
RRR: Rank-Regret Representative

Abolfazl Asudeh
∗
, Azade Nazi

†
, Nan Zhang

‡
, Gautam Das

§
, H. V. Jagadish

¶

∗¶
University of Michigan;

†
Google AI;

‡
Pennsylvania State University;

§
University of Texas at Arlington

{asudeh,jag}@umich.edu; azade@google.com; nan@ist.psu.edu; gdas@uta.edu

ABSTRACT

Selecting the best items in a dataset is a common task in

data exploration. However, the concept of “best” lies in the

eyes of the beholder: different users may consider different

attributes more important, and hence arrive at different rank-

ings. Nevertheless, one can remove “dominated” items and

create a “representative” subset of the data, comprising the

“best items” in it. A Pareto-optimal representative is guaran-

teed to contain the best item of each possible ranking, but it

can be a large portion of data. A much smaller representative

can be found if we relax the requirement to include the best

item for each user, and instead just limit the users’ “regret”.

Existing work defines regret as the loss in score by limiting

consideration to the representative instead of the full data

set, for any chosen ranking function.

However, the score is often not a meaningful number and

users may not understand its absolute value. Sometimes

small ranges in score can include large fractions of the data

set. In contrast, users do understand the notion of rank order-

ing. Therefore, we consider the position of the items in the

ranked list for defining the regret and propose the rank-regret
representative as the minimal subset of the data containing

at least one of the top-k of any possible ranking function.

This problem is NP-complete. We use a geometric interpre-

tation of items to bound their ranks on ranges of functions

and to utilize combinatorial geometry notions for develop-

ing effective and efficient approximation algorithms for the

problem. Experiments on real datasets demonstrate that we

can efficiently find small subsets with small rank-regrets.

ACM Reference Format:

Abolfazl Asudeh, Azade Nazi, Nan Zhang, Gautam Das, H. V. Ja-

gadish. 2019. RRR: Rank-Regret Representative. In 2019 International

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3300080

Conference on Management of Data (SIGMOD ’19), June 30-July 5,
2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3299869.3300080

1 INTRODUCTION

Given a dataset with multiple attributes, the challenge is to

combine the values of multiple attributes to arrive at a rank.

In many applications, especially in databases with numeric

attributes, a weight vector ®w is used to express user prefer-

ences in the form of a linear combination of the attributes,

i.e.,

∑
wiAi . Finding flights based on a linear combination of

some criteria such as price and duration [1], diamonds based

on depth and carat [2], and houses based on price and floor

area [2] are a few examples.

The difficulty is that the concept of “best” lies in the eyes

of the beholder. Different users may consider different at-

tributes more important, and hence arrive at very different

rankings. In the absence of explicit user preferences, the sys-

tem can remove dominated items, and offer the remaining

Pareto-optimal [3] set as representing the desirable items in

the data set. Such a skyline (resp. convex hull) is the smallest

subset of the data that is guaranteed to contain the top choice

of a user based on any monotonic (resp. linear) ranking func-

tion. Borzsony et. al. [4] initiated the skyline research in the

database community and since then a large body of work

has been conducted in this area. A major issue with such

representatives is that they can be a large portion of the

dataset [5, 6], especially when there are multiple attributes.

Hence, several researchers have tackled [7, 8] the challenge

of finding a small subset of the data for further consideration.

One elegant way to find a smaller subset is to define the

notion of regret for any particular user. That is, how much

this user loses by restricting consideration only to the sub-

set rather than the whole set. The goal is to find a small

subset of the data such that this regret is small for every

user, no matter what their preference function. There has

been considerable attention given to the regret-ratio mini-

mizing set [5, 9] problem and its variants [10–16]. Letmo
be the maximum score of the tuples in dataset based on a

scoring function f . Also, letma be the maximum score for

a subset of data. The regret-ratio of the subset for f is the

†
Azade Nazi’s work done as a graduate student at the University of Texas,

Arlington.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

263

https://doi.org/10.1145/3299869.3300080
https://doi.org/10.1145/3299869.3300080
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3299869.3300080&domain=pdf&date_stamp=2019-06-25

ratio of (mo −ma) tomo . The classic regret-ratio minimizing

set problem aims to find a subset of size r that minimizes

the maximum regret-ratio for any possible function. Other

variations of the problem are pointed out in § 7.

Unfortunately, in most real situations, the actual score

is a “made up” number with no direct significance. This is

even more so the case when attribute values are drawn from

different domains. In fact, the score itself could also be on a

made-up scale. Considering the regret as a ratio helps, but

is far from being a complete solution. For example, wine

ratings appear to be on a 100 point scale, with the best wines

in the high 90s. However, wines rated below 80 almost never

make it to a store. In § 6.2, we conduct an experiment over

a collection of 100 top wines. The rating of the best wine

in the dataset is at 98 points. A regret of 6 points gives a

very small regret ratio of .06, but actually only promises a

wine with a rating of 92, which is below median! In other

words, a small value of regret ratio can actually result in a

large swing in rank. In the case of wines, at least the rating

scales see enough use that most wine-drinkers would have a

sense of what a score means. But consider choosing a hotel.

If a website takes your preferences into account and scores a

hotel at 17.2 for you, do you know what that means? If not,

then how can you meaningfully specify a regret ratio?

Although ordinary users may not have a good sense of

actual scores, they almost always understand the notion

of rank. Therefore, as an alternative to the regret-ratio, we

consider the position of the items in the ranked list and

propose the position distance of items to the top of the list

as the rank-regret measure. We define the rank-regret of a
subset of the data to be k , if it contains at least one of the
top-k tuples of any possible ranking function.

Since items in a dataset are usually not uniformly dis-

tributed by score, solutions that minimize regret-ratio do

not typically minimize rank-regret. In this paper, we seek

to find the smallest subset of the given data set that has

rank-regret of k . We call this subset the order k rank-regret
representative of the database. (We will write this as k-RRR,
or simply as RRR when k is understood from context). The

order 1 rank-regret representative of a database (for linear

ranking functions) is its convex hull: guaranteed to contain

the top choice of any linear ranking function. The convex

hull is usually very large: almost the entire data set with five

or more dimensions [5, 6]. By choosing a value of k larger

than 1, we can drastically reduce the size of the rank-regret

representative set, while guaranteeing everyone a choice in

their top k even if not the absolute top choice.

Unfortunately, finding RRR is NP-complete, even for three

dimensions. However, we find a bound on the maximum rank

of an item for a function and use it for designing efficient

approximation algorithms. We also find the connection of

the RRR problem with well-known notions in combinatorial

geometry such ask-set [17], a set ofk points ind dimensional

space separated from the remaining points by a hyperplane.

We show how the k-set notion can be used to find a set that

guarantees a rank-regret of k and a logarithmic approxima-

tion ratio on the output size. We then show how a smart

partitioning of the function space offers an elegant way of

finding the rank-regret representative.

Summary of contributions:

• We propose the rank-regret representative as a way of

choosing a small subset of the dataset guaranteed to con-

tain at least one good choice for every user.

• We provide a key theorem that, given the rank of an item

for a pair of functions, bounds the maximum rank of the

item for any function “between” these functions.

• For the 2D case, we provide an approximation algorithm

2drrr that guarantees to achieve the optimal output size

and the approximation ratio of 2 on the rank-regret.

• We identify the connection of the problem with the com-

binatorial geometry notion of k-set. We review that k-set
enumeration can be modeled by graph traversal. Using

the collection of k-sets, for the general case with constant

number of dimensions, we model the problem by geomet-

ric hitting set, and propose the approximation algorithm

mdrrr that guarantees the rank-regret of k and a loga-

rithmic approximation-ratio on its output size. We also

propose a randomized algorithm for k-set enumeration,

based on the coupon collector’s problem.

• We propose a function space partitioning algorithm mdrc

that, for a fixed number of dimensions, guarantees a fixed

approximation ratio on the rank-regret. As confirmed in

the experiments, applying a greedy strategy while parti-

tioning the space makes this algorithm both efficient and

effective in practice.

• We conduct extensive experiments on two real datasets to

verify the efficiency and effectiveness of our proposal.

In the following, we first formally define the terms, provide

the problem formulation, and study its complexity in § 2. We

provide the geometric interpretation of items, a dual space,

and some statements in § 3 that play key roles in the technical

sections. In § 4, we study the 2D problem and propose an

approximation algorithm for it. § 5 starts by revisiting the

k-set notion and its connection to our problem. Then we

provide the hitting set based approximation algorithm, as

well as the function space partitioning based algorithm, for

the general multi dimensional case. Experiment results and

related work are provided in § 6 and 7, respectively, and the

paper is concluded in § 8.

2 PROBLEM DEFINITION

Database:Consider a databaseD ofn tuples, each consisting
of d attributes A = {A1,A2, · · · ,Ad } that may be involved

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

264

id x1 x2
t1 0.8 0.28

t2 0.54 0.45

t3 0.67 0.6

t4 0.32 0.42

t5 0.46 0.72

t6 0.23 0.52

t7 0.91 0.43

Figure 1: A 2D dataset

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

:/4

t
1

t
2

t
3

t
4

t
5

t
6

t
7

X
2

X
1

Figure 2: Items of Fig. 1 ordered by f = x1 + x2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

d(t
1)

d(t
2)

d(t
3)

d(t
4)

d(t
5)

d(t
6)d(t

7)

d
(X

2)

d(X
1
)

k=2

Figure 3: Dual presentation of items in Fig. 1

in a user’s preference function
1
. Without loss of generality,

we consider Ai ∈ R for all i ∈ [1,d]. We represent each tuple

t ∈ D as a d-dimensional vector {t[1], t[2], · · · t[d]}.
Ranking function: Consider a ranking function f : Rd →
R that maps each tuple t to a numerical score. We say ti
outranks tj if and only if f (ti) > f (tj). We apply any arbitrary

tie-breaker when f (ti) = f (tj). For each t ∈ D, let ∇f (t) be
the rank of t in the ordered list of D based on f . In other

words, there are exactly ∇f (t) − 1 tuples in D that outrank t
according to f .
Ranking functions can take a wide variety of forms. A

popular type of ranking functions studied in the database

literature is linear ranking functions, i.e.,

f (t) =
d∑
i=1

wi · t[i], (1)

where ®w = {w1,w2, · · · ,wd } (∀i ∈ [1,d],wi > 0) is a weight

vector used to capture the importance of each attribute to

the final score of a tuple. We use L to refer to the set of all

possible linear ranking functions.

Maxima representation: For a given databaseD, if the set

of ranking functions of interest is known - say F - then we

can derive a compact maxima representation of D by only

including a tuple t ∈ D if it represents the maxima (i.e., is
the No. 1 ranked tuple) for at least one ranking function in

F. For example, if we focus on linear ranking functions in L,

then the maxima representation of D is what is known in

the computational geometry and database literature as the

convex hull [18] ofD. Similarly, the set of skyline tuples [4], a
superset of the convex hull, form the maxima representation

for the set of all monotonic ranking functions [19].

A problem with the maxima representation is its poten-

tially large size. For example, depending on the “curvature”

of the shape within which the tuples are distributed, even

in 2D, the convex hull can be as large as O(n1/3) [6]. The
1
Each tuple could also include additional attributes that are not involved in

the user preferences. We do not consider these attributes for the purpose of

this paper.

problem gets worse in higher dimensions [5, 20]. In practice,

even for a database with dimensionality as small as d = 5,

the convex hull can often be as large as O(n)[5].
To address this issue, we propose in this paper to relax

the definition of maxima representation in order to reduce

its size. Specifically, instead of requiring the representation

to contain the top-1 item for every ranking function, we

allow the representation to stand so long as it contains at

least one of the top-k items for every ranking function. This

tradeoff between the compactness of the representation and

the “satisfaction” of each ranking function is captured in the

following formal definitions of rank regret:

Definition 1. Given a subset of tuples X ⊆ D and a
ranking function f , the rank-regret of X for f is the minimum
rank of all tuples in X according to f . Formally,

RRf (X) = argmin
∀t ∈X

(∇f (t))

Definition 2. Given a subset of tuples X ⊆ D and a
set of ranking functions F, the rank-regret of X for F is the
maximum rank-regret of X for all functions in F - i.e.,

RRF(X) = argmax
∀f ∈F

(RRf (X))

Definition 3. Given a set of ranking functions F and a
user input k ≥ 1, we sayX ⊆ D is a rank-regret representation
of D if and only if X has the rank-regret of at most k for F,
and no other subset of D satisfies this condition while having
a smaller size than X . Formally:

min∀X ⊆D
∥X ∥ s .t . RRF(X) ≤ k

Problem Formulation: Finding the rank-regret representa-

tive of the datasetD is our objective in this paper. Therefore,

we define the problem as follows:

Rank-Regret Representative (RRR) Problem:

Given a dataset D, a set of ranking functions F, and a
user input k , find the rank-regret representative ofD for
F and k according to Definition 3.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

265

We note that there is a dual formulation of the problem -

i.e., a user specifies the output size |X |, and aims to find X
that has the minimum rank-regret. Interestingly, a solution

for the RRR problem can be easily adopted for solving this

dual problem. Given the solver for RRR, for the set size x , one
may apply a binary search to vary the value of k in the range

[1,n] and, for each value of k , call the solver to find RRR. If

the output size is larger than x , then the search continues

in the upper half of the search space for k , or otherwise
moves to the lower half. Given an optimal solver for RRR,

this algorithm is guaranteed to find the optimal solution for

the dual problem at a cost of an additional logn factor in the

running time.

In the rest of the paper, we focus on L, the class of linear

ranking functions.

Complexity analysis: The decision version of RRR prob-

lem asks if there exists a subset of size r of D that satisfies

the rank-regret of k . Somewhat surprisingly, even though

no solution for RRR exists in the literature, we can readily

use previous results to prove the NP-completeness of RRR.

Specifically, the (k, ϵ)-regret problem studied in Agrawal et

al. [14] asks if there exists a set that guarantees the maximum

regret-ratio of ϵ from the top k-th item of any linear ranking

function. Note that the (2, 0)-regret problem is the equivalent

of RRR problem for k = 2. Given that the NP-completeness

proof in [14] covers the (2, 0)-case when d ≥ 3, through a

reduction to the NP-completeness of the convex polytope

vertex cover (CPVC) problem proven by Das et al. [21], the

NP-completeness of RRR follows.

We would like to reemphasize that even though the com-

plexity of RRR was established in existing work, RRR is

still a novel problem to study because all previous work

in the regret ratio area focused on the case where ϵ > 0.

In other words, they seek approximations on the absolute

score achieved by tuples in the compact representation - a

strategy which, as discussed in the introduction, could lead

to a significant increase on rank regret because many tuples

may congregate in a small band of absolute scores. RRR, on

the other hand, focus on the rank perspective (i.e., ϵ = 0)

and assumes no specific distribution of the absolute scores.

3 GEOMETRIC INTERPRETATION OF

ITEMS

In this section, we use the geometric interpretation of items,

explain a dual transformation, and propose a theorem that

plays a key role in designing the RRR algorithms.

Each item t ∈ D with d scalar attributes can be viewed

as a point in Rd . As an example, Figure 1 shows a sample

dataset with n = 7 items, defined over d = 2 attributes.

Figure 2 shows these items as the points in R2. In this space,

every linear preference function f with the weight vector

®w = {w1,w2, · · · ,wd } can be viewed as a ray that starts at

the origin and passes through the point {w1,w2, · · · ,wd }.
For each item t ∈ D, consider the orthogonal line to the ray

of f that passes through t ; let the projection of t on f be the

intersection of this line with the ray of f . The ordering of

items based on f is the same as the ordering of the projection

of them on f where the items that are farther from the origin

are ranked higher. For example, Figure 2 shows the ray of

the function f = x1 + x2, as well as the ordering of items

based on it. As shown in the figure, the items are ranked as

t7, t3, t5, t1, t2, t6, and t4, based on f = x1 + x2. Every ray

starting at the origin in Rd is represented by d − 1 angles.

For example in R2, every ray is identified by a single angle.

In Figure 2, the ray of function f = x1 + x2 is identified by

the angle θ = π/4.
Small changes in the weights of a function will move the

corresponding ray slightly, and hence change the projection

points of items. However, it may not change the ordering of

items. In fact, while the function space is continuous and the

number of possible weight vectors is infinite, the number

of possible orderings between the items is, combinatorially,

bounded by n!.
In order to study the ranking of items based on vari-

ous functions, throughout this paper, we consider the dual

space [17] that transforms a tuple t in Rd to the hyperplane

d(t) as follows:

d(t) :
d∑
i=1

t[i].xi = 1 (2)

In the dual space, the ray of a linear function f with the

weight vectorw = {w1,w2, · · · ,wd } remains the same as the

original space: the origin-starting ray that passes through

the point w . The ordering of items based on a function is

specified by the intersection of hyperplanes d(ti) with it.

However, unlike the original space, the intersections that

are closer to the origin are ranked higher. Using Equation 2,

every tuple in two dimensional space gets transformed to

the line d(t) : t[1].x1 + t[2].x2 = 1. Figure 3 shows the items

in the example dataset of Figure 1 in the dual space. Looking

at the intersection of dual lines with the x1 axis in Figure 3,

one can see that the ordering of items based on f = x1 is t7,
t1, t3, t2, t5, t4, and t6; hence, for any set X containing t7 or
t1, for f = x1 (i.e.,w = {1, 0}), RRf (X) ≤ 2.

The set of dual hyperplanes defines a dissection of Rd into

connected convex cells named as the arrangement of hyper-

planes [17]. The borders of the cells in the arrangement are

d − 1 dimensional facets. For example, in Figure 3, the ar-

rangement of dual lines dissect the R2 space into connected

convex polygons. The borders of the convex polygons are

one dimensional line segments. For every facet in the ar-

rangement consider a line segment starting from the origin

and ending on it. Let the level of the facet be the number

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

266

of hyperplanes intersecting this line segment. We define a

top-k border (or simply k-border) as the set of facets having
level k . For example, the red chain consisting of piecewise

linear segments in Figure 3, shows the top-k border for k = 2.

For any function f , the hyperplanes intersecting the ray of

f on or below the top-k border are the top-k . Looking at the
red line in Figure 3, one may confirm that:

• The top-k border is not necessarily convex.

• A dual hyperplane d(ti) may contain more than one

facet of the top-k border. For example, d(t3) in Figure 3

contains two line segments of the top-2 border.

In the following, we propose an important theorem that is

the key to designing the 2D algorithm, as well as the practical

algorithm in MD.

Theorem 1. For any item t ∈ D consider two (if any)
functions f and f ′ where ∇f (t) ≤ k1 and ∇f ′(t) ≤ k2. Also,
consider a line segment lf ,f ′ starting from a point on the ray
of f and ending at a point on the ray of f ′. For any function
f ′′ that its ray intersects lf ,f ′ , ∇f ′′(t) ≤ k1 + k2.

Proof. We use the dual space and prove the theorem by

contradiction. In the dual space, consider the 2D plane pass-

ing through the rays of f and f ′ – referred as R2f ,f ′ . Note

that R2f ,f ′ is the affine space for the origin starting rays that

intersect lf ,f ′ . The intersection of each hyperplane d(ti) and
this plane is a line that we name as L(ti). The arrangement

of lines L(ti), ∀ti ∈ D, identify the orderings of items t ∈ D
based on any origin-starting ray (function) that falls in R2f ,f ′ .

This is similar to Figure 3 in that the arrangement of lines

d(ti) identify the possible ordering of items in Figure 1. For

any pair of items t1 and t2, the intersection of the lines L(t1)
and L(t2) shows the function (the origin-starting ray that

passes through the intersection) that ranks t1 and t2 equally
well, while on one side of this point t1 outranks t2, but t2
outranks t1 on the other side. Note that since L(t1) and L(t2)
are both (one dimensional) lines, they intersect at most once.

Now consider the item t and its corresponding line L(t)
in the arrangement. Since ∇f (t) ≤ k1, there exist at most

k − 1 lines below it on the ray of f . Moving from the ray of

f toward the ray of f ′, in order for t to have a rank greater

than k1 + k2, L(t) has to intersect with at least k2 lines L(ti)
in a way that after the intersection points (toward f ′) those
points outrank t . Since every pair of lines has at most one

intersection point, L(t)will not intersect with those lines any
further. As a result, those (at least) k2 points keep outranking
t , and thus t cannot have a rank smaller than or equal to k2
again, which contradicts the fact that ∇f ′(t) ≤ k2. □

Intuitively, Theorem 1 states that if f ′′ lies “between” f
and f ′, then the rank of an item based on f ′′ is at worst
the summation of its rank in f and f ′. We use this result in

the next section, as well as § 5, for providing approximation

algorithms for RRR.

4 RRR IN 2D

In this section, we study the special case of two dimensional

(2D) data in which d = 2. In § 2, we discussed the complex-

ity of the problem for d ≥ 3. However, we believe that the

complexity of the problem is due to the complexity of cov-

ering the possible top-k results and therefore, provide an

approximation algorithm for 2D. We consider the items in

the dual space and use Theorem 1 as the key for designing

the algorithm 2drrr. Later in § 5, we extend this theorem to

design a practical algorithm for general cases.

Based on our discussion about the top-k border in the pre-

vious section, each dual line may contain multiple segments

of the top-k border. As a results, for each item, the set of

functions for which the item is in the top-k , is a collection
of disjoint intervals. Based on Theorem 1, if we take the

union of these intervals (i.e., the convex closure), we get a

single interval, in which the item is guaranteed to be in the

top-2k . This, we are effectively applying Theorem 1 to get

the 2-approximation factor.

At a high-level, the algorithm 2drrr consists of two parts.

It first makes an angular sweep of a ray anchored at the

origin, from the x-axis (angle 0
◦
) toward the y-axis (angle

π/2◦) so that for every item t ∈ D, it finds the first (smallest

angle) and the last function (largest angle) for which t is in
top-k . Then it transforms the problem into an instance of

one-dimensional range cover [22] and solves it optimally.

The first part, i.e., the angular sweep, is described in Al-

gorithm 1 (the function findranges)
2
. For every item t the

algorithm aims to find the first (b[t]) and the last (e[t]) func-
tion for which ∇f (t) ≤ k . findranges initially orders the

items based on their x1-coordinates and puts them in a list L
that keeps tracks of orderings while moving from x to y-axis.

It uses a min-heap data structure to maintain the ordering

exchanges between the adjacent items in L. Please note that
each ordering exchange [23] is always between two adja-

cent items in L. Using Equation 2, the angle of the ordering

exchange between two items Li and Li+1 is as follows:

θLi ,Li+1 = arctan

Li+1[1] − Li [1]
Li [2] − Li+1[2]

For the items that are initially in the top-k , findranges
sets b[t] to the angle 0

◦
. Then, it sweeps the ray and pops

the next ordering exchange from the heap. Upon visiting an

ordering exchange, the algorithm updates the ordered list

L. If the exchange occurs between the items at rank k and

k + 1: (i) if this is the first time Lk+1 enters the top-k , the
algorithm sets b[Lk+1] as the current angle, and (ii) for the

item Lk that leaves the top-k , it sets e[k] to the current angle.
2
Pseudocode of all algorithms are provided in Appendix D.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

267

0 :/2

t
1

t
3

t
5

t
7

Figure 4: The ranges for Figure 3

Figure 5: A contradictory example

The algorithm will update e[k] later on if it becomes a top-k
again. Figure 4 shows the ranges for the example dataset in

Figure 1 and k = 2 (k-border is shown in Figure 3).

After computing the ranges for the items, the problem is

transformed into a one dimensional range cover instance.

The objective is to cover the function space (the range be-

tween 0
◦
and π/2◦) using the least number of ranges. The

greedy approach leads to the optimal solution for this prob-

lem – that is, at every iteration, select the range with the

maximum coverage of the uncovered space.

At every iteration, the uncovered space is identified by a

set of intervals. Due to the greedy nature of the algorithm,

the range of each remaining item intersects with at most

one uncovered interval. To explain this by contradiction,

consider an item t that its range intersects with two (or

more) uncovered intervals (Figure 5). Let u1 and u2 be these
intervals. Also, let us name the covered space betweenu1 and
u2 as c1,2. (i) Since the range of t intersects with both u1 and
u2, c1,2 is contained within the range of t , which implies the

range of t is larger than c1,2. (ii) c1,2 should be covered by the
range of at least one previously selected item t ′. Also, since
the ranges of items are continuous, the range of t ′ cannot
be larger than c1,2. As a result, the range of t

′
is less than

the range of t , which contradicts the fact that the ranges are

selected greedily.

Using this observation, after finding the ranges for each

item, 2drrr (Algorithm 2) uses a sorted list to keep track of

the uncovered intervals. The elements of the list are in the

form of ⟨θi , ⊢ /⊣⟩, where ⊢ (resp. ⊣) specifies that this is the
beginning (resp. the end) of an uncovered interval.

At every iteration, for each item that has still not been

selected, the algorithm applies a binary search to find the

element inUk that b[ti] falls right before it, i.e.,Uk [1] ≥ b[ti]
and ∄k ′ < k such that Uk ′[1] ≥ b[ti]. Then depending on

whether Uk specifies the beginning (⊢) or the end (⊣) of an
uncovered interval, it computes how much of the uncovered

region ti covers. The algorithm chooses the item with the

maximum coverage, adds it to the selected set, and updates

the uncovered intervals accordingly. It stops when no more

uncovered intervals are left.

As an example, for the dataset in Figure 1, if we execute

Algorithm 2 on the ranges provided in Figure 4, it returns

the set {t3, t1}.
Theorem 2. The algorithm 2drrr runs inO(n2 logn) time.

Proof. Intuitively, the summation of the cost of each iter-

ation of the greedy algorithm is used to derive the running

time. Please find the details of the proof in Appendix C. □

Theorem 3. The output size of 2drrr is not more than the
size of the optimal solution for RRR.

Proof. The proof follows from the fact that the ranges

identified by Algorithm 1 provide a superset for each top-k
result. Please refer to Appendix C for details. □

Theorem 4. The output of 2drrr guarantees the maximum
rank-regret of 2k .

Proof. This result is easy to prove, by applying Theo-

rem 1. The details are provided in Appendix C. □

5 RRR IN MD

In multi-dimensional cases (MD) where d > 2, the contin-

uous function space becomes problematic, the geometric

shapes become complex, and even the operations such as

computing the volume of a shape and the set operations be-

come inefficient. Therefore, in this section, we use the k-set
notion [17] to take an alternative route for solving the RRR

problem by transforming the continuous function space to

discrete sets. This leads to the design of an approximation

algorithm that guarantees the rank-regret of k , introduces a
log approximation-ratio in the output size, and runs in poly-

nomial time, for a constant number of dimensions. We will

explain the details of this algorithm in § 5.2. Then, in § 5.3,

we propose the function-space partitioning algorithm mdrc

that uses the result of Theorem 1 in its design for solving

the problem without finding the k-sets. Note that proposed
algorithms in this section are also applicable for 2D.

5.1 k-Set and Its Connection to RRR

k-set is an important notion in combinatorial geometry with

applications including half-space range search [24, 25]. Given

a set of points in Rd , a k-set is a collection of exactly k points

in the point set that are strictly separable from the rest of

points using a d − 1 dimensional hyperplane.

Consider a finite set P ofn points in the euclidean spaceRd .
A hyperplaneh partitions it into P+ = P∩h+ and P− = P∩h−,
called half spaces of P , where h+ (resp. h−) is the open half

space above
3
(resp. below) h [17]. The hyperplane h in the

3
We use the word above (resp. below) to refer to the half space that

does not contain (resp. contains) the origin.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

268

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t
1

t
2

t
3

t
4

t
5

t
6

t
7

x

y

Figure 6: The k-sets of Figure 1 for k = 2.

Euclidean space Rd can be uniquely defined by a point ρ on

it and a d dimensional normal vector v orthogonal to it, and

has the following equation:

v[1](x1 − ρ[1]) +v[2](x2 − ρ[2]) + · · · +v[d](xd − ρ[d]) = 1

(3)

A half space S of P is a k-set if card(S) = k . Without loss of

generality, we consider the positive half spaces and v[i] ≥ 0.

That is, S ⊆ P is a k-set if ∃ a point ρ and the positive

normal vector v such that S = h(ρ,v)+ and card(h(ρ,v)+) =
k . For example, the empty set is a 0-set and each point in

the convex hull of P is a 1-set. We use S to refer to the

collection of k-sets of P ; i.e., S = {S ⊆ P |S is a k-set}. For
example, Figure 6 shows the collection of k-sets for k = 2

for the dataset of Figure 1. As we can see, the 2-sets are

S = {{t1, t7}, {t7, t3}, {t3, t5}}.
If we consider items t ∈ D as points in Rd , the notion of

k-sets is interestingly related to the notion of top-k items, as

the following arguments show:

• A hyperplaneh(ρ,v) describes the set of all points with the
same score as point ρ, for the ranking function f with the

weight vectorv , i.e., the set of attribute-value combinations

with the same scores as ρ based on the ranking function

f .
• If we consider a hyperplaneh(ρ,v)where card(h(ρ,v)+) =
k , the set of points belonging to h(ρ,v)+ is equivalent to
the top-k items of D for the ranking function with weight

vector v .

Lemma 5. Let S be the collection of all k-sets for the points
corresponding to the items t ∈ D. For each possible ranking
function f , there exists a k-set S ∈ S such that top-k(f)=S .

Proof. We provide the proof by contradiction. Please re-

fer to Appendix C for the details. □

Based on Lemma 5, all possible answers to top-k queries

on linear ranking functions can be captured by the collection

of k-sets. This will help us in solving the RRR problem in

§ 5.2. As we shall explain in § 7, the best known upper bound

on the number of k-sets in R2 and R3 are O(nk1/3) [26] and
O(nk3/2) [27]. For d > 3, the best known upper bound is

O(nd−ε) [28], where ε > 0 is a small constant
4
. However, as

we shall show in § 6, in practice |S| is significantly smaller

than the upper bound.

In the technical report [29], we review the k-set enumera-

tion. For the 2D case, a ray sweeping algorithm (similar to

Algorithm 1) that follows the k-border finds the collection
of k-sets. For higher dimensions, the enumeration can be

modeled as a graph traversal problem [30]. The algorithm

considers the k-set graph G(V ,E) in which the vertices are

the k-sets and there is an edge between two k-sets if the size
of their intersection is k − 1. We discuss the connectivity of

the graph, and explain how to traverse it and enumerate the

k-sets.
Next, we use the k-set notion for developing an approxi-

mation algorithm for RRR that guarantees a rank-regret of k
and a logarithmic approximation ratio on the output size.

5.2 MDRRR: Hitting-Set Based

Approximation Algorithm

As we discussed in § 5.1 the collection of k-sets contains
the set of all possible top-k results for the linear ranking

functions. As a result, a set of tuples X ⊆ D that contains at

least one item from each k-set is guaranteed to have at least

one of the items in the top-k of any linear ranking function;

which implies that X satisfies the rank regret of k . On the

other hand, since every k-set S = h(ρ,v)+ is at least the top-k
of the linear function f with the weight vector v , a subset
X ′ ⊆ D that does not contain any of the items of a k-set S
does not satisfy the rank regret of k .
One can see that given the collection of k-sets, our RRR

problem is similar to the minimum hitting set problem [31].

Given a universe of n items D, and a collection of sets S
where each set S ∈ S is a subset of D, the minimum hit-

ting set problem asks for the smallest set of items X ′ ⊆ D
such that X ′

has a non-empty intersection with every set

S of S. The minimum hitting set problem is known to be

NP-complete [31] and the existing approximation algorithm

provides a factor of O(logn) from the optimal size c . A de-

terministic polynomial time algorithm with an improved

factor ofO(δ logδc) had been proposed by [22] for a specific

instance of this problem – the geometric hitting set prob-
lem – where δ is the Vapnik Chervonenkis dimension (VC-

dimension). The VC-dimension is defined as the cardinality

of the largest set of points Y ⊆ D that can be shattered by
S, i.e., the system introduced by S on Y contains all the

subsets of Y [32]. In the RRR problem, since the k-sets are
defined by half spaces, the VC-dimension is d (the number

of attribute) [22, 33].

4
Note that this is polynomial for a constant d .

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

269

Next we formally show the mapping of the RRR problem

into the geometric hitting set problem, and provide the detail

of approximation algorithm.

Mapping to Geometric hitting set problem: Given

a set space R = (D,S), where S is the collection of

k-sets and D = ∪
∀si ∈S

Si is the set of points, find the

smallest set X ⊆ D such that ∀S ∈ S,∃t ∈ X s.t. t ∈ S .

In mdrrr (Algorithm 3), we use the approximation algo-

rithm for the geometric hitting set problem that is proposed

in [22] using the concept of ϵ-nets [34]. More formally, an ϵ-
net of D for S is a set of points X ⊆ D such that X contains

a point for every S ∈ S with size of at least ϵ |D |. Algo-
rithm 3 shows the psudocode of mdrrr, the approximation

algorithm that uses the mapping to geometric hitting set

problem. The algorithm initializes the weight of each point

to one. It then iteratively, in polynomial time, selects (using

weighted sampling) a small-sized set of tuples X ⊆ D that

intersects all highly weighted sets in S. More formally if a

set X ⊆ D intersects each k-set S of S with weight larger

than ϵW (D), whereW (D) is the total weights of of points
in D, then X is an ϵ-net. If X is not a hitting set (lines 4-9),

then the algorithm doubles the weight of the points in the

particular sets S of S missed by X .

Discussion: In summary, considering the one-to-one map-

ping between the RRR problem and the geometric hitting set

problem over the collection of k-sets, we can see that:

• mdrrr guarantees rank-regret of k . That is because mdrrr
is guaranteed to return at least one item from each k-set
in S, the set of all top-k results.

• mdrrr guarantees the approximation ratio of O(d logdc),
where c is the optimal output size and d is the number of

attributes.

• mdrrr runs in polynomial time. This is because it has been

shown in [22] that the number of iterations the algorithm

must perform is atmostO(c log n′

c), wheren′ is the number

of points in D, and c is the size of the optimal hitting set.

Moreover, recall that mdrrr needs the collection of k-
sets, which can be enumerated by traversing the k-set
graph [29] and runs in polynomial time.

Nevertheless, although it runs in polynomial time, the mdrrr

algorithm is quite impractical as described above. It needs

the collection of k-sets (S), as input. Therefore, its efficiency

depends on the k-set enumeration and the size of |S|. Al-
though, as we shall show in § 6, in practice the size of |S| is
reasonable and, as explained in the technical report [29], the

k-set graph traversal algorithm is linear in |S|, the algorithm
does not scale beyond a few hundred items in practice. The

reason is that while exploring each k-set, it needs to solve

much as n linear programs, each of size n constraints over d
variables. This makes the enumeration extremely inefficient.

Figure 7: Illustration of overlap between the k-sets of a sample of

20 items from the DOT dataset (c.f. § 6) while d = 2

Therefore, we need to explore practical alternatives to the

k-set enumeration algorithm.

Hence, we propose k-setr , a sampling-based alternative

for the k-set enumeration. k-setr is a randomized approach

based on the coupon collector’s problem [35] that considers

the one mapping between the linear ranking functions and

the k-sets and generates random ranking functions for k-set
enumeration. Further details about k-setr is provided in

Appendix A.

Let Sr be the collection of k-sets discovered by k-setr .

After finding Sr , we pass it, instead of S to mdrrr. Since

k-setr does not guarantee the discovery of all k-sets, the
output of the hitting set algorithm does not guarantee the

rank-regret of k for the missing k-sets. However, the missing

k-sets (if any) are expected to be in the very small regions

that has never been hit by a randomly generated function.

Also, the fact that the adjacent k-sets in the k-set graph vary

in only one item, further reduces the chance that a missing

k-set is not covered. Therefore, this is very unlikely that the

top-k of a randomly generated function is not within the

output.

On the other hand, since k-setr finds a subset ofk-sets, the
output size for running the hitting set on top of the subset

(i.e., Sr) is not more than the output size of running the

hitting set on S. As a result, the output size remains within

the logarithmic approximation factor.

5.3 MDRC: Function Space Partitioning

Given the collection of k-sets, the hitting set based approx-

imation algorithm mdrrr guarantees the rank-regret of k
while introducing a logarithmic approximation in its output

size. Despite these nice guarantees, mdrrr still suffers from

k-set enumeration, as it can only be executed after the k-sets
have been discovered. Therefore, as we shall show in § 6, in

practice it does not scale well for large problem instances.

One observation from the k-set graph is the high overlap

between the k-sets, as the adjacent k-sets differ in only one

item. As a result many of them may share at least one item.

For example, we selected 20 random items from the DOT

(Department of Transportation) dataset (c.f. § 6) while set-

ting d = 2. By performing an angular sweep of a ray from

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

270

the x-axis to the y-axis while following the k-border (see
Figure 3), we enumerated the k-sets. In Figure 8, we illustrate

the overlap between these k-sets. The figure confirms the

high overlap between the k-sets where the item with id 2

appears in all except one of the sets. This motivates the idea

of finding these items without enumerating the k-sets. In
addition, the top-k of two similar functions (where the angle

between their corresponding rays is small) are more likely

to intersect.

We use these observations in this subsection and propose

the function-space partitioning algorithm mdrc which (simi-

lar to the 2D algorithm 2drrr) leverages Theorem 1 in its

design. The algorithm is based on the extension of Theorem 1

that bounds the rank of an item that appears in the top-k
of the functions corresponding to the corners of a convex

polytope in the function space.

mdrc considers the function space in which every function

(i.e., a ray starting from the origin) in Rd is identified as a

set of d − 1 angles. Rather than discovering the k-sets and
transforming the problem to a hitting set instance, here our

objective is to cover the continuous function space (instead of
the discrete k-set space). Intuitively, we propose a recursive
algorithm which, at every recursive step, considers a hyper-

rectangle in the function space, and either assigns a tuple

to the functions in the space, or uses a round robin strategy

on the d − 1 angles to break down the space in two halves,

and to continue the algorithm in each half. This partitioning

strategy is similar to the Quadtree data structure [36]. The

reason for choosing this strategy is tomaximize the similarity

of the functions in the corners of the hyper-rectangles to

increase the probability that their top-k sets intersect. mdrc

also follows a greedy strategy in covering the function space,

by partitioning a hyper-rectangle only if it cannot assign a

tuple to it.

Consider the space of possible ranking functions in Rd .
This is identified by a set ofd−1 anglesΘ = {θ1,θ2, · · · ,θd−1},
where θi ∈ [0,π/2]. To explain the algorithm, consider the

binary tree where each node is associated with a hyper-

rectangle in the angle space, specified by a range vector of

sized−1. The root of the tree is the complete angle space, that

is the hyper-rectangle defined between the ranges [0,π/2] on
each dimension. Let the level of the nodes increase from top

to bottom, with the level of the root being 0. Every node at

level l uses the angle θl%(d−1)+1 to partition the space in two

halves, the negative half (the left child) and the positive half

(the right child). Figure 8 illustrates an example of such tree

for 3D. The root uses the angle θ1 to partition the space. The

left child of the root is associated with the rectangle specified

by the ranges {[0,π/4], [0,π/2]} and the right child shows

the one by {[π/4,π/2], [0,π/2]}. The nodes at level 1 use

the angle θ1%2+1 = θ2 for partitioning the space.

Figure 8: Illustration of space partitioning and the recursion tree

of Algorithm 5

At every node, the algorithm checks the top-k items in the

corners of the node’s hyper-rectangle and if there exists an

item that is common to all of them, returns it. Otherwise, it

generates the children of the node and iterates the algorithm

on the children. The algorithm combines the outputs of each

of the halves as its output. We implement mdrc as a recursive

algorithm (Algorithm 5). The algorithm is started by calling

mdrc (D,n,d,k, 0, {[0,π/2] |∀0 < i < d}).
As a running example for the algorithm, let us consider

Figure 8. The algorithm starts at the root, partitions the

space in two halves, as the intersection of the top-k of its

hyper-rectangle’s corners are empty, and does the recursion

at nodes b and c . The node c finds the item tc which appears

in the top-k of all of its corners and returns it to a. Node b,
however, cannot find such an item and does the recursion by

partitioning its hyper-rectangle along the angle θ2. Nodes d
and e find the items td and te and return them to b which

returns {td , te } to the root. The root returns {tc , td , te } as the
representative.

Theorem 6. The algorithm mdrc guarantees the maximum
rank-regret of dk .

Proof. This proof uses Theorem 1 to extend the maxi-

mum rank bound from one dimensional ranges to (d − 1)
dimensions. Please find the details in Appendix C. □

Theorem 6 uses the result of Theorem 1 to provide an

upper bound on the maximum rank of the items assigned to

each hyper-rectangle, for the functions inside it. However, as

we shall show in § 6, the rank-regret of its output in practice

is much less. For all the experiments we ran, the output of

mdrc satisfied the maximum rank of k for all settings. Also,

following the greedy nature in partitioning the function

space, as we shall show in § 6, the output of mdrc in all

cases was less than 40. In addition, in § 6, we show that this

algorithm is very efficient and scalable in practice.

6 EXPERIMENTAL EVALUATION

6.1 Datasets

US Department of Transportation flight database (DOT)5: This
database is widely used by third-party websites to identify

5
www.transtats.bts.gov/DL_SelectFields.asp?

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

271

www.transtats.bts.gov/DL_SelectFields.asp?

the on-time performance of flights, routes, airports, and air-

lines. After removing the records with missing values, the

dataset contains 457,892 records, for all flights conducted

by the 14 US carriers in the last months of 2017, over the

scalar attributes Dep-Delay, Taxi-Out, Actual-elapsed-time,

Arrival-Delay, Air-time, Distance, Taxi-in, and CRS-elapsed

-time. For Air-time and Distance higher values are preferred

while for the rest of attributes lower values are better.

Blue Nile (BN)6: Blue Nile is the largest diamonds online

retailer in the world. We collected its catalog that contained

116,300 diamonds at the time of our collection. We consider

the scalar attribute Carat, Depth, LengthWidthRatio, Table,

and Price. For all attributes, except Price, higher values are

preferred. The value of the diamonds highly depend on these

measurement, small changes in these scores may mean a

lot in terms of the quality of the jewel: For example, while

the listed diamonds range from 0.23 carat to 20.97, minor

changes in the carat affects the price. We considered two

similar diamonds, where one is 0.5 carat and the other is

0.53 carat. Even though all other measures are similar for

both diamonds, the second is 30% more expensive than the

first one. This is also correct for Depth, LengthWidthRatio,

and Table. Such settings where slight changes in the scores
may dramatically affect the value (and the rank) of the items,

highlight the motivation of rank-regret.

Wine dataset7: Each year, Wine Spectator publishes a list

of top wines reviewed over past 12 months. This annual

list honors successful wineries, regions and vintages around

the world. We collect their list of top wines for 2017. The

dataset contains 100 items, defined over the attributes rating,

vintage year, and price. We use this dataset in § 6.2 for

validating our proposal.

We normalize the values of datasets in a way that a value

v of a higher-preferred attributeA as v/max(A) and for each
lower-preferred attributeA, we do it as (max(A)−v)/max(A).

Next, we start the experiments by validating our proposal

in § 6.2, using the wine dataset. Then, we evaluate the per-

formance of the proposed algorithms in § 6.3.

6.2 Validation

Users of a dataset with multiple attributes may have different

preferences for finding the “best” fit for their need. Pareto-

optimal is the set that contains the best of any preference

function, however, may be large. A neat way of finding a

smaller subset is by defining a notion of regret and bounding

it for any specific user. While regret-ratio defines regret on

the score, rank-regret does it based on the ranking of items.

Letmo be the maximum score of an item in the dataset based

on f , whilema is the one for a subset of data. The subset

6
www.bluenile.com/diamond-search?

7
http://top100.winespectator.com/lists/

satisfies a regret-ratio of δ for f , if mo−ma
mo

≤ δ . The rank-
regret of the subset, on the other hand, is k , if it contains one
of the top-k of the dataset based on f .
A problem with considering score for defining regret is

that the actual scores assigned by the functions are usually

made up and do not carry a significant meaning. Further-

more, there might even be a non-linearity in the raw attribute

values themselves. That is, uniform changes in attribute val-

ues may not uniformly change the “quality” of an item with

that value. These motivate the rank difference as an alterna-

tive for defining the measure of regret. In this experiment,

we use our wine dataset to showcase this in real world.

Consider a user who prefers the wine with maximum

rating. Wine ratings are in the scale of 0 to 100. In our

dataset, the wine with the maximum rating is "Clos des Pa-

pes Châteauneuf-du-Pape" with the rating of 98. A regret

of 6 points on the rating gives a small regret-ratio of 0.06.

The small regret-ratio indicates the containment of a good

“representative” for the user’s choice. Note that any subset

that contains a wine with rating of 92 satisfies this regret-

ratio. However, a wine with this ranking is even below the

median of the dataset based on rating! An example of such a

wine is "Volver Alicante Tarima Hill Old Vines". On the other

hand, consider a subset that satisfies the rank-regret of top-6

(top-6%, in other words). Such a subset should contain one

of the top 6 wines based on rating, a good approximation for

the top-1. "Cantina del Pino Barbaresco Ovello" (with rating

of 97) is such a good representative.

A similar story happens for a ranking function that con-

siders the combination of vintage year and rating with equal

weights on the normalized values. In this case, an item that

satisfies the small regret-ratio of 0.05 falls in the middle of the

ranked list, i.e., half of the wines in the dataset approximate

the top choice based on this function better than it does.

6.3 Performance Evaluation

After validating our proposal, here we study the performance

of our algorithms. In addition to the efficiency, we evaluate

the effectiveness of the proposed algorithms. That is, we

study if the algorithms can find a small subset with bounded

rank-regret based on k . We consider the running time as the

efficiency measure and the rank-regret of output set, as well

as its size, for effectiveness. Computing the exact rank-regret

of a set needs the construction of the arrangement of items

in the dual space which is not scalable to the large settings.

Therefore, in the experiments for estimating the rank-regret

of a set inMD,we draw 10,000 functions uniformly at random

(based on Lines 4 to 6 of Algorithm 4) and consider them for

estimating the rank-regret.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

272

www.bluenile.com/diamond-search?
http://top100.winespectator.com/lists/

1000 10000 100000 400000
n -- logscale

10-2

10-1

100

101

102

103

104

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

2DRRR
MDRRR
MDRC

Figure 9: DOT dataset, 2D, Effi-

ciency: Impact of dataset size (n)

1000 10000 100000 400000
n -- logscale

101

102

103

R
an

kR
eg

re
t

--
 lo

g
sc

al
e

0

1

2

3

4

5

6

7

o
u

tp
u

t
si

ze

2DRRR
MDRRR
MDRC

Figure 10: DOT dataset, 2D, Ef-

fectiveness: Impact of dataset

size

0.002 0.01 0.1
k (percent) -- logscale

10-1

100

101

102

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

2DRRR
MDRRR
MDRC

Figure 11: DOT dataset, 2D, Effi-

ciency: Impact of k

10-2 10-1

k (percent) -- logscale

101

102

103

R
an

kR
eg

re
t

--
 lo

g
sc

al
e

0

1

2

3

4

5

6

7

o
u

tp
u

t
si

ze

2DRRR
MDRRR
MDRC

Figure 12: DOT dataset, 2D, Ef-

fectiveness: Impact of k

10-3 10-2 10-1

k (percent) -- logscale

100

102

104

106

108

n
u

m
b

er
 o

f
k-

se
ts

 -
-

lo
g

sc
al

e

100

101

102

103

104

105

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

195K

6.8K

12430
actual size
upper bound
n=10,000

Figure 13:DOTdataset,MD: Im-

pact of k on |S |

2 3 4 5 6
d

100

105

1010

1015

1020

1025

n
u

m
b

er
 o

f
k-

se
ts

 -
-

lo
g

sc
al

e

100

101

102

103

104

105

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

442K140K115K

7.1K
62

actual size
upper bound
n=10,000

Figure 14:DOTdataset,MD: Im-

pact of d on |S |

10-3 10-2 10-1

k (percent) -- logscale

100

102

104

106

108

n
u

m
b

er
 o

f
k-

se
ts

 -
-

lo
g

sc
al

e

100

101

102

103

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

1.2K

296

37
18

actual size upper bound n=10,000

Figure 15: BN dataset, MD: Im-

pact of k on |S |

2 3 4 5
d

100

105

1010

1015

1020

n
u

m
b

er
 o

f
k-

se
ts

 -
-

lo
g

sc
al

e

101

102

103

104

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

37K27K

615280

actual size
upper bound
n=10,000

Figure 16: BN dataset, MD: Im-

pact of d on |S |

6.3.1 Setup. All experiments were performed on a Linux

machine with a 3.8 GHz Intel Xeon processor and 64 GB

memory. The algorithms are implemented using Python 2.7.

Algorithms evaluated. In addition to the theoretical analy-

ses, we evaluate the algorithms proposed in this paper. In § 4,

we proposed 2drrr, the algorithm that uses Theorem 1 to

transform the problem into one dimensional range covering.

This quadratic algorithm guarantees the approximation ratio

of 2 on the maximum rank regret of its output. In this section,

we shall show that in all the cases it generated an output

with maximum rank of k . For 2D, we implemented the ray-

sweeping algorithm (similar to Algorithm 1) that enumerates

the k-sets by following the changes in the k-border (Figure 3).
We also implemented the k-set graph based enumeration[29]

for MD. We did not include the results here, but we observed

that it does not scale beyond a few hundred items (that is

because it need to solve much as O(nk) linear programs for

a single k-set). Instead, we apply the randomized algorithm

k-setr for finding the k-sets (while setting the termination

condition c to 100). The MD algorithms proposed in § 5 are

the hitting-set based algorithmmdrrr and the space function

covering algorithm mdrc. As we explained in § 1 and 7, all

of the existing algorithms proposed for different varieties of

regret-ratio consider the score difference, as the measure of

regret and apply the optimization based on it. Still to verify

this, we consider comparing with them as the baseline. As

we shall further explain in § 7, [5, 14] propose similar approx-

imation algorithms for the regret-ratio minimizing problem

with controllable additive approximation factors. Both of

these works are based on discretizing the function space and

transforming the problem into hitting set instances [14, 16].

We adopt the hd-rrms algorithm [5] as baseline.

Default values. For each experiment, we study the impact

of varying one variable while fixing others to their default

values. The default values are as following: (i) dataset size

(n): 10,000, (ii) number of attributes (d): 3, and (iii) k : top-1%.

6.3.2 2D Results. We use a ray sweeping algorithm, sim-

ilar to Algorithm 1, to enumerates the k-sets by following

the changes in the k-border. We also use the ray sweeping

to find out the (exact) rank regret of a set in 2D. Due to

the space limitations, for 2D, we only provide the plots for

the DOT dataset. Figures 9 and 10 show the performance of

the algorithms for varying the dataset size (n) from 1000 to

400,000. The running times of 2drrr and mdrrr are domi-

nated by the time required by the sweeping line algorithms

for finding the ranges (Algorithm 1) and the k-sets. Since
these two algorithms have similar structure, their running

times are similar. Still, because the sweeping ray algorithm is

quadratic, these algorithms did not scale beyond 100K items.

On the other hand mdrc does not depend on finding the k-set
or sweeping a line. Rather, it partitions the space until top-k
of two corners of each range intersect. Due to the binary

search nature of the algorithm that breaks the space by half

at every iteration, soon the functions in the two ends of each

range become similar enough to share an item in their top-k .
Therefore, the algorithm performs very well in practice, and

scales well for large settings. For example, it took less than a

second to run mdrc for 100K items, while 2drrr and mdrrr

required several thousand seconds. See Figure 9. In Figure 10,

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

273

and all other plots with, two y-axes, the left axis show the

rank-regret and the right one is the output size. The dashed

green line show the border for the rank-regret of 1%.

The algorithm 2drrr guarantees the optimal output size.

For all settings its output also had the rank-regret of less

than k , confirming that it returned the optimal solution. On

the other hand, mdrrr guarantees the rank-regret of k and

provides the logarithmic approximation ratio on its output

size. This is also confirmed in the figure, where the rank

regret of the output of mdrrr is always below the green line.

However, the size of its output is more than the optimal for

two (out of three) settings. the space partitioning algorithm

mdrrr provides the output which in all cases satisfied the

rank-regret of k and also its output size was the minimum,

confirming that it also discovered the optimal output. In

Figures 11 and 12, we fix the dataset size and other variables

to the default and study the effect of changing k on the

efficiency of the algorithm and the quality of their outputs.

Similar to Figure 9, 2drrr and mdrrr have similar running

times (due to applying the ray sweeping algorithm) and mdrc

runs within a few milliseconds for all settings. On the other

hand, in Figure 12, the output size of mdrc is in all cases,

except one, equal to the optimal output size (of 2drrr) while,

due to its logarithmic approximation ratio, the hitting set

based mdrrr generates larger outputs.mdrrr guarantees

the rank-regret of k , which is confirmed in the figure. mdrc

also provided the maximum rank-regret of k for all settings

and 2drrr did so for all, except k = 0.004% for which its

maximum rank regret was slightly above the threshold.

k-set size. Next, we compare the actual size of k-sets with
the theoretical upper-bounds, using the k-setr algorithm.

To do so, we select the DOT and BN datasets, set number

of items to 10K and study the impact of varying k and d .
The results are provided in Figures 13, 14, 15, and 16. The

left-y-axis in the figures show the size and the right-y-axis

show the running time of the k-setr algorithm. The hor-

izontal green line in the figures highlight the number of

items n = 10K. Figures 13 and 15 show the results for vary-

ing k for DOT and BN, respectively. First, as observed in

the figures, the actual sizes of the k-sets are significantly

smaller than the best known theoretical upper-bound for

3D (O(nk3/2) [27]). In fact, the number of k-sets is closer to
n than the upper-bounds. Second, the number of k-sets for
k = 10% is significantly larger than the number of k-sets
for smaller values of k . Recall that the k-sets are densely

overlapping, as the neighboring k-sets in the k-set graph
only differ in one item. As k increases (up until k = 50%), for

each node of the k-set graph the number of candidate transi-

tions to the neighboring k-sets increases which affect |S| as
well. Although significantly smaller than the upper bound,

still the sizes are large enough to make the k-set discovery

103 104 105

n -- logscale

10-1

100

101

102

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

MDRC
MDRRR
HD-RRMS

Figure 17:DOT,MD, Efficiency:

Impact of dataset size (n)

103 104 105

n -- logscale

102

104

R
an

kR
eg

re
t

--
 lo

g
sc

al
e

0

5

10

15

20

25

o
u

tp
u

t
si

ze

MDRC MDRRR HD-RRMS

Figure 18: DOT, MD, Effective-

ness: Impact of dataset size

3 4 5 6
d

10-2

100

102

104

106

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

MDRC
MDRRR
HD-RRMS

Figure 19:DOT,MD, Efficiency:

Impact of # of attributes (d)

3 4 5 6
d

101

102

103

104

R
an

kR
eg

re
t

--
 lo

g
sc

al
e

10

15

20

25

30

35

o
u

tp
u

t
si

ze

MDRC MDRRR HD-RRMS

Figure 20: DOT, MD, Effective-

ness: Impact of # of attributes

10-3 10-2 10-1

k (percent) -- logscale

10-2

100

102

104

106

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

MDRC
MDRRR
HD-RRMS

Figure 21:DOT,MD, Efficiency:

Impact of k

10-3 10-2 10-1

k (percent) -- logscale

100

101

102

103

104

R
an

kR
eg

re
t

--
 lo

g
sc

al
e

2

4

6

8

10

12

14

16

o
u

tp
u

t
si

ze

MDRC MDRRR HD-RRMS

Figure 22: DOT, MD, Effective-

ness: Impact of k

impractical for large settings. For example, running the k-

setr algorithm for the DOT dataset and k = 10% took more

than ten thousand seconds. The observations for varying d
(Figures 14 and 15) are also similar. Also, the gap between

the theoretical upper-bound for d ≥ 4 and the actual k-sets
sizes show how loose the bounds are.

6.3.3 MD Results. Here, we study the algorithms pro-

posed for the general cases where d ≥ 3. mdrrr is the hit-

ting set based algorithm that, given the collection of k-sets,
guarantees the rank-regret of k and a logarithmic increase

in the output size. So far, the 2D experiments confirmed

these bounds. The other algorithm is the space partition-

ing algorithm mdrc which is designed based on Theorem 1.

Given the possibly large number of k-sets and the cost of

finding them (even using the randomized algorithm k-setr),

this algorithm is designed to prevent the k-set enumeration.

mdrc uses the fact that the k-sets are highly overlapping and
recursively partitions the space (see Figure 8) into several

hypercubes and stops the recursion for each hypercube as

soon as the intersection of the top-k items in its corners is

not empty. This algorithm performs very well in practice, as

after a few iterations, the functions in the corners become

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

274

similar enough to share at least one item in their top-k . Also,
the maximum rank-regret of the item that appear in the top-k
of the corners of the hyper-rectangle for the functions in-

side the hypercube is much smaller than the bound provided

in Theorem 6. We so far observed it in the 2D experiments

where in all cases the rank-regret of the output of mdrc is

less than k , while the output size also was always close to

the optimal output size.

In addition to these algorithms, we compare the efficiency

and effectiveness of our algorithms against, hd-rrms [5], the

recent approximation algorithm proposed for regret-ratio

minimizing problem. Since hd-rrms takes the index size as

the input, we first run the mdrc algorithm and pass its output

size to hd-rrms. Having a different optimization objective

(on the regret-ratio), as we shall show, the output of hd-

rrms fails to provide a bound on the rank-regret. In the first

experiment, fixing the other variables to their default values,

we vary the dataset size n from 1000 to 400,000 for DOT and

from 1000 to 100,000 for BN
8
. Figures 17, 18, 23, and 24 show

the results. Figures 17 and 18, 23 show the running time of the

algorithms for DOT and BN, respectively. Looking at these

figures, first mdrrr did not scale for 100K items. The reason

is that mdrrr needs the collection of k-sets in order to apply

the hitting set. For a very large number of items even the

k-setr algorithm does not scale. hd-rrms has a reasonable

running time in all cases. mdrc has the least running time

for large values of n and in all cases it finished in less than a

few seconds. The reason is that after a few recursions, the

functions in the corners of the hypercubes become similar

and share an item in their top-k . Figures 18 and 24 show

the effectiveness of the algorithms for these settings. The

left-y-axes show the maximum rank-regret of an output set

while the right-y-axes show the output size. The green lines

show the rank-regret of k border. First, the output size for all

settings is less than 20 items, which confirm the effectiveness

of algorithms for finding a rank-regret representative. As

explained in § 5.2, mdrrr guarantees the rank-regret of k ,
which is observed here as well. As expected, hd-rrms fails

to provide a rank-regret representative in all cases. Both for

DOT and BN, the maximum rank-regret of the output of

hd-rrms are close to n, the maximum possible rank-regret.

For example, for DOT and n =400K, the rank-regret of hd-
rrms was 112K, i.e., there exists a function for which the

top-1 based on the output of hd-rrms has the rank 112,000.

Based on Theorem 6, for these settings, the rank-regret of

the output of mdrc is guaranteed to be less than 4k for all

cases. However, in practice we expect the rank-regret to be

smaller than this. This is confirmed in both experiments for

DOT (Figure 18) and BN (Figure 24) where the output of

mdrc provided the rank-regret of k .

8
Due to the space limitations, the MD experiment results of BN are provided

in Appendix B.

Next, we evaluate the impact of varying the number of

dimensions. Setting n to 10,000 and k to 1% of n (i.e. 100), we

the number of attributes, d , from 3 to 6 for DOT and from 3

to 5 for BN. Figures 19, 20, 25, and 20 show the results. The

running times of the algorithms for DOT and BN are provided

in Figures 19 and 25. Similar to the previous experiments,

since the hitting set based algorithm mdrrr requires the

collection of k-sets, it was not efficient. Both hd-rrms and

mdrc performedwell in both experiments. On the other hand,

looking at Figures 20 and 20 hd-rrms fails to provide a rank-

regret representative, as in all settings there the rank-regret

of its output was several thousands, while the maximum

possible rank-regret is n = 10, 000. The outputs of proposed
algorithms in § 5, as expected, satisfied the requested rank-

regret. Interestingly, the output of mdrc had a lower rank-

regret, especially for DOT where its rank-regret was around

10 for all settings. The output of both mdrrr and mdrc was

less than 40, for all settings and both datasets, which confirm

the effectiveness of them as the representative.

In the last experiment, we evaluate the impact of vary-

ing k . For both datasets, while setting n to 10,000 and d
to 3, we varied k from 0.1% of items (i.e., 10) to 10% (i.e.,

1000). Figures 21, 22, 27, and 28 show the results. Looking

at Figures 21 and 27 which show the running time of the

algorithms for DOT and BN, respectively, mdrrr had the

worst performance, and it got worse as k increased. The bot-

tleneck in mdrrr is the k-set enumeration, and (looking at

Figures 13 and 15) it increased by k , as the number of k-sets
increased. Both hd-rrms and mdrc were efficient for all set-

tings. One interesting fact in these plots is that the running

time of mdrc decreases as k increases. This is despite the fact

that, as showed in Figures 13 and 15, the number of k-sets in-
creased. The reason for the decrease, however, is simple. The

probability that the top-k of corners of a hypercube share an

item increases when looking at larger values of k where each

set contains more items. Although hd-rrms was efficient in

all settings, similar to the previous experiments it fails to

provide a rank-regret representative as the rank-regret of its

output is not bounded. The outputs of mdrrr and mdrc, on

the other hand, had smaller rank-regret than the requested k
in all settings for both datasets. Again, the output sizes in all

settings were less than 20, which confirm the effectiveness

of them as the rank-regret representative.

6.3.4 Summary of results. To summarize, the experiments

verified the effectiveness and efficiency of our proposal.While

the adaptation of the regret-ratio based algorithm hd-rrms

fails to provide a rank-regret representative, 2drrr, mdrrr,

and mdrc found small sets with small rank-regrets. Although

the rank-regret of the outputs of 2drrr and mdrc can be

larger than k , in our experiments and our measurements

those were always below k . mdrrr provided small outputs

that as expected, always guarantees the rank-regret of k .

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

275

Interestingly, the output size of mdrc was around the size

of the one by mdrrr, which verifies the effect of the greedy

behavior of mdrc. The output sizes in all the experiments

were less than 40, confirming the effectiveness of the rep-

resentatives. The quadratic 2drrr and the hitting-set based

algorithm mdrrr scaled up to a limit, whereas mdrc had low

running time at all scales.

7 RELATEDWORK

The problem of finding preferred items of a dataset has been

extensively investigated in recent years, and research has

spanned multiple directions, most notably in top-k query

processing [37] and skyline discovery [4]. In top-k query

processing, the approach is to model the user preferences

by a ranking/utility function which is then used to preferen-

tially select tuples. Fundamental results include access-based

algorithms [38–41] and view-based algorithms [42, 43]. In

skyline research, the approach is to compute subsets of the

data (such as skylines and convex hulls) that serve as the

data representatives in the absence of explicit preference

functions [3, 4, 44]. Skylines and convex hulls can also serve

as effective indexes for top-k query processing [19, 45, 46].

Efficiency and effectiveness have always been the chal-

lenges in the above studies. While top-k algorithms depend

on the existence of a preference function and may require a

complete pass over all of the data before answering a single

query, representatives such as skylines may become over-

whelmingly large and ineffective in practice [5, 6]. Stud-

ies such as [7, 8] are focused towards reducing the skyline

size. In an elegant effort towards finding a small representa-

tive subset of the data, Nanongkai et al. [9] introduced the

regret-ratio minimizing representative. The intuition is that

a “close-to-top” result may satisfy the users’ need. Therefore,

for a subset of data and a preference function, they consider

the score difference between the top result of the subset

versus the actual top result as the measure of regret, and

seek the subset that minimizes its maximum regret over all

possible linear functions. Since then, works such as [5, 10–

12, 14–16, 47] studied different challenges and variations of

the problem. Chester et al. [13] generalize the regret-ratio

notion to k-regret, in which the regret is considered to be

the difference between the top result of the subset and the

actual top-k result (instead of the top-1 result). They also

prove that the problem is NP-complete for variable number

of dimensions. [14, 15] prove that the k-regret problem is NP-

complete even when d = 3, using the polytope vertex cover

problem [21] for the reduction. As explained in § 2, this also

proves that our problem is NP-complete for d ≥ 3. For the

case of two dimensional databases, [13] proposes a quadratic

algorithm and [5] improves the running time to O(n logn).
The cube algorithm and a greedy heuristic [9] are the first

algorithms proposed for regret-ratio in MD. Recently, [5, 14]

independently propose similar approximation algorithms

for the problem, both discretizing the function space and

applying the hitting set, thus, providing similar controllable

additive approximation factors. The major difference is that

[5] considers the original regret-ratio problem while [14]

considers the k-regret variation. Note that the above prior
works consider the score difference as the regret measure,

making their problem setting different from ours, since we

use the rank difference as the regret measure.

The geometric notions used in this paper, such as arrange-

ment, dual space, and k-set, are explained in detail in [17].

Finding bounds on the number of k-sets of a point set do not
lead to promising results on the upper bound of the size of S.
Lovasz and Erdos [48, 49] initiated the study of k-set notion
and provided an upper bound on the maximum number of

k-sets in R2. The problem in R2 has also been studied in [50–

53]. The best known upper bound on the number of k-sets in
R2 and R3 are O(nk1/3) [26] and O(nk3/2) [27], respectively.
For higher dimensions, finding an upper bound on the num-

ber of k-sets has been extensively studied [17, 28, 51, 54]; the

best known upper bound is O(nd−ε) [28], where ε > 0 is a

small constant. The problem of enumerating all k-sets has
been studied in [55, 56] for 2D and [30] for MD.

8 FINAL REMARKS

In this paper, we proposed a rank-regret measure that is eas-

ier for users to understand, and often more appropriate, than

regret computed from score values. We defined rank-regret
representative as the minimal subset of the data containing at

least one of the top-k of any possible ranking function. Using

a geometric interpretation of items, we bound the maximum

rank of items on ranges of functions and utilized combina-

torial geometry notions for designing effective and efficient

approximation algorithms for the problem. In addition to

theoretical analyses, we conducted empirical experiments

on real datasets that verified the validity of our proposal.

Among the proposed algorithms, mdrc seems to be scalable

in practice: in all experiments, within a few seconds, it could

find a small subset with small rank-regret.

9 ACKNOWLEDGEMENTS

The work of Abolfazl Asudeh and H. V. Jagadish was sup-

ported in part by NSF grants No. 1741022 and 1250880. Nan

Zhang was supported in part by NSF grants No. 1343976,

1801539, and 1850605. The work of Gautam Das was sup-

ported in part by grant W911NF-15-1-0020 from the Army

Research Office, NSF grant No. 1745925, and a grant from

AT&T.

REFERENCES

[1] Abolfazl Asudeh, Nan Zhang, and Gautam Das. Query reranking as a

service. VLDB, 9(11), 2016.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

276

[2] Yeshwanth D. Gunasekaran, Abolfazl Asudeh, Sona Hasani, Nan

Zhang, Ali Jaoua, and Gautam Das. Qr2: A third-party query reranking

service over web databases. In ICDE Demo, 2018.
[3] Abolfazl Asudeh, Gensheng Zhang, Naeemul Hassan, Chengkai Li,

and Gergely V. Zaruba. Crowdsourcing pareto-optimal object finding

by pairwise comparisons. In CIKM, 2015.

[4] S Borzsony, Donald Kossmann, and Konrad Stocker. The skyline

operator. In ICDE, 2001.
[5] Abolfazl Asudeh, Azade Nazi, Nan Zhang, and Gautam Das. Effi-

cient computation of regret-ratio minimizing set: A compact maxima

representative. In SIGMOD. ACM, 2017.

[6] Sariel Har-Peled. On the expected complexity of random convex hulls.

arXiv preprint arXiv:1111.5340, 2011.
[7] Chee-Yong Chan, HV Jagadish, Kian-Lee Tan, Anthony KH Tung, and

Zhenjie Zhang. Finding k-dominant skylines in high dimensional

space. In SIGMOD, 2006.
[8] Akrivi Vlachou and Michalis Vazirgiannis. Ranking the sky: Discov-

ering the importance of skyline points through subspace dominance

relationships. DKE, 69(9), 2010.
[9] Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J Lipton,

and Jun Xu. Regret-minimizing representative databases. VLDB, 2010.
[10] Danupon Nanongkai, Ashwin Lall, Atish Das Sarma, and Kazuhisa

Makino. Interactive regret minimization. In SIGMOD. ACM, 2012.

[11] Sepanta Zeighami and Raymond Chi-WingWong. Minimizing average

regret ratio in database. In SIGMOD. ACM, 2016.

[12] Taylor Kessler Faulkner, Will Brackenbury, and Ashwin Lall. k-regret

queries with nonlinear utilities. VLDB, 8(13), 2015.
[13] Sean Chester, Alex Thomo, S Venkatesh, and Sue Whitesides. Com-

puting k-regret minimizing sets. VLDB, 7(5), 2014.
[14] Pankaj K Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri.

Efficient algorithms for k-regret minimizing sets. LIPIcs, 2017.
[15] Wei Cao, Jian Li, Haitao Wang, Kangning Wang, Ruosong Wang, Ray-

mond Chi-Wing Wong, and Wei Zhan. k-regret minimizing set: Effi-

cient algorithms and hardness. In LIPIcs, 2017.
[16] Nirman Kumar and Stavros Sintos. Faster approximation algorithm for

the k-regret minimizing set and related problems. In ALENEX. SIAM,

2018.

[17] Herbert Edelsbrunner. Algorithms in combinatorial geometry, vol-
ume 10. Springer Science & Business Media, 1987.

[18] George Bernard Dantzig. Linear programming and extensions. Prince-
ton university press, 1998.

[19] Abolfazl Asudeh, Saravanan Thirumuruganathan, Nan Zhang, and

Gautam Das. Discovering the skyline of web databases. VLDB, 2016.
[20] W Weil and J Wieacker. Stochastic geometry, handbook of convex

geometry, vol. a, b, 1391–1438, 1993.

[21] Gautam Das and Michael T Goodrich. On the complexity of optimiza-

tion problems for 3-dimensional convex polyhedra and decision trees.

Computational Geometry, 8(3), 1997.
[22] Hervé Brönnimann and Michael T Goodrich. Almost optimal set

covers in finite vc-dimension. DCG, 14(4):463–479, 1995.
[23] Abolfazl Asudeh, H.V. Jagadish, Julia Stoyanovich, and Gautam Das.

Designing fair ranking schemes. In SIGMOD. ACM, 2019.

[24] Bernard Chazelle and Franco P Preparata. Halfspace range search: an

algorithmic application of k-sets. In SOCG. ACM, 1985.

[25] Kenneth L Clarkson. Applications of random sampling in computa-

tional geometry, ii. In SOCG. ACM, 1988.

[26] Tamal K Dey. Improved bounds for planar k-sets and related problems.

DCG, 19(3):373–382, 1998.
[27] Micha Sharir, Shakhar Smorodinsky, and Gábor Tardos. An improved

bound for k-sets in three dimensions. In SOCG. ACM, 2000.

[28] Noga Alon, Imre Bárány, Zoltán Füredi, and Daniel J Kleitman. Point

selections and weak ε -nets for convex hulls. Combinatorics, Probability

and Computing, 1(03):189–200, 1992.
[29] Abolfazl sudeh, Azade Nazi, Nan Zhang, Gautam Das, and H. V. Ja-

gadish. Rrr: Rank-regret representative. CoRR, abs/1802.10303, 2018.
[30] Artur Andrzejak and Komei Fukuda. Optimization over k-set polytopes

and efficient k-set enumeration. In WADS, 1999.
[31] Richard M Karp. Reducibility among combinatorial problems. In

Complexity of computer computations, pages 85–103. Springer, 1972.
[32] Vladimir Vapnik. The nature of statistical learning theory. Springer

science & business media, 2013.

[33] P Assouad. Densité et dimension. Ann. Institut Fourier (Grenoble),
1983.

[34] David Haussler and Emo Welzl. ÉŻ-nets and simplex range queries.

DCG, 2(2):127–151, 1987.
[35] P Erdős. On a classical problem of probability theory. Magy. Tud. Akad.

Mat. Kut. Int. Kőz., 6(1-2), 1961.
[36] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data structure

for retrieval on composite keys. Acta informatica, 1974.
[37] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. A survey

of top-k query processing techniques in relational database systems.

CSUR, 40(4):11, 2008.
[38] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. JCSS, 2003.
[39] Ronald Fagin, Ravi Kumar, and D Sivakumar. Comparing top k lists.

Journal on Discrete Mathematics, 2003.
[40] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Top-k selection

queries over relational databases: Mapping strategies and performance

evaluation. TODS, 2002.
[41] Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-k

queries over web-accessible databases. ACM Trans. Database Syst.,
29(2), 2004.

[42] Vagelis Hristidis and Yannis Papakonstantinou. Algorithms and ap-

plications for answering ranked queries using ranked views. VLDB,
13(1), 2004.

[43] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris

Tsirogiannis. Answering top-k queries using views. In VLDB, 2006.
[44] Md Farhadur Rahman, Abolfazl Asudeh, Nick Koudas, and GautamDas.

Efficient computation of subspace skyline over categorical domains.

In CIKM. ACM, 2017.

[45] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng

Li, Ming-Ling Lo, and John R Smith. The onion technique: indexing

for linear optimization queries. In SIGMOD, 2000.
[46] Dong Xin, Chen Chen, and Jiawei Han. Towards robust indexing for

ranked queries. In VLDB, 2006.
[47] Peng Peng and Raymond Chi-Wing Wong. Geometry approach for

k-regret query. In ICDE. IEEE, 2014.
[48] László Lovász. On the number of halving lines. Ann. Univ. Sci. Budapest,

Eötvös, Sec. Math, 14:107–108, 1971.
[49] P Erdős, László Lovász, A Simmons, and Ernst G Straus. Dissection

graphs of planar point sets. A survey of combinatorial theory, pages
139–149, 1973.

[50] Herbert Edelsbrunner and Emo Welzl. On the number of line sepa-

rations of a finite set in the plane. Journal of Combinatorial Theory,
Series A, 38, 1985.

[51] Géza Tóth. Point sets with many k-sets. DCG, 26(2), 2001.
[52] Herbert Edelsbrunner, Nany Hasan, Raimund Seidel, and Xiao Jun

Shen. Circles through two points that always enclose many points.

Geometriae Dedicata, 32(1):1–12, 1989.
[53] János Pach, William Steiger, and Endre Szemerédi. An upper bound

on the number of planar k-sets. DCG, 7(1):109–123, 1992.
[54] Tamal K Dey and Herbert Edelsbrunner. Counting triangle crossings

and halving planes. In SOCG, pages 270–273. ACM, 1993.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

277

[55] Herbert Edelsbrunner and Emo Welzl. Constructing belts in two-

dimensional arrangements with applications. SICOMP, 15(1):271–284,
1986.

[56] Timothy M Chan. Remarks on k-level algorithms in the plane. Manu-
script, Department of Computer Science, University ofWaterloo,Waterloo,
Canada, 1999.

[57] George Marsaglia et al. Choosing a point from the surface of a sphere.

The Annals of Mathematical Statistics, 43(2), 1972.

APPENDIX

A K-SETR: SAMPLING FOR k-SET
ENUMERATION

Here we propose a sampling-based alternative for the k-set
enumeration, based on the many to one mapping between

the linear ranking functions and the k-sets. That is, while a k-
set is the top-k of infinite number of linear ranking functions,

every ranking function is mapped to only one k-set, the set
of top-k tuples for that function. Instead of the exact enumer-

ation of the k-sets, which requires solving expensive linear

programming problems for the discovery of the k-sets, we
propose a randomized approach based on the coupon collec-
tor’s problem [35]. The coupon collector’s problem describes

the “collect the coupons and win” contest. Given a set of

coupons, consider a sampler that every time picks a coupon

uniformly at random, with replacement. The requirement is

to keep sampling until all coupons are collected. Given a set

of ν coupons, it has been shown that the expected number

of samples to draw is in Θ(ν logν). We use this idea for col-

lecting the k-sets by generating random ranking functions

and taking their top-k results as the k-sets. This is similar

to the coupon collector’s problem setting, except that the

probabilities of retrieving the k-sets are not equal. For each
k-set, this probability depends on the portion of the function

space for which it is the top-k . Therefore, rather than ap-

plying a k-set enumeration algorithm, k-setr (Algorithm 4),

repeatedly generates random functions and computes their

corresponding k-sets, stopping when it does not find a new

k-set after a certain number of iterations. The algorithm re-

turns the collection of k-sets it has discovered, as Sr . Recall

that the function space in MD, is modeled by the universe of

origin-starting rays. The set of points on the surface of the

(first quadrant of the) unit hypersphere represent the uni-

verse of origin-starting rays. Therefore, uniformly selecting

points from the surface of the hypersphere in Rd , is equiva-
lent to uniformly sampling the linear functions. Algorithm 4

adopts the method proposed by Marsaglia [57] for uniformly

sampling points on the surface of the unit hypersphere, in

order to generate random functions. It generates the weight

vector of the sampled function as the absolute values of d
random normal variables. We note that since the k-sets are
not collected uniformly by k-setr , its running time is not the

same as coupon collector’s problem, but as we shall show in

§ 6, it runs well in practice.

B BLUENILE MD EXPERIMENT RESULTS

103 104 105

n -- logscale

100

102

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

MDRC
MDRRR
HD-RRMS

Figure 23: BN, MD, Efficiency:

Impact of dataset size

103 104 105

n -- logscale

100

101

102

103

104

105

R
an

kR
eg

re
t

--
 lo

g
sc

al
e

0

5

10

15

20

o
u

tp
u

t
si

ze

MDRC MDRRR HD-RRMS

Figure 24: BN, MD, Effective-

ness: Impact of dataset size

3 4 5
d

100

101

102

103

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

MDRC
MDRRR
HD-RRMS

Figure 25: BN, MD, Efficiency:

Impact of number of attributes

(d)

3 4 5
d

100

101

102

103

104

R
an

kR
eg

re
t

--
 lo

g
sc

al
e

0

10

20

30

40

50

o
u

tp
u

t
si

ze

MDRC
MDRRR
HD-RRMS

Figure 26: BN, MD, Effective-

ness: Impact of number of at-

tributes (d)

10-3 10-2 10-1

k (percent) -- logscale

10-2

100

102

104

106

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

MDRC
MDRRR
HD-RRMS

Figure 27: BN, MD, Efficiency:

Impact of k

10-3 10-2 10-1

k (percent) -- logscale

100

101

102

103

104

R
an

kR
eg

re
t

--
 lo

g
sc

al
e

0

5

10

15

20

25

o
u

tp
u

t
si

ze

MDRC MDRRR HD-RRMS

Figure 28: BN, MD, Effective-

ness: Impact of k

C PROOFS

Theorem 2. The algorithm 2drrr is in O(n2 logn).

Proof. The complexity of the algorithm 2drrr depends is

determined by Algorithms 1 and 2. Algorithms 1 first orders

the items based on x in O(n logn). Then in applies a ray

sweeping from the x-axis toward y and at every intersection

applies constant number of operations. The upper bound

on the number of intersections in O(n2) and therefore, it

is the running time of Algorithms 1. Calling Algorithm 1,

generates at most n ranges, each for an item. Every iteration

of Algorithm 2 is in O(n logn) as it applies a binary search

on the set of uncovered intervals for each unselected item,

and the number of uncovered intervals is bounded by O(n).
Given that the output size is bounded by n, Algorithm 2 is

in O(n2 logn). □

Theorem 3. The output size of 2drrr is not more than the
size of the optimal solution for RRR.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

278

Proof. Following thek-border, while sweeping a ray from
x-axis to y, the top-k results change only when a line above

the border intersects with it. For example, in Figure 3, mov-

ing from x-axis to y, in the intersection between d(t3) and
d(t1), the top-2 changes from {t7, t1} to {t7, t3}. Consider the
collection of the top-k results and the range of angles of rays

(named as top-k regions) that provide them. Now consider

the ranges that are generated by Algorithm 1 for each item.

Let us name them here as the ranges of items. These ranges

mark the first and last angle for which an item is in top-k . For
each top-k region R, let the set items that their ranges cover

it be SR . Each top-k region is covered by each and every item

in its top-k . In addition the ranges of some other items cover

each top-k region. Therefore, SR is a superset for the top-k of

R. An optimal solution with the minimum number of items

from the collection of supersets that contains at least one

item from each set, is not larger than the minimum number

of such items from the collection of subsets. As a result, the

output size of 2drrr is not greater that the size of the optimal

solution for the RRR problem. □

Theorem 4. The output of 2drrr guarantees the maximum
rank-regret of 2k .

Proof. The proof is straightforward, following the Theo-

rem 1. For each item t , Algorithm 1 finds a range that in its

beginning and its end, t is in the top-k . Therefore, based on

Theorem 1, the rank of t for each of the functions inside its

range is no more than 2k . Algorithm 2 covers the function

space with the ranges generated by Algorithm 1. Hence, for

each function, there exists an item t in the output where

∇f (t) ≤ 2k . □

Lemma 5. Let S be the collection of all k-sets for the points
corresponding to the items t ∈ D. For each ranking function
f , there exists a k-set S ∈ S such that top-k(f)=S .

Proof. The proof is straight-forward using contradiction.

Consider a ranking function f with the weight vector w
where the top-k is Sf and Sf does not belong to S. Let t
be the item for which ∇f (t) = k . Consider the hyperplane
h(t ,w). For all the items in t ′ ∈ Sf f (t ′) ≤ f (t) and for all

items in D\Sf , f (t ′) > f (t). Hence, all the items in Sf fall in

the positive half space of h – i.e., h(t ,w)+ = Sf . Since |Sf | is
k , card(h(t ,w)+) = k . Therefore h(t ,w)+ = Sf is a k-set and
should belong to S, which contradicts with the assumption

that is does not belong to the collection of k-sets. □

Theorem 6. mdrc guarantees the maximum rank-regret of
dk .

Proof. The proof of this theorem is based on Theorem 1.

We also consider the arrangement lattice [17] for this proof.

Every convex region in the (d − 1)-dimensional space is con-

structed from the d − 2 dimensional space convex facets as

its borders. Each of the facets are constructed by d −3 dimen-

sional facets, and this continues all the way down until the

(0 dimensional) points. For example, the borders of a convex

polyhedron in 3D, are two dimensional convex polygones;

the borders of the polygones are (one dimensional) line seg-

ments, each specified by two points. The arrangement lattice

is the data structure that describe the convex polyhedron by

its i dimensional facets – ∀ 0 ≤ i ≤ d . The nodes at level i of
the lattice show the i dimensional facets, each connected to

its i − 1 dimensional borders, as well as the i + 1 dimensional

facets those are a border for.

Now, let us consider the hyper-rectangle of each of the

leaf nodes in the recursion tree of mdrc (c.f. Figure 8) and

let t be the tuple that appeared at the top-k of all corners

of the hyper-rectangle. Consider the arrangement lattice for

the hyper-rectangle of the leaf node and let us move up from

the bottom of the lattice, identifying the maximum rank of t
at each level of it. Since t is in the top-k of both corners of

each line segment in level 1, based on Theorem 1, its rank

for each point on the line is at most 2k . Level 2 of the lattice
shows the two dimensional rectangles, each built by the line

segments at level 1. For every point inside each rectangle

at level 2, consider a line segment on the rectangle’s affine

space starting from one of its corners, passing through the

point and ending on the edge of the rectangle. Since the rank

of the point on the corner is less than k and for any point

on the edge less than 2k , based on Theorem 1, the rank of t
for the points inside the rectangles at level 2 of lattice is at

most k + 2k = 3k . Similarly, consider each hyper-rectangle

at level i of the lattice. The hyper-rectangle is built by the

(i − 1) dimensional hyper-rectangle at level i − 1. For every

point inside the i dimensional hyper-rectangle, consider the

line segment starting from a corner of the hyper-rectangle,

passing through the point and hitting the edge of it. By

induction, the rank of t on the (i − 1) dimensional edges of

hyper-rectangle is at most ik . Therefore, since the rank of

t on the corner is at most k , based on Theorem 1, its rank

for the point inside the i dimensional hyper-rectangle is at

most k + ik = (i + 1)k . Therefore, the rank of t for every
point inside the (d − 1) dimensional hyper-rectangle (the top

of the lattice) is at most k + (d − 1)k = dk . mdrc partitions
the function space into hyper-rectangles that, for each, there

exists an item t in the top-k in all of hyper-rectangle’s corners

(included in the output). The rank of t for every point inside

the hyper-rectangle is at most dk . Since every function in

the space belongs to a hyper-rectangle, there exists an item

in the output that guarantees the rank of dk for it. □

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

279

D PSEUDOCODE OF ALGORITHMS

Algorithm 1 findranges

Input: 2D dataset D, n, k

1: heap = new min-heap(); visited = new set()
2: L = sort D based on x
3: for i = 1 to n − 1 do

4: if Li [2] < Li+1[2] /* skip if Li dominates Li+1 ∗ / then

5: heap.push((arctan
Li+1[1]−Li [1]
Li [2]−Li+1[2] , Li))

6: end if

7: end for

8: for i = 1 to k do b[Li] = 0

9: while heap is not empty do

10: (θ , t) = heap.pop() // let i be the index of t in L
11: if i == k then

12: if b[Li+1] == null then b[Li+1] = θ
13: e[Li] = θ
14: end if

15: swap Li and Li+1
16: if (Li−1[1] < Li [1] or Li−1[2] < Li [2]) and (Li−1, Li) < visited)

then

17: heap.push((arctan
Li [1]−Li−1[1]
Li−1[2]−Li [2] , Li−1))

18: visited.add ((Li−1, Li))
19: end if

20: if (Li+1[1] < Li+2[1] or Li+1[2] < Li+2[2] and (Li+1, Li+2) <
visited) then

21: heap.push((arctan
Li+2[1]−Li+1[1]
Li+1[2]−Li+2[2] , Li+1))

22: visited.add ((Li+1, Li+2))
23: end if

24: end while

25: for i = 1 to k do e[Li] = π /2
26: return b , e

Algorithm 2 2drrr

Input: 2D dataset D, n, k

1: b ,e = FindRanges(D,n,k)
2: Ψ = new set()

3: U = [⟨0, ⊢⟩, ⟨π /2, ⊣⟩]
4: while |U | > 0 do

5: covm = 0;

6: for ti in D\Ψ do

7: if b[ti] == null then continue

8: k = the index of the element in U that b[ti] fall before it (found
by applying binary search)

9: if Uk [2] == ⊣ then cov = min(Uk [1], e[ti]) − b[ti]
else cov = max(0, e[ti] −Uk [1])

10: if cov > covm then t = ti ; covm = cov; km = k
11: end for

12: Ψ.add(t)
13: if Ukm [2] ==⊢ then
14: if Ukm+1[1] ≤ e[t] then remove Ukm and Ukm+1
15: else Ukm [1] = e[t]
16: else

17: if Ukm [1] > e[t] then
18: U .insert(km, ⟨b[t], ⊣⟩); U .insert(km + 1, ⟨e[t], ⊢⟩)
19: else

20: Ukm [1] = b[t]
21: end if

22: end if

23: end while

24: return Ψ

Algorithm 3 mdrrr

Input: collection of k-sets S
1: D = ∪

∀si ∈S
Si

2: Set weight of each point to one

3: while True do

4: X = Select the ϵ -net
5: if X is not hitting set then

6: for S in S do

7: if points in a set k-set S missed by X then

8: Double the weights of the points in S
9: end if

10: end for

11: else

12: return X
13: end if

14: end while

Algorithm 4 k-setr
Input: dataset D, termination condition c

1: Sr = {} ,counter=0
2: while counter≤ c do

3: // generate a sample function

4: for i = 1 to d do

5: wi = |N (0, 1) | // N(0,1) draws a sample from the standard

normal distribution

6: end for

7: // find the corresponding k-set
8: S = top-k (D, fw)

9: if S ∈ Sr then

10: counter = counter+1

11: else

12: add S to Sr
13: counter = 0

14: end if

15: end while

16: return (Sr)

Algorithm 5 mdrc

Input: The dataset D, n, d , k , level of the node: l , ranges: R

1: C = corners of the hypercube specified by R
2: I = ∩∀ci ∈C

top-k (D, ci)
3: if |I | > 0 then return I [1]
4: i = l%(d − 1) + 1
5: mid =

R[i][1]+R[i][2]
2

6: lR = rR = R
7: lR[i][2] = mid; rR[i][1] = mid;

8: return mdrc (D, n, d, k, l + 1, lR)∪ mdrc (D, n, d, k, l + 1, rR)

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

280

	Abstract
	1 Introduction
	2 Problem Definition
	3 Geometric interpretation of items
	4 RRR in 2D
	5 RRR in MD
	5.1 k-Set and Its Connection to RRR
	5.2 MDRRR: Hitting-Set Based Approximation Algorithm
	5.3 MDRC: Function Space Partitioning

	6 Experimental Evaluation
	6.1 Datasets
	6.2 Validation
	6.3 Performance Evaluation

	7 Related Work
	8 Final Remarks
	9 Acknowledgements
	References
	A k-setr: Sampling for k-set enumeration
	B BlueNile MD experiment results
	C Proofs
	D Pseudocode of Algorithms

