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Abstract

Data analytics often involves hypothetical reasoning: repeatedly modifying
the data and observing the induced effect on the computation result of a data-
centric application. Previous work has shown that fine-grained data provenance
can help make such an analysis more efficient: instead of a costly re-execution of
the underlying application, hypothetical scenarios are applied to a pre-computed
provenance expression. However, storing provenance for complex queries and
large-scale data leads to a significant overhead, which is often a barrier to the
incorporation of provenance-based solutions.

To this end, we present a framework that allows to reduce provenance size.
Our approach is based on reducing the provenance granularity using user de-
fined abstraction trees over the provenance variables; the granularity is based on
the anticipated hypothetical scenarios. We formalize the tradeoff between prove-
nance size and supported granularity of the hypothetical reasoning, and study the
complexity of the resulting optimization problem, provide efficient algorithms for
tractable cases and heuristics for others. We experimentally study the perfor-
mance of our solution for various queries and abstraction trees. Our study shows
that the algorithms generally lead to substantial speedup of hypothetical reason-
ing, with a reasonable loss of accuracy.

1 Introduction

Recent years have seen a flourish of research on data provenance. In a nut-
shell, provenance captures the essence of the computation performed by queries
or other data-intensive applications. In particular, a prominent line of work
is centered around the model of provenance polynomials (also termed how-
provenance). The idea is to compute a symbolic algebraic expression whose
indeterminates may correspond to tuple identifiers [36] or tuple cells [5]; the
way that the indeterminates are combined through the algebraic operations of
the polynomial reflects the way the corresponding tuples/cells were manipulated
by the query/application.

Once generated, an important way of using provenance polynomials is to
valuate the variables occurring in them, and compute the resulting value. This
allows to observe the effect of hypothetical scenarios – modifications or assertions
with respect to the input data – on the computation result.
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Example 1 (Running example) Consider a telephony company’s database
fragment given in Figure 1. The Cust table contains information about the
customers, including their ID, calling plan and zip code; the Calls table contains
the call durations in minutes, totaled by month for each customer; and the Plans

table contains the price per minute (ppm) of every plan, where the ppm may
vary from month to month. The company offers several calling plans: Small
business plans (SB1, SB2), enterprises plan (E), plans for youth (Y 1, Y 2) for
families (F1, F2, F3) and for veterans (V ), and standard plans (A, B). Each
customer is subscribed to one calling plan. The following query computes the
company’s revenues per zip code:

SELECT Zip , SUM(Calls.Dur * Plans.Price)

FROM Calls , Cust , Plans

WHERE Cust.Plan = Plans.Plan

AND Cust.ID = Calls.CID

AND Calls.Mo = Plans.Mo

GROUP BY Cust.Zip

The query computes the revenues of the company by summing the per-customer-
revenue, computed by multiplying the duration of calls by the ppm of the cus-
tomer’s plan, and aggregating the result per zip code. An analyst working for the
company may be interested in the effect of possible changes to the call prices on
the company’s revenues. For example, what if the price per minute (ppm) of all
plans are decreased by 20% in March? Or what if the ppm of the business calling
plans are increased by 10%? To support such scenarios, we can parameterize
the (multiplicative) change in price, assigning, e.g., a distinct parameter mi to
capture the change in month i. In this example we would then get as answer
to the above query, instead of a single aggregate value, a symbolic provenance
expression of the form 654.2 ·m1 + · · ·+ 688.8 ·m3 + · · · .

A significant challenge preventing the practical dissemination of such solu-
tions is their overhead: Essentially, we replace each query result—e.g., a numeri-
cal value—by a large provenance polynomial that encompasses the computation
that took place, all tuples/cells that participated in it, as well as parameters
that allow to control multiple scenarios of interest. Empirical evidence for the
practical blowup of provenance expression was shown in [21]. A theoretical com-
plexity analysis of the provenance size required for hypothetical reasoning for
sum queries showed that exact provisioning requires the provenance size to be
exponential in the number of hypotheticals [8].

The main contribution of the present paper is a novel framework for the
reduction of provenance size. The framework is based on the notion of abstrac-
tion; the main idea is that instead of assigning a distinct variable per cell, we
can often group variables together, forming an abstract “meta-variable”. This
naturally decreases the degree of freedom upon valuation, as we are forcing the
variables in the group to be uniformly assigned. In many cases, this is con-
sistent with the required hypothetical scenarios: for instance we may assume
that a discount is uniformly applied to all months of a particular quarter. In
return, as we demonstrate, grouping variables together can lead to a significant
reduction in the provenance size, where distinct monomials become identical.
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Cust

ID Plan Zip

1 A 10001
2 F1 10001
3 SB1 10002
4 Y1 10001
5 V 10001
6 E 10002
7 SB2 10002
. . . . . . . . .

Calls

CID Mo Dur

1 1 522
2 1 364
3 1 779
4 1 253
5 1 168
6 1 1044
7 1 697
. . . . . . . . .

CID Mo Dur

1 3 480
2 3 327
3 3 805
4 3 290
5 3 121
6 3 1130
7 3 671
. . . . . . . . .

Plans

Plan Mo Price

Plan A 1 0.4
Family1 (F1) 1 0.35
Youth1 (Y1) 1 0.3
Veterans (V) 1 0.25
Small Business1 (SB1) 1 0.1
Small Business2 (SB2) 1 0.1
Enterprise (E) 1 0.05
. . . . . . . . .

Plan Mo Price

A 3 0.5
F1 3 0.35
Y1 3 0.25
V 3 0.2
SB1 3 0.1
SB2 3 0.15
E 3 0.05
. . . . . . . . .

Figure 1: Example database

Example 2 Reconsider the case where the analyst wishes to examine the effect
of changing the ppm of the different plans in different months. The following
polynomial captures the revenues under this hypothetical scenario for zip code
10001 (after simplifications) for the database fragment given in Figure 1.

P = 220.8 · p1 ·m1 + 240 · p1 ·m3 + 127.4 · f1 ·m1+

114.45 · f1 ·m3 + 75.9 · y1 ·m1 + 72.5 · y1 ·m3+

42 · v ·m1 + 24.2 · v ·m3

p1 is used to control the changes in the price of plan A, f1 for plan F1, y1 for
Y 1, and v for the veterans plan. The variables mi are used to control the plan’s
price per month for different months. For instance, the monomial 220.8 ·p1 ·m1

is the result of the multiplication of the total calls duration of the customer with
ID 1 in January, with the price of plan A on January, parameterized by the
discount-by-plan variable p1 and the discount-by-month variable m1.

If the analyst knows that the prices are usually changed uniformly during each
quarter, a natural abstraction in this example is to group the month variables
into quarterly meta-variables. I.e., replacing m1, . . . ,m3 by q1, m4, . . . ,m6 by
q2 etc. For instance, by replacing the variables m1 and m3 with q1, instead of
the monomials 220.8 · p1 ·m1 + 240 · p1 ·m3 in the above polynomial, we obtain
a single monomial 460.8 · p1 · q1. The resulting polynomial in this case would be
smaller:

P = 460.8 · p1 · q1 + 241.85 · f1 · q1 + 148.4 · y1 · q1 + 66.2 · v · q1 .

Our framework consists of the following components:
Abstraction Trees. We develop a simple formalism that allows to capture the

possible valid abstractions, namely which variables may be grouped together
while allowing for the desired hypothetical scenarios. The possible abstractions
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are captured by trees, examples of which appear in Figures 2 and 3 for abstrac-
tions based on calling plan and quarters respectively. An abstraction is then
represented by a cut in the tree separating the root from all leaves. The idea is
that for every node in the chosen cut, all of its descendant leaves are replaced
by a single metavariable. There may be multiple abstraction trees, e.g., each
corresponding to a different attribute of the input database; in this case an
abstraction corresponds to a choice of a cut in each of the trees.

Optimization Problem. Formally, the problem we study is as follows: Given
a provenance polynomial and abstraction trees over (subsets of) its variables,
find a choice of abstraction that reduces the provenance size, while maximizing
the “expressiveness” of the abstraction; we next explain both measures. First,
the provenance size is measured by the number of monomials in the resulting
provenance polynomial. The number of monomials is indeed the dominant fac-
tor in the provenance size since the size of each monomial is bounded by a
typically small constant, independent from the database size (it may depend
on the query or the number of hypothetical scenarios). As for the expressive-
ness of the abstraction, we aim at maximizing the degrees of freedom left for
hypothetical analysis; naturally, every grouping limits the possible scenarios in
the sense that it forces multiple variables to be assigned the same value. Con-
sequently, we measure the expressiveness of the abstraction by the number of
distinct variable names it defines. In sum, our goal is to reduce the number of
distinct monomials in the provenance, while maximizing the number of distinct
variables.

Complexity and Algorithms. We characterize the complexity of the problem,
focusing on multiple sub-classes. A first natural case to consider is that of
a single abstraction tree (even in this case, a monomial may still consists of
multiple variables, but the abstraction may apply to at most one of them); note
that there may still be exponentially many cuts in the tree. We show that in
this case the optimization problem is solvable in polynomial time complexity by
providing an efficient algorithm. In contrast, the problem becomes intractable
(NP-hard) if multiple abstraction trees are used. Nevertheless, we provide a
greedy heuristic algorithm which we experimentally show to perform well in
practice.

Implementation and Experimental Results. We have implemented our al-
gorithms and thoroughly tested their performance, as well as their sensitivity
to the multiple parameters of the problem: the database size; the shape of the
provenance; the size, number and structure of the abstraction trees; the required
bound on the resulting provenance size, etc. To our knowledge, a benchmark
for provenance abstraction does not exist, and we have thus generated one,
partly based on the TPC-H benchmark. Our results indicate good scalability
and robustness of our solutions as well as the effectiveness of our greedy ap-
proximation. We also show, as discussed below, that our solution significantly
outperforms a previously proposed summarization technique [3].

Novelty. Provenance summarization was studied in multiple contexts, e.g.,
for probability computation [46] or explanations [40]. The main novel aspects
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of the present work are in the problem setting including the use of abstraction
trees that both restrict and guide the summarization, and in our novel algo-
rithms and analysis that leverage the presence of such trees. The way that we
use these trees to define our optimization problem is geared towards hypothet-
ical reasoning, where one wishes to optimize the remaining degrees of freedom
for hypotheticals. The approach in [3] is more general: the authors assume that
semantic constraints over the summarization (i.e., which variables of the prove-
nance may be grouped together) are given to the algorithm using a black-box
oracle. This generality in [3], however, leads to the lack of theoretical guarantees
on the results quality and the algorithm runtime. In contrast, in our setting
where the compression algorithms depends on and directly use the abstraction
trees, we are able to provide theoretical guarantees (PTIME complexity bound
as well as a correctness guarantees for the single-tree case) and bounds (NP-
hardness for the general case). In addition, we show in §4 that the usefulness
of directly using the abstraction trees is not confined to theory, but rather also
leads to substantial practical gains over the black box approach of [3].

Offline vs. Online Compression. Our solutions take as input a pre-
computed provenance expression and compresses it. This is in line with previous
work [3, 46] and with the anticipated use case: provenance may be generated
only once, upon query evaluation (which could take place using strong comput-
ing and storage capabilities [24]), and then sent to multiple analysts for each
to perform multiple hypothetical scenarios. In such case, a crucial point for
provenance size reduction to take place is before it is sent to the analysts, to
minimize both the communication cost, the cost of local storage at the analysts
location and perhaps most importantly, the cost of applying each hypothetical
scenario. Still, a natural question is whether provenance compression can be ap-
plied online, i.e., on-the-fly alongside with query evaluation. This would clearly
be desirable, to avoid costly provenance generation at the outset.

In §6, we discuss a preliminary plan for possible extension of our technique
to the online setting, via the idea of sampling. The development of such an
extension raises multiple intriguing challenges for future work, including how to
obtain a representative sample for this purpose and how to use such samples to
estimate the provenance size for the full computation. We briefly discuss these
problems in §6.

Paper Organization. §2 defines our provenance model and the optimiza-
tion problem we attack. §3 provides a PTIME algorithm for a tractable fragment
of the problem and a heuristic for the general case. §4 describes our implementa-
tion and presents our experimental results. §5 discusses multiple lines of related
work, and §6 concludes. For space reason, the the NP-hardness proof is given
in the Appendix.

2 Problem Definition

This section introduces our provenance model and the formalisms we use for
capturing abstractions. We then precisely express the problems we attack and
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state our main results.

2.1 Provenance Polynomials

Given a set of indeterminates X we use the standard notion of a polynomial over
X as a sum of monomials, where each of which is a product of indeterminates
and/or rational numbers referred to as coefficients. An indeterminate may ap-
pear more than once in a monomial, in which case this number of occurrences
is called its exponent. Our model then applies to two different settings:

1. When the tuples in the input database are annotated with variables and
an SPJU query is executed. In this case the semiring model [36] defines
how output tuples are annotated with polynomials over this variables. The
plus and times in this case are abstract semiring operation, and hypothetical
scenarios correspond to assigning values to the variables. For example, these
values may be Boolean, standing for hypothetical scenarios of existence/non-
existence of tuples.

2. We can also support queries with commutative aggregates (e.g. sum, min,
max) where variables are placed/ combined with the values in certain cells
for which the analyst wish to examine different valuations. In this case the
plus operation in our polynomial corresponds to the aggregate function, and
multiplication may correspond to its standard semantics over numbers.

Note that there are other, more expressive, provenance models in the liter-
ature, including support for nested aggregation and aggregation in conjunction
with tuple annotations. Their support in our framework is left for future work.
Supporting them in our framework is left for future work.

We assume that we are given a multiset of such polynomials, intuitively
including all polynomials that appear in the provenance-aware result of query
evaluation.

Notations. We denote the set of monomials in P by M(P ). The size of P ,
denoted by |P |

M
, is defined as the number of its monomials, i.e., |P |

M
= |M(P )|.

We denote the set of variables in P by V(P ), i.e., V(P ) =
⋃

m∈M(P )m. The

granularity of P , denoted by |P |
V
, is defined as the number of its variables, i.e.,

|P |
V

= |V(P )|. We lift these notations to (multi)sets of polynomials P in a point-
wise manner, i.e., |P|

M
=

∑
P∈P |P |M , V(P) =

⋃
p∈P M(P ), and |P|

V
= |V(P)|.

2.2 Abstraction Trees

Our goal is to reduce the provenance polynomial size so that its number of
monomials is below a given threshold, while supporting maximal granularity for
hypothetical reasoning. To this end, we allow the user to define abstraction trees
over the variables, intuitively defining which grouping of variables, effectively
forcing that the same value will be assigned to all variables in the group, “makes
sense” based on their semantics. For instance, the abstraction trees may be ob-
tained by leveraging existing ontologies on the annotated data, in turn capturing

6



Plans

Standard

p2p1

Special

vY

y3y2y1

F

f2f1

Business

eSB

b2b1

Figure 2: An abstraction tree of the plans variables.

Year

q4

m12m10

q1

m3m1

. . .

. . . . . .

Figure 3: An abstraction tree of the months variables.

the semantics of variables. The user may also manually construct/augment the
trees based on the expected use of provenance, namely, form the trees so that
variables that are expected to be assigned the same value, based on the user
experience, will be located in proximity to each other in the tree.

Formally, an abstraction tree is a rooted labeled tree, where each node has
a unique label (we thus use “node” and “label” interchangeably). We say that
an abstraction tree T is compatible with a polynomial P if its leaves are labeled
with (some of the) variables in P , and its internal nodes are labeled with meta-
variables – these do not appear in P . Additionally, every monomial contains
at most one node from T , i.e., ∀m ∈ M(P ).|m ∩ T | ≤ 1. Different variables in
a monomial of the provenance polynomial usually originate from different do-
mains, e.g., different scenarios (as in our running example), or different relations
(as in the model of [36]). Thus, it is reasonable to assume they are abstracted
using different abstraction trees. (For simplicity, in the following we omit the
distinction between variables and meta-variables.)

Example 3 In Example 1, every variable mi corresponds to the discount at
the i’th month. A natural abstraction over this set is to use a set of variables
per quarter {q1, . . . , q4}, as shown in Example 2. Using the quarter’s variables
reduces the polynomials size on the one hand, but also reduces the provenance
granularity; the corresponding tree is shown in Figure 3.

Similarly, the plans variables may be abstracted based on their type, e.g.,
plans for small businesses SB1 and SB2, or further abstracting all Business
plans, small and enterprises. Abstracting the families plans using a single vari-
able F , and youth plans using the variable Y . We may also consider using a
coarse abstraction that combines all special plans (families, youth and veterans)
into a single variable. Figure 2 depicts the resulting abstraction tree. Note that
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every monomials of the polynomial in Example 2 contains at most one month
variable and one plans variable.

2.3 Abstract Provenance Polynomials

Let T be an abstraction tree and denote the set of the variables it contains,
i.e., its nodes, by V(T ); the leaves, that correspond to variables occurring in the
polynomial, are denoted by L(T ). We say that v′ ≤T v if v, v′ ∈ V(T ) and v′

is a descendant of v in T (or v′ = v). A set of abstraction trees T is a valid
abstraction forest if its trees are disjoint, i.e., if T, T ′ ∈ T and V(T )∩V(T ′) 6= ∅
then T = T ′. Given a set of abstraction trees T , we denote by V(T ) the set of
all nodes of its trees, i.e., V(T ) =

⋃
T∈T V(T ). We say that v′ ≤T v if there

exists an abstraction tree T ∈ T such that v′ ≤T v; we omit T if it is clear
from context. T is compatible with a polynomial P if all of its trees are; T is
compatible with a set of polynomials P if it is compatible with every polynomial
in it.

We next define the notion of a valid variable set (VVS for short), capturing
a choice of abstraction using the trees.

Definition 4 Let T be a valid abstraction forest. A valid variable set (VVS)
S is a subset of V(T ) such that

1. ∀v ∈ L(T ) ∃v′ ∈ S such that v ≤T v′ and

2. if v, v′ ∈ S and v ≤T v′ then v = v′.

Technically, a valid variable set is a cut in the tree, separating the root from
the leaves. which dictates a choice, for each leaf v, of a single ancestor v′in the
tree, chosen to be its abstraction (it may be that v = v′, in which case v is not to
abstracted). Intuitively, such choice means that for the subsequent hypothetical
reasoning scenarios, all variables below each chosen node must be assigned the
same value.

Example 5 Consider the abstraction tree presented in Figure 2. The following
sets are all valid variable sets:
S1 = {Business, Special, Standard}
S2 = {SB, e, f1, f2, Y, v, Standard}
S3 = {b1, b2, e, Special, Standard}

S4 = {SB, e, F, Y, v, p1, p2}
S5 = {Plans}

Given a valid abstraction forest T , which is compatible with a polynomial
P and a valid variable set S of T , we denote by P↓S the polynomial obtained
from P by substituting each variable v in P by the (necessarily unique) variable
v′ ∈ S such that v ≤ v′, if such a variable v′ exists. (Recall that some variables
of P may not appear in the abstraction forest, in which case they stay intact.
Also if v ∈ S then v′ = v). We lift the definition of P ↓S to (multi)sets of
polynomial P in a point-wise manner, i.e., P↓S= {P↓S | P ∈ P}.

Each choice of a valid variable set S may entail a “loss” in terms of the
granularity of hypothetical reasoning, in exchange for a reduction in the size
of the polynomial. We quantify granularity through the number of distinct
variables (|P↓S |V) and size through the number of monomials (|P↓S |M).
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Example 6 Consider the polynomial P for the revenues shown in Example 2.
Example 5 discusses multiple ways to compress it, each may result in different
granularities and sizes. E.g., using S1 we get that |P↓S1

|
V

= 4 and |P↓S1
|
M

= 4,
whereas using S5 we get that |P↓S5

|
V

= 3 and |P↓S5
|
M

= 2.

2.4 Problems

To formulate the problems we attack, we first define the notions of precise,
adequate, and optimal abstractions, which, intuitively, state when a chosen ab-
straction (VVS) is powerful enough to reduce the size of the provenance under
a given bound while maintaining sufficient granularity.

Definition 7 (Precise, Adequate, and Optimal Abstractions) Let T be
a valid abstraction forest compatible with a given set of polynomials P. Let S be
a valid variable set of T , and B ∈ {1..|P|

M
} and K ∈ {1..|P|

V
} desired bounds

on the size and granularity, respectively, of the set of polynomials resulting from
abstracting P according to S.

• S is precise for B and K if |P↓S |M = B and |P↓S |V = K.

• S is adequate for B if |P↓S |M ≤ B.

• S is optimal for B if it is adequate for B and if a valid variable set S′ is
adequate for B then |P↓S′ |

V
≤ |P↓S |V .

Note that for a given set of polynomials P, abstraction forest T , and a bound
B, the existence of a VVS S that is adequate for B is not guaranteed.

Example 8 Consider the set P with the single polynomial P from Example
2 and the abstraction forest T with a single tree T shown in Figure 3. The
maximal compression of P using T results in a polynomial of size 4, thus, for
the bound B = 3, there is no VVS S adequate for B.

Formally, the optimization problem that we study is that of finding an op-
timal abstraction for a given bound B.

Definition 9 (Optimization problem) Given a set of polynomials P and
a valid abstraction forest T which is compatible with it, and a bound B ∈
{1 . . . |P|

M
}, find an optimal valid variable set S for B.

To formally characterize the complexity of the optimization problem, we
further need to define a corresponding decision problem. We define it as the
problem of determining existence of a precise abstraction for a given desired
size B and granularity K of the reduced polynomial. Note that as both B and
K are polynomial in the size of the provenance, the optimization problem can
be solved via a polynomial number of invocations of a solution to the decision
problem.
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Definition 10 (Decision problem) Given a set of polynomials P, a valid ab-
straction forest T which is compatible with it, and desired size B ∈ {1 . . . |P|

M
}

and granularity K ∈ {1 . . . |P|
V
} of the set of polynomials resulting from ab-

stracting P according to S. Determine if there exists a precise valid variable set
for B and K.

2.5 Main Results

The main results of this paper can be summarized as follows:
1. We characterize in detail the complexity of the problem. We show that the

problem is NP-Hard in general (§A).

Proposition 11 The decision problem is NP-hard

2. We study an important restricted case, where we are given a single abstrac-
tion tree. Recall that each abstraction tree allows further compression; we
experimentally show that even with a single abstraction tree it is possible to
reduce the polynomial size significantly. For this restricted case, we show its
tractability by providing an efficient algorithm (§3.1).

Proposition 12 The optimization problem is in PTIME if the abstraction
forest contains exactly one tree.

3. We provide a simple yet effective greedy algorithm for abstracting polynomi-
als using multiple trees (§3.2).

3 Algorithms

In this section, we show that the optimization problem is tractable when we are
given a single abstraction tree, and present a greedy algorithm for the general
case.

3.1 Single Abstraction Tree

Algorithm 1 allows to compress a (multi)set of polynomials P using a single
abstraction tree T in an optimal manner in polynomial time. In fact, given a
bound B = 1..|P|

M
on the desired size of the compressed provenance expression,

the algorithm computes for each node v ∈ T and every i = 1..|B| an optimal
valid variable set Si

v such that (a) Si
v is comprised of metavariables coming

from the subtree rooted at v and (b) abstracting P according to Si
v results in

polynomial containing i monomials. (Si
v is set to ⊥ if no such VVS exists.)

Roughly speaking, Algorithm 1 works as follows: It first calculates the op-
timal sets Si

v for the leaves v ∈ L(T ). It then traverses the tree in a bottom up
manner, computing the required optimal sets Si

v for every internal node v using
the optimal sets computed for its children or by setting Si

v = {v}.
The key insight is that for any two nodes v and v′ and any i, j = 1..B,

if neither v ≤ v′ nor v′ ≤ v holds then S = Si
v ∪ S

j
v′ is a VVS and that
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Si
v ∩ S

j
v′ = ∅. Furthermore, recall that we require that any monomial in P may

contain at most one variable in T . Thus, the disjointness of Si
v and Sj

v′ ensures
that they compress P by unifying disjoint sets of monomials. Hence, |P↓S |M
(the size of the provenance expression obtained by abstracting P according to
S) can be determined from the sizes of |P↓Si

v
|
M

and |P↓Sj

v′
|
M

; namely, |P↓S |M =

|P|
M
− ((|P|

M
− |P↓Si

v
|
M

) + (|P|
M
− |P↓Sj

v′
|
M

)). For the same reasons, we get

that |P↓S |V = |P|
V
− ((|P|

V
− |P↓Si

v
|
V
) + (|P|

V
− |P↓Sj

v′
|
V
)). Based on these

observations, Algorithm 1 uses a dynamic programming technique to compute
the optimal VVSs of internal nodes, as explained below.

Notations. For convince, we introduce two derived properties which corre-
spond to the difference in the size and granularity of the original polynomial and
the compressed one: Given a (multi)set of polynomials P and valid variable set
S, the induced monomials loss, denoted by MLP(S), is the difference between
the number of monomials in P and in P ↓S , i.e., MLP(S) = |P|

M
− |P↓S |M .

Similarly, the induced variable loss, denoted by V LP(S), is the difference be-
tween the number of distinct variables in P and in |P ↓S |V , i.e., V LP(S) =
|P|

V
− |P↓S |V . (We omit the P subscript when it is clear from context.) For

instance, in Example 6, ML(S1) = 4 and ML(S5) = 6, while V L(S1) = 2 and
V L(S5) = 3. Also note that for any VSSs S′ and S′′, if S′ ∪ S′′ is also a VVS
then ML(S′ ∪S′′) = ML(S′)∪ML(S′′) and V L(S′ ∪S′′) = V L(S′)∪ V L(S′′).

Algorithm 1. The algorithm keeps for every node v ∈ T an array Av

which encodes an optimal VVS for every possible monomial loss ranging from
0 to k = |P|

M
− B. Every array has k + 1 entries. The i’th entry, for i = 0..k,

records the set Si
v (see above) and is set to ⊥ if no such VVS exists. If Sk

v does
not exists then Av[k] records the minimal V L(Sv) such that ML(Sv) ≥ k (if no
such Sv exists then Av[k] = ⊥).

The algorithm computes Av is a bottom-up fashion, and keeps pointers to
the tree nodes used to obtain the minimal variable loss for each entry. The
returned value is the VVS encoded by the |P|

M
−B entry of the root array.

More specifically, the algorithm initializes the Al[0] for every leaf node l ∈
L(T ) to zero and sets all other entries to ⊥. (lines 2–5). Note that indeed, a
VVS which does not contain any metavariable cannot compress any polynomial.

Now, let v be a node with children v1, . . . , vm in the abstraction tree. Given
the arrays Avj for 1 ≤ j ≤ m, Av can be computed. (Recall that a VVS Sv

can be either a union of valid variable sets Svj for 1 ≤ j ≤ m or Sv = {v}.) If
Sv =

⋃m
j=1 Svj

then V L(Sv) =
∑m

j=1 V L(Svj ) and ML(Sv) =
∑m

j=1ML(Svj ).
In the case where Sv = {v}, V L(Sv) equals the number of leaves in the sub-tree
rooted at v minus 1, and ML(Sv) can be easily computed by abstracting P
using the VVS {v}.

For each node v, the algorithm uses the procedure computeArray() to com-
pute the optimal possible valid variables sets for each 0 ≤ i ≤ k using v’s children
VVS (lines 6–7). Then using the procedures ML(v) and VL(v) that computes
ML(Sv) and V L(Sv) for the case where Sv = {v} respectively, and updates Av

accordingly (lines 9–11). computeArray() determines the i’th entry in Av using
dynamic programming, where the outer loop (line 5) computes the the optimal
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Algorithm 1: Optimal Valid Variables Selection

input : A set of polynomials P, a variable abstraction tree T and bound
B

output: Optimal valid variables set S

Algorithm optimalVVS(P, T, B)
1 k ← |P|

M
−B

2 foreach leaf l in T do
3 Al[0]← 0
4 for i = 1 to k do
5 Al[i]← ⊥

Traverse T in a bottom-up fashion
6 foreach (non-leaf) node v in T do

Let v1, . . . , vm be the immediate children of v
7 Av ←computeArray (Av1, . . . , Avm)
8 if ML (v) < k then
9 Av[ML (v)]← min(Av[ML (v)],VL (v))

10 else
11 Av[k]← min(Av[k],VL (v))

12 return Ar[k] where r is the root of T

Procedure computeArray(Av1, . . . , Avm)

1 for j = 0 to k do
2 τ [1, j]← A1[j]
3 for i = 2 to m do
4 τ [i, j]← ⊥

5 for i = 2 to m do
6 for j = 0 to k do
7 for s = 0 to j do
8 if τ [i− 1, s] 6= ⊥ and Ai[j − s] 6= ⊥ then
9 if τ [i, j] = ⊥ then

10 τ [i, j]← τ [i− 1, s] +Ai[j − s]
11 else if τ [i− 1, s] +Ai[j − s] < τ [i, j] then
12 τ [i, j]← τ [i− 1, s] +Ai[j − s]

13 for j = 0 to k do
14 Av[j]← T [m, j]

15 return Av

12



VVSs considering only VVSs containing meta variables from the subtrees rooted
at Av1 , . . . , Avi . Finally, the optimal VVS S with ML(S) ≥ |P|

M
− B, is the

VVS used to obtain the value in Ar[k] where r is the root of T and k = |P|
M
−B

(line 12). Constructing the valid variable set is then done by pointer chasing.

Example 13 The following polynomials are resulting from the query of our
running example (Example 1), the database fragment given in Figure 1, and
parameterization based on the leaves of the abstraction trees in Figures 2 and 3.
The variables p1, f1, y1, v b1, b2 and e are used to parameterize the plans prices
based on the plan’s type, and m1 and m3 are used control the planes prices per
month for different months.

P1 = 220.8 · p1 ·m1 + 240 · p1 ·m3 + 127.4 · f1 ·m1+

114.45 · f1 ·m3 + 75.9 · y1 ·m1 + 72.5 · y1 ·m3+

42 · v ·m1 + 24.2 · v ·m3

P2 = 77.9 · b1 ·m1 + 80.5 · b1 ·m3 + 52.2 · e ·m1+

56.5 · e ·m3 + 69.7 · b2 ·m1 + 100.65 · b2 ·m3

Given the polynomials set {P1, P2}, the plans abstraction tree1 shown in Figure
2 and the bound B = 9, The algorithm first computes k = |P|

M
− B = |P1|M +

|P2|M − B = 8 + 6 − 9 = 5. After initializing the leaves arrays, the algorithm
traverses the tree in a bottom-up fashion and computes the array for the inner
nodes. In this example, in the array of SB ASB [2] = 1 because the abstraction
that use the variable SB instead of b1 and b2 lose one variable (the result of
replacing two variables with a single one), and reduce the provenance by two
monomials (147.6 ·SB ·m1 + 181.15 ·SB ·m3 instead of 77.9 · b1 ·m1 + 80.5 · b1 ·
m3+69.7·b2 ·m1+100.65·b2 ·m3 in P2). Similarly, the in the array of Sp (we use
Std, B and Sp as shorthand for Standard, Business and Special respectively),
ASp[4] = 2. For node B, we obtain the array AB = [0,⊥, 1,⊥, 2,⊥]. AB [2] = 1
is obtained by using B’s children arrays, since ASB [2] = 1 and Ae[0] = 0, and
AB [4] = 2 by the abstraction that uses B. Finally, APlans is computed using
AB, ASp and ASt, and the resulting array is APlans = [0,⊥, 1,⊥, 2, 3]. Here,
the value APlans[5] = 3 is obtained using AB [2] = 1 and AB [4] = 2. The
corresponding valid variable set is {SB, Sp, e, p1}, the monomial loss using this
abstraction is 6 and the variable loss is 3.

Proposition 14 (Complexity) Given a set of polynomials P, variable ab-
straction tree T , and a bound B, the complexity of Algorithm 1 is O(n·w·k2·|P|

M
)

where n is the number of nodes in T , w is the width of T , and k = |P|
M
−B.

Note that k is bounded by the size of the given provenance polynomial, so
the algorithm is in PTIME.

1We assume that all the leaves of the given tree appears in the polynomials. Otherwise,
we “clean” the tree by removing redundant nodes.
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3.2 Multiple Abstraction Trees

Compressing a (multi)set of polynomials P polynomial using an arbitrary ab-
straction forest T in an optimal manner is intractable (see Theorem 12). Thus,
we provide in Algorithm 2 a greedy heuristic solution.

Roughly speaking, Algorithm 2 works as follows: It maintains a VVS S and
keeps updating it and shrinking the provenance size until S becomes adequate
for B. The set is initialized to contain all the leaves in the forest. Then, the
algorithm iteratively replaces a set of sibling nodes in S with their parents. To
make this process more efficient, the algorithm maintains a set C of candidate
parents which are not in S, but all their children are. The greedy aspect of
the algorithm is that the candidate parent it choses is the one which entails the
minimal variable loss.

In more detail, given bound B, Algorithm 2 first initializes the current VVS
S and candidate nodes to ∅ (line 1) and k to |P|

M
− B (line 2). Then, in lines

3–5 the algorithm adds the leaves of all the trees in T to S and updates the
candidates list accordingly in lines 6–9.

Algorithm 2: Greedy Valid Variables Selection

input : A set of polynomials P, a set of variable abstraction forest T ,
and bound B

output: Valid variables set S

1 S ← ∅; C ← ∅
2 k ← |P|

M
−B

3 foreach tree T in T do
4 foreach leaf l in T do
5 S ← S ∪ {l}

6 foreach tree T in T do
7 foreach node n in T do
8 if n.children ⊆ S then
9 C ← C ∪ {n}

10 while ML(S) < k and C 6= ∅ do
let c ∈ C be the node with minimal VL((S \ c.chilren) ∪ {c})

11 C ← C \ {c};S ← S ∪ {c}
12 S ← S \ {c.children}
13 if (c.parent).children ⊆ S then
14 C ← C ∪ {c.parent}

15 return S

Then, while the monomial loss of S is less than k and the candidate set is not
empty (lines 10 – 14), the algorithm selects the candidate c such that adding c
to S results in minimal variables loss with respect to the polynomials obtained
by the abstraction S (ties are broken arbitrarily), adds it to S and removes it

14



from C (line 11). We then remove c’s children from S (line 12) and if the parent
of c is now a candidate (line 13), add it to C.

Complexity. Given a set of polynomials P, a variable abstraction forest
T , and a bound B, the complexity of Algorithm 2 is O(n · |P|

M
) where n is the

number of nodes in T . We experimentally study the preference of the algorithm
and the quality of its results. Naturally, the results accuracy depend on the
abstraction tree structure, however, we show that in many cases we obtain high
quality results (see §4).

Example 15 Consider again the polynomials P = {P1, P2} from Example 13.
Given P, the abstraction trees (after removing redundant nodes) T = {Plans, Y ear}
shown in Figures 2 and 3, and a bound B = 4, the greedy algorithm first com-
pute k ← |P|

M
−B = 14− 4 = 10, initializes S with the leaves of all trees, and

the set of candidates to be C = {SB, Sp, q1}. V L(Sp) = 2, and both SB and q1
have the same V L of 1, but the ML of the VVS obtained from S by adding q1
is 7, whereas the variable loss obtained from SB is 2. The algorithm selects q1,
which is then removed from C and added to S; m1 and m3 are removed from
S. Since the monomial loss of S is 7 (less than k = 10) it continues to the next
iteration, where the candidate SB is selected. When SB is added to S, the node
B is added to the candidates list C since all of its children are in S. The V L of
B is 1, since the polynomials obtained using S contains the variables SB and e.
The monomial loss of the VVS obtained by adding SB is 8. Next, B is added to
S, e and SB are removed, and the ML of S is 9. Finally, the node Sp is added
to S, and f1, y1 and v are removed resulting in a VVS S with ML = 11 > k
and the algorithm terminates with V L of 5. Note that in this example the VVS
{q1, Sp, SB, e, p1} is the optimal VVS with ML = 10 and V L = 4.

4 Experimental Results

We implemented the algorithms and experimentally evaluated their scalability
and usefulness in various settings.

4.1 Implementation and Optimizations

The system is implemented in Python 3. We used Any Python Tree Data pack-
age [1] to represent the abstraction trees, and Python’s dictionaries for the poly-
nomials. To allow for scalability of the algorithms, in terms of their execution
time, we have employed optimizations in different parts of the implementation,
and we explain them next.

Efficient ML computation. Given the polynomials P and an abstraction
tree T , a naive way to compute the monomial loss of a node v ∈ T is as follows:
let v0, . . . , vm be the descendants of v in T . For every polynomial P ∈ P,
replace every occurrence of any vi for 0 ≤ i ≤ m by v to obtain Pv, and
then compute ML(v) =

∑
P∈P |P |M − |Pv|M . We note that this computation

requires traversing the polynomials for every node in the abstraction trees. For
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a single tree, computing the monomial loss for every tree node, may be done by
traversing the polynomials only once as a first step of the algorithm as follows.
Let l be a leaf of T , and M be a monomial in the polynomial P where M
contains the variable l. We denote by Ml the monomial obtained by removing
l from M . For every polynomial P , we use a hash table DP that maps each
leaf l ∈ T to a set {Ml |M is a monomial in P and l appears in M}. Then, the
monomials loss of a node v in T , where l0, . . . , lm are the leaves descendants of
v, is

m∑
i=0

|DP [li]| − |
m⋃
i=0

DP [li]|

Intuitively, the monomials in {M | M
i
∈ DP [li], 0 ≤ i ≤ m} are the monomials

affected by replacing l0, . . . , lm with v, and their number is
∑m

i=0 |DP [li]|. Every
element e that appears in more than one DP [li] for 0 ≤ i ≤ m is replaced by a
single monomial e · v (with a different coefficient). Thus the number of different
monomials obtained by the replacement is the number of distinct elements in⋃m

i=0DP [li]. The monomial loss is the difference between the total number of
affected monomials and the number of remaining monomials.

Optimizing Av computation. Recall the procedure
computeArray in Algorithm 1, that computes the array Av for each node v. The
procedure computes the array Av of a node v ∈ T using the arrays Av1 , . . . , Avm ,
where v1, . . . , vm are v’s children in T . The computation is done in a dynamic
programming fashion, and includes a loop over the entries of each one of the
arrays v1, . . . , vm, each of size |P|

M
−B + 1.

In practice, most of the entries of the arrays contain ⊥; thus, instead of using
arrays to represent Av we used hash tables, such that if the i entry of the array
is j 6= ⊥, then the table contains the key i with the value j. Now, the procedure
loops over the hash keys (i.e., only entries that are not ⊥), which is usually
significantly smaller than |P|

M
−B + 1. Additionally, note that a valid variable

set in a subtree of a node v ∈ T of height 1 may contain either v’s children or
v. In the former case both the V L and ML are 0; thus we add the key ML(v)
with the value V L(v) to Av for every node v of height 1 in T instead of invoking
computeArray on it.

4.2 Benchmarking

We have developed a dedicated benchmark that involves both synthetic and real
data as follows.

Telephony Company benchmark. We used the provenance generated for
the query from our running example, where the plans price was parametrized
by month and plan (by 12 and 128 variables respectively). The tables were
populated with randomly generated date as follows. For each customer select
randomly one of 128 possible plans, 5 digit zip code and the total number of
calls durations for each month. We varied the number of customers from 10K
to 5M, the latter leading to an input database of 65M tuples. The resulting
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Figure 4: TPC-H supplier abstraction trees

provenance contained 100,000 polynomials, each one contains combinations of
the 128 plans variables and 12 month variables, with total size of over 8GB.

TPC-H benchmark. The TPC Benchmark H (TPC-H)[2] consists of a
suite of business oriented queries. We have experimented with all non-nested
TPC-H queries, a total of 8 queries (note that handling nested queries requires
an extended provenance model, beyond polynomials [5]), with all standard TPC-
H settings. Due to space limitations, we report the results for three of the
queries, namely Q1, Q5 and Q10 which are representative in the sense that they
yield a large number of provenance polynomials, each containing a large number
of monomials; the observed trends for the other queries were similar.

Using 10GB input data, the provenance generated by query 5 consists of 25
polynomials, where the maximal polynomial contains 10890 monomials, and the
minimal polynomial contains 10772 monomials (average size of 10839.8 mono-
mials). In the provenance generated by query 10 the number of polynomials was
993306, where the largest polynomials contains 67 monomials, and the smallest
only 2 monomials (average of 15.78 monomials per polynomial). Finally, for
query 1 we obtain 8 polynomials, each one of size 11265.

For the choice of parameterization (i.e. where to place variables) there is no
existing benchmark to our knowledge. We introduced suppliers variables si and
parts pi variables for 0 ≤ i ≤ 127, and parameterized the discount attribute of
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Figure 5: Compression Time as a Function of Valid Variables Sets for 2 Levels
Tree (tree type 1)

103 106 109 1012 1015 1018

Number of cuts

(a) TPC-H query 5, suppliers
 abstraction tree

0

5

10

15

20

Ti
m

e 
[s

ec
]

Opt Type 2
Greedy Type 2
Opt Type 3
Greedy Type 3
Opt Type 4
Greedy Type 4

103 106 109 1012 1015 1018

Number of cuts

(b) TPC-H query 10, suppliers
 abstraction tree

120

140

160

180

200

220

Ti
m

e 
[s

ec
]

Opt Type 2
Greedy Type 2
Opt Type 3
Greedy Type 3
Opt Type 4
Greedy Type 4

103 106 109 1012 1015 1018

Number of cuts

(c) TPC-H query 1, suppliers
 abstraction tree

0.5

1.0

1.5

2.0

2.5

Ti
m

e 
[s

ec
]

Opt Type 2
Greedy Type 2
Opt Type 3
Greedy Type 3
Opt Type 4
Greedy Type 4

103 106 109 1012 1015 1018

Number of cuts

(d) Running example query,
 plans abstraction tree

120

140

160

180

200

Ti
m

e 
[s

ec
]

Opt Type 2
Greedy Type 2
Opt Type 3
Greedy Type 3
Opt Type 4
Greedy Type 4

Figure 6: Compression Time as a Function of Valid Variables Sets for 3 Levels
Tree

the LINEITEMS table based on the SUPPKEY and PARTKEY attributes, where we
used the variable si if the suppliers key k mod 128 = i, and similarly for the
parts variable pj . In realistic scenarios, assuming the user defines the variables
and trees manually, the expected abstraction trees are likely to have no more
than 128 leaves.

Abstraction trees. We generated 7 different abstraction tree structures
for each set of variables (plans, suppliers and parts), with growing number of
valid variables sets. Abstraction tree of type 1 is a 2 level tree as shown in
Figure 4a. We varied the number of the inner nodes spi from 2 to 64. type 2,
3, and 4 trees are 3-level trees (see Figure 4b), with root fan-out of 2, 4, and 8
respectively. Finally, the trees of type 5, 6, and 7 are 3-level trees as depicted
in Figure 4c, where in type 5 trees the root have 2 children (SPi) each one with
2 children (Si), type 6 trees have 2 SPi nodes each one with 4 children, and in
type 7 trees the root has 4 children, and each one of them has 2 children. The
number of spi nodes varied from 2 and up to 16 (see Table 2 in the Appendix).

We have conducted experiments for examining the scalability of the ap-
proach, its usefulness in terms of the speedup in the time it takes to use the
compressed provenance polynomials compared with the uncompressed polyno-
mials, and the quality of the greedy algorithm, in terms of accuracy and com-
pression time. The experiments were executed on Windows 10, 64-bit, with
8GB of RAM and Intel Core i7-4600U 2.10 GHz processor.

4.3 Experimental Results

The first set of experiments aims at studying the provenance compression time.
In the following, we refer to Algorithm 1 (performing exact computation) as
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TCPH query 5 TCPH query 10
Tree Type Accuracy Speedup

1 100% 20.44%
2 95.26% 37.72%
3 90.46% 45.8%
4 88.32% 50.22%
5 90.99% 49.51%
6 87.16% 63.52%
7 87.06% 61.71%

Tree Type Accuracy Speedup
1 100% 28.03%
2 81.39% 30.46%
3 74.78% 36.96%
4 64.7% 36.61%
5 68.74% 37.64%
6 65.01% 34.67%
7 55.95% 41.72%

TCPH query 1 Running example
Tree Type Accuracy Speedup

1 100% 9.18%
2 95.94% 26.02%
3 92.32% 30.72%
4 83.38% 36.67%
5 90.99% 39.3%
6 89.33% 43%
7 88.41% 45.94%

Tree Type Accuracy Speedup
1 99.84% 21.22%
2 78.58% 21.23%
3 62.74% 27.86%
4 65.4% 30.95%
5 61.95% 27.49%
6 65.79% 23.78%
7 57.77% 30.89%

Table 1: Greedy algorithm average accuracy and speedup

Opt VVS, and Algorithm 2 as the greedy algorithm. We have also compared
the performance of our algorithms to a baseline of a brute force algorithm,
that loops over all possible VVS and selects the optimal one. We examine
the execution time of the algorithm for each dataset, and for each one of the
abstraction tree, using a single tree in each execution. For all experiments we
have set the bound to be 0.5 of the input polynomials size, except for those
studying the effect of the bound itself. We present the results for the execution
using the supplier abstraction tree for the TPC-H queries, the results obtained
using the parts abstraction tree showed similar trends.

Tree Structure. Figures 5 – 7 presents the compression time as a function
of the number of valid variables set for different tree’s types. We observed a
moderate growth in the compression time using Opt VVS (solid lines) and the
greedy algorithm (dashed lines) in all cases, while the brute force algorithm
(dotted lines) was able to complete the computation only when the number of
VVS was less than 80,000. For TPC-H queries 5 and 1 (Figures 5a and 5c),
the greedy algorithm was up to 22% faster than the optimal algorithm and
for TPC-H query 10 and the running example query (Figures 5b and 5d), their
running time was similar (note, though, the different scales). This is because the
required compression in running example can be obtain only using the root, and
for TPC-H query 10 there is no abstraction that lead to the desired compression,
thus in the the latter queries the greedy algorithm have to traverse the whole
tree, whereas for queries 1 and 5 it halts when the required provenance size is
reached (without going over all the tree nodes). Similar results were obtained
for 3 level trees (Figure 6) and 4 level trees (Figure 7). The results of the brute
force algorithm (omitted from the graphs) were above 559 seconds for type 2
tree with 66050 VVS for query, 595 seconds for query 5, 756 for query 10 and
737 for the running example query.

Data Size. Figure 8 presents the provenance compression time as a function
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of the input data size (number of tuples). We used TPC-H 1Gb and growing
fragment size of the 10Gb data set. Using about 40M tuples, every polyno-
mial in the provenance polynomials generated by query 1 contains all possible
combination of parts and suppliers variables. This is due to the fact that the
number of polynomials generated by the query is relatively small (only 8). Thus
the polynomials generated using larger fragments of the data are similar, up to
the coefficients, and the computation time is similar from that point onwards
as shown in Figure 8c. The greedy algorithm outperforms Opt VVS in this case
by 15% in average. For the other queries, we observed a moderate growth in
the computation time with respect to the input data size.

Bound. Figure 9 depicts the compression time as a function of the bound.
We used the abstraction trees to compute the maximal and minimal possible
compression bound for the provenance generated by each one of the queries. We
then varied the bound to examine the effect of the bound on the computation
time of the algorithms. The execution time of the Opt VVS is not affected by
the bound, while the greedy algorithm execution time decreases as the bound
increases, showing that it effectively exploits cases where a solution may be
found by traversing less nodes.

Compression Gain. The second set of experiments aims at assessing the
usefulness of the approach: it studies the time it takes to use the compressed
provenance for observing results under hypothetical scenarios, compared with
the time of the original provenance expression. Figure 10 shows the assignment
time speedup as a function of the compression bound. The for queries 1, 5
was up to 100% and just below 80% for the running example. The provenance
resulting from query 10 consist of a large number of polynomials (about 100,000)
with small number of monomials (15 in average). Here, the maximal possible
compression is relatively small (about 0.03%) and the speedup is negligible.

Greedy Algorithm. This set of experiments aims at assessing the perfor-
mance of the greedy algorithm and the quality of its results. We used a set of
eight (3-level) binary trees, each with 16 leaf. Each tree contains 16 out of 128
variables. We then examine the affect of the number of possible trees on the
execution time of the greedy algorithm. The results are shown in Figure 11. We
observed a moderate growth for all the queries. We then examine the quality
of the greedy algorithm results. We compared the V L of the resulting VVS
generated by the greedy algorithm to the V L of the VVS computed by Opt
VVS using. Table 1 depicts the accuracy and speedup compared to Opt VVS
for the different queries and trees. The accuracy for Type 1 trees was 100% in
most cases; this is because type 1 trees are 1 level trees, thus if the optimal VVS
is not the root, it contains leaves and middle level nodes, the former are added
to the initialized greedy VVS and the latter are inserted to the candidates list.
Since the number of leaves of each middle level node are equal in those trees, the
V L of all of them is equal, and in most cases, arbitrary selection and insertion
of the middle level nodes leads to an optimal solution. In general, the results
of the greedy algorithm were more precise for TCP-H queries 1 and 5. This
is due to the fact that the provenance resulting from those queries contains
significantly smaller number of polynomials, 8 and 25 respectively, compared
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to about 100,000 in both the provenance of TCP-H query 10 and the running
example. Therefore, the latter are more sensitive to “locally” greedy selection.
Furthermore, the speedup of the greedy algorithm was between 9.18% and up
to 63.52%.

Gain of abstraction trees. As mentioned in §1, there is previous work
on summarization guided by various optimization tasks. Most generally, the
algorithm presented in [3] uses an oracle to define semantic constraints over the
summarizations and their gain. We have implemented the algorithm proposed
by [3] and used for each experimental case the relevant abstraction tree as
the black-box oracle that determines the semantic constraints, provenance size
and candidate scores (using the terminology of [3]). Note that the algorithm
of [3] gets as input a single polynomial; thus, we extend it to work on a set
of polynomials. The run-times of this competitor algorithm compared to our
optimal algorithm as a function of the bound (using the setting described in
the bound experiment) for TPC-H queries 1 and 5 are presented in Figure 12.
The competitor algorithm did not finish the computation on query 10 and the
running example query within 24 hours; we thus observe the crucial advantage
of our optimal algorithm in terms of runtime.

The algorithm of [3] iteratively examine, using the oracle, the grouping of
all possible monomial’s pair in the provenance polynomials in order to reduce
its size with minimal loss. Thus, as the bound decreases, the number of oracle
calls, and the algorithm’s total runtime increase. In terms of accuracy, unlike
our solution the algorithm of [3] has no quality guarantees. In practice, for the
cases where convergence was reached, it has achieved good accuracy, though
still inferior to the optimal solution that our algorithm finds (the quality of [3]
was approx. 96% of the optimal on average).

22



5 Related Work

Data Provenance. Data provenance has been studied for different query lan-
guages, from relational algebra to Nested Relational Calculus, and with different
provenance models (see, e.g., [11, 36, 34, 29, 39, 20, 49, 15, 26]) and applications
[48, 43, 47, 42, 32, 13]. We focus on this work on provenance polynomials, an
approach that originated in the provenance semiring approach [36] for SPJU
queries and have since been used in for further expressive queries, and for appli-
cations ranging from hypothetical reasoning and reenactment to explanations
of missing answers (e.g., [36, 22, 5, 27, 50, 12, 6]). Furthermore, the work of
[35] has shown that the provenance semiring framework is expressive enough
so that provenance polynomials can capture many of the previously proposed
provenance models – this intuitively means that we assign different semantics to
the addition and multiplication operations. The polynomial model that we work
with in this paper is generic, in the sense that we assume no concrete semantics
of the operations. Our solution may thus be used for abstraction of provenance
in a wide range of applications and using a wide range of provenance models.

Hypothetical Reasoning. Answering queries under hypothetical updates
was studied in [30, 9, 22, 8, 25, 6, 7]. This work has laid the grounds for an effi-
cient way of reasoning with hypothetical updates, namely that of provisioning.
The solution employed in [8] uses provenance polynomials of the flavor we have
studied in this work, but while raising the need for specification of scenarios that
can guide provenance generation, no such models were proposed there. Differ-
ent notions of hypothetical reasoning vary in the level of detail that they track
(from fine-grained provenance tracking required for hypothetical reasoning to
coarse grained tracking of, e.g., the modules that were used), and the scale of
data they can handle; there is an obvious tradeoff between these factors. In the
present paper we formalize and study, for the first time to our knowledge, this
tradoff, and present the notion of abstraction trees to control it.

Provenance Storage. Multiple lines of work have focused on efficient
provenance storage (e.g., [10, 16, 44, 26, 23]) including support for distributed
systems [45, 4, 37, 38, 17]. In contrast to our work, none of these solutions has
focused on use-based approximation of the provenance, namely to leverage the
expected uses – restrictions on hypothetical reasoning, in our case – to abstract
the provenance expression. The efficient storage techniques described above are
thus complementary to our work; implementing our approach for summariza-
tion to work in tandem with solutions for efficient storage is an important goal
for future work. Specifically, in either centralized or distributed settings, once
provenance is computed we may wish to interact with it – i.e., assign values –
using a single, weak machine such as the analyst’s phone/tablet, thus avoiding
costly storage; this is where our abstraction would come into play.

Provenance Size Reduction. Our solution aims at reducing provenance
size through a novel notion of abstraction. There are multiple other lines of
work aiming at reducing provenance size. One such approach is to track only
parts of the provenance that are of interest, e.g., based on user specification
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[33, 31, 21, 19]. Such selective provenance tracking is complementary to ours,
as we start from a polynomial which may reflect full or partial provenance, in-
variably for our approach. Other works have studied techniques for the factor-
ization or summarization of provenance, for compression. Such summarization
may be lossless [26, 23], and then it may again be used for storage in conjunc-
tion with our lossy approach. Lossy compression techniques have been proposed
for multiple purposes, namely probability computation [46] or the presentation
of explanations [40]. The only work, to our knowledge, that studied prove-
nance compression for hypothetical reasoning is that of [8] where algorithms are
proposed to design sketches of the provenance that account for a given set of
hypothetical scenarios. As mentioned in [8], their construction assumes that the
hypothetical scenarios are given, but proposing means for specifying them has
been left there for future work.

6 Conclusion and Future Work

We have presented a novel solution for summarizing provenance by grouping
together variables and replacing them with an abstract meta-variable. Group-
ing is constrained through abstraction trees, defining logical hierarchies over
the variables. We have introduced the problem of optimizing abstractions that
reduce the provenance size below a given threshold, and studied its computa-
tional complexity. We have proposed efficient algorithms and heuristics for the
problem, and experimentally shown their effectiveness.

There are many intriguing directions to explore as future extensions of the
framework. One such promising direction is to combine our approach with
other solutions for efficient provenance storage and generation surveyed in §5.
Arguably, the most intriguing direction for future work is enabling online com-
pression: Our solutions take as input provenance polynomials; as explained in
§1, the use case is that the provenance is generated once but then used multiple
times, possibly by multiple analysts. Naturally, one may wonder whether we can
avoid its costly computation to begin with, and instead compress provenance
alongside with its generation?

One direction for using our approach for on-the-fly compression is through
sampling. The idea is to generate only a sample of the provenance, apply our
algorithms to the sample, and obtain a choice of Valid Variable Set (VVS).
Then use the same VVS to group variables in the full input database, and
generate provenance over this smaller set of “summary” variables to obtain a
summarized full provenance. The gaps are then (1) how to sample so that we
correctly represent the data for this purpose, and (2) how to adapt the bound
given to the algorithm when run over the sample.

A naive approach for addressing the first challenge is to uniformly sample
from the data; depending on the query structure, this however may not lead to
a representative sample of the output or its provenance. A heuristic solution,
tailored for simple GROUPBY queries as in our running example, is to sample
only from the relations that include the grouping attributes, leaving the other
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relations intact. This intuitively results in a sample from the output polynomi-
als, though this sample is still not guaranteed to be representative. Designing
algorithms that achieve such a representative sample is an important challenge
for future work.

As for adapting the bound to the sample, a possible heuristics is to set this
bound as a function of (1) the original bound and (2) the ratio between the
full provenance size and the sample provenance size, e.g. the first multiplied
by the second. To this end, we need an estimation of the full provenance size.
This is again a challenge, related to the classical problem of estimating queries
output size (e.g., [41, 18]). A possible heuristic is to perform multiple samples
of increasing sizes, compute the provenance for each of them, and extrapolate
the full provenance [14]. This component of provenance size estimation is an
important challenge for future work.
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A Lower Bound

In this section we prove that the decision problem corresponding to provenance
abstraction is NP-hard in the provenance size (Theorem 11). In fact, the proof
shows that the problem is NP-hard even if we restrict our attention to abstrac-
tion trees of height two and to a single polynomial in which each monomial
contains exactly two variables. Technically, the proof is done by a reduction
from the vertex cover problem.

Simplifying Assumptions. Recall that the decision problem (Theorem 10)
is as follows: Given a set of polynomials P, a valid abstraction forest T which
is compatible with it, and desired size B ∈ {1 . . . |P|

M
} and granularity K ∈

{1 . . . |P|
V
} of the set of polynomials resulting from abstracting P according

to S. Determine if there exists a precise valid variable set for B and K. For
simplicity, and without loss of generality, we ignore in this section the trivial
cases where either B = 1, B = |P|

M
, K = 1, or K = |P|

V
.

Notations. For clarity, we wish to distinguish in this section between names
of metavariables and names of variables. Thus, we assume an infinite set ν ∈ ID
of identifier which we use to form names: We generate names of metavariables
by adding a parenthesized numerical superscript to a (possibly with a prime, a
dot, a bar, etc.) identifier, e.g., x(1), ẋ(1), x̄(i), and ¯̈x(1) are names of metavari-
ables. We generate variable names by adding one or two subscripts to names of

metavariables, e.g., x
(1)
2 , ẍ

(1)
k , x̄

(i)
a,2, and ¯̇x

(i)
j,k are names of variables.

Uniformly Partitioned Polynomials Technically, we prove that the deci-
sion problem is NP-Hard even if we restrict our attention to a particular class of
polynomials, dubbed uniformly partitioned polynomials, which we now define.

Definition 16 A polynomial P is uniformly partitioned according to a finite
set X of metavriables, a blowup factor n ∈ N, and a set I ⊂ {1..|X|} × {1..|X|}
, denoted by P 〈X,n, I〉, if for any (a, b) ∈ I it holds that a < b and P is of the
form

P =
∑

(a,b)∈I

P (a,b) where P (a,b) =
∑

i,j∈{1..n}

x
(a)
i · x

(b)
j .

Example 17 Assume X = {x(1), x(2), x(3), x(4)}, n = 3, and I = {}. The fol-
lowing polynomial P is uniformly partitioned according to the set X = {x(1), x(2), x(3), x(4)}
of metavariables, the blowup factor n = 3, and the set I = {(1, 2), (1, 3), (2, 3), (2, 4)}:

P = P (1,2) + P (1,3) + P (2,3) + P (2,4),

where
P (1,2) = x

(1)
1 · x

(2)
1 + x

(1)
1 · x

(2)
2 + x

(1)
1 · x

(2)
3 +

x
(1)
2 · x

(2)
1 + x

(1)
2 · x

(2)
2 + x

(1)
2 · x

(2)
3 +

x
(1)
3 · x

(2)
1 + x

(1)
3 · x

(2)
2 + x

(1)
3 · x

(2)
3
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P (1,3) = x
(1)
1 · x

(3)
1 + x

(1)
1 · x

(3)
2 + x

(1)
1 · x

(3)
3 +

x
(1)
2 · x

(3)
1 + x

(1)
2 · x

(3)
2 + x

(1)
2 · x

(3)
3 +

x
(1)
3 · x

(3)
1 + x

(1)
3 · x

(3)
2 + x

(1)
3 · x

(3)
3

P (2,3) = x
(2)
1 · x

(3)
1 + x

(2)
1 · x

(3)
2 + x

(2)
1 · x

(3)
3 +

x
(2)
2 · x

(3)
1 + x

(2)
2 · x

(3)
2 + x

(2)
2 · x

(3)
3 +

x
(2)
3 · x

(3)
1 + x

(2)
3 · x

(3)
2 + x

(2)
3 · x

(3)
3

P (2,4) = x
(2)
1 · x

(4)
1 + x

(2)
1 · x

(4)
2 + x

(2)
1 · x

(4)
3 +

x
(2)
2 · x

(4)
1 + x

(2)
2 · x

(4)
2 + x

(2)
2 · x

(4)
3 +

x
(2)
3 · x

(4)
1 + x

(2)
3 · x

(4)
2 + x

(2)
3 · x

(4)
3 ,

Claim 18 Let P 〈X,n, I〉 be a uniformly partitioned polynomial. The following
holds:

|P (a,b)|
M

= n2 |P (a,b)|
V

= 2 · n
|P |

M
= |I| · n2 |P |

V
= |X| · n

Example 19 Consider the polynomials P and P (1,2) defined in Theorem 17.
The following holds:

|P (a,b)|
M

= 32

|P (a,b)|
V

= 2 · 3 as V(P (a,b)) = {x(1)1 , x
(1)
2 , x

(1)
3 , x

(2)
1 , x

(2)
2 , x

(2)
3 }

|P |
M

= 4 · 32

|P |
V

= 4 · 3 as V(P ) = {x(1)1 , x
(1)
2 , x

(1)
3 , x

(2)
1 , x

(2)
2 , x

(2)
3 ,

x
(3)
1 , x

(3)
2 , x

(3)
3 , x

(4)
1 , x

(4)
2 , x

(4)
3 }

Flat Abstractions We now define a special class of abstraction forests for
uniformly partitioned polynomials. We refer to these abstraction forests as
flat abstractions. Intuitively, the flat abstraction of a uniformly partitioned
polynomial P 〈X,n, I〉 partitions P ’s variables into |X| sets of equal size (n)
according to the metavariable they pertain to.

Definition 20 An abstraction forest T is the flat abstraction of a uniformly
partitioned polynomial P 〈X,n, I〉 if

T = {T1, . . . , T|X|}, where Ti = (Ni, Ei) and

Ni = {x(i)} ∪ {x(i)j | j ∈ {1..n}}
Ei = {(x(i), x(i)j ) | j ∈ {1..n}} .

Example 21 Figure 13 depicts the flat abstraction of the polynomial P defined
in Theorem 17.

Claim 22 The flat abstraction of a uniformly partitioned polynomial P 〈X,n, I〉
is compatible with P .
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Figure 13: A flat abstraction.

Claim 23 Let T be the flat abstraction forest of a polynomial P 〈X,n, I〉, S a
valid variable set of T , and Y ⊆ S the set comprised of the metavariables in S.
It holds that

|P↓S |M =
∑

(i,j)∈I


1 x(i) ∈ Y, x(j) ∈ Y
n2 x(i) 6∈ Y, x(j) 6∈ Y
n otherwise

|P↓S |V = |Y |+ (|X| − |Y |) · n

Example 24 Consider the polynomial P defined in Theorem 17, its flat ab-
straction, defined in Theorem 21, and the valid variable abstraction set S =

{x(1), x(2)1 , x
(2)
2 , x

(2)
3 , x(3), x

(4)
1 , x

(4)
2 , x

(4)
3 }. The set of metavariables in S is Y =

{x(1), x(3)}.
P↓S= P

(1,2)
S + P

(1,3)
S + P

(2,3)
S + P

(2,4)
S ,

where
P

(1,2)
S = 3 · x(1) · x(2)1 + 3 · x(1) · x(2)2 + 3 · x(1) · x(2)3

P
(1,3)
S = 9 · x(1) · x(3)

P (2,3) = 3 · x(2)1 · x(3) + 3 · x(2)2 · x(3) + 3 · x(2)3 · x(3)

P (2,4) = x
(2)
1 · x

(4)
1 + x

(2)
1 · x

(4)
2 + x

(2)
1 · x

(4)
3 +

x
(2)
2 · x

(4)
1 + x

(2)
2 · x

(4)
2 + x

(2)
2 · x

(4)
3 +

x
(2)
3 · x

(4)
1 + x

(2)
3 · x

(4)
2 + x

(2)
3 · x

(4)
3 .

Note that

V(P↓S) = {x(1), x(3)} ∪ {x(2)1 , x
(2)
2 , x

(2)
3 , x

(4)
1 , x

(4)
2 , x

(4)
3 } .

Claim 25 Let T be the flat abstraction forest of a polynomial P 〈X,n, I〉, and
S a valid variable set of T . It holds that 0 < |P↓S |M .

The claim holds for a rather mundane reason: the coefficients of the monomials
in P are always positive. Thus, the abstraction process can only “unify” multiple
monomials into one, but it never reaches a point when one monomial cancels
another.
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Theorem 26 Given a uniformly partitioned polynomial P 〈X,n, I〉, a size bound
B ∈ {2..(|I|·n)−1}, and a granularity bound K ∈ {2..(|X|·n)−1}, determining if
P has a precise abstraction for B and K according to its flat abstraction forest
is NP-hard.

Reduction We prove Theorem 26 via a reduction from the vertex cover prob-
lem, a decision problem which we now define. For notational simplicity, and
without loss of generality, we omit certain easy cases from the vertex cover
problem. Namely, we require that the input graph contains at least two node
and one edge and forbid self loops.

Definition 27 (Vertex cover) Let G = (V,E) be an undirected graph. A set
V ′ ⊆ V is a vertex cover of G if for every edge (x, y) ∈ E either x ∈ V ′ or
y ∈ V ′.

Theorem 28 ([28]) Given an undirected graph G = (V,E), where V = {v1, . . . , vn}
for some 1 < n, E 6= ∅, and for any edge (vi, vj) ∈ E it holds that i 6= j. De-
termining if G has a vertex cover V ′ such that |V ′| = k, when k ∈ {2..|V |−1},
is NP-hard.

Lemma 29 Let G = (V,E) be an undirected graph which satisfies the condition
of Theorem 28. G has a vertex cover V ′ ⊂ V of size k ∈ {2..|V |−1} if and only
if the uniformly partitioned polynomial P 〈X, |V |3, I〉, where X = {x(i) | ni ∈ V }
and I = {(i, j) | (vi, vj) ∈ E ∧ i < j}, has a precise abstraction according to P ’s
flat abstraction forest for some B ∈ {2..|V |5} and K = (|V | − k) · |V |3 + k.

Proof 30 Assume that there exists a valid variable set S for T which com-
presses P into a polynomial P ′ = P ↓S such that |P ′|

M
= B and |P |

V
= K.

We show that the set of nodes V ′ = {vi ∈ V | x(i) ∈ S} corresponding to the
metavariables in S is a vertex cover of G of size k.

To see that V ′ is a vertex cover, recall that P is uniformly partitioned. Hence,
Theorem 18 ensures that each edge in E corresponds to |V |6 unique monomials
and that |P |

M
= |E| · |V |6. By assumption, 0 < |E|. Thus 0 < |P |

M
, and,

by Theorem 25, 0 < |P ′|
M

. By assumption, 1 < |V | and B ≤ |V |5. Hence,
B < |V |6. By Theorem 23, if there had been even a single edge (vi, vj) ∈ E
such that {x(i), x(j)} ∩ V ′ = ∅, it would mean that |V |6 ≤ |P ′|

M
, which would be

a contradiction.
To see that |V ′| = k, we use, again, Theorem 23, and observe that |P ′|

V
=

(|V | − |V ′|) · |V |3 + |V ′|. Because S is a precise abstraction, |P ′|
V

= K. By
assumption, K = (|V |−k)·|V |3+k. Which implies that (|V |3−1)·(|V ′|−k) = 0.
As 1 < |V |, it must be the case that |V |′ − k.

Assume V ′ ⊆ V is a vertex cover of G of size k. Let

S = {x(i) | vi ∈ V ′} ∪ {x(i)j ∈ V(P ) | vi 6∈ V ′} be the set of metavariables anno-
tating the roots of the abstraction trees in T corresponding to the nodes in the
vertex cover, combined with the leaves of the other trees. It is easy to see that
S is a valid variable set for the flat abstraction forest of P .
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Figure 14: Compression Time as a Function of the Number of Variables

As V ′ is a vertex cover, Theorem 23 ensures that |P↓S |M ≤ |E|·|V |3. Clearly,
|E| ≤ |V |2. As 1 < |V |, we get that
|P↓S |M ∈ {2..|V |5}. By construction, |X| = |V | and |S| = |V ′|. By assumption,
|V ′| = k. Hence, Theorem 23 ensures that
|P↓S |V = (|V | − k) · |V |3 + k, i.e., |P↓S |V = K as required.

Proof 31 (Proof (Theorem 26)) The proof follows directly from Theorem 28
and Theorem 29: The former states that the vertex cover problem for arbitrary
G = (V,E) and k < |V | is NP-hard. The latter shows that we can solve the
vertex cover problem by invoking the solution to our decision problem at most
|V |5 times.

B Experiments: Additional Information

Number of Variables. To examine the affect of the number of variables on
the algorithms’ runtime, we used TPC-H 1Gb, and populated the database of
our running example with 10,000 customers. The bound was set to 0.5 of the
input polynomials size, and the number of variables varied up to 8000, of which
128 where the leaves of the abstraction tree. Figure 14 presents the provenance
compression time as a function of the number of variables in the input data for
TPC-H queries 5 and 1. For those queries we observed moderate growth in the
computation time, while the running time for query 10 and the running example
query was roughly the same in all cases, and therefore the graphs are omitted.
The difference stem from the affect of the variable number on the provenance
size. Queries 1 and 5 generates relatively small number of polynomials, and
thus, introducing new variables significantly increase the number of monomials
per polynomial and the total provenance size, while query 10 and the running
example query generate a large number of polynomials (993306 and 100,000
respectively), thus the affect of the additional variables on the total polynomials
size is minor.
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Type Nodes
Fan-out

VVS
Root Level 1 Level 2 Level 3

1

131 2 64 - - 5
133 4 32 - - 17
137 8 16 - - 257
145 16 8 - - 65537
161 32 2 - - 4294967297
193 64 2 - - 1.84467E+19

2

135 2 2 32 - 26
139 2 4 16 - 290
147 2 8 8 - 66050
163 2 16 4 - 4295098370
195 2 32 2 - 1.84467E+19

3

141 4 2 16 - 626
149 4 4 8 - 83522
165 4 8 4 - 4362470402
197 4 16 2 - 1.84479E+19

4
153 8 2 8 - 390626
169 8 4 4 - 6975757442
201 8 8 2 - 1.90311E+19

5

143 2 2 2 16 677
151 2 2 4 8 84101
167 2 2 8 4 4362602501
199 2 2 16 2 1.84479E+19

6
155 2 4 2 16 391877
171 2 4 4 4 6975924485
203 2 4 2 8 1.90311E+19

7
157 4 2 2 8 456977
173 4 2 4 4 7072810001
205 4 2 8 2 1.90323E+19

Table 2: Abstraction trees Types
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