University

7 of Glasgow

Sawvva, F. (2019) Query-Driven Learning for Next Generation Predictive Modeling
& Analytics. In: SIGMOD SRC 2019, Amsterdam, The Netherlands, 30 Jun - 05
Jul 2019, pp. 1844-1846. ISBN 9781450356435 (doi:10.1145/3299869.3300101).

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

© The Author 2019. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of SIGMOD SRC 2019, Amsterdam, The Netherlands, 30
Jun - 05 Jul 2019, pp. 1844-1846. ISBN 9781450356435.

http://eprints.gla.ac.uk/177847/

Deposited on: 15 January 2019

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk


http://dx.doi.org/10.1145/3299869.3300101
http://eprints.gla.ac.uk/177847/
http://eprints.gla.ac.uk/177847/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Query-Driven Learning for Next Generation
Predictive Modeling & Analytics

Fotis Savva
University of Glasgow, UK
f.savva.l@research.gla.ac.uk

ABSTRACT

As data-size is increasing exponentially, new paradigm shifts
have to emerge allowing fast exploitation of data by every-
body. Large-scale predictive analytics is restricted to wealthy
organizations as small-scale enterprises (SMEs) struggle to
compete and are inundated by the sheer monetary cost of
either procuring data infrastructures or analyzing datasets
over the Cloud. The aim of this work is to study mechanisms
which can democratize analytics, in the sense of making them
affordable, while at the same time ensuring high efficiency,
scalability, and accuracy. The crux of this proposal lies in
developing query-driven solutions that can be used off the
Cloud thus minimizing costs. Our query-driven approach
will learn and adapt on-the-fly machine learning models,
based solely on query-answer interactions, which can be
used for answering analytical queries. In this abstract we
describe the methodology followed for the implementation
and evaluation of the system designed.
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1 INTRODUCTION

With the adoption of data-driven decision making, there is a
surge of companies turning to popular Cloud providers that
have developed large-scale systems able to store and process
huge data quantities. However, the problem still remains in
that multiple costly! queries are issued by multiple analysts,

! https://cloud.google.com/bigquery/pricing Shows the associated costs,
which increase almost exponentially with more data
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which often overburden a cluster. Hence, there is dire need
for systems/mechanisms which allow for fast execution of
analytic and predictive queries while being resource aware
without additional costs.

The analytic workloads [6] often comprise a series of ag-
gregate queries (COUNT/MIN/MAX) to which an approximate
answer is often enough to move forward. As such, over the
last few decades, research focuses on systems that allow Ap-
proximate Query Processing (AQP)[1, 7, 9] to facilitate the
process of data analysis. Although data-driven AQP systems
offer a straight-forward and rather efficient solution to the
problem, they come at a cost: they require large samples
and still reside in Cloud systems, which makes them costly
to maintain. Our aim is to allow analysts to perform essen-
tial analytic tasks in their local environments in an efficient,
light-weight and accurate manner. Our approach leverages
query-driven learning which exploits past query workloads
to learn Machine Learning (ML) models that can estimate
the results of analytic queries.

2 BACKGROUND & RELATED WORK

Our work is most notably connected to prior work focusing
on the benefits of using a query-driven approach for a num-
ber of problems ranging from query processing to database
tuning [2-4, 8, 10]. In addition, our work is influenced by
prior work on AQP both sampling-based [1, 7, 9] and on-
line aggregation systems [5, 11]. Our described system is
agnostic to what happens when a query is executed. The
execution could be achieved by an AQP system or a (Big-
)database query processing system. Our system utilizes the
query-answer pairs to build ML models that in turn provide
estimations for queries without using cloud resources as esti-
mations are evaluation of functions that can be done locally.
As such, what we propose is complimentary to AQP and
current processing engines. The closest thing to our work
is proposed by Yongjoo et al. [9], however their approach is
to learn better estimates and refine errors using results and
errors obtained by an AQP engine. Our approach drastically
differs as it does not assume any system in the background
and it is built by executed queries no matter where they are
executed and can be used locally without requiring a query
processing engine.
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3 QUERY-DRIVEN ANALYTICS
ESTIMATION

Representation of Queries: A challenge in this endeavor
is a valid representation for queries. Such that an ML model
would associate the representation with the results obtained.
If we consider every analytics system as a black box, we
deal with queries over sets of multidimensional points made
up of a number of attributes to which a number of algebra
operations are performed to return results.

Definition 3.1. Consider Selection-Projection-Aggregate (SPA)
queries, in which a single aggregate is the result of a query;
that is made up of a single fact relation and multiple predi-
cates. This is one of the most common queries used when
requiring to extract analytics/descriptive statistics from a fact

table. The list of predicates can be formalised as a d—dimensional

vector, m € RY, in which the filtering parameter values are
stored. The answer to that query (being the result of aggre-
gate operations) is y € R. Therefore, a query-answer pair is
a vector q = (m, y).

Definition 3.2. (Learning) Once a vectorized representa-
tion for queries & answers is constructed, we adopt ML al-
gorithms to learn how the query parameter values affect
the result. Given a number of queries already executed and
stored in log files, we obtain the set C = {(m;, y;)}" ;. The
goal of any ML algorithm is to minimize the expected loss
between the true result of y and an estimated one ¥, i.e., to
approximate the distribution funtion p(y|m).

Estimation: Given this growing set C, our strategy is to
sequentially develop local ML models that efficiently predict
the associated outputs given unseen queries. Such knowl-
edge extraction is achieved by on-line partitioning the query
vectors {qi,...,q,} from the set C into disjoint clusters
that represent the statistical query patterns of the analysts.
Fundamentally, within each cluster, the queries are much
more similar than the queries in other clusters. The main
objective of query clustering algorithms is to minimize the
distance of all queries to a corresponding cluster represen-
tative, which is essentially a pseudo-query representing the
analysts query access patterns and best represents each clus-
ter; it is often the mean-vector (centroid) of all queries as-
sociated with that cluster. The K <« n query representa-
tives W = {wy,...,wg} are estimated to optimally rep-
resent the queries in C such that they incrementally min-
imize the expected quantization error E[ming||q — wgl|?].
Each query q becomes associated with the closest repre-
sentative w* = arg minyeqy||q — w||. Based on this query-
space partitioning of C, we produce K query-disjoint sub-
setsC=C; U...Ck,suchthat C, NC; = 0 fork # [ and
Cr = {qlwir = argmingcqyllq — w||?}. A local predictive
ML model is then trained over each query-disjoint subset of
query-answer pairs C, k € [K].

After having partitioned the query space into disjoint clus-
ters Cy, ..., Ck, we therein train K different supervised learn-
ing models, M = {41, ..., Jx} that associate query vectors
q belonging to cluster C; C C with their corresponding re-
sponse outputs y. That is, each local model g is trained from
the query-response pairs (m, y) € Ci from those queries q
which belong to Ci C C such that wy is the closest query-
representative of those queries. After training local models,
the analysts can use these models for predicting the answers
of new incoming queries without communicating with the
Cloud and without executing them on data or samples.

This partition-and-local-learning methodology effectively
assumes an ensemble learning strategy for our system. By
adopting such an ensemble learning strategy, the various
models have voting rights, meaning that each one of them
contributes to the final query answer prediction for a given
query by casting a vote. However, our strategy is to re-
voke voting rights for models, which do not represent the
query sub-space that a given query belongs to. Hence, we
assign to the most representative model an authoritative
power over the rest of the models and thus returning to
the user its prediction with the highest confidence. For-
mally, the proposed ensemble prediction is § = Zle Ik gx(q)
with [ being an indicator function which evaluates to 1 if
Wi = arg min;e[xllq — wil.

4 RESULTS
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Figure 1: Accuracy over number of queries: (Left)
Crimes Dataset; (right) Sensors Dataset.

Results shown in Figure 1 over real datasets indicate great
promise for adopting such approaches in analytic query es-
timation. The most common aggregates can be answered
accurately while using zero cloud resources as they are exe-
cuted locally using ML. As the number of executed queries in-
creases, the expected error decreases until reaching a plateau
after 10k queries for the Crimes dataset and less than 5k for
Sensors dataset. The queries used for training simulate an an-
alysts’ behavior, issuing spatial queries (restricting lat/long
and extracting aggregate values for crimes reported within
an area) and temporal queries for Sensors.
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