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ABSTRACT
Recent advances in social and mobile technology have en-
abled an abundance of digital traces (in the form of mobile
check-ins, association of mobile devices to specific WiFi
hotspots, etc.) revealing the physical presence history of di-
verse sets of entities (e.g., humans, devices, and vehicles).
One challenging yet important task is to identify k entities
that are most closely associated with a given query entity
based on their digital traces. We propose a suite of indexing
techniques and algorithms to enable fast query processing
for this problem at scale. We first define a generic family of
functions measuring the association between entities, and
then propose algorithms to transform digital traces into a
lower-dimensional space for more efficient computation. We
subsequently design a hierarchical indexing structure to or-
ganize entities in a way that closely associated entities tend
to appear together. We then develop algorithms to process
top-k queries utilizing the index. We theoretically analyze
the pruning effectiveness of the proposed methods based
on a mobility model which we propose and validate in real
life situations. Finally, we conduct extensive experiments
on both synthetic and real datasets at scale, evaluating the
performance of our techniques both analytically and experi-
mentally, confirming the effectiveness and superiority of our
approach over other applicable approaches across a variety
of parameter settings and datasets.
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1 INTRODUCTION
The prevalence of mobile devices, social media, ambient
wireless connectivity, and associated positioning technolo-
gies have made it possible to record digital traces at an un-
precedented rate. Such traces correspond to location shar-
ing through social apps, handshaking with WiFi hot-spots
(recording wireless chip MAC address or other device char-
acteristics of a device in proximity of a WiFi network 1) and
cellular stations via a mobile device and many other pas-
sive/active location capturing scenarios, giving rise to an
abundance of digital traces. Such traces reveal the presence
history of diverse sets of entities depending on the application
and include humans, devices, etc. At a high level, any digital
trace takes the form of a tuple, (entity, location, timestamp),
recording that an entity (e.g., a person) was present at a
physical location (e.g., a restaurant) for the indicated times-
tamp. Typically location corresponds to physical locations
which exhibit a hierarchical structure that is known a priori
(e.g., city - district - street - building), and the timestamp
is discretized to a tunable atomic unit such as an hour or a
minute, depending on the application. For example, the tuple
(Tom,W London, 10 a.m.) represents the fact that Tom was
at the W London hotel during the hour starting at 10 a.m.

A challenging task is to identify the entities that are closely
associated with a given query entity utilizing their digital
traces. Intuitively two entities are associated if there exists a
large overlap on their digital traces. Numerous definitions for
what constitutes an overlap are possible; for example, a large
overlap in the locations followed by an overlap (proximity)
of associated timestamps. Thus, if two entities were present
at W London at 10 a.m., they are associated. Similarly if two
entities are present at W London, one at 10 a.m. and the
other at 11 a.m., they are still associated but possibly less
so than the previous two entities. Alternatively, one may
take into account the spatial proximity of locations to define
association in addition to timestamps. Thus, if two entities
are present in the same postal code at the same time, they
are associated as well, but probably less so than two entities
appearing at the same specific location, say a restaurant, at
the same time. It is evident that there are numerous ways to
define association of entities given their digital traces, which

1The WiFi protocol reveals to the access points the MAC address of any
WiFi enabled device in the vicinity of the network, even if the device is not
connected to the network.
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are probably application dependent. As such, we adopt a
generic approach and define a class of functions that have
generic properties to quantify association. All our subsequent
developments in this work hold for this generic class of
functions sharing such properties (see Section 2.2).
Given a suitable function to quantify association we are

interested to identify the top-k associated entities to a given
query entity. Supporting efficient processing of such queries
over a large volume of digital traces enables a variety of
applications. For example, this assists law enforcement au-
thorities to identify individuals closely related to a person of
interest. This research is motivated by our work with author-
ities enabling post crime investigation utilizing location data
collected from mobile devices. Such information is crucial
to prove the joint presence of suspects in crime scenes and
also their association before and after the crime. For this spe-
cific reason, the main interest is to assess association across
large sets of digital traces, corroborating the association be-
fore and after specific events. For example, in our ongoing
work with a large national telecommunications provider in
this problem, we will present results involving 30M indi-
vidual devices with an average of 650K detections by WiFi
hotspots each; in addition, each device is present on average
at 500 locations during the time ranges of interest for which
queries are required. In a different context, the techniques
developed herein enable marketers to identify groups of indi-
viduals with related behavior in the physical world for more
effective advertising. As an example, marketers may utilize
associated behavior inside a shopping center (as reported by
triangulated WiFi signals of mobile devices) to identify fami-
lies or couples who are of prime interest for specific types of
location-based marketing. Once again association across a
large collection of traces enforces a closer bond between the
entities involved as opposed to chance encounters.

In the target applications we engage with, the number of
entities is in the multiple millions while the number of digital
traces is in the billions. As such, techniques that compare
the query entity to all other entities are inefficient.

Aiming to provide fast query response times, we propose a
suite of indexing structures and algorithms for this problem.
At a high level, we consider entities as points in a high-
dimensional space with (location, timestamp) pairs of each
entity corresponding to a dimension. The basic idea of our
approach consists of two parts: (1) transforming an entity’s
digital traces into a lower-dimensional space for more effi-
cient computation; this lower-dimensional representation
also allows the ordering of entities along each dimension,
making it possible to build an index structure; (2) construct-
ing an index that groups the entities in a hierarchical fashion
using this lower-dimensional representation, so that asso-
ciated entities tend to appear in the same group, enabling
effective pruning.

We utilize MinHash techniques [7] to compute a signa-
ture for each entity. When a spatial hierarchy on locations
is present we do so at each level of the spatial hierarchy,
resulting in a list of signatures for each entity. The size of
each signature depends on the number of hash functions
utilized and can be considered as the dimensionality of this
lower-dimensional space. The list of signatures for each en-
tity are subsequently indexed with a tree structure. The guid-
ing principal of this index is to group the entities based on
their signatures at each level such that for a given query
entity, only a small portion of the branches in the tree have
to be explored; the remaining branches are guaranteed not
to contain the top-k results and can thus be safely discarded.
This is made possible by assessing a signature for each group
of entities at a tree node, which serves as the basis for esti-
mating bounds on the association between the query entity
and the entities in the subtree rooted at this node. The index
naturally supports incremental updates. We then develop
algorithms to process top-k queries using the index.
We also develop and present a model for mobility which

we validate against real data at scale. Utilizing this model,
we subsequently present a thorough analysis of the pruning
effectiveness of the proposed method. Our results reveal
that the proposed technique has strong pruning capabilities,
limiting the scope of search to only a small portion of all
available entities. We also validate our model for pruning
effectiveness against real mobility traces and demonstrate
its accuracy both analytically and experimentally.
Experiments are conducted on both synthetic and real

datasets at scale to (1) compare the performance of the pro-
posed method against that of baseline methods, and (2) con-
duct a sensitivity analysis of the proposed method with re-
spect to varying parameters of interest (e.g., number of hash
functions, data characteristics). Our results demonstrate or-
ders of magnitude performance improvement over other
applicable approaches.
In summary, in this paper we make the following contri-

butions:

• Motivated by real-life applications with telecommuni-
cations providers, we formally define the problem of
Top-k query processing over digital traces. To the best
of our knowledge, our work is the first to address this
important problem.

• We develop a suite of novel data transformation and in-
dexing techniques as well as the corresponding search
methodologies, which demonstrate strong pruning ca-
pabilities, allowing us to focus the search only on a
small portion of the space.

• We analytically and experimentally quantify the prun-
ing effectiveness of our methods utilizing models of
human mobility patterns.



• We perform extensive experiments on both real and
synthetic data at scale to thoroughly study the perfor-
mance of the proposed method, confirming its effec-
tiveness and superiority over other approaches across
a variety of settings.

The rest of the paper is organized as follows. Section 2 for-
mally defines the problem of top-k query over digital traces
and other assist terms. Section 3 describes the approach,
including the data transformation principle, the data organi-
zation technique, and the complexity of indexing. In Section
4, we prove the early termination condition of the proposed
approach and give the search algorithm. In Section 5, we an-
alytically quantify the pruning effectiveness of the approach.
In Section 6, we present the experiment results across a va-
riety of settings. Section 7 provides an overview of related
work, and Section 8 concludes this paper.

2 PRELIMINARIES
In this section, we define the terms that are required for the
subsequent discussion, and formally define the problem of
top-k query processing over digital traces.

2.1 Terminology
The locations we consider are spatial and thus exhibit a
hierarchical structure (e.g., city - district - street - building).
We assume that a description of the hierarchical structure of
locations is available via a tree structure (referred to as sp-
index) that organizes locations from coarsest to finest. Nodes
in this tree are referred to as spatial units. We assume (as
per previous work [47]) that spatial units remain unchanged
over extended times periods, and thus the sp-index can be
considered fixed for the period of interest.

Without loss of generality, we assume that the spatial units
at the same level of the sp-index are non-overlapping. We
label the levels of spatial units from 1 (for the root of the
tree) tom (for the lowest level in the tree). For a spatial unit
l , we use pat(l ) to denote the parent unit of l on the sp-index.

At the lowest level of the tree are base spatial units, the
atomic locations in digital traces in which entities can be
present. Examples of a base spatial unit include a supermar-
ket, a restaurant, etc. All base spatial units form a set L.

We assume that timestamp is discretized in base temporal
units (e.g., hour). The combination of a base temporal unit
and a base spatial unit is referred to as a spatial-temporal cell
(or ST-cell). We use the associated base temporal unit and
base spatial unit to denote an ST-cell, e.g., t1l1. An ST-cell is
the atomic unit where entities can be present. All possible
such combinations form an ST-cell set S.
We enhance the notion of a digital trace associated with

entity e to make it suitable for a multilevel sp-index.

Definition 2.1 (Presence Instance). A presence instance (PI)
p of an entity is characterized by a five attribute tuple, p =
(e, tid, level ,path,pd), where

• e is the associated entity to p,
• tid is the id of the sp-index where p belongs (tid is
necessary when multiple sp-index trees exist),

• level is the level in the sp-index where p exists,
• path = [node1,node2, · · · ,nodelevel ] is the list of nodes
in the sp-index on the path from the root to the node
that reflects the location associated with p, and

• pd is a continuous time period associated with p; it is
in the format [start time, end time].

Typically start time is the same as timestamp. In some
applications, such as WiFi proximity sensing of MAC ad-
dresses, end time is obtained by the time of the last probe of
the device MAC address to the WiFi network. In some other
applications, such as social media check-ins, the end time
is estimated based on the average time individuals spend in
the venue (obtained from services such as Google Maps).

Definition 2.2 (Digital Trace). The set of PIs associated
with entity e forms the digital trace of e , Pe .

The overlap between the digital traces of two entities,
Adjoint Presence Instance, is defined as follows:

Definition 2.3 (Adjoint Presence Instance). Given two PIs,
pa = (ea , tida , levela ,patha ,pda),pb = (eb , tidb , levelb ,pathb ,
pdb ), if tida = tidb , pda ∩pdb , ∅, then ea and eb form an ad-
joint presence instance (AjPI) pab = ({ea , eb }, tidab , levelab ,
pathab ,pdab ), where:

• tidab = tida = tidb ,
• levelab = |pathab |, denoting the finest level of the AjPI,
which is equal to the number of common ancestors in
the sp-index,

• pathab = patha ∩ pathb , which is the set of common
ancestors of the two PIs, and

• pdab = pda ∩ pdb , the intersection of the two time
periods.

Each pair of entities, say ea and eb , own zero or more AjPIs,
forming set Pab . The definition can be naturally extended
to adjoint presence instances of multiple entities.

An AjPI specifies a spatio-temporal co-occurrence of two
entities, and thus reveals a potential association between
the entities. Such an association is defined as a function of
the corresponding presence instances and adjoint presence
instances of each entity pair, as outlined next.

2.2 Problem definition
One important but challenging task is to discover all entities
that are closely associated with a given entity. Since there
may exist many ways to quantify association, we define



a generic class of scoring functions that share some com-
monly desired properties. While the particular choice of the
function varies depending on the application, our approach
would apply as long as the function exhibits those generic
properties.
For an AjPI pab , the scoring function f (pab ) has the fol-

lowing properties:
• The range of f ∈ [0, 1],
• ∀ec , f (pab ) ≥ f (pac ) if pab .pd .lenдth ≥ pac .pd .lenдth
∧ pab .level ≥ pac .level .

The first property ensures that the score is properly normal-
ized; the second property gives AjPIs at finer spatial units
and for longer durations a higher score. These properties cap-
ture the intuition that the association between two entities
is higher when corresponding digital traces match closely at
locations (i.e., appear at finer levels of the sp-index, say at
the same restaurant vs. in the same city) and their temporal
co-occurrence is longer.

LetPab be the set of AjPIs formed by ea and eb . The overall
score for this set is defined as

F (Pab ) =
∑

pab ∈Pab

f (pab ), (1)

which has to be further normalized to take into consideration
the individual behaviors of ea and eb . It is evident that the
AjPI to an entity with many PIs is less interesting than that
with an entity having few PIs. Therefore, we define a scoring
function for individual PI pa , which is considered as a special
case of the AjPI score, i.e., f (pa) = f (paa). The score for the
set of PI Pa is:

F (Pa) =
∑

pa ∈Pa
f (pa) (2)

Clearly, ∀ea ,∀eb , F (Pa) ≥ F (Pab ), F (Pb ) ≥ F (Pab ).
Intuitively, closely associated entities are those who have

a large presence instance overlap, i.e., more adjoint presence
instances and less total presence instances for either entity.
Thus we define the association degree between two entities
ea and eb as

d(ea , eb ) = G(F (Pab ), F (Pa), F (Pb )) (3)

where G can be any function satisfying the following con-
straints:

• d(ea , eb ) has range [0, 1],
• ∀ec , d(ea , eb ) ≥ d(ea , ec ) if F (Pb ) ≤ F (Pc ) ∧ F (Pab ) ≥
F (Pac ),

• ∀ec ,d(ea , eb ) ≥ d(ea , ec ) if (Pb−Pc ) , ∅∧(Pb−Pc ) ⊆
Pa .

We let the associate degree be a generic function instead
of a particular measure (e.g., Jaccard Distance), as the most
suitable measure may vary in different application scenarios.
A generic approach allows our Top-k algorithm to utilize the

measure that makes the most sense in each case as long as it
follows set properties. Therefore, all subsequent discussions
of Top-k query processing are for measures satisfying the
constraints of G. We provide a recommended form of G in
Section 6.1, where We also demonstrate that such a form
simulates other widely-adopted measures accurately.
Let E be the set of all entities. The problem of identify-

ing the k most associated entities (entities with the highest
association degree) to a given query entity is defined as:

Definition 2.4 (Top-k Query over Digital Traces). Given a
query entity ep and association degree measure d , the top-k
query over digital traces is to return the set of entities Qk
such that Qk ⊆ E − {ep }, |Qk | = k and ∀eq ∈ Qk , ∀et ∈
(E − {ep } − Qk ), d(ep , eq) ≥ d(ep , et ), where 1 ≤ k < |E |.

3 OUR APPROACH
A brute-force approach to answer top-k queries involves
computing the association degree between the query entity
and all other entities. Clearly, the cost can be prohibitive,
as the number of entities are often in the millions and the
number of digital traces in billions in our target applications.
As such, we introduce a data structure, called theMinSigTree,
that indexes entities based on their presence instances, fa-
cilitating efficient pruning of entities to be examined during
the search for top-k answers.

As a high-level overview, we first organize the PIs of each
entity as a sequence of ST-cell sets. Then we construct a
list of signatures for each entity which can be considered as
summaries of the entity’s PIs. Subsequently we construct the
MinSigTree that groups closely associated entities together
based on their signatures.

3.1 Data representation
Real-world digital traces in their raw format may require pre-
processing. For instance, we may need to conduct time-zone
normalization (e.g., all time-stamps normalized to GMT),
build the sp-index from the longitude and latitude coordi-
nates of places using maps (e.g., Open Street Maps) and
other information (e.g., community area boundaries), and
align data from different sources with varying sampling fre-
quencies. After pre-processing, the next step is to organize
the data by entity so that the presence instances of an entity
at each sp-index level and the resulting association degree
between entity pairs can be computed efficiently.

We build a sequence of ST-cell sets for each entity, where
the length of the sequence equals the height of the sp-index,
m. The sequence of sets for entity ea is denoted as seqa , and
the i-th set in seqa , i ∈ [1,m], corresponding to the level i of
the sp-index, is denoted as seqia .
seqma , for the lowest level of the sp-index, can be obtained

directly from ea ’s digital trace, i.e., for an ST-cell s , s ∈ seqma



iff ea is present at s . For other levels, ST-cell set seqia , i ∈
[1,m) is built from set seqi+1a . For an ST-cell s = tzlx , s ∈ seqia
iff ∃s ′ = tzly , s.t. s ′ ∈ seqi+1a and lx =pat(ly ).

Example 3.1. Let L1, L2, L3, and L4 be four base spatial
units, and pat(L1)=pat(L2)=L5, pat(L3)=pat(L4)=L6, m = 2.
Assume that entity e has presence in base spatial unit L1 at
time T1, and L3 at time T2, then seq2e = {T1L1,T2L3}. Since
T1L1 ∈ seq2e and L5 =pat(L1), T1L5 ∈ seq1e , similarly, T2L6 ∈
seq1e . Finally we have seq1e = {T1L5,T2L6}.

The ST-cell set sequence not only records the PIs of a
single entity at any level of the sp-index, but reflects the AjPI
between entities as well. If entities ea and eb form AjPIs at
level i , then seqia ∩ seqib , ∅.

3.2 Data organization
Although ST-cell set sequences facilitate the direct retrieval
of PIs of each entity at any level, a brute-force approach
would have to explore the whole search space of all entities
to identify the top-k answers, which is still too expensive.
We thus propose to group entities based on their common ST-
cells to allow efficient pruning of the search space. Note that
the number of ST-cells in which an entity is present could
vary vastly from entity to entity (e.g., one short occurrence
vs. frequent and prolonged visits to multiple locations). If we
consider each ST-cell as a dimension, conceptually all entities
can be considered as bit vectors in a very high-dimensional
space where each bit indicates whether that entity is present
in the ST-cell. However, if they are physically treated as
such, the storage and computation cost can be prohibitive
when the number of ST-cells is large. To allow more effective
indexing, we employ a family of hash functions to map ST-
cell sets into a lower-dimensional space. This is achieved
by assigning each entity a signature at each level, with each
value in the signature acting as a summary of the entity’s
PIs, and then grouping entities by their signatures.

3.2.1 Signature. We use nh hash functions to map an ST-
cell set into a vector in a nh-dimensional space, where each
element of the vector is a hash value. Since each entity is
associated with an ST-cell set sequence of lengthm, for an
arbitrary entity ea ,we obtainm vectors, which form a list of
signatures, siдa , and we use siдia to denote the i-th signature
in siдa (corresponding to level i in the sp-index), and siдia[u]
to denote the u-th hash value in siдia , where u ∈ [1,nh].

The way we compute signatures for each entity is similar
to that for MinHash [7]. A hash function hu maps each ST-
cell to a value in the range [0, |S| − 1]. The u-th value in
the signature siдia corresponds to the minimal hash value
produced by hu across all ST-cells in seqia , i.e., siдia[u] =
⊥i
u = mins ∈seqia {hu (s)}.

The hash functions employed above should satisfy that,
for ST-cell s = tzlx and s ′ = tzly , if lx =pat(ly ), then hu (s) ≤
hu (s ′). Let Cx be the child spatial unit set of lx , the above con-
straint is satisfied by assigninghu (tzlx ) = minlc ∈Cx {hu (tzlc )}.
The constraint guarantees the following property which
makes signatures at different levels comparable:

Theorem 3.1. For any entity e ∈ E, siдie [u] ≤ siдi+1e [u]
always holds.

The proof follows from above constraint and is omitted
for brevity.

Example 3.2. Consider the following hash table:

T1L1 T2L1 T1L2 T2L2 T1L3 T2L3 T1L4 T2L4
h1 2 8 5 1 4 6 7 3
h2 8 3 6 5 4 1 2 7
Assume that the four base spatial units follow relations indi-
cated in Example 3.1. Let ea , eb , ec and ed be four entities with
the following ST-cell set sequence:

ea ⟨{T1L5,T2L5}, {T1L2,T2L1}⟩
eb ⟨{T1L5,T2L5}, {T1L1,T2L2}⟩
ec ⟨{T1L6,T2L5}, {T1L3,T2L1}⟩
ed ⟨{T1L6,T2L6}, {T1L4,T2L4}⟩

We first build siд2a given seq
2
a = {T1L2,T2L1}. Sinceh1(T1L2) =

5,h1(T2L1) = 8, we have siд2a[1] = 5; similarly, sinceh2(T1L2) =
6, h2(T2L1) = 3, we have siд2a[2] = 3. Therefore, siд2a = ⟨5, 3⟩.
Subsequently, we build siд1a given seq

1
a = {T1L5,T2L5}. Since

L5 = pat(L1) = pat(L2),h1(T1L5) = min{h1(T1L1),h1(T1L2)} =
2; similarly we have h1(T2L5) = 1, h2(T1L5) = 6, h2(T2L5) = 3.
Therefore, siд1a = ⟨1, 3⟩. We build signatures for all entities
and finally obtain the following signature table:

ea ⟨⟨1, 3⟩, ⟨5, 3⟩⟩
eb ⟨⟨1, 3⟩, ⟨1, 5⟩⟩
ec ⟨⟨1, 2⟩, ⟨4, 3⟩⟩
ed ⟨⟨3, 1⟩, ⟨3, 7⟩⟩

As each value in a signature is obtained by hashing all
ST-cells in the corresponding set to a certain domain, it can
be considered as a summary of the ST-cell set. Hash values
siдia enables to determine certain facts regarding the ST-cells
contained in the set seqia .

Theorem 3.2. For signature siдia (i ∈ [1,m]) and an ST-cell
s , if ∃u ∈ [1,nh] s.t. siдia[u] > hu (s), then s < seqma .

Proof. If s ∈ seqma , then siдma [u] ≤ hu (s). From Theorem
3.1 we know that siдia[u] ≤ siдma [u], and thus siдia[u] ≤ hu (s),
which contradicts the condition. □

Via Theorem 3.2, for a given signature siд, we can obtain
a pruned set of ST-cells such that entities bearing siд are
guaranteed not to have presence in those ST-cells. We use



PSi
a to denote the pruned set based on signature siдia . This

property will be explored in pruning the search space while
computing the top-k answers.

3.2.2 MinSigTree. We design MinSigTree, anm-level tree
structure, which groups entities sharing similar signatures
together. Each node in the MinSigTree has at most nh child
nodes (with nh being the number of hash functions used
while computing signatures), each leaf node contains a set
of entities, and each entity is contained in a single leaf node.
If node N contains entity ea , we consider all ancestor nodes
of N to conceptually contain ea as well to ease notation
(but no physical storage is involved). For node N containing
entity set EN , we compute a group-level signature SIGN
summarizing the PIs of all entities in EN .

Assuming that there is a virtual root node (at level 0), we
use Algorithm 1 to build the MinSigTree.

Algorithm 1 Building MinSigTree
Input: Entity set E, signatures of all entities
Output: MinSigTree
1: Initialization:MinSigTree root to contain all entities;

root enqueued to priority queue Q ;
2: for N : Q do
3: G = sets of entities in N grouped by routing index;
4: for д : G do
5: u = routing index of д;
6: Eд = entities contained in д;
7: SIGд = group-level signature of Eд ;
8: Nu = node(u, SIGд[u], Eд);
9: N .addChild(Nu );
10: if i ,m then
11: enqueue Nu to Q ;
12: else
13: insert Eд to Nu ;
14: end if
15: end for
16: end for
17: return MinSigTree;

As Step 1, we fetch the level 1 signature of every entity,
(siд11, siд12, · · · , siд1|E |), and divide these signatures into nh
groups. This is done in a way such that entity ea is routed to
the u-th group, if ∀v ∈ [1,nh](v , u), siд1a[u] ≥ siд1a[v], i.e.,
u is the position of the maximal hash value in siд1a (ties are
broken arbitrarily). We call u the routing index of the u-th
group (Line 3).

Step 2 involves computing a group-level signature for each
node (Lines 5 - 7). Assume that node Nu contains entity set
ENu . Then the signature of Nu , SIGNu , can be computed
by SIGNu [v] = mine ∈ENu {siд1e [v]}, where v ∈ [1,nh]. The

newly created nodes are then inserted as the children of the
root (Lines 8 - 9).

The second step computes a group-level signature for each
node in a way that any hash value in SIGNu is no greater than
the corresponding hash values in the signatures of entities
in ENu . With signatures computed this way, we can obtain a
group-level pruned set,

PSNu =
⋂

e ∈ENu

PS1
e . (4)

All entities in ENu are guaranteed not to have presence in
the ST-cells contained in PSNu . Note that there is no need
to store the pruned set of each node, as it can be inferred
from the group-level signature.

In practice, however, storing the entire signature of a node
imposes space overhead. It is evident from the grouping strat-
egy that given a group-level signature SIGN with routing
index u, ∀v ∈ [1,nh](v , u), SIGN [u] ≫ SIGN [v]. From
Theorem 3.2 it follows that the pruned set of a signature is
mainly decided by the large hash values in the signature.
Thus one can materialize SIGN [u] only, instead of SIGN .
This greatly reduces storage costs at the expense of pruning
effectiveness. We explore this further in Section 4.1.
Consider the signature table in Example 3.2. We fetch all

level 1 signatures and group entities accordingly. As a result,
group N1 = {ed } with routing index 1, N2 = {ea , eb , ec } with
routing index 2, and SIGN1 = ⟨3, 1⟩, SIGN2 = ⟨1, 2⟩.
The grouping principle of Step 1 is designed in a way to

prevent the group-level signature from becoming too small.
For example, if ec and ed were to be grouped together, the
group-level signature would be ⟨1, 1⟩, which would not be
greater than any hash values and the pruned set would thus
be empty.
Now we have grouped entities at the first level of the

MinSigTree based on the level 1 signatures of all entities.
However, the level 1 signatures reveal only the PI patterns
at the highest/coarsest sp-index level. Intuitively, entities
belonging to different groups at level 1 are guaranteed not
to be strongly associated, but entities belonging to the same
group may still have different PI patterns at a finer-level. For
example, if two people both visited New York City, but one in
Manhattan and the other in Brooklyn, their PIs are different
in the district level. Therefore, we need to further partition
the entities based on their finer-level signatures.
For node Nu at level i , if i , m, i.e. Nu is not at the leaf

level, we fetch the level (i + 1) signatures of entities in ENu

(Lines 10 - 11), group ENu by the routing indexes, compute a
signature for each new group, and add these newly created
nodes as children of Nu . We repeat this process until we
reach the leaf level. If an entity belongs to node Nf at the
leaf level, we insert this entity to Nf (Lines 12 - 13).
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Figure 1: A sample MinSigTree
In the above example, group N1 = {ed }, N2 = {ea , eb , ec }.

Since siд2d [2] > siд2d [1], ed belongs to the sub-group with
routing index 2, i.e. N12 = {ed }; similarly, we have N21 =
{ea , ec }, N22 = {eb }. Group level signatures are: SIGN12 =

⟨3, 7⟩, SIGN21 = ⟨4, 3⟩, SIGN22 = ⟨1, 5⟩. The overall Min-
SigTree is given in Figure 1.
By partitioning entities recursively at each level, each

group will end up containing entities that are similar at all sp-
index levels and thus very likely to result in high association
degrees with each other. In addition, the partitioning strategy
guarantees the following property.

Theorem 3.3. IfNa is an ancestor node ofNd , thenPSNa ⊆
PSNd .

The proof follows from the building process and is omitted
for brevity.

The cost of index construction is analyzed in Appendix B.

3.2.3 Incremental update. Similar to the building process,
theMinSigTree also supports incremental update.More specif-
ically, after building the MinSigTree, we can deal with new
records of entity e in four steps: (1) locate the leaf, say Ne ,
containing e; (2) remove e from Ne (if Ne becomes empty,
safely remove Ne from the MinSigTree); (3) compute new
signatures of e ; (4) insert e to the new node N ′

e based on the
new signatures. During this process, only nodes in the path
from root to the leaf containing e and the leaf to insert e are
modified, and thus the complixity of update is linear w.r.t.
the height of the MinSigTree.

Bulk updates are also naturally supported. Here we mainly
introduce the steps involving signature re-computation. Given
a set of entities to be updated, Eu , we compute the signa-
tures of e for each e ∈ Eu , and use EN to denote the set of
entities in Eu to be inserted to node N . Subsequently, we
compute the group level signature of EN , SIGEN , and update
the signature of N , SIGN , as SIGN := min{SIGN , SIGEN }.
Updating MinSigTree is discussed in detail in Section 6.8.

4 QUERY PROCESSING
The MinSigTree partitions entities to groups enabling an effi-
cient search strategy for top-k query processing. We present
an algorithm for top-k query evaluation utilizing the pro-
posed structure.

4.1 Early termination
Given a query entity eq with ST-cell set sequence seqq , the
basic search strategy unfolds by computing an upper bound
on the association degree between eq and each candidate
node of the MinSigTree, and then progressively visit the
node with the maximal upper bound until the top-k answers
are identified. We outline how to compute and gradually
tighten the upper bound of a node in order to prune more
entities and terminate the search earlier.
We use Sq to denote seqmq , which contains all ST-cells in

which eq is present. For each node N in the search path, we
determine an upper bound, UBN , on the association degree
between eq and entities in node N , to decide whether to
continue searching or terminate.

Theorem 4.1. Let PSN be the pruned set of node N , and
ev be an artificial entity with ST-cell set Sv = Sq − PSN .
ThenUBN = d(ev , eq).

Proof. Because Sv ⊆ Sq , we have Pv ⊆ Pq , where Pv
and Pq are the PI sets of ev and eq respectively. Thus, Pvq =

Pv , where Pvq is the set of AjPIs between ev and eq .
Let EN denote the set of entities contained in N . Since

∀ep ∈ EN , Sp ∩ Sq ⊆ Sv , we have Ppq ⊆ Pv = Pvq .
Therefore, F (Ppq) ≤ F (Pvq).

∀ep ∈ EN , if Pv ⊆ Pp , then F (Pp ) ≥ F (Pv ), and thus
d(ev , eq) ≥ d(ep , eq); otherwise,we have (Pv − Pp ) , ∅ and
(Pv − Pp ) ⊆ Pq , and thus d(ev , eq) ≥ d(ep , eq) according to
the definition of d given in Equation (3). □

In practice, it is not required to compute the entire pruned
set of a node; instead, it can be conducted in a more efficient
way. Let u be the routing index of the node N . For an ST-cell
s ∈ Sq , if hu (s) < SIGN [u], it is guaranteed that s ∈ PSN .
All such ST-cell s form the partial pruned set PPSN , which
can be used to create the artificial entity e ′v with ST-cell set
S′
v = Sq −PPSN . Evidently, S′

v may be slightly larger than
Sv , which leads to a larger upper bound UB′

N . However, as
the hash value at the routing index is in general far larger
than the other hash values in the group-level signature,UB′

N
is expected be very close toUBN . In the experimentwe utilize
partial pruned sets to evaluate performance; details are given
in Section 6.
As discussed in Theorem 3.3, the pruned set of a descen-

dant node contains that of its ancestor nodes. Therefore, in
a specific branch of the MinSigTree, the upper bound can
be gradually tightened before we reach the leaf nodes and
check the contained entities.

4.2 Search algorithm
The search algorithm based on the early termination con-
dition is given in Algorithm 2. We initialize the result as
a priority queue sorted by association degree (from high



to low), and start the search from the root of MinSigTree
(Line 1) whose upper bound is set to 1. We fetch the node
with maximal UB in the candidate list (Line 3) and insert
all its child nodes into the candidate list (Line 8). Once we
reach a leaf node, we calculate the exact association degree
between the query node and all entities in this node, and
update the result accordingly (Lines 10 - 13). The process
terminates when either (1) we have identified k entities, and
the association degree between any of these k entities and
the query entity is no less than the maximal UB of the re-
maining candidates (Lines 4 - 5), or (2) all leaves have been
explored (Line 16). It is worth noting that the algorithm is
applicable to all association degree measures as long as they
satisfy the constraints of d specified in Section 2.2.

Algorithm 2 Top-k query processing
Input: MinSigTree T , k , query entity e , measure d
Output: k most associated entities to e
1: Initialization: Result = { }, Candidate = {root of T };
2: while Candidate, ∅ do
3: N = node with maximalUB in Candidate;
4: if Result.minKey≥N.UB and Result.size==k then
5: return Result;
6: end if
7: if N is not leaf then
8: Candidate = Candidate ∪{all child nodes of N };
9: else
10: EN = entities contained in N ;
11: for e ′ : EN do
12: s = d(e, e ′);
13: Result.update(e ′, s)
14: end for
15: end if
16: end while
17: return Result;

Example 4.1. Let us again consider theMinSigTree in Figure
1 as an example. We use a Dice similarity-based function as the

measure of association degree: d(ei , ej ) = 0.1 × |seq1
i∩seq1

j |
|seq1

i |+ |seq1
j |
+

0.9× |seq2
i∩seq2

j |
|seq2

i |+ |seq2
j |
. Let ec be the query entity, and the Top-1 result

is desired. As indicated in Example 3.2, seq2c = {T1L3,T2L1},
h1(T1L3) = 4, h2(T1L3) = 4, h1(T2L1) = 8, h2(T2L1) = 3. We
start the search from the root. For node N1, as 3 < h1(T1L3)
and 3 < h1(T2L1), we have PPSN1 = ∅, and thus the upper
bound of N1, UBN1 = 1; similarly UBN2 = 1. The candidate
queue is (1 : {N1,N2}). Since there is no remaining node at
level 1, we dequeue N1, the only child of which is N12. As 7 >
h2(T1L3) and 7 > h2(T2L1), we have PPSN12 = {T1L2,T2L1},
UBN12 = 0.1 × 1 + 0.9 × 0 = 0.1, where 1 is the UB of the

parent node of N12, and 0 corresponds to the fact that both
query ST-cells are contained in PPSN12 . We then dequeue N2.
The first child of N2 is N21. As 4 < h1(T1L3) and 4 < h1(T2L1),
UBN21 = 1. For node N22, as 5 > h2(T1L3) and 5 > h2(T2L1),
UBN22 = 0.1× 1+ 0.9× 0 = 0.1. The candidate queue becomes
(1 : {N21}, 0.1 : {N12,N22}). We then dequeueN21. SinceN21 is
a leaf node, we calculate the actual association degree between
ea and entities contained in N21, and obtain d(ea , ec ) = 0.5.
Since d(ea , ec ) > 0.1, the algorithm returns ea .

5 PRUNING EFFECTIVENESS ANALYSIS
In this section, we introduce a hierarchical mobility model
significantly extending a well-established single-level indi-
vidual mobility (IM) model [42]. In addition, we theoretically
analyze the pruning effectiveness of our algorithms using
the proposed model.

5.1 Individual mobility model
In the ensuing discussion, β , ρ, γ , α , ζ , µ, and ν are all model
parameters.

For an entity e , the duration ∆t of each PI follows

P(∆t) ∼ |∆t |−1−β , (5)

which indicates that the duration of each PI follows a power
law distribution, i.e., entities tend to stay for a short duration
at each base spatial unit than for a long period.
When e leaves the current base spatial unit, it will either

take an exploratory jump to a new base spatial unit, or return
to somewhere it has previously visited. The probability of
taking an exploratory jump is

Pnew = ρS−γ , (6)

where S is the number of base spatial units visited. As e visits
more base spatial units, i.e., when S increases, the probability
of e taking an exploratory jump decreases.

The direction of an exploratory jump is selected randomly,
and its displacement follows

P(∆r ) ∼ |∆r |−1−α , (7)

which stipulates that an entity tends to jump to some base
spatial unit near its current position.

When taking a returning jump, the probability of returning
to l is proportional to the number of e’s previous visits to l .
The visit frequency of e to its y-th most visited base spatial
unit follows

fy ∼ y−ζ , (8)
which indicates that most visits of an entity are to the few
top-ranked base spatial units.

Given a duration t , the total number of distinct base spatial
units visited by e is

S(t) ∼ t µ , (9)



and the mean squared displacement follows

⟨∆x2(t)⟩ ∼ tν , (10)

which indicates that the longer the duration, the further e
will drift away from its starting position.

5.2 Hierarchical individual mobility model
The IM model in Section 5.1 describes human mobility pat-
terns at the finest spatial level. However, AjPIs may occur
at multiple levels. In this section, we give the general spa-
tial units distribution patterns and aggregate the mobility
pattern at the finest level into patterns at higher levels.
To ease analysis, we assume that the area of interest is a

square with side length L, and that it is equally divided into
a grid of non-overlapping cells where each cell is a square
with side length Lbsu . Each base spatial unit corresponds to
a cell in this grid. Therefore, there are ( L

Lbsu
)2 base spatial

units in total. For the sp-index, the size of each spatial unit
(i.e., the number of base spatial units contained therein) and
the structure of the tree depend on two parameters:

• Width, i.e., the number of nodes at each level; and
• Relative density, i.e., the relative sizes of nodes at the
same level.

Intuitively, there are more spatial units at a finer level in the
tree. Therefore, we assume that the width parameter follows
a power law distribution w.r.t. level, i.e.,

Wl = Q · la , (11)

where l ∈ [1,m] is the level, a is a tunable parameter, and
Q = ( L

Lbsu
)2/ma serves as a normalization factor.

In most cases the nodes at the same level have varying
sizes, e.g. business districts usually have more buildings than
rural areas. Therefore, we use the following power law dis-
tribution to model the relative sizes of nodes at level l :

Di
l =Wl · R · ib , (12)

where i ∈ [1,Wl ] is the index of nodes at level l , b is a tunable
parameter, and R = 1/∑Wl

i=1 i
b is a normalization factor.

With parameters L, Lbsu , a and b, we can obtain the num-
ber of spatial units and also the size of each spatial unit at
any level. Next we demonstrate how distributions introduced
in Section 5.1 modeling mobility at the finest level can be ex-
tended and supplemented with other necessary distributions
to derive a hierarchical mobility model.
Let U be a spatial unit at level l which contains a set of

base spatial units SU . An exploratory jump of an entity takes
place when (1) the entity jumps to a new base spatial unit;
and (2) the new base spatial unit is contained in a spatial
unit previously not visited, at level l . The probability of the
first condition is given in Equation (6); the probability of the

second condition, referred to as Pout , can be computed by

Pout (U ) =
nUvisited
nUreachable

∑
s ∈SU

1
|SU |H (s), (13)

where nUreachable denotes the number of spatial units within
one jump’s distance from U , nUvisited denotes the number
of spatial units visited among these reachable ones, s is a
base spatial unit in SU , and H (s) denotes the probability of
jumping outsideU from s . It is evident thatH (s) is a function
of the distance from s to the boundary of U as well as the
jump distance distribution given in Equation (7). Therefore,
the probability of taking an exploratory jump to a new spatial
unit, P ′

new , is

P ′
new (U ) = Pnew × Pout (U ) (14)

Since spatial units at higher levels have varying sizes and
ranges, it is essential to derive the probability of an entity
having visited unitU (the size of which is |SU |) within time
t , PU (t).

PU (t) =
|SU |
|S| +

∑
U ′

M(U ,U ′, t), (15)

where S denotes the set of base spatial units, U ′ denotes
some other spatial unit at level l . To derive this probability
we consider two cases: the starting position of the entity is
withinU or it is not. The probability of the former case is |SU |

|S | .
For the latter case, the starting position can be within any
other spatial unit, U ′. M(U ,U ′, t) describes the probability
of an entity starting from unitU ′ having visitedU after time
t , which can be inferred by the mean square displacement
distribution given in Equation (10).
The visit frequency of an entity to its y-th most visited

base spatial unit is given in Equation (8). At higher levels, the
visit frequency rank, y, reflects not only personal preference,
but also unit characteristics: spatial units containing more
base spatial units are likely to be top-ranked. Therefore, we
can safely assume that the visit frequency follows the same
distribution at higher level, where y now describes the rank
of the visit frequency to a particular spatial unit.

5.3 Analysis of pruning effectiveness
The model proposed in Section 5.2 enables us to simulate
the movements of entities, estimate the overlap between the
digital traces of any entities at all levels, with which we can
calculate the expected association degree between an entity
and its k most associated entities, de . Thus we can discard
all branches whose upper bound is smaller than de . With
more branches discarded, answering the query will be more
efficient. Here we formally define pruning effectiveness (PE):

Definition 5.1 (Pruning Effectiveness). Given a set of enti-
ties E, a query entity e , an association degree measure d , and



a searching strategy S , if S accurately answers a top-k query
w.r.t E, e , and d by checking entities in set E ′ (E ′ ∈ E) only,
then the pruning effectiveness of S is |E′ |−k

|E | .

The average PE of is obtained averaging the PE of the
top-k query answers over multiple entities.

Evidently, the UB of a child node on theMinSigTree cannot
be larger than that of its parent nodes. Therefore, we can
estimate PE by computing the percentage of leaf nodes on
MinSigTree whose UBs are larger than de .
Suppose that the total number of base spatial units is n

and the duration is t , the range of hash functions is thus
[0,n× t − 1]. For entity ea with ST-cell set sequence seqa and
signatures siдa , the probability of siдma [u] = i is

p(siдma [u] = i) =
|seqma |∑
x=1

Cx
|seqma |(

1
n × t

)x (n × t − i

n × t
) |seqma |−x

(16)
The condition of siдma [u] = i is that, ∃Sa ⊂ seqma , Sa , ∅,
s.t. ∀s ∈ Sa , hu (s) = i , and ∀s ′ ∈ seqma − Sa , hu (s ′) >
i . We assume that |Sa | = x , the probability of which is
Cx
|seqma |(

1
n×t )x , then all remaining ST-cells take hash values

larger than i , the probability of which is (n×t−in×t ) |seqma |−x . By
grouping entities with the MinSigTree, the signature of a
node N , SIGN , satisfies p(SIGN [u] = i) ≈ p(siдma [u] = i)
(equal when N only contains ea ).

Let r be the routing index of N , then the probability of
SIGN [r ] = i is

p(SIGN [r ] = i) =
nh∑
x=1

Cx
nhp(SIGN [u] = i)xp(SIGN [u] < i)nh−x ,

p(SIGN [u] < i) =
i−1∑
x=0

p(SIGN [u] = x) (17)

With the knowledge ofp(SIGN [r ] = i)we can estimate the
value distribution of all leaves. Assume that range [0,n×t−1]
is divided into nr consecutive equal-sized sub-ranges R, then
we use V [j] to denote the percentage of leaves whose value
on the routing index is bounded by R[j], 0 ≤ j < nr .

Letnc be theminimal number of ST-cells shared by entities
with association degree larger than de . For node N , if ∃Sap ∈
seqma , |Sap | ≥ nc , s.t. ∀s ∈ Sap , s < PSN , then N cannot be
discarded.

Since hash functions are selected randomly, the hash val-
ues of all ST-cells are independent. Suppose that SIGN [r ]
is bounded by R[j], then the probability that N cannot be
discarded is

q(R[j]) =
|seqma |∑
x=nc

Cx
|seqma |(

n × t − 1 − R[j]
n × t − 1 )x ( R[j]

n × t − 1 )
|seqma |−x

(18)

PE can thus be calculated with the following equation:

PE =
nr∑
j=0

V [j]q(R[j]) (19)

6 EXPERIMENTS
In this section, we present a thorough experimental evalu-
ation of our approach utilizing synthetic and real datasets,
varying parameters of interest to explore the sensitivity of
our proposal as well as PE trends.

6.1 Settings
Environment. The experiments are conducted on an Ama-
zon Web Service EC2 instance, with a 30 core 2.3GHz Xeon
CPU, 120GB of RAM, and ITB EBS Throughput Optimized
HDD (maximal throughput 1,750MiB/s). The programming
language is Java (version 1.8.1).

Datasets. We employ both real and synthetic datasets in
our evaluation. Synthetic data are used as it is easy to vary
parameters for sensitivity analysis. The synthetic dataset
(referred to as SYN in the sequel) is generated by the hier-
archical IM model in Section 5 with varying values of the
parameters α , β , γ , ζ , ρ, a, b andm. Unless otherwise speci-
fied,we set α = 0.6, β = 0.8, γ = 0.2, ζ = 1.2, ρ = 0.6, which
correspond to the normal mobility pattern (as per [42]), and
a = 2, b = 2,m = 4 (a and b usually take values in the range
[1, 2] in real datasets2, and 4 is the typical hierarchical level
in a city). The sensitivity to these parameters governing data
characteristics is evaluated in Section 6.4. The locations in
the data are drawn from a set of 9 equal-sized sp-indexes with
250K locations in total. The data consists of the digital traces
of 100M entities for a period of 30 days. The real dataset
(referred to as REAL) is a WiFi hotspot handshaking data set
provided to us by a large telecommunications provider and
includes 30 million mobile devices and 76,739 WiFi hotspots.
The hotspots are organized into a 4-level sp-index.

The data distribution is depicted in Appendix C.
Association degree measure. There are two properties

any association degree measure (ADM in sequel) must pos-
sess (as discussed in Section 2.2), namely monotonicity with
respect to AjPI level and duration. For purposes of exposition
we utilize the following extensible function as the ADM:

d(ea , eb ) =

m∑
l=1

lu ( |Pl
ab |

|Pl
a |+ |Pl

b |
)v

max
, (20)

wheremax is a normalization factor guaranteeing the score
falls into the range [0, 1], |Pl

ab | denotes the total duration
of all level l AjPIs in set Pab , and u > 0 and v > 0 are
parameters that can be tuned.
2https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-
2muj
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Figure 2: PE vs. the number of hash functions

Note that measures such as Jaccard, Dice and Cosine Simi-
larity can be readily applied as well as they all share the two
properties required by our association degree measure. We
compare the ranking results of the proposed ADM to those of
several widely-adopted set similarity measures in Appendix
D. The results indicate that the proposed ADM compares
favourably in terms of its ranking results to Jaccard, Dice
and Cosine Similarity, when v ∈ [0.5, 2] in Equation (20),
and thus we utilize values in this range during experiments.

6.2 Baseline approach
We consider the following approach based on locality as the
baseline approach for comparison purposes. At each level, we
treat an ST-cell set of an entity as a transaction, each ST-cell
as an item, and utilize frequent pattern mining techniques
to find those frequently co-occurring ST-cells. As a result,
ST-cells are partitioned into clusters, where each cluster is
expected to contain ST-cells that are close to one another
temporally and spatially. If there are n clusters in total, then
we can assign each entity an n-bit vector, where the i-th bit
in the vector of e equals 1 if e has presence in at least one
ST-cell contained in cluster i , and 0 otherwise. We can thus
use a bit-map to organize all entities. Given a query entity
eq , we compute an ADM upper bound between eq and all
bit-vectors. We start searching from the entities indexed by
the vector with the highest UB, and continue until k entities
are found where the minimal ADM of the k entities is already
greater than the UBs between eq and all remaining vectors.

Themajor drawback of such an approach is that in practice
ST-cells show low degrees of locality, e.g., people living in
the same neighborhood may work in different companies
spread across the city, whichmakes it very difficult to identify
frequently co-occurring ST-cells. The direct consequence is
that the clusters obtained demonstrate strong coupling and
the bit vectors cannot capture the PI patterns of entities well.
Therefore, the upper bound is loose as will be discussed later
in Section 6.7.

6.3 Sensitivity to the number of hash
functions

PE is closely related to the number of hash functions utilized
to compute the signatures, nh . We thus evaluate the PE of the
proposed approach by varyingnh , and compare themeasured

PE in the experiment with the one predicted for the model
of Section 5.3. The results are presented in Figure 2.
From the result one can observe that the MinSigTree

provides high PE with more hash functions. The reason is
that, compressing the large number of ST-cells into a low-
dimensional space makes entities less unique, or even in-
distinguishable. With more hash functions employed, sig-
natures can better summarize the PIs of entities and thus
only closely associated entities will be placed in the same
group. Diminishing returns occur when the number of hash
functions reaches 1,000, as each entity has become unique
enough that further employment of hash functions does not
change the grouping.

As Figure 2 shows, the predicted PE is slightly better than
measured, primarily for the following reasons:

• Spatial units in the hierarchical IM model are assumed
to be rectangles for analysis purposes, while in practice
units can be in any shapes. As a result, the mobility
patterns at higher levels diverge from the model;

• It is assumed that the hash values are uniformly dis-
tributed on the range, which is not always the case in
practice.

6.4 Sensitivity to data characteristics
We evaluate the PE under different mobility patterns and
location distributions by varying all parameters in the hi-
erarchical IM model. The hierarchical IM model involves a
large number of parameters, each controlling different as-
pects of human mobility or location distribution. As such
we vary one parameter each time and fix other parameters
to the value associated with normal patterns (as per [42]) to
investigate the individual influence of different parameters
on performance. The results of answering Top-1, Top-10,
and Top-50 queries with 2,000 hash functions under different
data characteristics are presented in Figure 3.
One can observe that curves in Figure 3(a) show a de-

scending trend, as α controls the movement locality in the
following way: as α increases, an entity is more likely to
jump to locations in proximity when it leaves the current
position. A higher level of locality will produce more closely
associated entities, and thus lead to better performance.
Curves in Figure 3(b) demonstrate little variation, which

indicates that the approach is not sensitive to the expected
duration of each presence instance. This is because we par-
tition PI into ST-cells, and consider the digital traces of an
entity as a set of ST-cells. As a result, whether these ST-cells
are consecutive in time or not has no influence on PE.
Parameters ρ and γ together control the tendency of an

entity to return to some previously visited location. With
smaller ρ and larger γ , entities visit fewer locations in total,
which increases the locality. Therefore, Figure 3(c) depicts an



0.04

0.08

0.12

0.2 0.6 1 1.4 1.8

P
E

α

Top-1 Top-10 Top-50

(a)

0.08

0.1

0.1 0.3 0.5 0.7 0.9

P
E

β 

Top-1 Top-10 Top-50

(b)

0.07

0.1

0.1 0.3 0.5 0.7 0.9

P
E

ρ 

Top-1 Top-10 Top-50

(c)

0.06

0.1

0.14

0.1 0.3 0.5 0.7 0.9

P
E

γ   

Top-1 Top-10 Top-50

(d)

0.06

0.1

0.14

0.2 0.6 1 1.4 1.8

P
E

ζ

Top-1 Top-10 Top-50

(e)

0.08

0.1

1 1.2 1.4 1.6 1.8 2

P
E

a

Top-1 Top-10 Top-50

(f)

0.08

0.1

1 1.2 1.4 1.6 1.8 2

P
E

b

Top-1 Top-10 Top-50

(g)

0.07

0.11

3 4 5 6

P
E

m

Top-1 Top-10 Top-50

(h)
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ascending trend and Figure 3(d) a descending trend. ρ acts
as a linear parameter, while γ is on the exponent; therefore
curves in Figure 3(d) appear steeper than in Figure 3(c).

Similarly, Figure 3(e) demonstrates a descending trend, as
ζ influences the locality by controlling the visit frequency
distribution of an entity to locations. With higher ζ , most
visits are to a few most frequently visited locations, while
with lower ζ , visits are more uniformly distributed.

Curves in Figure 3(f) and (g) depict little variation, in-
dicating that good PE can be achieved under any spatial
distribution patterns. As is clear from the search algorithm,
we touch the records of entity e only if the PI patterns of e
resembles the PI patterns of the query entity at all sp-index
levels. Although the values of a and b influence spatial units
distribution at higher levels, base spatial unit numbers and
distributions in the explored area are always constant, which
means that the PI patterns of entities at the finest level do not
change. As a result, groupings at levelm of the MinSigTree
remain unchanged under different values of a and b.

From Figure 3(h) we observe that the approach performs
better with smallerm, i.e., fewer levels in the hierarchy. The
reason is that with more spatial levels, more entities form
AjPIs with each other, and thus the search space grows. As
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an example, if we assume that the spatial hierarchy is city-
street-district-building, then ifm = 1, we only consider AjPIs
at the building level, while withm = 2 we consider AjPIs at
both the building level and the street level, etc.

6.5 Sensitivity to ADM parameters
Values of u and v defined in the ADM of Section 6.1 provide
different weights to AjPI level and duration when selecting
associated entities. The PE under different ADM parameter
values are presented in Figure 4.

As is clear from Figure 4, smaller u (level parameter) and
larger v (duration parameter) yield high PE in both data
sets. The reason is that, while ST-cells contain timestamps,
they do not contain level information. Since signatures are
computed based on ST-cells, the AjPI level is not encoded
into the signature. As a result, entities sharing AjPIs for
longer duration are more likely to have similar signatures
than entities sharing AjPIs at finer levels. The results reveal
that the approach performs better in cases where duration
is the dominant factor of the association degree between
entities.

6.6 Sensitivity to memory size
If more data can be stored in memory, the time spent to fetch
records from disk is reduced. Therefore, the allocated mem-
ory size has an impact on query time. Figure 5 depicts the
time required to answer Top-1, Top-10, and Top-50 queries
with 2,000 hash functions under different memory sizes.

The horizontal axis in Figure 5 denotes the allocated mem-
ory size (relative size compared to raw data). It is evident that
the curves in Figure 5 depict a descending trend as expected.
The curve drops super-linearly with respect to the allocated
memory size. The reason is that, the relative position of
entities in the MinSigTree is not always guaranteed to be
correlated to their association degrees, especially when the
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number of hash functions is small (as discussed in Section
6.3). As a result, although we organize records by their rela-
tive position in the MinSigTree, closely associated entities
are not always placed in adjacent disk blocks. However, as
the memory size reaches 40% − 50% of the dataset size, the
curves exhibit only small variation. We also experimented
with different measures besides the ADM in Equation (20).
Our results indicate that the choice of the measure does not
impact the runtime performance of the index and the overall
trends remain the same.

6.7 Sensitivity to result size
We also evaluate our approach as k (number of results de-
sired in top-k) increases compared to the baseline method
in Figure 6. PE on both SYN and REAL decreases slightly
with increased result size, which is the consequence of both
the ADM distribution and the nature of the branch-bound
technique. Let eq be the query entity, ea be the i-th most
associated entity to eq , and eb be the (i + 1)-th most associ-
ated one. Let d f (i) = d(eq , ea) − d(eq , eb ) denote the ADM
difference between ea and eb . As Figure 10 indicates, the
association degree distribution ranges for entities are denser
when the association degree is small, i.e., d f (i) > d f (j) if
i < j and d f (i) → 0 as i increases. Since the number of hash
functions used to compute the signature is far less than the
number of ST-cells, the UB of a node is not always guaran-
teed to be very tight. LetUBb be the upper bound of the node
containing eb , then d(eq , ea) < UBb may occur, especially
when d f (i) ≈ 0, i.e., i is large, which means we always need
to check eb before returning ea . As a result, more entities are
checked when the value of k , i.e., result size, is large, which
implies the trend of the curves in Figure 6.
The baseline method, as argued in Section 6.2, is based

on the existence of clusters among ST-cells, which is not
typical in real-life digital traces. Consequently, the PE of the
approach is greatly limited, which explains the results in
Figure 6 showing that MinSigTree outperforms the baseline
approach by large factors.

6.8 Indexing and update cost
The pre-processing cost to build the MinSigTree is depicted
in Figure 7. Pre-processing time grows almost linearly with
the number of hash functions (nh ), as the most expensive
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step in the index construction process is the computation of
signatures for each entity, which requires nh hash operations
for each ST-cell where the entity has a presence.

The size of the MinSigTree is provided in Figure 7(b). Gen-
erally, each node in the MinSigTree contains two integers,
one indicating its routing index, and the other recording the
hash value of the routing index. A leaf node also includes
a pointer to the entities contained in this node. With more
hash functions, each entity becomes more unique and thus a
node with entity set EN may split into several new nodes,
each containing a subset of EN . Therefore, the size of the
MinSigTree increases with the number of hash functions.
However, the overhead is quite small compared to the data
size.
Figure 8 illustrates the time required for dynamic index

updates. In particular, the figure depicts the time required
to update records for 1 million entities in an already built
MinSigTree. Since the update process is independent from
the data distribution, we present experiments on SYN data.
As discussed in Section 2.1, we assume that the sp-index
remains unchanged over an extended period (as per [47]).
Thus we focus on two common update operations in prac-
tice: inserting new entities and updating existing entities. As
presented in Section 3.2.3, when updating existing entities,
new digital traces and changes in existing digital traces are
processed in the same fashion. Therefore, we do not distin-
guish between the two cases in this experiment. We report
the time required under conditions when 100%, 70%, and
40% of the entities updated are existing entities, respectively.
The time to update grows linearly with the number of hash
functions as in the case of building the index. In addition,
one can observe that inserting new entities requires less time
than modifying the records for existing entities. The reason
is that, when updating an existing entity we have to perform
the following steps: (1) locate the entity’s position in the
MinSigTree, (2) remove it from the corresponding leaf node
in the index, (3) compute its new signature, and (4) insert it



to the proper node. In contrast, for a new entity only steps
(3) and (4) are required.

The only parameter that can be tuned by users for per-
formance/cost trade-off is the number of hash functions. In
different scenarios one can decide on the suitable number of
hash functions utilizing the pruning effectiveness curves of
Figure 2 and cost curves of Figures 7 and 8.

7 RELATEDWORK
We are not aware of any work that directly addresses the
processing of digital traces as defined herein. Work on query
processing over trajectories can be considered related, which
focuses on the movement of entities. However the bulk of
the work in this area deals with spatial proximity or shape
of trajectories and is applicable to moving objects mainly.
There are two branches of existing research on querying
trajectories, namely, nearest neighbor queries [1, 4, 5, 10–
12, 18, 23, 27, 28, 30, 33, 35, 40, 45], and top-k queries [3, 14, 32,
34, 39, 41, 44, 48, 49, 51, 52]. Nearest neighbor queries retrieve
spatially close trajectories [11] or entities [10, 28] under par-
ticular distance measures [1, 5, 23] with various constraints
[4, 12, 18, 27, 30, 33, 35, 40, 45], e.g., uncertain trajectories [33]
or road networks [35]. Top-k queries define metrics [32, 45]
on specific trajectory types [3, 14, 34, 39, 41, 44, 49, 51], e.g.,
activity trajectory [52] or semantic trajectory [51], to quan-
tify the similarity between trajectories and retrieve trajecto-
ries or entities most similar to a given trajectory [32], entity
[51], set of locations [52], etc. One representative piece of
work related to the problem studied herein is Frentzos et
al. [20], which proposes a set of metrics for k-Most Similar
Trajectory (k-MST) search over moving object databases,
and designs an approximation method for efficient search
with R-tree-like structures. These works however along with
work on similarity search over trajectories mainly focus
on spatial closeness or trajectory shape, without consider-
ing the influence of spatial topology, such as hierarchy, on
measuring the association among trajectories and the cor-
responding entities. Consequently they lack the ability to
infer the association degree between entities from their tra-
jectories. In addition, as the metrics used therein are based
on sequence distance (e.g., Longest Common Sub-Sequence
[46]), or Time Series distance (e.g., Dynamic Time Warping
[37]), which either ignore the time dimension or assume
trajectories are aligned in time, they are not guaranteed to
satisfy the monotonic properties of the association degree
measure of Equation (3).

A few pieces of work in recent years also deal with digital
traces of human beings [25, 36]. Digital traces in their context,
however, mainly refer to the records produced by digital
devices on the Internet, such as emails, twitter posts, etc,
which are not associated with spatial-temporal presences and

thus share little semantic similarity with the digital traces
proposed in this paper.
Existing top-k query processing techniques, including

sorted-list based approaches [15, 17], layer based approaches
[8, 50], R-tree based approaches [6, 9], are primarily designed
to address the problem for low-dimensional data. Since the
dimensionality dealt with in this paper is extremely high
(as each ST-cell is one dimension, and there are millions of
ST-cells), these approaches are not applicable to this prob-
lem. On the contrary, the approach proposed in this paper
utilizes hashing functions for dimensionality reduction in a
fashion that preserves presence instance patterns and thus
exact top-k queries can still be supported.
Frequent pattern mining algorithms [2, 24] discover fre-

quently co-occurring items from transaction databases. Such
algorithms have also been proposed to identify communi-
ties among populations [19, 29]. These approaches are not
effective to answer top-k queries in our problem domain as
digital traces do not typically contain such patterns.
Hashing techniques are widely adopted in set duplicate

detection tasks [22, 43], among which MinHash demon-
strates excellent performance [21, 31, 38, 53, 54]. Hashing ap-
proaches, however, are always used as approximation rather
than to calculate exact similarity. We modify MinHash ap-
proaches in this paper to support exact top-k queries.

8 CONCLUSIONS AND FUTUREWORK
The proliferation of ambient connectivity for certain entity
types gives rise to query processing problems of the resulting
digital traces. In this paper, we initiated the study and for-
mally defined the problem of top-k query over digital traces,
and developed a suite of techniques to efficiently process
such queries. We proposed a hash-based indexing structure
and combined it with a given spatial hierarchy to answer
exact top-k queries, which is a combination that has not
been investigated before. We generalized a well-established
mobility model to a hierarchical spatial environment and
analytically quantified the pruning effectiveness of the pro-
posed method. We also presented extensive experiments on
both synthetic and real data sets demonstrating the practical
utility of our proposal.

This study introduces several directions for further work.
Although top-k query is a natural query to study in this
context, several other interesting query processing questions
exist. Extending the proposed techniques to other operators
such as approximate top-k and joins as well as studying
alternate embedding with diverse properties are important
directions. Natural extensions to identifying outlier digital
traces as well as related data mining questions are worthy
of further investigation.
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A NOTATIONS AND ABBREVIATIONS
The notations and abbreviations are given in Table 1.

B COST OF INDEX CONSTRUCTION
Theorem B.1. The maximal I/O cost in the indexing process

is 2np×⌈1+⌈lognb ⌈np/nb ⌉⌉⌉+np , wherenp is the total number
of pages storing the digital traces andnb is the number of buffer
pages in memory.

Methods proposed in Section 3 require digital traces to
be organized by entities, but real world data have varying
formats. In a system with adequate memory we can load
all records into memory and directly fetch the digital traces
of a specific entity. However, when memory becomes the
bottleneck, sorting the digital traces by entity becomes a
necessity.We employ the well-known B−way external merge
sort [13] algorithm to do the ordering. Following the sorting
principle, the I/O cost in the sorting process is thus 2N ×
⌈1 + ⌈logB ⌈N /B⌉⌉⌉. After the sorting, we need to read the
records of each entity once for signature computation.

Theorem B.2. The total processor cost in the indexing pro-
cess is Θ(|E |Cmnh), whereC is the average number of ST-cells
in which an entity has presence.

With access to the digital traces organized by entity, we
can compute the signature list for each entity and build the
MinSigTree. As described in Section 3, for each entity, we
fetch itsm ST-cell sets, employ a family of nh functions to
map each set to a signature, and then build anm-level Min-
SigTree based on the signatures of all entities. Therefore, the
total processor cost in the indexing process is O(|E |Cmnh).
Theorem B.3. The minimum memory required in the in-

dexing process is min{(nh)m , |E | ×m} + nh +C .
Since the signatures of each entity are computed indepen-

dently, we can fetch one entity into memory at a time and
update the MinSigTree incrementally. In order to avoid extra
I/O cost, we need to keep the MinSigTree and hash func-
tions in memory. Theoretically, the size of the MinSigTree is



Table 1: Notations and Abbreviations

Notation/Abbreviation Definition
E the set of all entities
S the set of all ST-cells
PI presence instance
pa a PI of entity ea
Pa the digital traces of entity ea
AjPI adjoint presence instance
pab an AjPI between ea and eb
Pab all AjPIs between entity ea and entity eb
seqa the ST-cell set sequence of entity ea
siдa the signature list of entity ea
SIGN the signature of node N

IM model individual mobility model
α parameter in IM model controlling the displacement of consecutive PIs
β parameter in IM model controlling the duration of PI
ρ, γ parameters in IM model controlling the probability of exploratory jump
ζ parameter in IM model controlling visit frequency
m level of sp-index
a width parameter of sp-index
b relative density parameter of sp-index
PS pruned set
PPS partial pruned set
PE pruning effectiveness

ADM association degree measure
u parameter in ADM controlling the weight of level
v parameter in ADM controlling the weight of duration

nh + (nh)2 + · · · + (nh)m ≈ (nh)m . However, since the total
number of entities is |E |, the number of leaves in the tree
is bounded by |E |. Since each node has one and only one
parent node, the number of nodes at other level of the tree is
also bounded by |E |. Therefore, the size of the MinSigTree is
min{(nh)m , |E | ×m}. The minimal memory required is thus
(min{(nh)m , |E | ×m} + nh +C), storing the MinSigTree, nh
hash functions and the ST-cells of one entity.

C DATA DISTRIBUTION
The data distribution is depicted in Figure 9, demonstrating
both data distribution across levels as well as distribution of
AjPI duration. Note that the vertical axes in all these plots
are in log scale. Figure 9(a) depicts the number of entities
forming AjPIs with a particular entity at each level on REAL.
Given an entity e , as shown in Figure 9(a), roughly 22 million
entities form AjPIs with e at level 1 (two entities forming an
AjPI at a finer level also form anAjPI at the coarser levels), etc.
Figure 9(b) illustrates the same distribution on SYN. Figure
9(c) provides the duration distribution of AjPI at each level:

roughly 20 million entities form AjPI with e at level 1 for
durations shorter than 100 hours, etc.
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(d) SYN data
Figure 9: Data distribution

Figure 10 provides the association degree distribution un-
der u = 1 and v = 1, where the horizontal axes are associa-
tion degree ranges, and the the height of a bar denotes the



number of entities falling in the corresponding ADM range
with the query entity. From Figure 10, it is evident that most
entities bear low association degrees with a particular entity.
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Figure 10: Association degree distribution

D MEASURE COMPARISON
Intuitively, a similarity measure,Mp , simulates another sim-
ilarity measure, Mq , on a data set D, if the ranking order
and the association degrees by Mp and Mq on D are close.
Formally, assume that the top-k associated entities to a query
entity e measured byMp form a sequence Rp (sorted by asso-
ciation degree), Rip (i ∈ [1,k]) is the i-th entity in the ranking;
assume that Rip .deд denotes the association degree of Rip to e ,
then the simulation effectiveness ofMp toMq is quantified
by the metrics in Equation (21).

Kavд(Mp ,Mq) = E(K(R⌢
p ⟨Rq − Rp⟩,R⌢

q ⟨Rp − Rq⟩)),

ADDi f f (Mp ,Mq) =
∑k

i=1 |Rip .deд − Riq .deд |
k

, (21)

where Kavд is a generalized form of Kendall’s tau distance
[26] to measure the distance between top-k lists [16], Rp is
the set of entities in Rp , ⟨∗⟩ is an operator transferring a set
to a sequence in any order, ⌢ denotes the concatenation of
two sequences, E is the expectation, and K denotes Kendall’s
tau distance [26] introduced below.

Given two ranked lists,τ1 andτ2, both of sizen, the Kendall’s
tau distance between τ1 and τ2, K(τ1,τ2), is computed with
Equation (22).

K(τ1,τ2) =
|{(i .j) : i < j, P(i, j) ∨Q(i, j)}|

n(n − 2)/2 ,

P(i, j) = τ1(i) < τ1(j) ∧ τ2(i) > τ2(j),
Q(i, j) = τ1(i) > τ1(j) ∧ τ2(i) < τ2(j), (22)

where τ1(i) and τ2(i) are the ranking orders of element i in
lists τ1 and τ2 respectively. The Kendall’s tau distance be-
tween two identical lists is 0, and the Kendall’s tau distance
between two reverse lists is 1. Kendall’s tau distance is com-
monly used in measuring the ordinal correlation between
ranked lists.

Given a data set, Kavд(Mp ,Mq) describes the consistency
of the ranking orders, which corresponds to the effective-
ness of the results, and ADDi f f depicts the deviation of
the association degrees, which influences the performance

Table 2: Simulation effectiveness

(a) Average Kendall’s tau distance

Top-1 Top-10 Top-50
Dice 0.0 0.0 0.0

Jaccard 0.0 0.0 0.0
Cosine 2.0E-3 6.7E-3 1.1E-2

(b) Association degree difference

Top-1 Top-10 Top-50
Dice 0.0 0.0 0.0

Jaccard 1.1E-2 6.7E-3 5.0E-3
Cosine 3.2E-5 4.0E-5 5.5E-5

of the approach. Mp simulates Mq if both τ (Mp ,Mq) and
ADDi f f (Mp ,Mq) are low.

In order to apply set similarity measures to hierarchical
spatial environment, at each spatial level we use Dice, Jac-
card, or Cosine metric to compute the similarity between the
digital traces of two entities, and use the weighted summa-
tion of similarities at all levels as the final association degree.
Since weights are independent from the measures and have
no influence on the simulation, we simply let the weight of
level i ,wi , take value i

Z (Z is a normalization factor), which
corresponds to u = 1 in Equation (20), and vary the value
of v to evaluate the simulation effectiveness of the ADM to
other similarity measures.
Table 2 gives the simulation effectiveness of the ADM

to other measures. The best simulation to Dice and Cosine
Similarity is obtained when v = 1, and the best simulation
to Jaccard Similarity is obtained when v = 1.2. We can ob-
serve from Table 2 that the ADM simulates other measures
accurately, especially when the result size (k) is small. It is
worth noting that the ADM exactly takes the form of Dice
Similarity when v = 1. As is clear from Equation (20), vary-
ing the value of v only changes the association degree, but
has no influence on the ranking order. Our experiments in-
dicate that when v is in the range of [0.5, 2] the association
degree computed by the ADM is close to those of the other
measures, and thus we utilize values in this range during
experiments.
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