times Company. 2017. The Upshot. https://www.
nytimes.com/section/upshot/

[8] Wikipedia contributors. 2018. Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/

[9] Chuong B Do and Serafim Batzoglou. 2008. What is the expectation
maximization algorithm? Nature Biotechnology 26, 8 (2008), 897–899.

[10] Mihai Dusmanu, Elena Cabrio, and Serena Villata. 2017. Argument
Mining on Twitter: Arguments, Facts and Sources. In EMNLP. 2317–
2322.

[11] C. Fellbaum. 1998. WordNet: an electronic lexical database. MIT Press.
https://books.google.com/books?id=Rehu8OOzMIMC

[12] FiveThirtyEight. 2014. 41 Percent Of Fliers Think You’re Rude
If You Recline Your Seat. https://fivethirtyeight.com/features/
airplane-etiquette-recline-seat/

[13] FiveThirtyEight. 2014. The NFL’s Uneven History Of Punish-
ing Domestic Violence. https://fivethirtyeight.com/features/
nfl-domestic-violence-policy-suspensions/

[14] FiveThirtyEight. 2015. Blatter’s Reign At FIFA Hasn’t
Helped Soccer’s Poor. https://fivethirtyeight.com/features/
blatters-reign-at-fifa-hasnt-helped-soccers-poor/

[15] FiveThirtyEight. 2016. Hip-Hop Is Turning On Donald Trump. https:
//projects.fivethirtyeight.com/clinton-trump-hip-hop-lyrics/

[16] FiveThirtyEight. 2016. Sitting Presidents Give Way More Commence-
ment Speeches Than They Used To. https://goo.gl/7nuGE9

[17] The Apache Software Foundation. 2017. Apache Lucene Core. https:
//lucene.apache.org/core/

[18] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and
Tomas Mikolov. 2018. Learning Word Vectors for 157 Languages. In
LREC.

[19] PostgreSQL Global Development Group. 2017. PostgreSQL. https:
//www.postgresql.org/

[20] Ivan Habernal and Iryna Gurevych. 2017. Argumentation Mining in
User-Generated Web Discourse. Computational Linguistics 43, 1 (2017),
125–179.

[21] Naeemul Hassan, Fatma Arslan, Chengkai Li, and Mark Tremayne.
2017. Toward automated fact-checking: detecting check-worthy factual
claims by ClaimBuster. In SIGKDD. 1803–1812.

[22] Naeemul Hassan, Gensheng Zhang, Fatma Arslan, Josue Caraballo,
Damian Jimenez, Siddhant Gawsane, Shohedul Hasan, Minumol
Joseph, Aaditya Kulkarni, Anil Kumar Nayak, Vikas Sable, Chengkai
Li, and Mark Tremayne. 2017. ClaimBuster: The first-ever end-to-end

fact-checking system. PVLDB 10, 12 (2017).
[23] Michael Heilman and Noah A Smith. 2009. Question generation via

overgenerating transformations and ranking. Technical Report. CMU,
Language Technologies Institute.

[24] Michael Heilman and Noah A. Smith. 2010. Good question! Statistical
ranking for question generation. In NACL. 609–617. http://www.
aclweb.org/anthology/N10-1086

[25] ESPN Inc. 2017. FiveThirtyEight. http://fivethirtyeight.com/
[26] Andrew Kachites McCallum. 2002. MALLET: A machine learning for

language toolkit. (01 2002).
[27] Georgi Karadzhov, Preslav Nakov, Lluís Màrquez, Alberto Barrón-

Cedeño, and Ivan Koychev. 2017. Fully automated fact checking using
external sources. CoRR abs/1710.00341 (2017).

[28] Fei Li and HV Jagadish. 2014. NaLIR: an interactive natural language
interface for querying relational databases. SIGMOD (2014), 709–712.
https://doi.org/10.1145/2588555.2594519

[29] Fei Li and H. V. Jagadish. 2014. Constructing an interactive natural
language interface for relational databases. PVLDB 8, 1 (2014), 73–84.
http://www.vldb.org/pvldb/vol8/p73-li.pdf

[30] Marco Lippi and Paolo Torroni. 2015. Context-Independent Claim
Detection for Argument Mining. In IJCAI. 185–191.

[31] Marco Lippi and Paolo Torroni. 2016. Argumentation mining: state of
the art and emerging trends. ACM Trans. Internet Techn. 16, 2 (2016),
10:1–10:25. https://doi.org/10.1145/2850417

[32] Marco Lippi and Paolo Torroni. 2016. MARGOT: A web server for
argumentation mining. Expert Syst. Appl. 65 (2016), 292–303. https:
//doi.org/10.1016/j.eswa.2016.08.050

[33] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose
Finkel, Steven Bethard, and David McClosky. 2014. The Stanford
CoreNLP Natural Language Processing Toolkit. In ACL. 55–60.

[34] Vox Media. 2017. Vox. https://www.vox.com/
[35] George A. Miller. 1995. WordNet: a lexical database for English. Com-

mun. ACM 38, 11 (1995), 39–41.
[36] Jonas Mueller and Aditya Thyagarajan. 2016. Siamese Recurrent Ar-

chitectures for Learning Sentence Similarity. In AAAI. 2786–2792.
[37] Ndapandula Nakashole and Tom M. Mitchell. 2014. Language-aware

truth assessment of fact candidates. In ACL. 1009–1019.
[38] Andreas Peldszus and Manfred Stede. 2013. From argument diagrams

to argumentation mining in texts: a survey. IJCINI 7, 1 (2013), 1–31.
https://doi.org/10.4018/jcini.2013010101

[39] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan,
Umar Farooq Minhas, Ashish R Mittal, and Fatma Ozcan. 2016.
ATHENA: An ontology-driven system for natural language query-
ing over relational data stores. VLDB 9, 12 (2016), 1209–1220.

[40] Baoxu Shi and Tim Weninger. 2015. Fact checking in large knowledge
graphs - a discriminative predicate path mining approach. CoRR
abs/1510.05911 (2015).

[41] Baoxu Shi and Tim Weninger. 2016. Fact checking in heterogeneous
information networks. In WWW. 101–102.

[42] Inc. Stack Exchange. 2015. 2015 Developer Survey. https://insights.
stackoverflow.com/survey/2015/

[43] Inc. Stack Exchange. 2016. Developer Survey Results 2016. https:
//insights.stackoverflow.com/survey/2016/

[44] Inc. Stack Exchange. 2017. Developer Survey Results 2017. https:
//insights.stackoverflow.com/survey/2017/

[45] Inc. Stack Exchange. 2017. Stack Overflow Insights. https://insights.
stackoverflow.com/survey/

[46] James Thorne and Andreas Vlachos. 2017. An extensible framework
for verification of numerical claims. In EACL. 37–40.

[47] Andreas Vlachos and Sebastian Riedel. 2014. Fact Checking: Task
definition and dataset construction. ACL Workshop on Language Tech-
nologies and Computational Social Science, 18–22.

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

313

https://doi.org/10.1109/ICDE.2002.994693
https://www.nytimes.com/2014/09/06/upshot/looking-for-john-mccain-try-a-sunday-morning-show.html
https://www.nytimes.com/2014/09/06/upshot/looking-for-john-mccain-try-a-sunday-morning-show.html
https://www.nytimes.com/2014/04/24/upshot/race-in-waxman-primary-involves-donating-dollars.html
https://www.nytimes.com/2014/04/24/upshot/race-in-waxman-primary-involves-donating-dollars.html
https://www.nytimes.com/section/upshot/
https://www.nytimes.com/section/upshot/
https://en.wikipedia.org/
https://books.google.com/books?id=Rehu8OOzMIMC
https://fivethirtyeight.com/features/airplane-etiquette-recline-seat/
https://fivethirtyeight.com/features/airplane-etiquette-recline-seat/
https://fivethirtyeight.com/features/nfl-domestic-violence-policy-suspensions/
https://fivethirtyeight.com/features/nfl-domestic-violence-policy-suspensions/
https://fivethirtyeight.com/features/blatters-reign-at-fifa-hasnt-helped-soccers-poor/
https://fivethirtyeight.com/features/blatters-reign-at-fifa-hasnt-helped-soccers-poor/
https://projects.fivethirtyeight.com/clinton-trump-hip-hop-lyrics/
https://projects.fivethirtyeight.com/clinton-trump-hip-hop-lyrics/
https://goo.gl/7nuGE9
https://lucene.apache.org/core/
https://lucene.apache.org/core/
https://www.postgresql.org/
https://www.postgresql.org/
http://www.aclweb.org/anthology/N10-1086
http://www.aclweb.org/anthology/N10-1086
http://fivethirtyeight.com/
https://doi.org/10.1145/2588555.2594519
http://www.vldb.org/pvldb/vol8/p73-li.pdf
https://doi.org/10.1145/2850417
https://doi.org/10.1016/j.eswa.2016.08.050
https://doi.org/10.1016/j.eswa.2016.08.050
https://www.vox.com/
https://doi.org/10.4018/jcini.2013010101
https://insights.stackoverflow.com/survey/2015/
https://insights.stackoverflow.com/survey/2015/
https://insights.stackoverflow.com/survey/2016/
https://insights.stackoverflow.com/survey/2016/
https://insights.stackoverflow.com/survey/2017/
https://insights.stackoverflow.com/survey/2017/
https://insights.stackoverflow.com/survey/
https://insights.stackoverflow.com/survey/


104
108
1012

Test Cases

#
Q
ue
rie

s

Figure 9: Number of possible query candidates per
data set.

[48] Andreas Vlachos and Sebastian Riedel. 2015. Identification and verifi-
cation of simple claims about statistical properties. In EMNLP. 2596–
2601.

[49] Brett Walenz and Jun Yang. 2016. Perturbation analysis of database
queries. PVLDB 9, 14 (2016), 1635–1646. http://www.vldb.org/pvldb/
vol9/p1635-walenz.pdf

[50] William YangWang. 2017. "Liar, Liar Pants on Fire": A new benchmark
dataset for fake news detection. In ACL. 422–426.

[51] YouWu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2014.
Toward computational fact-checking. PVLDB 7, 7 (2014), 589–600.

[52] YouWu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2017.
Computational fact checking through query perturbations. TODS 42,
1 (2017), 4:1–4:41. https://doi.org/10.1145/2996453

[53] YouWu, BrettWalenz, Peggy Li, Andrew Shim, Emre Sonmez, Pankaj K.
Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2014. iCheck: com-
putationally combating "lies, d-ned lies, and statistics". In SIGMOD.
1063–1066.

A DETAILS ON TEST CASES
We collected 53 publicly available articles summarizing data
sets. All test cases will be made available online on the demo
website. The most important criterion for our selection was
that the article must unambiguously identify a tabular data
set it refers to. Under that constraint, we aimed at collecting
articles from different sources and authors, treating a variety
of topics (covering for instance sports, politics or economy).
Our goal was to obtain experimental results that are rep-
resentative across a variety of domains and writing styles.
We used newspaper articles from the New York Times [7],
538 [25], Vox [34], summaries of developer surveys on Stack
Overflow [45], and Wikipedia [8] articles. The associated
data sets range in size from a few kilobytes to around 100
megabytes. Most of them were stored in the .csv format. In a
few instance, we removed free text comments, written before
or after the actual table data, to obtain valid .csv format. We
did however not apply any kind of pre-processing that could
have simplified the fact-checking process (e.g., we did not
change the original column or value names in the data nor
did we change the data structure in any way).
Table 8 presents a selection of the erroneous claims we

discovered in those test cases. We added comments on likely
error causes that we received from the article authors. The
primary challenge solved by the AggChecker is the mapping
from text claims to SQL queries. This task becomes harder,
the more queries can be formed according to our target query

0.6 0.8 1
0.2
0.4
0.6
0.8

pT

Recall
Precision
F1 Score

Figure 10: Parameter pT versus recall and precision.

110 120 130
40
50
60
70

Time (s)

Co
ve
ra
ge

(%
)

# Hits

150 200
20

40

60

Time (s)

# Aggregates

Top-1 Top-10

Figure 11: Top-k coverage versus processing over-
heads.

structure. Figure 9 shows the number of Simple Aggregate
Queries (according to the definition in Section 2) that can be
formed for our test data sets (the three Wikipedia articles
reference total of six tables). Evidently, the number of queries
is typically enormous, reaching for instance more than a
trillion queries for the Stack Overflow Developer Survey
2017 [44] (this data set features more than 154 table columns).

To generate ground truth for the claims in our articles, we
constructed corresponding SQL queries by hand, after a care-
ful analysis of text and data. We contacted the article authors
in case of ambiguities. The AggChecker currently supports
claims about Simple Aggregate Queries (see Section 2). We
identified 392 claims that comply with the supported format.

B AUTOMATED CHECKING ACCURACY
We present more experimental results on the automated
checking accuracy with respect to different factors as follows:
Effect of parameter pT . Parameter pT is the assumed

a-priori probability of encountering correct claims. Figure 10
shows that we obtain different tradeoffs between recall (i.e.,
percentage of erroneous claims spotted, based on the most
likely query for each claim) and precision (i.e., percentage of
claims correctly marked up as wrong) when varying it. Re-
ducing pT makes the system more “suspicious” and increase
recall at the cost of precision. We empirically determined
pT = 0.999 to yield a good tradeoff for our test data set.

Effect of massive processing. Figure 11 shows the ben-
efit of massive processing. We vary the number of hits to
collect using Apache Lucene per claim (left) as well as the

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

314

http://www.vldb.org/pvldb/vol9/p1635-walenz.pdf
http://www.vldb.org/pvldb/vol9/p1635-walenz.pdf
https://doi.org/10.1145/2996453


Table 8: Examples for erroneous claims.

Erroneous Claim Author Comment Ground Truth SQL Query Correct
Value

There were only four previous life-
time bans in my database - three
were for repeated substance abuse,
one was for gambling. [13]

Yes – the data was updated on Sept. 22, and the article was
originally published on Aug. 28. There’s a note at the end of
the article, but you’re right the article text should also have
been updated.

SELECT Count(*) FROM nflsus-
pensions WHERE Games = ‘in-
def’ AND Category = ‘substance
abuse, repeated offense’

4

Using their campaign fund-raising
committees and leadership political
action committees separately, the
pair have given money to 64 candi-
dates. [6]

I think you are correct in that it should be 63 candidates in the
article, not 64.

SELECT CountDis-
tinct(Recipient) FROM es-
hoopallone

63

13% of respondents across the globe
tell us they are only self-taught. [43]

This was a rounding error/typo on our part – so yes, you’re
correct.

SELECT Percentage(Education)
FROM stackoverflow2016
WHERE Education = ‘i’m self-
taught’

14

0
1
2
3

User#V
er
ifi
ed
/M

in

0
1
2
3

Article
AggChecker SQL

Figure 12: Number of claims verified per minute,
grouped by user and by article. Articles left to right:
[43], [12], [42], [14], [5], [15].

Table 9: Results of on-site user study.

Tool Recall Precision F1 Score

AggChecker + User 100.0% 91.4% 95.5%

SQL + User 30.0% 56.7% 39.2%

GUI + User 23.1% 50.0% 31.6%

number of aggregation columns we consider during evalua-
tion (right). Both affect run time (for all test case) as well as
average top-k coverage. It turns out that a higher processing
time budget results in greater coverage. On the other side,
the figure shows that the increase in coverage diminishes
as we evaluate more query candidates. Thus as mentioned
in Section 6, evaluating a carefully chosen subset of query
candidates is sufficient for achieving high coverage.

C USER STUDY
Figure 12 reports the “fact-checking throughput”, meaning
the number of correctly verified claims per minute, grouped
by user (left) and by article (right). It turns out that users are
in average six times faster at verifying claims when using
the AggChecker interface.

Table 10: Amazon Mechanical Turk results.

Tool Scope Recall Precision F1 Score

AggChecker Document 56% 53% 54%

G-Sheet 0% 0% 0%

AggChecker Paragraph 86% 96% 91%

G-Sheet 42% 95% 58%

Table 9 adopts a complementary perspective and measures
the number of erroneous claims that was found (recall) and
the percentage of incorrect claims among the onesmarked up
as incorrect (precision).We identified in total three erroneous
claims in our six test case articles. As expected, users achieve
highest scores when interacting with the AggChecker. Note
that the result for GUI is from an additional user study where
two participants were asked to fact-check the articles with
erroneous claims (same ones that were used in the previous
user study) using Tableau, a graphical data analytics system.

D CROWDWORKER STUDY
We conducted an additional larger user study with crowd
workers, recruited on Amazon Mechanical Turk (AMT) [2].
Our goal was to show that the AggChecker can be used
by typical crowd workers (whom we do not expect to have
a strong IT background) and without prior training. Fur-
thermore, we compared against yet another baseline that is
commonly used by laymen to analyze data: spreadsheets. We
uploaded data for all test cases into an online demo of the
AggChecker as well as into a public Google Sheet document.

First, we asked 50 distinct crowd workers to verify numeri-
cal claims in a 538 newspaper article [12] via the AggChecker.
We asked 50 additional workers to verify the same article
using Google Sheets. We paid 25 cents per task and did not

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

315



Table 11: Check-worthy claim identification.

Method Recall Precision F1 Score

Naive Bayes 11.4% 46.7% 18.0%

Max Entropy 17.9% 52.5% 26.3%

Decision Tree 1.07% 11.7% 1.96%

Heuristic-based 100.0% 23.1% 37.6%

set any worker eligibility constraints. We compare baselines
in terms of recall (i.e., percentage of erroneous claims iden-
tified) and precision (i.e., ratio of actually erroneous claims
among all claims flagged by crowd worker). We had only
19 respondents for the AggChecker interface and 13 respon-
dents for the Google sheet interface over a 24 hours period.
Table 10 summarizes the performance results (scope: doc-
ument). While the performance of crowd workers is only
slightly worse compared to the participants of our prior user
studywhen using the AggChecker, crowdworkers are unable
to identify a single erroneous claim via spreadsheets.

We doubled the payment and narrowed the scope for ver-
ification down to two sentences (taken from another 538
article [16]). We deliberately selected an article with a very
small data set where claims could even be verified by count-
ing entries by hand. All 100 tasks were solved within a 24
hours period. Table 10 (scope: paragraph) shows improved
results for the spreadsheet, the performance difference to
the AggChecker is however enormous.

E CLAIM IDENTIFICATION
We use Mallet [26], a tool for statistical natural language pro-
cessing, to train a classifier to identify check-worthy claims
(more precisely, sentences containing check-worthy claims).
We use our data set with annotated claims as training and
test data with 10-fold cross validation. We divide all sen-
tences into ten distinct sets balancing the number of claims
in each set. Table 11 demonstrates the recall, precision and F1
score of different classifiers and our heuristic-based method.
Check-worthy claims account for about 7.3% of all sentences.

F DATASET IDENTIFICATION
We show that we can use Google Dataset Search, a specialized
service for finding structured data, to find the relevant data
set needed to fact-check an article. If we only use the title
of an article, we get a mean reciprocal rank (MRR) of 0.2547.
To improve this, we use entity tagging to extract important
keywords and use them in a search query. Then, we take
the first five data sets from the search result and use the
AggChecker to re-rank the data sets based on the verification
rate (i.e., the number of claims that can be verified by a given
data set). As a result, we achieve a MMR of 0.4754.

Table 12: Results on adding nearest words (best cases).

Method F1 Score Top-1 Top-5 Top-10

WordNet (synonyms) 47.9% 58.7% 68.4% 68.9%

word2vec (15 words) 46.2% 56.4% 66.8% 67.9%

fastText (35 words) 48.2% 53.3% 64.8% 66.1%

Table 13: Comparison ofmethods formatching claims
to query fragments.

Method Recall Precision F1 Score

Information Retrieval 70.8% 36.2% 47.9%

Sentence Similarity 77.1% 22.7% 35.1%

In addition, we test the case of having a database that can
fact-check multiple articles in the same category. We verify
two articles about NFL using a database containing five tables
related to NFL statistics. Based on the verification rate, the
AggChecker successfully identifies the correct data set and
verifies claims in each article. Note that the AggChecker
needs to verify every pair of an article and a data set to
calculate the verification rates. This process took 27.8s to
finish while fact-checking the two articles given the correct
data sets took only 5.8s.

G USE OF WORD EMBEDDING
We report results using word embedding in different phases
of keyword matching. First, we consider replacing synonyms
from WordNet with nearest words according to the cosine
similarity of word vectors. We test on two pre-trained word
vectors: 1) word2vec trained on Google News data set and
2) fastText trained on Common Crawl and Wikipedia [18].
We increased the number of added words from 5 to 50 incre-
menting by 5. Table 12 presents the best case performance
of each method. Adding synonyms from WordNet performs
well on top-k coverage while fastText with 35 added words
has the highest F1 score.
Next, we compare different methods for finding relevant

query fragments. One method uses Lucene to compute rele-
vance scores between pairs of claims and query fragments.
The other method uses a model [36] based on word embed-
ding and the Long Short Term Memory (LSTM) network,
which computes semantic similarity scores between pairs
of word sequences. We compute the similarity between the
sentence containing a claim and the keywords associated
with each query fragment. Table 13 shows that semantic sim-
ilarity scores might not be as effective as relevance scores
when matching claims to query fragments.

Research 3: Information Extraction  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

316


	Abstract
	1 Introduction
	2 Problem Statement
	3 System Overview
	4 Keyword Matching
	4.1 Keyword Matching Overview
	4.2 Indexing Query Fragments
	4.3 Extracting Keywords from Text
	4.4 Constructing Likely Query Candidates

	5 Probabilistic Model
	5.1 Probabilistic Model Overview
	5.2 Prior Probabilities
	5.3 Claim-specific Probability Distribution

	6 Query Evaluation
	6.1 Prioritizing Query Evaluations
	6.2 Merging Query Candidates
	6.3 Caching across Claims and Iterations

	7 Experimental Evaluation
	7.1 Evaluation Metrics
	7.2 User Study
	7.3 Automated Checking Accuracy
	7.4 Comparison against Baselines

	8 Related Work
	9 Conclusion
	References
	A Details on Test Cases
	B Automated Checking Accuracy
	C User Study
	D Crowd Worker Study
	E Claim Identification
	F Dataset Identification
	G Use of Word Embedding



