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ABSTRACT

Given a query tree Q , the top-k subtree similarity query re-
trieves the k subtrees in a large document treeT that are clos-
est to Q in terms of tree edit distance. The classical solution
scans the entire document, which is slow. The state-of-the-
art approach precomputes an index to reduce the query time.
However, the index is large (quadratic in the document size),
building the index is expensive, updates are not supported,
and data-specific tuning is required.

We present a scalable solution for the top-k subtree simi-
larity problem that does not assume specific data types, nor
does it require any tuning. The key idea is to process promis-
ing subtrees first. A subtree is promising if it shares many
labels with the query. We develop a new technique based on
inverted lists that efficiently retrieves subtrees in the required
order and supports incremental updates of the document. To
achieve linear space, we avoid full list materialization but
build relevant parts of a list on the fly.

In an extensive empirical evaluation on synthetic and real-
world data, our technique consistently outperforms the state-
of-the-art index w.r.t. memory usage, indexing time, and the
number of candidates that must be verified. In terms of query
time, we clearly outperform the state of the art and achieve
runtime improvements of up to four orders of magnitude.
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1 INTRODUCTION

Data with hierarchical structure are naturally represented as
trees. A tree stores data values in node labels and encodes

the relation between the values in the structure (e.g., text val-
ues and element nesting in XML). We consider applications
that, given an example tree (the query), are interested in sub-
trees of a large document tree that are similar to the query.
An example is the abstract syntax tree of a large software
project [1, 14]: In order to avoid code duplication or detect
code moves, software engineers are interested in finding
all code fragments (i.e., subtrees of the abstract syntax tree)
that are similar to a given example fragment. In RNA sec-
ondary structures (which are represented as ordered, labeled
trees [3, 17]), biologists search for similar foldings of RNA
subsequences. To automatically extract product information
from the web, the similarity of substructures in web pages are
leveraged [28]. Production engineers retrieve components
with similar building plans from bills of materials, which
form trees that may consists of millions of nodes [15, 19].
We study top-k subtree similarity queries: given a large

document tree T and a (small) query tree Q , find the k most
similar subtrees inT w.r.t.Q . Two trees are similar if their edit
distance [31], a common tree similarity measure, is small. The
edit distance between two ordered labeled trees is defined
as the minimum number of node edit operations (insertion,
deletion, rename) that transform one tree into the other.

Previous solutions for top-k subtree similarity queries fall
into two categories: index-based and index-free algorithms.
TASM-Postorder [4] is the fastest index-free algorithm and
runs in small memory. Unfortunately, TASM-Postorder must
scan the entire document to answer a top-k query, which is
slow. StructureSearch [9] addresses this issue and leverages
a precomputed index to retrieve candidate subtrees. The
candidates must be verified using the edit distance.

StructureSearch runs faster than TASM-Postorder but suf-
fers from the following issues: (1) The index size is quadratic
in the document size n for deep trees; note that the document
is the database over which we answer the top-k query. (2)
Despite the index, StructureSearch must retrieve and verify
many subtrees, which leads to high runtimes also for small
values of k . (3) While StructureSearch can be generalized to
generic tree data, the solution is tailored to XML documents,
which have many repeating labels in the inner nodes (ele-
ment tags) and infrequent labels in the leaves (text values).
Further, XML trees are typically flat. Flat trees are in favor of
StructureSearch since the index grows larger for deep trees.
(4) The index is not updatable.
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Our solution is based on the idea of a candidate score. The
candidate score ranks all subtrees of a document. The score
is high if the query and the subtree share many labels. Intu-
itively, subtrees with a high score are more likely to be close
to the query in terms of edit distance. By processing subtrees
in candidate score order, we (a) find good candidates quickly
and (b) can stop early when the ranking is good enough, i.e.,
all remaining subtrees cannot improve the ranking. Stopping
early is possible since the candidate score implies a lower
bound on the edit distance. The candidate score is very effec-
tive. In many settings, we verify orders of magnitude fewer
candidate subtrees than StructureSearch; in some settings
we only verify k candidates, which is optimal.

The challenge is to efficiently generate candidates in score
order. The query is not known upfront, thus the order must
be established at query time and cannot be precomputed. It
is clearly not feasible to enumerate all subtrees and sort them
by their score. We introduce a new technique that is based
on an inverted list index over the document node labels.
The inverted list of a label stores all subtrees that contain
that label. We split the lists into partitions of subtrees with
the same size and show how to leverage the list partitions
to processes the subtrees in score order. The partitions are
accessed in the order of the best candidate score that may
be found in that partition. Only relevant partitions need to
be accessed, e.g., there is only a single partition that may
contain subtrees of the highest score.

The catch is that the label inverted list index is quadratic in
the document size n for tress with depth O(n); for such trees,
also the index of the state-of-the-art algorithm, Structure-
Search, is quadratic. We propose a new algorithm, SlimCone,
which uses an incrementally updatable, linear-space index
structure to build the relevant partitions of the inverted lists
on the fly at query time. SlimCone verifies the subtrees in
non-decreasing candidate score order. We show how to gen-
erate partitions efficiently such that the performance penalty
of generating the partitions on the fly is small.

Summarizing, our contributions are the following.

• We propose SlimCone, a new, index-based algorithm
for the top-k subtree similarity problem. SlimCone ver-
ifies subtrees in decreasing candidate score order, i.e.,
more promising subtrees are processed first. SlimCone
does not require any parameters and is not tailored to
a specific data type.
• The state-of-the-art algorithm uses a quadratic-size
index.We propose the first linear-space index for top-k
subtree similarity queries. Our index groups subtrees
into partitions. All subtrees in a partition have the
same guarantee w.r.t. to the candidate score such that
we find promising subtrees efficiently.

• We propose an extension of SlimCone that supports
incremental index updates. Previous work must recom-
pute the index from scratch when the document tree
is updated.
• We empirically evaluate our solution on large syn-
thetic and real-world data sets. Our technique clearly
outperforms the state of the art w.r.t. memory usage, in-
dexing time, number of verified candidates, and query
runtime, often by orders of magnitude.

The remaining paper is organized as follows. Section 2
provides background material and introduces the problem
statement. Section 3 discusses the candidate scores. In Sec-
tions 4-6 we present our index structures and algorithms.
Section 7 describes how to make our index incrementally
updatable. We discuss related work in Section 8. Before we
conclude in Section 10, we provide empirical evidence of the
scalability and efficiency of our solution in Section 9. Appen-
dix A provides proofs to all lemmata and theorems, and the
pseudo codes for all algorithms described in Sections 4-6.

2 NOTATION, BACKGROUND, AND

PROBLEM STATEMENT

Trees. We assume rooted, ordered, labeled trees. A tree T is
a directed, acyclic, connected graph with nodes V (T ) and
directed edges E (T ) ⊆ V (T ) ×V (T ). Each node has at most
one incoming edge, the node with no incoming edge is the
root node. The size of a tree, |T | = |V (T )|, is the number of its
nodes. In an edge (u,v) ∈ E (T ), u is the parent of v , denoted
par (v), and v is the child of u. Two nodes are siblings if
they have the same parent. A leaf node has no children. Each
node u has a label, λ (u), which is not necessarily unique.
The multiset of all labels in T is L (T ). The postorder (pre-
order) identifier of node u, post (u) (pre (u)), is the postorder
(preorder) position of u in the tree (1-based numbering). The
trees are ordered, i.e., the sibling order matters. If node u
is on the path from the root to node v , u , v , then v is a
descendant of u, and u is a ancestor of v . A subtree Tu of T is
a tree that consists of node u, all descendants of u, and all
edges in E (T ) connecting these nodes.

Tree Edit Distance. The edit distance, δ (S,T ), between two
trees, S , T , is the minimum number of node edit operations
that transforms S into T . We assume the standard node op-
erations [31]: Rename changes the label of a node. Delete
removes a node u and connects the children of the deleted
node to its parent, starting at the sibling position of u and
maintaining the sibling order. Insert adds a new node u as
the i-th child of an existing node p, replacing a (possibly
empty) sequence C = (ci , ci+1, . . . , c j ) of p’s children; the
child sequence C is connected under the new node u. Insert
and delete are reverse operations. The fastest algorithms
for the tree edit distance run in O ( |T |3) time and O ( |T |2)
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space [22], i.e., computing the edit distance is expensive and
should be avoided.

Lower Bounds. A lower bound for the tree edit distance
may underestimate the true distance, but never overestimates
it. A number of edit distance lower bounds have been de-
fined [21]. Lower bounds are typically computed much faster
than the edit distance. We leverage the label lower bound,
llb (S,T ) =max {|S | , |T |}−|L (S) ` L (T )| ≤ δ (S,T ) 1, (1)
and the size lower bound,

slb (S,T ) = | |S | − |T | | ≤ δ (S,T ) (2)

Definition 2.1 (Top-k Subtree Similarity Query). Given a
query tree Q , a document tree T , k ≤ |T |. The top-k subtree
similarity query returns a top-k ranking R, where R is the
sequence of the k most similar subtrees of document T w.r.t.
query Q such that ∀Tj < R,Ti ∈ R. δ (Q,Ti ) ≤ δ

(
Q,Tj

)
.

The subtrees in R = [T 1,T 2, . . . ,T k ] are sorted by their edit
distance to Q , i.e., ∀1 ≤ i < j ≤ k . δ

(
Q,T i ) ≤ δ

(
Q,T j ) .

Problem Statement. Our goal is a time- and space-efficient
solution for the top-k subtree similarity query that scales to
large document trees.

A naive solution computes the edit distance δ (Q,Ti ) for all
subtrees Ti ∈ T , sorts them by δ (Q,Ti ), and returns the first
k subtrees in ascending sort order. Obviously, this approach
does not scale to large documents [4]. Efficient techniques
prune irrelevant subtrees and compute the edit distance only
for candidate subtrees that cannot be filtered. Well known
filter techniques include the following.

Size Filter. Augsten et al. [4] show that only subtrees of
a maximum size τ = 2 |Q | + k need to be considered, thus
subtrees Ti , |Ti | > τ , can be pruned.

Ranking Filter. Once an intermediate ranking R′ of size k
is obtained, the edit distance δ (Q,R′[k]) (δ (R′ [k]) for short)
between the query Q and the last tree R′[k] in the rank-
ing serves as a filter: A subtree Ti < R′ improves the fi-
nal ranking R′ iff δ (Q,Ti ) < δ (R′ [k]) [4]. Together with
a lower bound, lb (Q,Ti ), a subtree can be safely pruned if
lb (Q,Ti ) ≥ δ (R′ [k]).

The better the ranking, the more effective is the rank-
ing filter. Thus, to reduce the number of verifications it is
important to find good subtrees early in the process.

Table 1 provides an overview of our notation.

3 EFFECTIVE CANDIDATE GENERATION

The key idea of our approach is to prioritize promising sub-
trees. If we fill the ranking with good subtrees, the ranking
filter (cf. Section 2) is effective and we can terminate early.
1A ` B denotes the intersection between two multisets, A and B .

Table 1: Notation overview.

Notation Description
T /Q document / query tree
R/R′ final / intermediate top-k ranking
k results size, k = |R |
R [j] j-th entry in R
Ti a subtree Ti ∈ T
par (u) parent of node u
pre (u) /post (u) preorder / postorder identifier of node u
λ (u) label of node u
L (Ti ) label multiset of tree Ti
δ (Q,Ti ) edit distance btw. Q and Ti
δ (R [j]) edit distance btw. Q and j-th entry in R
slb (Q,Ti ) size lower bound btw. Q and Ti
llb (Q,Ti ) label lower bound btw. Q and Ti
τ (= 2|Q | + k) maximum relevant subtree size [4]

In this section we define the candidate score to rank subtrees.
In the following sections we discuss how to retrieve subtrees
in the order of their candidate score.

Definition 3.1 (Candidate Score). Given query Q and docu-
ment T , the candidate score of a subtree Ti of T is

score(Ti ) =
1

1 + llb (Q,Ti )
,

where llb (Q,Ti ) is the label lower bound between Q and Ti .

The candidate score is in the interval (0, 1], more promis-
ing subtrees score higher. The candidate score imposes a
total order on the subtrees of document T , which we call
candidate score order : Given two subtrees Ti ,Tj ∈ T , Ti > Tj
iff score (Ti ) > score

(
Tj
)
.

A subtree Ti is processed by computing the tree edit dis-
tance between Ti and the query Q , and by inserting Ti into
the ranking if δ (Q,Ti ) < δ (R[k]). If we process the subtrees
in candidate score order, we can stop afterm subtrees if the
following stopping condition holds.

Lemma 3.2 (Early Termination). Let T i be the i-th sub-
tree of document T in candidate score order w.r.t. query Q
(breaking ties arbitrarily), R′ a top-k ranking of the subtrees
T 1,T 2, . . . ,Tm , k ≤ m < |T |. If δ (R′ [k]) ≤ llb

(
Q,Tm+1) ,

then R′ is a valid top-k ranking for all subtrees T i ∈ T .
Simple Algorithm. A simple top-k subtree similarity algo-

rithm, Simple, that uses Lemma 3.2 and the size filter (cf.
Section 2) proceeds as follows: compute the score for each
subtree Ti ∈ T , 1 ≤ |Ti | ≤ τ , and sort all subtrees by score,
process the subtrees in sort order, and stop when the early
termination condition holds.

Running Example. Figure 1 shows an example documentT ,
an example queryQ , and the edit distance (δ ) for all subtrees
Ti ∈ T w.r.t. Q . Each node is represented by its label and the

Research 17: Scalability  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1626



postorder identifier (subscript number). In the examples, we
refer to the subtree rooted in the i-th node of T in postorder
as Ti .

o17

d7

b2

a1

a6

b3 b5

x4

d16

b11

a9

x8

b10

w15

z12 y14

b13

T

a4

b1 b3

x2

Q

Ti T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17
δ 3 3 3 3 2 0 3 3 2 3 4 4 3 3 4 9 13

Figure 1: Running example.

Example 3.3. We compute the top-k ranking, k = 3, for Q
inT using Simple (cf. Figure 1). Due to the size filter, the max-
imum subtree size that must be considered is τ = 2 |Q | +k =
11. We compute the label lower bound for all subtrees Ti ,
|Ti | ≤ τ and rank them by candidate score. For example,
the label lower bound forT9 is llb (Q,T9) =max {|Q | , |T9 |} −
|L (Q) ` L (T9)| = 2, whereL (Q) = {{a,b,b,x}} andL (T9) =
{{a,x}}; the candidate score of T9 is score(T9) = 1/3. The re-
sult is shown in Table 2; we order subtrees by postorder
position in the case of ties; T17 is not listed since |T17 | > τ .

Table 2: Example subtrees ordered by candidate score.

llb (Q,Ti ) score(Ti ) Subtrees
0 1 T6, T11
2 1/3 T2, T5, T9
3 1/4 T1, T3, T4, T7, T8, T10, T13, T14, T15
4 1/5 T12
5 1/6 T16

Simple first processes T6, T11, and T2 in this order and
computes δ (Q,T6) = 0, δ (Q,T11) = 4, and δ (Q,T2) = 3, re-
sulting in the intermediate ranking R′ = [T6,T2,T11]. Since
δ (R′ [k]) = 4 and llb (Q,T ′) = 2 for the next unprocessed
subtreeT ′ = T5, we continue and verifyT5 andT9. δ (Q,T5) =
2,δ (Q,T9) = 2, resulting inR′ = [T6,T5,T9]. Now,δ (R′ [k]) =
2 ≤ llb (Q,T ′) = 3 for the next subtree T ′ = T1, and we can
terminate.

4 INDEX AND MERGEALL ALGORITHM

We introduce the candidate index, which enables us to ef-
ficiently retrieve candidates in score order, and propose
MergeAll, a baseline algorithm that solves top-k subtree
similarity queries using our index.

4.1 Candidate Index

The candidate index, I, is built over a document tree,T , and
stores the following data structures:
(1) An inverted list index over the document labels.
(2) The node index, a compact representation of T .

Our index supports the following operations:
• I.list (λ) retrieves the inverted list lλ for a label λ and
returns nil if that list does not exist.
• I.sizes () retrieves all distinct subtree sizes in T .

Inverted List Index. We build an inverted list index on the
document labels. For each distinct label λ ∈ L (T ), we main-
tain a list lλ of all subtrees that contain a node labeled λ. The
inverted list entries are lexicographically sorted by subtree
size and postorder identifier (ascending order). Figure 2a
shows the inverted lists for our example document. A list
entry is a subtree Ti , represented by the postorder identifier
of its root node, i . The lists are partitioned by subtree sizes
(shown above the lists).
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1

3 10 13

4 8
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2 9

2 5 14
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6 11

6 11 15
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6 11

15
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7

7

7

16

16

16

16

16

16

16

17
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17

17

17

sizes 1 2 4 7 9 17

(a) Inverted list index of T .
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x
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a

4

7

d

7

8

x

1

9

a

2

10

b

1

11

b

4

12
z

1

13

b

1

14
y

2

15

w

4

16

d

9

17

o

17

(b) Node index of T .

Figure 2: Baseline index structure for document T of

our running example (cf. Figure 1).

Node Index. We store the documentT in an array of size |T |.
The i-th field in the array (1-based counting) is a pair (λi , |Ti |),
where λi is the label of the i-th node of T in postorder and
|Ti | is the size of the subtree rooted in that node. Figure 2b
shows the node index for our example document.

The node index is a lossless and compact representation of
the document tree. We do not need any other representation
of the document for our algorithms. Conveniently, each sub-
treeTi in the node index is a connected subsequence starting
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at position i − |Ti | + 1 (|Ti | is accessed in constant time in the
node index) and ending at position i . The subtree part of the
node index is a valid tree representation by itself.
The node index is built in a single scan of the document

using a SAX parser and is stored in main memory. While
parsing, we build a dictionary that maps string labels to
unique integers. In our indexes and algorithms (including
the edit distance computation), we use integer labels (in our
examples, however, we show the original string labels).

Index Size. The size of the candidate index is O (
n2
)
, n =

|T |. Consider the tree in Figure 3 with root label λ1, a single
leaf λn , and pairwise distinct labels, λi , λj unless i = j . The
inverted list of λi has i entries, e.g., λn appears in n subtrees.
The overall number of entries is

∑n
i=1 i , which is quadratic.

For the tree in Figure 3, also the index of StructureSearch [9]
requires quadratic space. We introduce a linear-space index
in Section 6.

λ1 λ2 λ3 . . . λn−1 λn

Figure 3: Worst-case document for the inverted list

index (root to the left, leaf to the right).

4.2 MergeAll Algorithm

MergeAll uses the candidate index and processes the sub-
trees Ti in the order of non-decreasing size lower bound,
slb(Ti ,Q) = | |Ti | − |Q | | (cf. Section 2), w.r.t. the query Q .

We (conceptually) split the inverted lists into vertical stripes
as illustrated in Figure 4. A stripe S j consists of all subtrees
Ti in all lists that have size |Ti | = |Q | + j, e.g., S2 and S−2
are the blue stripes in the figure. A partition consists of all
subtrees of a stripe in a single inverted list, e.g., the subtrees
in stripe S0 of list lλ4 form a partition (marked in the figure).
Stripes and partitions may be empty.

Overview. MergeAll processes the subtrees stripe by stripe.
The current stripe number is j. We leverage the fact that
the size lower bound for all subtrees Ti in S j and S−j is
slb (Ti ,Q) = j. By incrementing the stripe number we pro-
cess the subtrees in ascending size lower bound order.
The goal, however, is to retrieve the subtrees in non-

increasing candidate score order, which is equivalent to the
non-decreasing label lower bound order. Wemaintain a lower
bound cache (lbc) that stores subtrees in buckets. A subtree
Ti in stripe S j or S−j with label lower bound lb = llb (Q,Ti )
is cached in bucket lbc [lb] for later verification if lb > j.
We only process lists of labels that exist in Q , λ ∈ L (Q),

therefore we have at most |Q | lists. We start at stripe j = 0
and proceed in four steps:
(1) Verify all subtrees in lower bound bucket lbc [j].

λ1 . . . 3 2 1 0 1 2 3 . . .

λ2 . . . 3 2 1 0 1 2 3 . . .

λ3 . . . 3 2 1 0 1 2 3 . . .

λ4 . . . 3 2 1 0 1 2 3 . . .

|Q
|−
3

S −
3

|Q
|−
2

S −
2

|Q
|−
1

S −
1

|Q
|+
1

S 1

|Q
|+
2

S 2

|Q
|+
3

S 3

|Q
|

S 0

...

la
be
ls

sizes
list

partition
stripe

Figure 4: Stripes and partitions w.r.t. query Q .

(2) For each candidateTi ∈ S j∪S−j compute lb = llb (Q,Ti ).
(a) If lb = j, then verify Ti ;
(b) otherwise, cache Ti in lower bound bucket lbc [lb].

(3) Increment to next stripe: j ← j + 1
(4) Continue at step (1).
Whenever we verify a subtreeTi , we also update the rank-

ing R. Since the current stripe number j is a size lower
bound for all subtrees in S j , we can terminate if |R | = k
and j ≥ δ (R [k]). We give the pseudo code for MergeAll in
the appendix (Algorithm 1).
Overlap computation.We maintain two pointers, l and r ,

in each list. r is initialized to the first subtree Ti (subtree
with the smallest postorder identifier) of stripe S0, l starts at
position r − 1. If not clear from the context, we refer to the
pointers of a list lλ by lλ .l and lλ .r .

We move the pointers in an n-way merge fashion to com-
pute the label overlap with the query. We stop moving a
pointer when it points to the next stripe. We first move the l
pointers and maintain a counter ol [Ti ] for each subtree Ti
that we encounter; then we move the r pointers in a sim-
ilar way. After all pointers stop, the counter ol [Ti ] stores
the overlap |L (Q) ` L (Ti )|. This works because our index
structure sorts elements within a stripe consistently. With
the overlap, we compute the label lower bound, llb (Q,Ti ) =
max {|Q | , |Ti |} − |L (Q) ` L (Ti )| ≤ δ (Q,Ti ).

We next discuss two special cases. (1) Duplicate query
labels.When the query Q has duplicate labels, the list lλ is
retrieved x times if Q has x nodes with label λ. Then, for
a subtree Ti we get an overlap ol [Ti ] > |L (Q) ` L (Ti )| if
Ti has fewer than x nodes with label λ. The top-k result is
still correct, but Ti may be processed too early w.r.t. to the
candidate score order. To avoid this situation, we can collect
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all subtrees and compute their label overlap using our node
index. In practice, the small violations of the candidate order
have little effect, and we suggest using the merge approach.
(2) Lists without query label. After processing all lists of

the labels in Q , one of the following situations may happen.
(a) |R | < k , i.e., we did not findk subtrees that have a common
label with Q ; (b) δ (R [k]) > |Q |, i.e., there may be subtrees
that do not share a label withQ but should be in the ranking.
In this case, we need to consider lists of labels that do not
exist in Q . For all subtrees in lists of non-query labels the
minimum edit distance is |Q |. We merge the lists stripe by
stripe and use the stopping condition to terminate. This
corner case rarely appears in practice.
The following theorem considers MergeAll with the fix

for duplicate query labels.
Theorem 4.1. MergeAll solves the top-k subtree similarity

problem and verifies subtrees in candidate score order.

Example 4.2. Figure 5 illustrates MergeAll for our running
example, k = 3. We retrieve the lists of the labels in Q : a, b
(twice since b is a duplicate label), and x . We start with stripe
S0 (red stripe). Pointer r is initialized to the first subtree in
S0 (T6 in all lists), l starts on the last subtree in the green
partition. We compute the overlap by moving the pointers
and merging the lists. l cannot be moved; r merges the parti-
tions in S0 and computes the overlaps of T6 (4), T11 (4), and
T15 (2). Note that the true overlap ofT15 is 1; we overestimate
due to the duplicate query label b. From the overlaps, we
get the label lower bounds llb (Q,T6) = llb (Q,T11) = 0 and
llb (Q,T15) = 2. Hence, T6 and T11 are verified, whereas T15
is cached in bucket lbc[2]; R′ = [T6,T11]. For the next stripe,
j = 1, there is nothing to do since lbc [1], S1, and S−1 are all
empty. For j = 2, we first verify T15 in lbc [2] and get the
ranking R′ = [T6,T11,T15]; next we process the subtrees in
stripe S−2 (green); S2 is empty. The overlaps (2 forT14,T9, and
3 for T5, T2) are computed while l is decremented. T14, T9 are
verified immediately. After T5 is verified in the next round
j = 3, R = [T6,T5,T9], and we terminate since δ (R [k]) ≤ j.
Figure 5 illustrates the pointers after processing T5.

5 CONE: PARTITION-BASED TRAVERSAL

MergeAll processes one stripe per round and computes the
label lower bound for all subtrees in a stripe. The stripes may
be large, leading to slow execution times. We observe, how-
ever, that the size of the partitions within a stripe may vary
greatly. The inverted lists of frequent labels are very long
(e.g., the list of the “article” tag in the DBLP bibliography),
leading to large partitions. Then, the runtime is dominated
by processing the partitions of long lists.
In this section we present Cone, an algorithm that ad-

dresses this issue. Cone processes only a subset of the parti-
tions in each stripe. The inverted lists are sorted and short
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Figure 5: MergeAll after processing stripes j = 2.

lists are accessed first. Therefore, the algorithm may termi-
nate before considering any of the large partitions. Cone uses
an edit distance bound B, which is zero initially and is incre-
mented in each round. Only partitions that possibly contain
a subtree Ti at distance B from query Q are considered.
Assume we know that there are nml (Ti ) labels in Q that

do not exist in subtreeTi . We call nml (Ti ) = |L (Q) \ L (Ti )|
the number of missing labels inTi w.r.t.Q . Then we can draw
conclusions on the size of Ti that is required to achieve edit
distance B.

Theorem 5.1 (Size Interval). Let Ti be a subtree of docu-
mentT ,Q be the query tree, nml (Ti ) be the number of missing
labels in Ti w.r.t. Q , and B ≥ 0 an edit distance bound. If
δ (Q,Ti ) ≤ B, then |Ti | is in the size interval

si (B,Q,Ti ) = [|Q | − B; |Q | + B − nml (Ti )] (3)

For a given edit distance bound, B, the subtrees within the
size interval are called pre-candidates. The Cone algorithm
proceeds in rounds. In every round some additional partitions
are processed. Every round examines one additional list until
all lists are initialized. We call a list initialized if we have
already processed a partition in that list.
In the first round, B = 0, and we process the partition of

subtree size |Q | in the first list (cf. Theorem 5.1). The subtrees
in this partition can achieve an edit distance of 0 since their
size matches the query size and all labels may match (no
label mismatch found so far). Notably, these are the only
subtrees that can achieve edit distance 0. Subtrees in other
lists have at least one missing label w.r.t. Q , and subtrees in
another partition of the first list are either smaller or larger
than |Q |.

In every round B is incremented and an additional list is
considered (if non-initialized lists are left). For the j-th list
that we process, nml (Ti ) ≥ j − 1: any new subtreeTi that we
find in the j-th list has at least j − 1 missing labels since we
have processed all subtrees of size |Ti | in the previous j − 1
lists and did not see Ti .
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We process only a subset of the partitions in a given list
and round, namely the partitions that satisfy the size interval
of the current round. Figure 6 illustrates this partition-based
traversal.

λ1 . . . 3 2 1 0 1 2 3 . . .

λ2 . . .
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λ4 . . .

3 2 1 1 2 3 . . .
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≥ 0
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≥ 2

≥ 3

Figure 6: Cone traversal of the inverted list index in

candidate score order.

The Cone algorithm distinguishes between pre-candidates
and candidates. We use our index structure to generate pre-
candidates. In the i-th round, B = i − 1, and we only need to
consider the first i lists in the index. Similar to MergeAll, we
maintain two pointers, l and r , for each list, initialized to the
partition of the subtree size closest to |Q |. The pointers are
used to generate pre-candidates from a partition. Some pre-
candidates may be promoted to candidates. A pre-candidate
Ti gets promoted whenever its label lower bound is equal to
B. Candidates are verified immediately, whereas the remain-
ing pre-candidates are stored in the lower bound cache (lbc)
for verification in a later round (cf. Section 4.2).

Inverted List Ordering. Since Cone examines lists one by
one, the list order is important. Different pre-candidates may
be reported for different list orders, resulting in earlier/later
termination as well as fewer/more label lower bound com-
putations and verifications. Consider, for example, the lists
in Figure 7 in reversed order [lb , lx , la]. Then, llb (Q,T15) = 3
is computed in round 1 and T15 is cached for the round with
B = 3. Since the list length corresponds to the label fre-
quency (a long list implies many subtrees with this label),
we order the lists in ascending order by their length.

Like in MergeAll, we may not be able to produce enough
candidates from the lists that share a label with the query.
In this rare case, we fall back to MergeAll on all remaining
lists to derive a correct ranking (cf. Section 4). The pseudo
code of Cone is given in Algorithm 4 in the appendix.

Theorem 5.2. Cone solves the top-k subtree similarity prob-
lem and verifies subtrees in candidate score order.

Example 5.3. Figure 7 shows Cone applied on our run-
ning example, k = 3. The first round, B = 0, retrieves and

initializes la since la is the shortest list among all lists of
the query labels. Pointer l is initialized to T9, pointer r to
T6. Then, pre-candidates T6, T11 are generated from parti-
tion 0 of la . Subtrees T6 and T11 may match Q exactly since
there is no label mismatch so far, and |T6 | = |T11 | = |Q |.
Next, we compute the true label lower bounds using the
node index; llb (Q,T6) = llb (Q,T11) = 0. Both are verified
and round 1 concludes; R′ = [T6,T11] and B is incremented
(lower bound cache lbc is empty). In round 2, we first process
la again. The next partition of la contains subtrees of size
2 (T9, T2) and 7 (T7), hence no pre-candidates are reported
from la . Then, we initialize and process list lb (l points to T9,
r to T6), which does not provide us with new pre-candidates
(T6, T11 were already processed, indicated by the gray/green
boxes). In round 3, B = 2, T9 and T2 are reported from
la , and T5 is reported from lb . All pre-candidates are pro-
moted since llb (Q,T9) = llb (Q,T2) = llb (Q,T5) = 2, result-
ing in R′ = [T6,T5,T9]. Since B ≥ δ (R [k]), we terminate;
R = [T6,T5,T9]. Figure 7 depicts the processed list entries.
Compared to MergeAll, Cone processes only 2 lists (in-

stead of 4) and computes only 4 label lower bounds. Notice
how the presence of T15 in list lb does not impose any over-
head because we terminate before it is processed.
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Figure 7: Processed subtrees of Cone.

6 LINEAR SPACE INDEX AND SLIMCONE

Cone, presented in the previous section, is effective at pro-
ducing candidates in score order. Unfortunately, Cone relies
on an inverted list index that requires quadratic memory (in
the worst case, cf. Section 4). In this section, we introduce
the slim inverted list index, which requires only linear space,
and the SlimCone algorithm that operates on the new index.
SlimCone mimics Cone, but instead of scanning materialized
inverted lists, relevant list parts are generated on the fly.

6.1 Indexing in Linear Space

In the worst case, the inverted list index requires quadratic
space. To avoid the full materialization of the inverted lists,
we introduce an implicit and lossless list representation that
requires only linear space.
For a label λ ∈ L (T ), the inverted list index stores every

subtree that contains label λ. In other words, a list stores all
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nodes on every path from a node labeled λ up to the docu-
ment root, and the paths are traversed at index build time.
We propose slim inverted lists to avoid full list materializa-
tion and traverse paths during candidate generation. A slim
inverted list (slim list) stores only nodes labeled λ (i.e., the
start of a path). For the path traversals (upwards, towards the
root node), we extend the node index (cf. Section 4.1) with
parent pointers. This information enables us to reconstruct
paths on the fly. Figure 8 depicts the slim inverted list index
and the slim-extended node index of our running example.
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Figure 8: Linear-space index for example document T.

6.2 The SlimCone Algorithm

We propose a new algorithm, SlimCone, that generates can-
didates in score order from slim inverted lists. Since we push
the path traversals into the candidate generation phase, Slim-
Cone needs to walk up paths at query time using the slim-
extended node index. SlimCone is also round-based (B is
incremented in each round, starting with 0) and implements
the Cone traversal on top of our slim inverted list index.
Cone can perform a binary search on the inverted lists

to find the starting partitions. With slim lists, this approach
would consider only nodes labeled λ, but there may be larger
subtrees on the respective paths to the root. Slim lists do
not store these subtrees explicitly. To generate correct pre-
candidates, we need to traverse the respective paths for each
entry of a slim list that represents a subtree smaller than Q .
Notably, we may not need to traverse the paths completely,
but only until we encounter a subtree Ti with size |Ti | ≥ |Q |.

o17
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x4
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w15

z12 y14

b13
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path cache of lb :

1: [3, 10, 13],
2: [2, 5, 14]

path ends of lb :

[7, 16]

Figure 9: Finding the starting point of a slim list.

For the path traversal, we retrieve all node identifiers from
the slim list at which a subtree Ti with |Ti | < |Q | is rooted.
For each identifier, we look up its parent in the node index
and follow the path until the parent’s subtree size is greater
than or equal to |Q |. If the parent’s subtree size is |Q |, then
the parent is in the first partition; we immediately compute
the label lower bound w.r.t. Q and verify the subtree if the
label lower bound matches B.

We keep track of the path ends (pe) for each slim list since
we may need to continue the upward traversal in a later
round. If the last node on the path roots a subtree that was
verified, we store its parent in the path ends. Furthermore,
we maintain a path cache (pc) for each slim list that stores
all node identifiers on a path with the size of the subtree
they root. This avoids redundant traversals of the same path.
Details on path cache and path ends are given below.

Wemay also need to examine additional list entries. There-
fore, we store a single pointer for each list, next, which points
to the next unprocessed list entry and is advanced whenever
subtrees larger than Q are examined.

Note that the paths of all nodes that root a subtreeTi with
|Ti | < |Q | need to be traversed to generate all pre-candidates.
While our algorithm climbs up all paths, it visits all nodes
that root subtrees that are part of the corresponding full
inverted list. Since we stop the traversal when we find a
subtree root i s.t. |Ti | ≥ |Q |, we construct the corresponding
inverted list only partially. Figure 9 exemplifies this concept
for example list lb .

We discuss the main concepts used by SlimCone to gener-
ate candidates in non-increasing score order.

Path Caching. The path cache (pc) stores a bucket for each
subtree size that we encounter during the path traversals. In
bucket b, we collect all roots of subtrees Ti s.t. |Ti | = b. This
is necessary due to the vertical list expansion. Without the
path cache, we would need to traverse the path downwards
again. Hence, we reuse the path information in later rounds.
If we need to consider smaller subtrees, we do a lookup in
the path cache. This provides us with a (possibly empty) set
of subtree roots, which contains all nodes that belong to a
certain partition.
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Path Ends. We need to book-keep information about path
ends (pe) for each slim list. After successfully climbing up a
path to the first node at which a subtreeTi with |Ti | ≥ |Q | is
rooted, we need to store the last node identifier on the path.
This is due to the list expansion towards larger subtrees (w.r.t.
|Q |). Therefore, for each slim list, we maintain a sequence of
node identifiers, each of which represents the current end
of a path. By storing these node identifiers, we can continue
the upward path traversal in later rounds, if necessary.

List Ordering. To be consistent with the list ordering of
Cone, we order the lists in SlimCone like in Cone, i.e., by
increasing length. For each slim list, we compute and store
the length of the corresponding full inverted lists. We refer
to this value as full list length.

Similar to Cone, we use MergeAll on all lists of labels
that are not in L (Q) to derive a correct ranking for the case
that SlimCone produces too few results. Algorithm 6 in the
appendix shows the pseudo code of SlimCone.

Theorem 6.1. SlimCone solves the top-k subtree similarity
problem and verifies subtrees in candidate score order.

Example 6.2. In Figure 10, we illustrate SlimCone for our
running example, k = 3. Similar to Cone, we retrieve slim list
la since its the shortest w.r.t. the full list lengths. The initial-
ization for la now differs from Cone: we climb up the paths
of all entries of la since the subtree sizes are smaller than or
equal to |Q |. This results in the path cache and path ends of
la shown in Figure 10. During the traversal, we find T11 and
T6 (in this order) having |T6 | = |T11 | = |Q |. Consequently,
we compute llb (Q,T6) = llb (Q,T11) = 0 and verify both,
δ (Q,T6) = 0, δ (Q,T11) = 4. This results in R′ = [T6,T11].
Note that after examining T6 and T11, we traverse to their
respective parents. Therefore,T16 is added to the path ends of
la . No new pre-candidates are processed in round 2. However,
list lx is retrieved and initialized, resulting in the path cache
and path ends of lx depicted in Figure 10. Since we have
already stored the node identifiers 9, 7, and 16 during initial-
ization of la , neither 9 is added to the path cache nor 7, 16 are
added to the path ends of lx . In round 3, B = 2, we process
bucket 2 of the path cache of la , generating the pre-candidates
T2 and T9. We compute llb (Q,T2) = llb (Q,T9) = 2, verify T2
andT9, and update R′ = [T6,T9,T2]. Analogously, we process
T5 from the path cache of lx . This results in R = [T6,T5,T9]
and we terminate.

7 EFFICIENT INDEX UPDATES

We extend the slim index to support incremental updates.
We support the standard node edit operations as defined
in Section 2: rename, delete, and insert. Updates affect the
inverted list index and the node index.
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Figure 10: Slim lists, path caches, and path ends.

Updating the Inverted List Index. The position of a node
in the inverted list index is determined by its label and the
size of its subtree. The rename operation changes the label
of a node, which requires us to remove the node from the
list of the old label and insert it into the list of the new label.
Insert (delete) changes the subtree size of all ancestors of the
inserted (deleted) node, and we must add the new node into
the respective list (remove the deleted node). We implement
a slim inverted list as a balanced search tree (ordered by
subtree size), thus requiring only O (log l) time to find, insert,
or delete a node from a list of length l . No further changes
are required to the slim inverted list index in response to
node edit operations on the document. Space and runtime
complexity at query time are not affected.

Dynamic Node Index. The node index encodes the labels
and the structure of the documentT . At query time, we need
to efficiently support the following operations: (1) access a
node by its identifier, (2) reconstruct a subtree (or the label set
of a subtree) given its root node. A subtree is reconstructed
by traversing all its nodes in postorder (cf. Section 4.1).

(1) In the static node index, we identify a node by its pos-
torder position. In our dynamic version of the slim-extended
node index, we allow arbitrary node identifiers. The node in-
dex is stored in an array and the identifier of a node matches
the array position, thus a node is accessed in constant time.
To ensure a compact representation, we use consecutive iden-
tifiers and maintain a free list to reuse array positions after
node deletions.
(2) To reconstruct a subtree given its root node, we store

two additional fields for each node v : first child, c1 (v); next
(right) sibling, sib (v). These fields also allow us to efficiently
traverse all nodes of a subtree in postorder.
We discuss the effect of updates on the dynamic node

index. Rename: The node is accessed via its identifier and the
label is changed in constant time. Insert: The insert operation
adds a new node u as the i-th child of an existing node p,
replacing a (possibly empty) sequence C =

(
ci , ci+1, . . . , c j

)
of p ′s children, and the child sequence is connected under
the new node u. We need to insert a new node into the
index; the identifier of the new node matches its position in
the node index array (new nodes are appended or fill a gap
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Figure 11: Index update example.

resulting from an earlier deletion). The following existing
nodes must be updated. (a) Ancestors of the inserted node
u: The subtree sizes are incremented by one; if u is the first
child of its parent p, the first child pointer, c1 (p), is updated.
(b) (Former) children of p: The parent pointer of all nodes in
C is updated; the next sibling pointers of c j and (if i > 1) ci−1
are updated. To insert a new root node, we assume a virtual
node with identifier zero, which is treated as the parent of the
actual root node. Delete is the reverse of insert. The positions
of deleted nodes are registered in the free list.

Figure 11 illustrates the slim inverted lists and the dynamic
node index after inserting a new node into an example tree

T ′. Only the dashed pointers inT ′′ (colored fields in slim lists
and dynamic node index) need to be updated. Red, green, and
blue pointers (fields) denote the parent, first child, and next
sibling pointers (fields), respectively. Changes to subtree sizes
are highlighted in gray. Overall, the complexity of updating
the node index is O (d + f ), where d is the depth and f the
maximum fanout of a node in the document. In many real
datasets, f and d are small compared to the document size.
We show the efficiency of updates in our experiments.

8 RELATEDWORK

Top-k Subtree Similarity Queries. TASM-Dynamic [4, 31], a
simple solution for the top-k subtree similarity problem, com-
putes the edit distance between the query Q and the entire
documentT using dynamic programming. As a side product,
the edit distances between the query and all subtrees of the
document are computed. This approach requires O(|Q |2 |T |)
time and O(|Q | |T |) space [11]. Augsten et al. [4, 5] show
that the maximum subtree size that must be considered is
τ = 2 |Q | + k . They develop the TASM-Postorder algorithm
that runs in O(|Q |2 + |Q | k) space, i.e., the memory is inde-
pendent of the document size. TASM-Postorder does not use
an index and must scan the document for each query. We
empirically compare our solution to TASM-Postorder.

Cohen [9] proposes StructureSearch, the first index-based
method for top-k subtree similarity queries. The index iden-
tifies repeating subtree patterns to reduce the number of
redundant edit distance computations. StructureSearch does
not need to scan the document at query time and outperforms
TASM-Postorder in terms of runtime. However, Structure-
Search requires a large index, which can be quadratic in the
document size. The document is the database, which may be
large (e.g., SwissProt has |T | = 479M nodes). Our SlimCone
algorithm requires only a linear-size index. We empirically
compare StructureSearch to SlimCone. Our solution builds
a smaller index, building the index is faster, and in most
settings we outperform StructureSearch in terms of query
response time, often by orders of magnitude.

XML Indexing Techniques. Inverted lists and data structures
similar to our node index have also been used to index XML
documents [16, 20]. These works solve a different problem
(answering resp. ranking XPath queries) and do not consider
the tree edit distance. Further, our index access methods are
different: we access the inverted lists partition by partition
based on an edit distance bound and build the partitions on
the fly while accessing them.
Tree Edit Distance. The classical tree edit distance algo-

rithm by Zhang and Shasha [31] runs in O (
n4
)
time and

O (
n2
)
space for trees with n nodes; for flat trees of depth

O (logn) the algorithm runs efficiently in O (
n2 log2 n

)
time.

Bille [7] surveys classical edit distance algorithms. Newer
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developments include the algorithm by Demaine et al. [11],
which reduces the runtime to O (

n3
)
, and AP-TED+ by Paw-

lik and Augsten [22]. AP-TED+ analyzes the input trees and
dynamically computes the optimal evaluation strategy.While
the runtime complexity remains cubic, this worst case can
often be avoided. Despite all efforts, computing the edit dis-
tance remains expensive. We introduce the candidate score
to rank subtrees, verify promising candidates first, and thus
reduce the number of expensive edit distance computations.
Related Problem Definitions. Related but different prob-

lems include, for example, XML duplicate detection [8, 23],
approximations of the tree edit distance [6, 30], tree similar-
ity joins [24], top-k similarity joins for sets [29], and top-k
queries over relational data [18].
Cohen et al. [10] introduce a top-k algorithm that works

for both ordered and unordered trees. In near linear time,
the algorithm retrieves the top-k subtrees in a document
w.r.t. a so-called profile distance function. A profile distance
function projects tree features to a multiset and evaluates
the distance between feature multisets; examples include
pq-grams [6] and binary branches [30]. The algorithm by
Cohen et al. [10] solves a related but different problem and
does not provide edit distance guarantees on the ranking.

In their TA algorithm, Fagin et al. [12, 13] process ranked
lists of items sorted by some local score. The global score
of an item is computed based on the respective local scores.
The goal is to find the k items with the highest global score.
Akbarinia et al. [2] improve the efficiency of TA by mini-
mizing the number of list accesses. Theobald et al. propose
TA-based solutions to answer probabilistic top-k queries [27],
efficiently expand queries [26], and build an efficient top-k
query processing system for semi-structured data [25]. We
introduce the candidate score on subtrees, but we do not
merge ranked lists. The challenge in our setting is to rank
candidates efficiently and produce the head of the ranked
list without generating the tail.

9 EMPIRICAL EVALUATION

We empirically compare our solutions to two state-of-the-art
algorithms on both synthetic and real-world data. We vary
document size, query size, and k , and measure query time,
indexing time, main memory, and the number of verifica-
tions.

9.1 Setup & Data Sets

Setup. All experiments were conducted on a 64-bit ma-
chine with 8 Intel(R) Xeon(R) CPUs E5-2630 v3, 2.40GHz,
20MB L3 cache (shared), 256KB L2 cache (per core), and
96GB of RAM, running Debian 8.11, kernel 3.16.0-6-amd64.
We compile our code with clang (ver. 3.5.0-10) at maximum
optimization level (-O3). Although we have multiple cores,

we run all experiments single-threaded with no other load on
themachine.Wemeasure the runtimewith getrusage2 (sum
of user and system CPU time). Each runtime measurement is
an average over five runs. We measure main memory as the
heap peak value provided by the libmemusage.so library3
(preloaded using the LD_PRELOAD environment variable).

Data Sets and Queries. We use the XMark benchmark to
generate synthetic data sets of five different sizes. Addition-
ally, we run experiments on three real-world data sets: Tree-
Bank4 (TB), DBLP5, and SwissProt6 (SP). Important data set
characteristics are summarized in Table 3. XMark, DBLP, and
SwissProt were also used in previous work [9], although only
small subsets of DBLP and SwissProt were used; we process
the full data sets. From each of the data sets (documents, T ),
we randomly extract four different queries, Q , with 4, 8, 16,
32, 64 nodes, respectively. We also vary the result size, k .

Table 3: Data set characteristics.

Name Size T Size [Nodes] # diff.
[MB] |T | avg. |Ti | labels

XMark1 112 3.6 · 106 6.2 510 · 103
XMark2 223 7.2 · 106 6.2 822 · 103
XMark4 447 14.4 · 106 6.2 1.3 · 106
XMark8 895 28.9 · 106 6.2 1.9 · 106
XMark16 1,790 57.8 · 106 6.2 2.9 · 106
TreeBank 83 3.8 · 106 8.4 1.4 · 106
DBLP 2,161 126.5 · 106 3.4 21.6 · 106
SwissProt 6,137 479.3 · 106 5.1 11.4 · 106

Algorithms. We compare our algorithms Merge, Cone,
Slim (cf. Sections 4–6) to the state-of-the-art algorithms
TASMPostorder [4, 5] (Tasm, fastest index-free algorithm)
and StructureSearch [9] (Struct, fastest algorithm with pre-
computed index). Slim-Dyn refers to the version of Slim
with incremental update support (cf. Section 7). All algo-
rithms were implemented in C++11. We maintain the node
labels in a dictionary and replace string labels by integers.
All indexes reside in main memory. For computing the tree
edit distance, we use the algorithm by Zhang & Shasha [31],
which is efficient for flat trees (depth O(logn), as is typically
the case in XML).

2http://man7.org/linux/man-pages/man2/getrusage.2.html
3http://man7.org/linux/man-pages/man1/memusage.1.html
4https://www.seas.upenn.edu/~pdtb/
5https://dblp.uni-trier.de/xml/dblp.xml.gz
6ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/complete/uniprot_sprot.xml.gz
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Space-efficient StructureSearch. Cohen [9] implements the
StructureSearch algorithm using uncompressed Dewey la-
bels (Struct-Dewey in our experiments), which leads to
large indexes of about 10 times the document size (in MB);
in the worst case, the index size is quadratic in the doc-
ument size since each Dewey label may be of linear size.
Cohen suggests to compress the Dewey labels to improve
space performance. We take a different approach and use
preorder, postorder, and parent (preorder) identifiers to (1)
verify ancestor relationships and (2) to generate the ances-
tor path of a node. Given the pre- and postorder identifiers
of two nodes u and v , u is an ancestor of v if and only if
pre (v) > pre (u) ∧ post (v) < post (u). We efficiently gen-
erate the path between a node v and its ancestor u using
the parent pointers. Thus, the node identifiers in our space-
efficient implementation (Struct) have constant size and we
need not deal with compressed Dewey labels to verify node
relationships or generate ancestor paths. In our experiments,
we show that we substantially reduce the index size w.r.t.
the original implementation.
Struct assumes XML and distinguishes common and

uncommon labels. Inner nodes and the x most frequent leaf
nodes of an XML document are considered common. Further,
Struct has a maximum edit bound y. The top-k ranking of
Struct contains only subtrees with amaximum edit distance
of y. All data sets in our tests are available in XML, thus we
configure Struct as suggested by Cohen [9] and set x =
1000, y = |Q |. Our algorithms do not require any parameters.

9.2 Indexing

We compare the indexes of Struct, Cone, Slim, and Slim-
Dyn in terms of size (all memory-resident index structures
including the document) and runtime to build the index.With
Struct-Dewey we refer to the original implementation of
Struct by Cohen [9], which uses uncompressed Dewey
labels. The index of Merge is identical to the index of Cone
and is not shown separately; Tasm does not build an index.
The results are shown in Figure 12. For Struct-Dewey,

we estimate the index size based on the instructions of Co-
hen [9] (index size is about 10 times the document size).
Our space-efficient implementation of Cohen’s algorithm
(Struct) substantially improves the memory and requires
only about 2–5 times the document size (except for TB).
Cone and Slim clearly outperform Struct both in terms of
index size and runtime for building the index. Even the space-
efficient implementation of Struct requires at least 1.5–3
times more memory than Slim. Except for DBLP and TB, the
index size of Slim is within two times the document size.
Among our algorithms, Slim is faster and builds a smaller
index. This is expected since Slim indexes each node once,
whileConemay index each nodemultiple times. In the worst

case, when the depth of the document grows linearly with
its size, the index of Cone grows quadratically; this is not
the case for the documents in our test. The size of Slim-Dyn
(which supports incremental updates) is similar to the size of
the space-efficient implementation of Struct (which does
not support updates), but builds much faster.

Incremental Updates. We compare the time to incremen-
tally update the slim index to the time of building the static
slim index from scratch (Slim-From-Scratch). Figure 12e
and Figure 12f show the results for the XMark8 and the DBLP
data sets, respectively. We randomly rename or delete nodes
in the document. Insertion is similar to deletion in that it
reverses the index updates of a delete operation. The update
time is linear in the number of updates for both rename and
deletion. As expected, deletion takes slightly more time than
rename since all ancestors and children of the deleted node
must be updated. The break even point for building the index
from scratch is at about 105 deletions / 5 · 105 renames for
XMark8 and 104 deletions / 105 renames for DBLP.
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Figure 12: Build time, index size, and update time.
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9.3 Effectiveness and Query Time

We evaluate our algorithms that process the subtrees in can-
didate score order (Merge, Cone, Slim, Slim-Dyn, cf. Fig-
ure 13). Since Slim and Slim-Dyn are the same algorithms
operating on different indexes, we only discuss Slim. Sup-
porting updates only marginally affects the query time for
varying query, document, and result size (cf. Slim-Dyn in
Figures 13–16). Merge needs to verify many more candi-
dates and is consistently slower than its competitors. This
confirms the effectiveness of the clever list traversal used by
Cone and Slim. In some cases, Cone is faster than Slim since
Slim must build the lists on the fly; we measure the largest
difference for DBLP, where Slimmust traverse many paths to
initialize the inverted lists. The number of verifications is the
same for both algorithm. Overall, the runtime difference is
small in most cases, thus Slim pays a low price for reducing
the memory complexity from quadratic to linear.
Next, we compare Slim to the two state-of-the-art ap-

proaches with precomputed index (Struct) resp. without
index (Tasm). The query time increases with the document
size for all solutions except Slim (cf. Figure 14). The runtime
of Slim may even decrease with the document size. Larger
documents have more subtrees, therefore there is a better
chance to fill the ranking with good matches and terminate
early. For example, the number of verifications decreases be-
tween XMark1 and XMark2. Slim builds and traverses only the
relevant parts of the lists and is therefore efficient for large
documents. Also for Struct, the number of verifications is
independent of the document size, but in absolut numbers
Slim verifies between two and three orders of magnitude
fewer candidates. Further, the runtime of Struct substan-
tially increases with the document size. Overall, Slim is up to
three orders of magnitude faster than Struct. Notably, Slim
is beneficial for a single query even without precomputed
index (cf. Slim-NoIndex in Figures 14a and 14c).

Slim outperforms its competitors also when the query size
increases (Figure 15). Note the small number of verifications
in Figure 15b: for |Q | = 8, Slim verifies only k candidates,
which is optimal (only subtrees that appear in the final rank-
ing are verified). This confirms the effectiveness of the score
order and the clever list traversal in Slim. Struct resp. Tasm
must verify at least two resp. three orders of magnitude more
candidates (except for TB, |Q | = 64). The runtime of Slim on
XMark8 is always below 1s (|Q | = 4 and |Q | = 8: below 1ms),
whereas the best competitor, Struct, runs for at least 1s
and up to 8s . The results on our real-world data sets lead to
similar conclusions; only on DBLP Struct is slightly faster.
In Figure 16, we vary the result size k . All algorithms

produce more candidates since the lower bound computed
from the top-k ranking is looser when k is larger (and thus
the subtree at position k in the ranking is less similar to the

query). Slim benefits from the small candidate set for small
values of k and achieves runtimes between 0.1ms and 1s in
the range k = 1 to k = 100. Struct must verify many more
candidates than SlimCone. Although in Struct the number
of verifications for k = 1 is by orders of magnitude smaller
than for k = 100, the runtime improves only marginally.
Struct retrieves many subtrees from the index that are
filtered before they are verified; the number of retrieved
subtrees does not depend on k and may be much larger
than the number of verifications. Slim does not incur this
overhead: candidates are processed partition by partition,
and more promising partitions are processed first. Except
for DBLP, Slim outperforms Struct on all k values except
k = 10000. For k = 10000, both algorithms must verify many
subtrees. Struct groups subtrees into equivalence classes of
subtrees and verifies only one representative in each class,
thus saving edit distance computations. This verification
technique is orthogonal to the candidate generation and
could also be adopted in Slim.

10 CONCLUSION

In this paper, we introduced a novel indexing technique
for top-k subtree similarity queries, which retrieve the k
most similar subtrees in a document T w.r.t. a query tree Q .
We proposed the first incrementally updatable, linear-space
index to solve this problem. Previous solutions either scan
the entire document, or they build an index, but the index is
static (not updatable) and large (quadratic in the document
size in the worst case). The document is the database on
which we compute the top-k query. Computing a quadratic-
size index is not feasible for large documents.
We proposed the candidate score, which sorts subtrees

such that more promising subtrees appear earlier in the sort
order. We could show that processing subtrees in candidate
score order substantially reduces the number of items that
must be processed and verified. We developed SlimCone,
a novel algorithm that leverages our linear-size index to
efficiently retrieve candidates in non-increasing candidate
score order. SlimCone is not tailored to XML (like previous
work) and does not require any tuning parameters.

Our experiments confirmed the effectiveness of our tech-
niques. SlimCone outperformed the state of the art in almost
all scenarios w.r.t. memory consumption, number of veri-
fications, indexing time, and query time, often by multiple
orders of magnitude.
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Figure 15: State of the art vs. Slim: Query time and number of verifications over query size |Q|, k=10.
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A APPENDIX

A.1 Proofs

Lemma 3.2 (Early Termination). Let T i be the i-th sub-
tree of document T in candidate score order w.r.t. query Q
(breaking ties arbitrarily), R′ a top-k ranking of the subtrees
T 1,T 2, . . . ,Tm , k ≤ m < |T |. If δ (R′ [k]) ≤ llb

(
Q,Tm+1) ,

then R′ is a valid top-k ranking for all subtrees T i ∈ T .
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Proof. Due to the candidate score order and Def. 3.1,
δ (R′[k]) ≤ llb

(
Q,T j ) for all j > m; since llb

(
Q,T j ) ≤

δ
(
Q,T j ) , no subtrees T j can improve the ranking. □

Theorem 4.1. MergeAll solves the top-k subtree similarity
problem and verifies subtrees in candidate score order.

Proof. Correctness: The stopping condition, |R | = k ∧ j ≥
δ (R [k]), is correct since all subtrees Ti in partitions that are
not processed have size lower bound slb (Q,Ti ) ≥ j and can
therefore not improve the ranking. Candidate score order : We
increment stripe number j, starting with j = 0. For a given
j, we perform two steps: (1) We postpone the verification of
subtreesTi ∈ S j ∪S−j for which x = llb (Q,Ti ) > j and cache
them in lbc [x]. (2) We verify (a) all subtreesTi ∈ S j ∪ S−j for
which llb (Q,Ti ) = j and (b) all subtrees Ti ∈ lbc [j] (cached
subtrees from previous stripes, j ′ < j). Thus, all subtrees Ti
of the stripes j ′ < j with llb (Q,Ti ) = j are verified when we
process stripe j . There exists no subtreeTi with llb (Q,Ti ) = j
in some stripe S j′′ , j ′′ > j, since llb (Q,Ti ) ≥ slb (Q,Ti ) =
j ′′ > j for all subtrees in S j′′ . □

Theorem 5.1 (Size Interval). Let Ti be a subtree of docu-
mentT ,Q be the query tree, nml (Ti ) be the number of missing
labels in Ti w.r.t. Q , and B ≥ 0 an edit distance bound. If
δ (Q,Ti ) ≤ B, then |Ti | is in the size interval

si (B,Q,Ti ) = [|Q | − B; |Q | + B − nml (Ti )] (3)
Proof. Recall that the number of missing labels inTi w.r.t.

Q is defined as nml (Ti ) = |L (Q) \ L (Ti )|; nml (Ti ) ≤ B due
to δ (Q,Ti ) ≤ B. We prove the correctness of the size interval
by contradiction.

Case A: Assume a subtreeTi with δ (Q,Ti ) ≤ B and |Ti | ≤
|Q | − B − 1. The minimum number of edit operations that
transform any instance of Ti to some instance of Q consists
of |Q | − |Ti | insert operations. Note that we can decrease
nml (Ti ) and the size difference |Q | − |Ti | by inserting a new
node with a label fromL (Q)\L (Ti ) intoTi . Thus, in the best
case, we perform exactly |Q | − |Ti | insertions, i.e., δ (Q,Ti ) =
|Q | − |Ti |. Our assumption yields |Q | − |Ti | ≥ B + 1, hence
δ (Q,Ti ) ≥ B + 1, which contradicts our assumption.

Case B: Assume a subtree Ti with δ (Q,Ti ) ≤ B and
|Ti | ≥ |Q | + B − nml (Ti ) + 1. In this case, a delete oper-
ation can decrease the size difference |Ti | − |Q | but cannot
decrease nml (Ti ): to align the labels, we additionally need
nml (Ti ) rename operations. Hence, the minimum number
of edit operations that transform any instance of Ti to some
instance ofQ consists of (1) nml (Ti ) rename and (2) |Ti | − |Q |
delete operations, i.e., δ (Q,Ti ) = nml (Ti ) + |Ti | − |Q |. Our
assumption implies that |Ti | − |Q | ≥ B −nml (Ti )+ 1. There-
fore, δ (Q,Ti ) ≥ nml (Ti ) + B − nml (Ti ) + 1 = B + 1, which
contradicts our assumption.
Since the edit distance is symmetric, we do not need to

consider the transformations of Q into Ti . □

Theorem 5.2. Cone solves the top-k subtree similarity prob-
lem and verifies subtrees in candidate score order.

Proof. Correctness: The stopping condition, |R | = k∧B ≥
δ (R [k]), holds since all subtreesTi in unprocessed partitions
have size |Ti | < si (B,Q,Ti ) and therefore δ (Q,Ti ) > B
(cf. Theorem 5.1). Hence, these subtrees do not improve the
ranking. If Cone does not produce enough candidates from
lists that share a label withQ , we fall back to MergeAll on all
remaining lists to derive a correct ranking. Candidate score
order : We increment the edit bound B, starting with B = 0.
For a given list x (starting with 0), we process all unprocessed
partitions that contain subtrees in the size range si (B,Q,Ti ).
Let PB denote the set of all subtreesTi in these new partitions
of the lists x ≤ B that we have not seen before.
Similar to MergeAll, we perform two steps for a given
B: (1) We postpone the verification of subtrees Ti ∈ PB for
which x = llb (Q,Ti ) > B and cache them in lbc [x]. (2) We
verify (a) all subtrees Ti ∈ PB for which llb (Q,Ti ) = B and
(b) all subtrees Ti ∈ lbc [B] (cached from previous sets PB′ ,
B ′ < B). Hence, all subtreesTi of the sets PB′ , B ′ < B, with
llb (Q,Ti ) = B are verified when we process set PB . There is
no subtree Ti with llb (Q,Ti ) ≤ B in some set PB′′ , B ′′ > B,
i.e. llb (Q,Ti ) ≤ B =⇒ |Ti | ∈ si (B,Q,Ti ). Analogous to
the proof of Theorem 5.1, we show this by contradiction.
Recall that llb (Q,Ti ) =max {|Q | , |Ti |} − |L (Q) ` L (Ti )|.
Case A: Assume a subtree Ti with llb (Q,Ti ) ≤ B and
|Ti | ≤ |Q | − B − 1. Then, max {|Q | , |Ti |} = |Q | implies
that llb (Q,Ti ) = |Q | − |L (Q) ` L (Ti )|. Our assumption
yields |L (Ti )| ≤ |Q | − B − 1, and |L (Q)| = |Q |. Hence,
|L (Q) ` L (Ti )| ≤ |Q | − B − 1 and therefore llb (Q,Ti ) ≥
B + 1, which contradicts our assumption.

Case B: Assume a subtreeTi with llb (Q,Ti ) ≤ B and |Ti | ≥
|Q | +B −nml (Ti )+ 1. Since nml (Ti ) ≤ B,max {|Q | , |Ti |} =
|Ti | =⇒ llb (Q,Ti ) = |Ti | − |L (Q) ` L (Ti )|. Since nml (Ti )
labels ofQ are not inTi , |L (Q) ` L (Ti )| = |Q |−nml (Ti ) and
therefore llb (Q,Ti ) = |Ti | − (|Q | − nml (Ti )) = |Ti | − |Q | +
nml (Ti ). Our assumption yields |Ti | − |Q | ≥ B −nml (Ti )+ 1,
hence llb (Q,Ti ) ≥ B + 1, which contradicts our assumption.

In the fallback case, MergeAll guarantees score order. □

Theorem 6.1. SlimCone solves the top-k subtree similarity
problem and verifies subtrees in candidate score order.

Proof. Correctness and candidate score order follow di-
rectly fromTheorem 5.2 if we prove that SlimCone’s partition
traversal is identical to the partition traversal of Cone. Note
that an identical partition traversal is sufficient, i.e., subtrees
within the partitions need not be traversed in the same order.
Identical partition traversal: SlimCone’s list ordering is identi-
cal to the list ordering of Cone (cf. Section 6), hence lists (i.e.,
labels) are processed in the same order. We distinguish (1)
uninitialized and (2) initialized lists: (1) Uninitialized lists: For
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each list entry i (rooting a subtreeTi ) s.t. |Ti | < |Q |, the path
in T is traversed upwards until i ′ , i and |Ti′ | ≥ |Q | holds.
All traversed nodes (excl. i ′) are cached in the path cache
pc . For Ti′ , there are two cases: (a) |Ti′ | > |Q |: i ′ is stored in
the path ends pe . (b) |Ti′ | = |Q |: llb (Q,Ti′) is computed. If
llb (Q,Ti′) = B, Ti′ is verified. Otherwise, we postpone the
verification ofTi′ to round B ′. (2) Initialized lists: For a given
list we process (a) all list entries i s.t. |Q | + B − nml (Ti ) ≥
|Ti | > |Q |, (b) all entries in the path cache pc , and (c) all
entries in the path ends pe . Due to (b) we process all subtrees
Ti smaller than Q , |Q | > Ti ≥ |Q | − B; due to (c) we process
all subtrees Ti larger than Q , |Q | + B − nml (Ti ) ≥ Ti > |Q |.

(2) and (3) guarantee that (i) SlimCone’s partition traversal
is identical to the partition traversal of Cone and (ii) all
subtrees of a partition are generated. □

A.2 Pseudo Codes

We provide the pseudo code for all our algorithms: MergeAll
(Algorithm 1), Cone (Algorithm 4), and SlimCone (Algo-
rithm 6). The other algorithms presented in this section are
auxiliary functions used in the main algorithms.

Algorithm 1:MerдeAll (Q,T ,k)
Input: query tree Q , document tree T , result size k
Result: top-k ranking R of subtrees of T w.r.t. Q
// I ... candidate index, L (Q ) ... label multiset of Q
// Ti ... subtree rooted at node i

1 foreach λ ∈ L (Q) do // initialize inverted lists

2 lλ ← I.list (λ); // retrieve list lλ
3 if lλ , nil then // initialize pointers lλ .r, lλ .l
4 lλ .r ← pos. of i s.t. | |Q | − |Ti | | is minimal;
5 lλ .l ← lλ .r − 1
6 ol ← empty associative array; // overlap store

7 lbc ← empty dynamic array; // lower bound cache

8 j ← 0; // current stripe number

9 R ← empty ranking;
10 while j ≤ 2 |Q | do // j > 2 |Q |: we must consider all lists

11 if verifyBucket (j) then return R; // evaluate lbc [j]
12 foreach node i ∈ Sj ∪ S−j do // compute overlaps

13 ol [i] ← # of lists lλ s.t. i ∈ lλ ;
14 advance lλ .r and lλ .l ;
15 foreach key i ∈ ol do // process subtrees (cache or verify)

16 lb ←max {|Q | , |Ti |} − ol [i];
17 if processSubtree (Ti , lb, j) then return R;
18 j ← j + 1; // proceed to next j′ > j

// check if we can terminate before continuing

19 if |R | = k ∧ j ≥ δ (R [k]) then return R;
20 return R;

Algorithm 2: processSubtree (Ti , lb,B)
Input: subtree Ti , lower bound lb, edit distance bound B ≤ lb
Result: true if final ranking found, false otherwise
// lbc,R,Q globally accessible

1 if lb > B then // cache Ti
2 lbc [lb] ← lbc [lb] ∪ {Ti };
3 return false; // we cannot terminate

4 compute δ (Ti ,Q) and update R with Ti ; // lb = B; verify Ti
5 return |R | = k ∧B ≥ δ (R [k]); // indicates if we can terminate

Algorithm 3: verifyBucket (B)
Input: edit distance bound B
Result: true if final ranking found, false otherwise
// lbc,R,Q globally accessible

1 foreach Ti ∈ lbc [B] do // verify all subtrees in lbc [B]
2 compute δ (Ti ,Q) and update R with Ti ;

// return as soon as we can terminate

3 if |R | = k ∧ B ≥ δ (R [k]) then return true;
4 return false; // we cannot terminate

Algorithm 4: Cone (Q,T ,k)
Input: query tree Q , document tree T , result size k
Result: top-k ranking R of subtrees of T w.r.t. Q

1 L← deduplicated L (Q);
2 sort L by increasing list length |lλ |, λ ∈ L;
3 lbc ← empty dynamic array; // lower bound cache

4 B ← 0; // current edit distance bound

5 R ← empty ranking;
6 while B ≤ 2 |Q | do // B > 2 |Q |: use MergeAll on all lists

7 if verifyBucket (B) then return R; // evaluate lbc [B]
8 foreach init. list lλ do // process initialized lists first

9 if processList (lλ ,B) then return R;
10 if B ≤ |L| then // initialize next list

11 lλ ← I.list (L [B]); // retrieve next list

// process list lλ; Ti ... subtree rooted at node i
12 if lλ , nil then // initialize pointers lλ .r, lλ .l
13 lλ .r ← pos. of i s.t. | |Q | − |Ti | | is minimal;
14 lλ .l ← lλ .r − 1;
15 if processList (lλ ,B) then return R;

16 B ← B + 1; // proceed to next B′ > B
// check if we can terminate before continuing

17 if |R | = k ∧ B ≥ δ (R [k]) then return R;
18 return R;
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Algorithm 5: processList (lλ ,B)
Input: inverted list lλ , edit distance bound B
Result: true if final ranking found, false otherwise
// Q globally accessible; Ti ... subtree rooted at node i

1 minsize ← |Q | − B; // min. subtree size to consider

2 maxsize ← |Q | + B − idx [lλ]; // max. subtree size to consider

3 foreach unseen node i ∈ lλ s.t.maxsize ≥ |Ti | ≥ minsize do
// process Ti and return as soon as we can terminate

4 if processSubtree (Ti , llb (Ti ,Q) ,B) then return true;
5 advance lλ .r and lλ .l ;
6 return false; // we cannot terminate

Algorithm 6: SlimCone (Q,T ,k)
Input: query tree Q , document tree T , result size k
Result: top-k ranking R of subtrees of T w.r.t. Q

1 L← deduplicated L (Q);
2 sort L by increasing full list length |lλ |, λ ∈ L;

// lower bound cache lbc, path cache pc, path ends pe, and

// positions in slim lists next
3 lbc,pc,pe,next ← empty dynamic arrays;
4 B ← 0; // current edit distance bound

5 R ← empty ranking;
6 while B ≤ 2 |Q | do // B > 2 |Q |: use MergeAll on all lists

7 if verifyBucket (B) then return R; // evaluate lbc [B]
8 foreach init. list lλ do // process initialized lists first

9 if processSmaller (lλ ,B) then return R;
10 if processLarдer (lλ ,B) then return R;
11 if B ≤ |L| then // initialize next list

12 lλ ← I.list (L [B]); // retrieve next list

13 if lλ , nil then
// initialize lλ buckets in pc and pe

14 pc [lλ] ,pe [lλ] ← empty dynamic Arrays;
15 next [lλ] ← 0; // initialize next pointer for lλ
16 foreach unseen node i ∈ lλ s.t. |Ti | < |Q | do

// climb up path; Tq ... subtree rooted at q

17 traverse up to first node q s.t.
��Tq �� ≥ |Q |;

// add all traversed nodes to path cache

18 foreach traversed node x (excl. q) do
19 pc [lλ] [|Tx |] ← pc [lλ] [|Tx |] ∪ {x};

// process Tq if size fits |Q |
20 if q unseen ∧

��Tq �� = |Q | then
21 lb ← llb

(
Tq ,Q

)
;

22 if processSubtree
(
Tq , lb,B

)
then

23 return R;
24 q ← par (q); // traverse to parent of q

25 pe [lλ] ← pe [lλ] ∪ {q}; // add q to path ends

26 next [lλ] ← pos. of i in lλ ; // next lλ-entry

27 if processSmaller (lλ ,B) then return R;
28 if processLarдer (lλ ,B) then return R;

29 B ← B + 1; // proceed to next B′ > B
// check if we can terminate before continuing

30 if |R | = k ∧ B ≥ δ (R[k]) then return R;
31 return R

Algorithm 7: processSmaller (lλ ,B)
Input: inverted list lλ , edit distance bound B
Result: true if final ranking found, false otherwise
// pc,Q globally accessible

1 minsize ← |Q | − B; // min. subtree size to consider

// process all path cache buckets that fit w.r.t. size

2 s ← |Q | − 1;
3 while s ≥ minsize do
4 b ← pc [lλ] [s]; // get path cache bucket

// process all subtrees; Tq ... subtree rooted at node q
5 foreach unseen node q ∈ b do

// process Tq and return as soon as we can terminate

6 if processSubtree
(
Tq , llb

(
Tq ,Q

)
,B) then

7 return true;

8 s ← s − 1; // proceed to next subtree size

9 return false; // we cannot terminate

Algorithm 8: processLarдer (lλ ,B)
Input: inverted list lλ , edit distance bound B
Result: true if final ranking found, false otherwise
// next,pe,Q globally accessible

1 maxsize ← |Q | + B − idx [lλ]; // max. subtree size to consider

// add fitting list entries to path ends bucket

2 while Tn ← subtree rooted at next [lλ] ∧ |Tn | ≤ maxsize do
3 pe [lλ] ← pe [lλ] ∪ {next [lλ]};
4 advance next [lλ];
5 foreach unseen node q ∈ pe [lλ] do // process path ends bucket

6 if

��Tq �� ≤ maxsize then // Tq ... subtree rooted at node q
// process Tq and return as soon as we can terminate

7 if processSubtree
(
Tq , llb

(
Tq ,Q

)
,B) then

8 return true;
9 q ← par (q); // traverse to parent

10 return false; // we cannot terminate
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