
[Demo] Low-latency SparkQueries
on Updatable Data

Alexandru Uta∗
VU Amsterdam
A.Uta@vu.nl

Bogdan Ghit
Databricks

bogdan.ghit@databricks.
com

Ankur Dave
UC Berkeley

ankurd@eecs.berkeley.
edu

Peter Boncz
CWI Amsterdam
P.Boncz@cwi.nl

ABSTRACT
As data science gets deployed more and more into opera-
tional applications, it becomes important for data science
frameworks to be able to perform computations in inter-
active, sub-second time. Indexing and caching are two key
techniques that can make interactive query processing on
large datasets possible. In this demo, we show the design,
implementation and performance of a new indexing abstrac-
tion in Apache Spark, called the Indexed DataFrame. This
is a cached DataFrame that incorporates an index to sup-
port fast lookup and join operations, and supports updates
withmulti-version concurrency.We demonstrate the Indexed
Dataframe on a social network dataset using microbench-
marks and real-world graph processing queries, in datasets
that are continuously growing.

ACM Reference Format:
Alexandru Uta, Bogdan Ghit, Ankur Dave, and Peter Boncz. 2019.
[Demo] Low-latency Spark Queries on Updatable Data. In 2019
International Conference on Management of Data (SIGMOD ’19),
June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3299869.3320227

1 INTRODUCTION
Data science is pervading organizations that seek to exploit
the power of data in a wide range of use cases. Interactive
query processing on constantly updated, large datasets is
encountered in many applications, ranging from graph pro-
cessing algorithms [5], to geo-spatial analytics, to threat
detection and response [4]. In this demo, we showcase the

∗Work performed while the author was an intern at Databricks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3320227

power of indexing and caching for achieveing interactive,
sub-second response time for such applications.
Apache Spark has become widely adopted in data sci-

ence applications, as it is a versatile framework, which al-
lows users to run their own User Defined Functions (UDFs),
quickly, on datasets of very large scale. In the absence of
an on-premise cluster, good performance is also achieved
elastically and flexibly in the cloud, for instance using the
Databricks Spark service. Beyond running UDFs at scale,
Spark also allows SQL access to datasets, empowering an-
alytics on so-called data lakes. Data pipelines in Spark can
be tightly coupled with machine-learning algorithms; where
Spark takes care of data management for both training and
deployment of learned models. As such, Spark is the link-
ing component in a Unified Analytics framework, that en-
compasses data engineering (cleaning, transforming), data
analytics (SQL), as well as machine learning and model de-
ployment.
The many different characteristics of these data science

workloads imply that Spark is getting deployed in much
more diverse usage scenarios than when it was originally
conceived, when RDDs were assumed to be static and read-
only, and where queries or jobs were batch-oriented. In con-
trast, most Spark programs now use higher level interfaces,
such as DataFrames and SQL that get the benefit of auto-
matic query optimization, and rather than operating on static
read-only files, data enters the system increasingly in stream-
ing fashion, typically via Kafka [6] and/or the Spark struc-
tured streaming interface [3]. Databricks also introduced
Delta Tables [2], a layer on top of Parquet-stored Dataframes,
which provides transactional query integrity under continu-
ous batch-updates.

We demonstrate a new kind of Spark data structure called
the Indexed DataFrame. It is aimed at supporting low-latency
joins and point lookups in interactive workloads on data that
is moving all the time, also using relatively fine-grained up-
dates. As such, it enables Spark in new use cases, such as
on-line threat detection and response [4], and real-time social
network monitoring and dashboarding [5]. Notice that on-
line analytics on changing graphs is a challenging use case
for Spark as graph navigation is very join-intensive, while

Demonstration SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

2009

https://doi.org/10.1145/3299869.3320227
https://doi.org/10.1145/3299869.3320227

at the same time updates to the graph invalidate caching of
Dataframes that is needed to keep such joins fast.
The Indexed DataFrame is an updatable Dataframe that

remains cached even when data is added, and has a built-in
concurrent cTrie[7] index that allows for sub-linear lookup
for non-unique keys; that is exploited in low-latency filter
and join operations. Whereas the Indexed DataFrame has
a relatively low memory overhead in addition to the orig-
inal data, it improves the query performance in multiple
types of scenarios: queries on updatable graphs [5], standard
database operations, and threat detection [4], where using
indexes minimizes the amount of data that is materialized
and processed. The Indexed DataFrame can be deployed
as a lightweight library imported into Spark programs and
sessions, even though it deeply integrates into internal Spark
components such as the RDD cache as well as the Catalyst
optimizer.

The contributions of our work are as follows:

(1) We demonstrate the design and implementation of the
Indexed DataFrame in Spark. We explain the API we
support to index Spark dataframes, we show how we
integrated the index in Spark’s Catalyst optimizer, and
we present the underlying data structure. (Section 2).

(2) We showcase an initial performance evaluation of the
Indexed DataFrame. We show the performance im-
provement of the Indexed DataFrame on both stan-
dard SQL workloads and real-world graph processing
workloads (Section 3) and we present the details of our
demonstration (Section 4).

2 INDEXED DATAFRAME DESIGN
In this section, we propose the Indexed DataFrame, a data
abstraction that we can use to manipulate indexed datasets.
We present the API and the main design and implementation
details in Spark. The Indexed DataFrame is built on top of
the Dataframe API supported by Spark SQL [1] and operates
as a lightweight library, which can be added to any existing
Spark program.

Spark Programming Interface. To address the require-
ments of a large spectrum of big data (analytics) applica-
tions, we have designed the Indexed DataFrame to sup-
port the following operations: create index, cache index,
point lookups, append rows, and indexed joins. The
corresponding Scala API is presented in Listing 1. In our
current implementation the index supports any type of col-
umn, but for good performance, we recommend using only
primitive column types (e.g., (un)signed, 32/64-bit integers,
floating point numbers, strings, and datetime).

As we want to store the Indexed DataFrame in the mem-
ory of the Spark executors, instantiating the index should be
immediately followed by a caching operation. Furthermore,

Listing 1: The Indexed Data Frame API
1 // creating an index
2 var indexedDF = regularDF.createIndex(colNo)
3 // caching the indexed data frame
4 var indexedDF = indexedDF.cache()
5 // looking up keys returns a data frame containing

all rows
6 val lookupKey = 1234
7 val resultDataFrame = indexedDF.getRows(lookupKey)
8 // appending all the rows of a regular dataframe
9 val newIndexedDF = indexedDF.appendRows(aRegularDF)
10 // index-powered, efficient join
11 val result = indexedDF.join(regularDF,

indexedDF.col("c1") === regularDF.col("c2"))

the append rows operation can be performed both in a fine-
grained and a batch-oriented mode by organizing the rows
we need to append as a regular Spark Dataframe. In this way,
users can append with low latency small amounts of rows,
or batch multiple updates in a larger Dataframe. When users
need to lookup the rows associated with a certain key, our
library returns a (smaller) Dataframe containing the required
rows. In the case of join operations, if any of the sides of
the relation are indexed, our implementation of the Indexed
DataFrame triggers an indexed join operation. The result is
a regular Spark dataframe. Evidently, in case of the indexed
join, the indexed relation is always the build side (as it is
actually pre-built due to the index), while the probe side is
the non-indexed relation.

Integration with Catalyst. In Figure 1 we present the
architecture of the Indexed DataFrame and its integration
with the Catalyst optimizer in Spark. To add indexed op-
erations to the regular Spark SQL and the Dataframe API
without modifying the Spark source code we employ Scala
implicit conversions. In this way we can add our methods to
the Dataframe class, while leveraging the full capabilities of
the Catalyst [1] query optimizer. Our library includes opti-
mization rules that make regular Spark SQL queries aware
of our custom indexed operations.

In Spark SQL, a query has an abstract representation called
query plan which is converted through a sequence of trans-
formations into an optimized query plan that is finally exe-
cuted on the cluster. The Catalyst optimizer translates the
query into a logical plan that provides a high-level represen-
tation of each operation without defining how to perform the
actual computation. Catalyst optimization rules transform
the logical plan into a physical plan with specific instructions
on how to execute the query.
We develop index-aware optimization rules in Catalyst

that translate the indexed logical operators into physical
operators. These rules ensure that the appropriate look-up
functions are called for each indexed or basic logical operator.

Demonstration SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

2010

Physical Execution
 Layer

(1) Logical Plan

Catalyst Tree
Node

Indexed Catalyst
Tree Nodeextends

(2) Physical Plan

Indexed Execution

Indexed Operator

CreateIndex,
Equality filter,

Equi-join,

Regular Execution

Regular Operator extends

RDD[Rows]

Partition k

transformToRowRDD Indexed RowBatch RDD

Partition n

Text

Regular queries

Regular Queries Indexed QueriesAnalysis
Layer

Logical
Optimization

Layer

Physical
Planning
Layer

Figure 1: Indexed DataFrame logical flow. Users write
SQL queries or use the Dataframe API. Catalyst rules
determine whether the queries are regular or indexed.
If regular, they follow the regular Spark Catalyst ex-
ecution. If indexed, special rules, and optimization
strategies are applied such that indexed execution is
triggered. Moreover, an indexed RowBatch RDD can
always fall back to a regular Spark Row RDD to trig-
ger regular execution on top of Indexed DataFrame.

Our rules ensure that the Indexed DataFrame operations
are always triggered when executing queries on indexed
data. Similarly, for queries on basic Spark Dataframes that
do not employ indexing, our implementation falls back to
the default Spark behavior.

The Indexed Row-Batch RDD. Spark datasets are typi-
cally partitioned across multiple worker nodes so that the
framework can divide jobs into multiple tasks that can be ex-
ecuted in parallel on multiple executor nodes. The Dataframe
API can perform relational operations on Spark’s built-in
distributed collections, i.e., the resilient distributed datasets
widely known as RDDs [8]. The Indexed DataFrame oper-
ates in a similar way by partitioning data across multiple
executor nodes, but it requires a custom implementation of
the RDD abstraction: the indexed Row-Batch RDD.
Our custom RDD implementation stores data in-memory.

Each RDD partition is composed of three data structures:
(1) a cTrie [7], which represents the index, (2) a set of row
batches, which stores the tabular data, and (3) a set of back-
ward pointers, which are used to crawl the partition for rows
that are indexed on the same key.

The cTrie stores a pointer to the latest appended row asso-
ciated with a given key. If there are multiple rows associated

with a key, the backward pointer data structure consists of a
set of linked lists, one per unique key. This backward pointer
can be used to traverse the list of rows associated with the
key. The row batches are collections of binary, unsafe arrays
(e.g., of 4MB in size), each storing a number of rows deter-
mined by the row and batch sizes. The pointers stored both
in the cTrie and in the backward pointer data structure are
packed, dense 64-bit numbers, each containing the row batch
number, the offset within a row batch, and the size of the
previous row indexed on the given key.
In our experiments we use indexed partitions with rows

that may have up to 1 KB and 231 row batches, each of which
may have up to 4 MB. Thus, our setup enables 4x231 MB
data per core. Spark transformations within a partition are
sequentially executed on a single core. As a rule-of-thumb,
Spark deployments should be configured with 1 to 4 parti-
tions per core 1. Both the batch and row sizes are configurable
parameters.
The operation of the Indexed DataFrame on a single

partition is similar both for index creation and for appends.
First, each row is inserted in the row batch. If a row with a
similar key was already inserted in the partition, the cTrie
entry for the key is updated to point to the newly added row,
while the backward pointer of the newly added row is created
to point to the previous row. An Indexed DataFrame lookup
consists of a lookup in the cTrie, followed by a traversal of
the backward pointers in case multiple rows are associated
with the same key.

Scheduling Physical Operators. To implement the in-
dexed operations efficiently in Spark, we employ a hash par-
titioning scheme on the indexed key and shuffle operations
to transfer the data to their indexed partitions. This section
presents the main Indexed DataFrame operations.

Index Creation. The Indexed DataFrame is hash parti-
tioned on the indexed column. This ensures a better load
balancing when the key ranges are not known apriori. When
an index is created on a regular Dataframe, its rows are shuf-
fled based on the hash partitioning scheme to their respective
Indexed DataFrame partitions. For each partition, we create
a cTrie and we insert the rows in their batches as described
in Section 2.

Indexed Join. To join a Indexed DataFrame and a (reg-
ular) Dataframe, the rows of the latter are shuffled according
to the hash partitioning scheme of the former. As the build
side is already created in the form of the index, the probes are
made locally from the shuffled rows. When the Dataframe
size is small enough to be broadcasted efficiently, our imple-
mentation falls back to a broadcast-join instead of a shuffle.

1https://spark.apache.org/docs/latest/tuning.html

Demonstration SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

2011

https://spark.apache.org/docs/latest/tuning.html

Join Filter Equality
Filter

Aggre-
gation

Projection Scan

Query

0
500

1000
1500
2000
2500
3000

T
im

e
[m

s]

IndexedDF

Spark

Figure 2: Indexed DataFrame vs. vanilla Spark.

SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 SQ7

Query

100

102

104

T
im

e
[m

s]

IndexedDF Spark

Figure 3: SNB SF300 Simple Read Queries on Indexed
DataFrame vs. Spark. Logarithmic vertical axis.

3 EVALUATION
In this section we present the workloads and the config-
uration of our system for the experimental evaluation of
the Indexed Dataframe in Spark. Our workloads consist of
several join operations and queries on updatable graphs.

Dataset.We run our experiments on datasets generated
using the Datagen tool provided by the SNB benchmark [5].
These datasets represent graph structures, which are repre-
sented as edge and vertex tables.
SQL Operators. We run a selection of SQL operators

(i.e., join, filter, projection, aggregation, scan) on Indexed
DataFrame and vanilla Spark in which all operations are
applied on cached (e.g., in-memory) dataframes. All the oper-
ators were applied to the person-knows-person tables, while
the join is computed between person-knows-person, and per-
son tables.

Operators that use the index (i.e., join and equality filter)
are significantly sped up compared to the others. The results
are plotted in Figure 2. The only operator significantly slowed
down by Indexed DataFrame is the projection. This is due to
the fact that our in-memory represesentation follows a Row
structure, while the Spark cache stores data in a columnar
format, which is much more efficient to project.

SNB Queries. We run the 7 SNB defined simple read
queries, on data SF300. The Indexed DataFrame speeds up
all queries, with the exception of Q5 and Q6, which cannot
make use of the index. The results are presented in Figure 3.

4 DEMONSTRATION DETAILS
We explain the demonstration setup we will employ in order
to show the performance of our Indexed Dataframe in Spark
SQL using real-world datasets and workloads. Processing

dynamically changing graph structures and filtering large
data volumes are very attractive applications for large audi-
ences and organizations, with many practical implications.
We focus on a graph processing use-case, where data scien-
tists write queries for understanding human behavior and
interaction, and preferences in social networks.

Demo Setup.We evaluate our Index Dataframe library on
Spark clusters deployed on virtual machines in Amazon EC2.
During the demonstration we will have access to a 10-node
Spark cluster. Furthemore, we will use the Social Network
Benchmark to generate a large-scale graph structure stored
on Amazon S3, and the Apache Kafka [6] engine to handle
the constant updating stream that is mutating the graph.

Demo Visualization. We will demonstrate a real-time
graph-monitoring dashboard. The dashboard shows a vi-
sualization of the evolution of (a part of) the graph over
time, but also the execution of queries using the Indexed
DataFrame, and vanilla Spark. The demonstration audience
will then experience first-hand the power of the indexed
operation as the low-latency, or speedup, with which the
Indexed DataFrame queries results are returned.

5 CONCLUSION
In this demo, we showcase a lightweight Spark library, called
Indexed DataFrame, that enables interactive response times
on join and lookup queries, even on large datasets that grow
continuously; thanks to building in multi-versioning and
indexing in Dataframes, integrating with the Spark caching
infrastructure and its Catalyst optimizer. Our demo is a graph
monitoring use case, concurrently handling the update work-
load of the Social Network Benchmark (SNB), and transpar-
ently running SNB queries both on vanilla Spark and Spark
using Indexed DataFrames. Our initial results show that
the Indexed DataFrame can achieve up to 8X speed-ups
relatively to the vanilla Spark implementation.

REFERENCES
[1] Michael Armbrust et al. 2015. Spark sql: Relational data processing in

spark. In SIGMOD.
[2] Michael Armbrust et al. 2017. Databricks Delta: A Unified Data Man-

agement System for Real-time Big Data. (2017).
[3] Michael Armbrust et al. 2018. Structured Streaming: A Declarative

API for Real-Time Applications in Apache Spark. In SIGMOD.
[4] Dominique Brezinski and Michael Armbrust. 2018. Threat Detection

and Response at Scale. In Spark Summit.
[5] Orri Erling et al. 2015. The LDBC social network benchmark: Interac-

tive workload. In SIGMOD.
[6] Jay Kreps et al. 2011. Kafka: A distributed messaging system for log

processing. In NetDB.
[7] Aleksandar Prokopec et al. 2012. Concurrent tries with efficient non-

blocking snapshots. In Acm Sigplan Notices.
[8] Matei Zaharia et al. 2012. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In NSDI.

Demonstration SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

2012

	Abstract
	1 Introduction
	2 Indexed DataFrame Design
	3 Evaluation
	4 Demonstration Details
	5 Conclusion
	References

