
A Processing-In-Memory Implementation of SHA-3 Using a
Voltage-Gated Spin Hall-Effect Driven MTJ-based Crossbar

Chengmo Yang
University of Delaware
chengmo@udel.edu

Zeyu Chen
University of Delaware
zeyuchen@udel.edu

ABSTRACT
Processing-In-Memory (PIM), which implements logic operations
within memory cells, opens up a new direction on organizing data
and computation. Leveraging resistive or magnetic characteristics
of nonvolatile memory (NVM) devices, platforms such as PLiM and
ReVAMP have been proposed. This paper presents a PIM implemen-
tation of SHA-3, a state-of-the-art secure hash algorithm using a
Voltage-Gated Spin Hall-Effect (SHE) Driven magnetic tunnel junc-
tion (MTJ) based crossbar, which is able to achieve a complete set
of Boolean operations. The work includes the design of the cross-
bar circuit, the instruction set, and both unpipelined and pipelined
implementations of SHA-3. Experimental results show that the
proposed SHE MTJ-based implementation is able to achieve 2.16X
higher throughput than a state-of-the-art Resistive RAM based
SHA-3 implementation. Further throughput improvement can be
achieved with multiple message hash (MMH) pipelining.

CCS CONCEPTS
•Hardware→Non-volatilememory;Hardware accelerators;
Emerging architectures.

KEYWORDS
Processing-in-Memory; Non-volatile memories
ACM Reference Format:
Chengmo Yang and Zeyu Chen. 2019. A Processing-In-Memory Imple-
mentation of SHA-3 Using a Voltage-Gated Spin Hall-Effect Driven MTJ-
based Crossbar. In Great Lakes Symposium on VLSI 2019 (GLSVLSI ’19), May
9–11, 2019, Tysons Corner, VA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3299874.3317972

1 INTRODUCTION
Today’s applications entail more data storage and computing power
than ever before. However, when executed on a traditional von
Neumann architecture that separates computation and data storage,
the time and energy taken to commute the inputs from the memory
to the processor and then write the results back to the memory is
hundreds or even thousands of times longer than the computation

This work is partially supported by NSF Award #1527464.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6252-8/19/05. . . $15.00
https://doi.org/10.1145/3299874.3317972

operation itself. The existing solution to this well known “memory
wall” problem relies on multiple levels of caches. Unfortunately,
the limited memory bandwidth still imposes a crucial limitation for
data-intensive applications.

One promising solution to overcome the bottleneck of von Neu-
mann architecture is processing-in-memory (PIM), which integrates
logic and memory on the same device. PIM can be achieved with
emerging non-volatile memory (NVM) devices, which leverage
physical characteristics such as resistance or magnetic field to store
data and are able to perform logic operations as well. A number of
NVM-based PIM designs have been proposed. Among them, IMPLY
[1], majority function [2], and Boolean [3] are three representative
designs based on Resistive RAM (RRAM) memory.

Compared with RRAM, spintronic magnetic memory (MRAM)
shows its advantages of longer endurance and lower power con-
sumption. Different MRAM-based logic implementations have been
shown in [4–6]. Recently, Kang et al. reported a realization of state-
ful reconfigurable logic functions via a single three-terminal mag-
netic tunnel junction (MTJ) device, which exploits a novel voltage-
gated Spin Hall Effect (VG-SHE) driven magnetization-switching
mechanism [7]. This device is a promising candidate for future PIM
architecture implementations. To demonstrate its potential, this
work presents an implementation of SHA-3 [8], the latest secure
hash algorithm standard released by NIST, on a VG-SHE driven MTJ
crossbar. A secure hash function is an important component of data
confidentiality used for data authentication. The basic operations
of SHA-3 are XOR, rotation, and AND, which can be efficiently im-
plemented on a VG-SHE driven MTJ crossbar. This work develops a
comprehensive PIM implementation of SHA-3, including the design
of the crossbar circuit, the instruction set, an unpipelined single
message hash (SMH) implementation, and a pipelined multiple mes-
sage hash (MMH) implementation. Compared with the most related
previous work, i.e., a SHA-3 implementation on a RRAM crossbar
[9], the proposed SMH and MMH designs improve throughput by
216% and 851%, respectively.

The rest of this paper is organized as follows. Section 2 intro-
duces the fundamental structure of VG-SHE driven MTJ and its
reconfigurable logic implementation, followed by a brief descrip-
tion of SHA-3. Section 3 presents the implementation details of
SHA-3 on a VG-SHE driven MTJ crossbar. Section 4 experimentally
compares the proposed MTJ crossbar with state-of-the-art SHA-3
implementations. At the end, conclusions are given in Section 5.

2 PRELIMINARIES
2.1 VG-SHE Driven MTJ Device
The VG-SHE driven MTJ structure was proposed in [7]. Figure 1(a)
shows the schematic of this three-terminal device. The voltage

Tech Session 8: Quantum Circuits and Emerging Technologies GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

195

https://doi.org/10.1145/3299874.3317972
https://doi.org/10.1145/3299874.3317972
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3299874.3317972&domain=pdf&date_stamp=2019-05-13

and spin Hall effect (SHE) respectively. The key idea behind is
that the critical current for SHE-driven MTJ switching can be
modulated by a voltage applied across the MTJ via the VCMA
mechanism, named voltage-gated SHE (VG-SHE) driven MTJ
switching. The initial data stored in the MTJ acts one of the
inputs and the logic output is represented by the resistance state
of the MTJ, which is in situ stored in the same MTJ device and
can be readout through the memory sensing amplifier (SA) with
an exactly memory-like readout manner. This single MTJ
device based stateful reconfigurable IML platform allows for
all electrical control and could be beneficial for future massive
integration and practical application in spintronic memories.

The remainder of this paper is organized as follows. Section
II presents a brief introduction of the three-terminal MTJ device
with the VG-SHE driven magnetization switching mechanism.
In section III, we describe the principle, implementation and
evaluation of the proposed stateful reconfigurable Boolean
IML functions in the typical cell array and cross-point array
architectures. Finally, Section IV concludes the paper.

II. THREE-TERMINAL MTJ DEVICE WITH VG-SHE-DRIVEN

MAGNETIZATION SWITCHING MECHANISM

 Two promising approaches for achieving efficient control of
the magnetization in MTJ devices are spin Hall effect (SHE)
[22-24] and voltage-controlled magnetic anisotropy (VCMA)
effect [25-27]. Regarding SHE, an in-plane electrical current
flowing through a heavy metal (e.g., Pt, Ta or W etc.) under an

MTJ device can generate a vertical spin current into the free
layer of MTJ to drive its magnetization switching. On the hand,
the VCMA effect has been shown to enable strong tuning of the
coercive magnetic field or energy barrier of the MTJ by voltage
pulses, achieving either direct precessional toggle switching or
thermally-activated switching of the MTJ magnetization. Both
of the two effects have been widely investigated as promising
candidates for future low-power spintronic memory and logic
devices. Recently, a novel three-terminal MTJ device, as shown
in Fig. 1(a), which exploits both of these two effects, named
voltage-gated SHE (VG-SHE) driven magnetization switching,
has been experimentally or theoretically reported in in-plane
and perpendicular MTJ devices [28-33]. This novel approach
enables tunable and energy-efficient magnetization switching
and may provide new functionality for memory and logic
designs. The physics behind can be explained as the critical
current for SHE-driven MTJ switching can be modulated by a
bias voltage applied across the MTJ via the VCMA mechanism,
as illustrated in Fig. 1(b).

In VG-SHE driven MTJ switching, the SHE critical current
() is generally linearly proportional to the effective energy
barrier () of the MTJ, which then depends on the bias voltage
() across the MTJ (see Fig. 1(c)-(e)), expressed as [33, 34],

| | ∝ (1)

2 , ∙ (2)

0 	 / (3)

where , and are voltage-dependent SHE
critical current, energy barrier and magnetic anisotropy under

, is the Gilbert damping factor, is the spin Hall angle,
 is the saturation magnetization, is the thickness of free

layer, and , are the demagnetization factors of the MTJ
along the perpendicular and in-plane directions, 0 is the
magnetic anisotropy under zero bias voltage, is the VCMA
coefficient and is the thickness of the oxide layer. As can be
seen from Eq. (1)-(3), | | and are tunable as a function of
the bias voltage applied across the MTJ device owing to the
VCMA effect. Fig. 1(d) shows two magnetization switching
events of a typical CoFeB|MgO based MTJ device under
400	mV and 600	mV respectively. We can find that two
different critical currents, denoted as | | and | |, can be
obtained for different , respectively. Furthermore, Fig. 1(e)
shows the critical current as a function of , which follows
a linear relationship.
 The VG-SHE driven MTJ magnetization dynamics can be
described by solving a modified Landau-Lifshitz-Gilbert (LLG)
equation adding the SHE term as,

α 																														

																																 (3)

where is the magnetization vector of the free layer of MTJ,	

is the gyromagnetic ratio, is the effective magnetic
field under , is the SHE current density, is the

Fig. 1. Three-terminal VG-SHE driven MTJ device. (a) device schematic; (b)
voltage-gating mechanism on the critical current for SHE-driven magnetization
switching under different voltages; (c)-(d) illustration of the energy barrier and
magnetization switching under two different voltages; (e) the critical current as
a function of the bias voltage applied across the MTJ device.

(a)

charge
current

spin
current

pinned layer

oxide barrier

free layer

MTJ

heavy metal

ISHE

VMTJ

x
y

z

Current (µA)

N
or

m
al

iz
ed

 r
es

is
ta

nc
e

(Ω
)

logic “1”

logic “0”

Vb1

Vb2

-IC2 -ISHE
+ISHE-IC1 +IC1 +IC2

(b)

“P” “AP”

(c)

Vb1

Vb0

Vb2

E
b
(V

b1
)

E
b
(V

b2
)

-100 10050-50 0

1.0

0.0

0.5m
Z

Current (μA)

Vb1 = 400 mV

Vb2 = 600 mV

(d)

100 150 200 250 300 350 400 450 500 550 600
20

40

60

80

100

120

140

160

C
rit

ic
a

l C
u

rr
e

n
t

(μA
)

Voltageapplied across theMTJ, Vb (mV)

(e)

Critical current is linearly proportional
to the bias voltage Vb across the MTJ

(a) Device schematic

(V,I) = (1,1)

(V,I) = (0,0);
 (0,1);(1,0)

(V,I) = (1,0)

(V,I) = (0,0);
 (0,1);(1,1)

R=0
R=1

(b) State transition diagram

Ri+1 = VI + VRi

Ri+1 = V + Ri
‘OR’

I = 1 I = R

I = 0

Ri+1 = V + Ri
‘XOR’

Ri+1=VRi

‘AND’

(c) Boolean logic

Figure 1: Three-terminal VG-SHE driven MTJ device and its stateful reconfigurable logic.

VMT J and the current ISHE are the two inputs, represented as
V and I , respectively. The resistance of the MTJ is the state and
output, denoted as R, which can be read out by measuring the
tunnel magnetoresistance of the MTJ. The key property of this
device is that the current for switching the SHE-driven MTJ can
be modulated by a voltage applied across the MTJ via the voltage-
controlledmagnetic anisotropy (VCMA)mechanism. Further details
can be found in [7].

This work makes the following assumptions regarding inputs
and output: (1) a high/low resistance state represents logic state
and output R=1/0; (2) a positive bias voltage (600 mV) corresponds
to input V=1, while a zero bias voltage represents V=0; (3) a posi-
tive/negative SHE current ±ISHE denotes input I=1/0.

Functionality of this three-terminal MTJ device can be summa-
rized by a state machine, shown in Figure 1(b). Once the MTJ is
applied with a positive voltage (i.e., V=1), the next state Ri+1 de-
pends on the polarity of the SHE current (i.e., Ri+1=I); If a zero
bias voltage is applied (i.e., V=0), the next state will not change
(i.e., Ri+1=Ri). Combining the two cases, the stateful Boolean logic
function can be expressed as:

Ri+1 = V I +VRi (1)

Equation (1) indicates that the MTJ can be viewed as a memory
cell when input V is used as a control signal. On the other hand,
when input I is used as a control signal, the MTJ can be viewed as a
logic cell. As illustrated in Figure 1(c), I can be used to select among
AND, OR, and XOR operations between V (or V) and R. This is the
key to the proposed crossbar design.

2.2 VG-SHE Driven MTJ Crossbar
A high density cross-point array built with the VG-SHE driven MTJ
device was proposed in [7]. The crossbar structure is composed of
multiple strings of MTJ devices located on a heavy metal strip. The
wordline (WL) and sourceline (SL) switches are row-wise, while
the bitline (BL) switches are column-wise. They together control
the memory and logic operations. Status of these switches as well
as values of the two inputs V and I are summarized in Table 1 for
each memory and logic operation.

Figure 2 illustrates the read and write operations in VG-SHE
crossbar, which require one and two cycles, respectively. To perform
read (Figure 2(a)), the SL switch of the selected row is activated,
a small negative voltage is applied on all the columns, and all the
BL switches are activated. Data can be read out via measuring the
tunnel resistance state. As shown in Figure 2(a), a ‘low/high’ on

Table 1: Signal values in memory/logic operations
WL SL BL V I

Read OFF ON ON −V

Write ON ON DDMR
DDMR

1 -ISHE
+ISHE

AND ON ON DDMR 1 -ISHE
OR ON ON DDMR 1 +ISHE

OFF ON ON −V
XOR ON ON DDMR DXR -ISHE

ON ON DDMR DXR +ISHE

the bitline represents data ‘1/0’. After passing through the sense
amplifier (SA) and comparator, the readout data is stored in the
data memory register (DMR).

Write operations take two cycles because currents of different
polarities need to be flowed through the heavy metal. This process
is shown in Figure 2(b). Both SL and WL switches of the selected
row are activated. All the columns are applied with a positive volt-
age, while the BL switches are controlled by the data in DMR and
a control signal S . In step 1, S=1 which connects the columns cor-
responding to 0’s in the DMR. MTJs on those columns are written
with 0’s, by flowing −ISHE through the heavy metal. In step 2, S=0
and columns corresponding to 1’s in the DMR are connected. MTJs
on those columns are written with 1’s, by flowing +ISHE through
the heavy metal.

Logic operations AND and OR are highly similar to the write
operation. As shown in Table 1, status of WL and SL switches are
the same in these three operations. AND and OR differ from write
in that they require only one cycle and the control signal S is always
set to 0. Moreover, AND and OR use different values of I . As shown
in Figure 1(c), OR is performed when I=1, while AND is performed
when I=0. This difference is reflected in the last column of Table 1.

2.3 Introduction to SHA-3
SHA-3 is a subset of the cryptographic primitive family Keccak [8].
It is based on sponge construction, which operates on a state of
b=r+c bits; r is the rate or blocksize which comes directly from the
message, c is the capacity and determines the security level, and b
is the state which is 5 × 5 ×w bits long, withw denoting the word
size. In the most commonly used case of SHA3-256,w=64, b=1600,
r=1088, and c=512.

Sponge construction uses the block permutation function Keccak-
f , which consists of 24 rounds. In each round, the message block is
operated in 5 steps: θ , ρ, π , χ , and ι, as shown in Algorithm 1. Each

Tech Session 8: Quantum Circuits and Emerging Technologies GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

196

SA & Comparator

Data memory register (DMR)

1 0 1

BL[1]=1BL[0]=1 BL[2]=1

WL[1]=0

WL[0]=0

SL[2]=0

SL[1]=1

SL[0]=0

Row[2]

Row[1]

Row[0]

Column[0] Column[1] Column[2]

0 11

WL[2]=0

MTJ cell

(a) (b)

1 0 1
DMR

1
S

Ii=0 / -ISHE

0

WL[1]=1

WL[0]=0

Column[0] Column[1] Column[2]

WL[2]=0

BL[1]=1BL[0]=0 BL[2]=0

Row[2]

Row[1]

Row[0]

SL[2]=0

SL[1]=1

SL[0]=0

Ii=1 / +ISHE

1

WL[1]=1

WL[0]=0

Column[0] Column[1] Column[2]

WL[2]=0

Row[2]

Row[1]

Row[0]

SL[2]=0

SL[1]=1

SL[0]=0

10

1 0 1
DMR

0
S

BL[1]=0BL[0]=1 BL[2]=1
high lowlow

+V +V

Figure 2: Illustration of (a) read; (b) 2-step write in VG-SHE crossbar. Step 1 writes 0’s and step 2 writes 1’s.

WL[1]=0

WL[0]=0

SL[2]=0

SL[1]=1

SL[0]=0

Row[2]

Row[1]

Row[0]

Column[0] Column[1] Column[2]

0 11

WL[2]=0

1 0 1
DMR

0
S

Ii=0 / -ISHE

0

WL[1]=1

WL[0]=0

Column[0] Column[1] Column[2]

WL[2]=0

BL[1]=0BL[0]=1 BL[2]=1

Row[2]

Row[1]

Row[0]

SL[2]=0

SL[1]=1

SL[0]=0

1 1 0
XR

1 0 1
DMR

1
S

Ii=1 / +ISHE

1
WL[1]=1

WL[0]=0

Column[0] Column[1] Column[2]

WL[2]=0

BL[1]=1BL[0]=0 BL[2]=0

Row[2]

Row[1]

Row[0]

SL[2]=0

SL[1]=1

SL[0]=0

1 1 0
XR

10 0 1

1 0 1
DMR

0
S

BL[1]=1BL[0]=1 BL[2]=1

1 1 0
XR

(a) (b) (c)

Figure 3: Implement XOR on a VG-SHE crossbar in 3 steps; (a) Data Ri=101 on the second row is read into DMR; (b) MTJs with
Ri=1 and V=1 are programed to Ri+1=0; (c) MTJs with Ri=0 and V=1 are programed to Ri+1=1.

Algorithm 1 Keccak-f round function
Require: A: message block matrix; RC: round constant;
Ensure: Hashed message block A

θ step
1: C[x] = A[x,0]⊕A[x,1]⊕A[x,2]⊕A[x,3]⊕A[x,4] ∀x in 0...4
2: D[x] = C[x-1]⊕(C[x+1]≪1) ∀x in 0...4
3: A[x,y] = A[x,y]⊕D[x] ∀(x,y) in (0...4,0...4)

ρ and π step
4: B[y,2x+3y] = A[x,y]≪r[x,y] ∀(x,y) in (0...4,0...4)

χ step
5: A[x,y] = (B[x + 1,y]∧B[x+2,y]) ∀(x,y) in (0...4,0...4)
6: A[x,y] = A[x,y]⊕B[x,y] ∀(x,y) in (0...4,0...4)

ι step
7: A[0,0] = A[0,0]⊕RC

round takes two inputs: A is a 5 × 5 matrix with 64-bit elements,
while RC is the round constant that varies across rounds. At line 4,
r [x ,y] is the rotation matrix. Both RC and r [x ,y] are known and
given in [8]. As the algorithm shows, the basic operations of SHA-3
are XOR, rotation, and AND, which can be efficiently implemented
in a VG-SHE driven MTJ crossbar.

3 PROPOSED SHA-3 IMPLEMENTATION
This section presents the details on implementing SHA-3 on a
VG-SHE driven MTJ crossbar, from circuit level all the way up to
instruction level.

3.1 XOR and Write Implementations
While Figure 1(c) shows that XOR in a single MTJ can be achieved
by setting I=Ri , this is not the case for XORing a whole word line in
the crossbar since +ISHE and −ISHE cannot co-exist on the same
row at the same time.

To implement XOR, we introduce another register, i.e., the XOR
register (XR). More importantly, since the BL switches need to be
controlled by the data read from the crossbar, such data will be
placed in DMR while the other input will be placed in XR. Fig-
ure 3 shows the steps for XORing Ri=101 and V=110 and getting
Ri+1=011, which takes three cycles. In cycle 1, Ri is read into DMR,
shown in the red path in Figure 3(a). In cycle 2, the MTJs with
Ri=1 andV=1 are programed to Ri+1=0. This is achieved by setting
S=0 which applies Ri=101 on the BL switches and hence conducts
Column [0] and [2]. Meanwhile, 110 is applied on the bit lines, and
−ISHE is flowed through the heavy metal. As a result, 0’ is written
to the MTJ on Column[0], while the MTJ on Column[2] remains
unchanged. Finally, in cycle 3, the MTJs with Ri=0 and V=1 are
programed to Ri+1=1. This is achieved by setting S=1 which applies
Ri=010 on the BL switches and hence conducts Column[1]. By ap-
plying 110 on the bit lines and flowing +ISHE through the heavy
metal, 1’ is written to the MTJ on Column[1].

Write operations in the VG-SHE driven MTJ crossbar can be opti-
mized as well. While the original write operations introduced in [7]
take two cycles for writing 0’s and 1’s, write in the proposed design
is reduced to one cycle with the help of a precharge’ operation.
Specifically, by activating all the BL switches, applying positive

Tech Session 8: Quantum Circuits and Emerging Technologies GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

197

opcode Wc Dc shift

opcode

(a)

(b) address

0567121315

121315 0

Figure 4: Instruction format. (a) Format of read, write, AND,
OR, XOR. (b) Format of jump, branch, DMA, and precharge.

WL

Data from
DCM

Control line
Data line

SL

M
U
X

BL

Instruction
Decode

DMUX

Wc

Instruction
from IM

Mc

shift

Dc

row
decoder

DMR

XR

column
shift

1
S

Figure 5: Generation of crossbar control signals

voltage on all the columns, and flowing +ISHE through multiple
rows, all these rows are written with 1’s simultaneously in one step.
Later when writing data on these precharged rows, only 0’s need
to be programed which can be completed in one cycle.

3.2 Generation of Crossbar Control Signals
To realize both memory (read, write) and logic (XOR, AND, rotation)
operations, we develop a PIM architecture similar to the ReVAMP
platform [10]. The architecture uses a data and computation mem-
ory (DCM) which stores data and performs computation directly
on data, as well as an instruction memory (IM) which stores the in-
structions for controlling the DCM. Both IM and DCM are VG-SHE
driven MTJ cross-point arrays.

The proposed PIM architecture uses a fix-length instruction set.
Two instruction formats are supported, shown in Figure 4. Most
of instructions, including read, write, AND, OR, and XOR, are in
the first format. It has four fields: a 3-bit opcode, a 6-bit wordline
addressWc , a 1-bit signalDc determining the read destination (1’ for
DMR and 0’ for XR), and a 6-bit shift offset for implementing bitwise
shift and rotation. Figure 5 shows the circuit for generating the
signals for controlling the WL, SL and BL switches, selecting read
destination, and implementing shift based on instruction decoding
results. The second format is used for branch, jump, as well as
direct memory access (DMA) instructions that can be used to load
A[x,y] to DCM before starting the Keccak-f function. It is also used
for implementing the aforementioned precharge instruction which
requires a 6-bit starting address and a 6-bit ending address that can
be held together in the ‘address’ field of the instruction.

3.3 Data Layout
As shown in Algorithm 1, each round of the Keccak-f function
operates on four matrices A, B, C and D with sizes of 5×5, 5×5, 5×1,

A[0,0] A[0,1] A[0,2] A[0,3] A[0,4]

A[1,0] A[1,1] A[1,2] A[1,3] A[1,4]

A[2,0] A[2,1] A[2,2] A[2,3] A[2,4]

A[3,0] A[3,1] A[3,2] A[3,3] A[3,4]

A[4,0] A[4,1] A[4,2] A[4,3] A[4,4]

C

D

A

B

64 bits

.

.

.

64 bits

0

45

40

35

30

25

20

15

10

5

0

45

40

35

30

25

20

15

10

5

0

49

48

47

2

1

Figure 6: DCM state transition. (a) DCM layout; (b) DCM
state in step θ ; (c) DCM state in step ρ, π and χ

and 5×1, respectively. While the four matrices together require a
memory of 60 words, our goal is to minimize the required DCM
size, by allowing matrices with non-overlapping lifetime to share
the same space. It turns out that matrices A and C, C and D, D and
A, and A and B are dependent, while matrix B can overwrite the
space occupied by C and D. Accordingly, a DCM of 50 words is
sufficient to hold the four matrices, as shown in Figure 6.

Figure 6(a) shows the DCM layout with a word size of 64-bit and
a length of 50 words. This is transformed into a 10×5 matrix repre-
sentation in Figure 6(b) and 6(c), wherein each entry corresponds
to 64 bits. Figure 6(b) shows the data layout in step θ . Words 0-24,
25-29 and 30-35 are respectively allocated to matrices A, C and
D. Updates to matrix A[x,y] at line 3 of Algorithm 1 is performed
in-place. Figure 6(c) shows the data layout in steps ρ, π , and χ .
Words 25-49 are allocated to matrix B, which overwrites matrices
C and D.

In the rest of this paper, all the logic and memory operations are
assumed to operate on a word with all the 64 bits being processed
simultaneously. It is also assumed that A[x ,y] is loaded into DCM
before the Keccak-f function starts.

3.4 Keccak-f Implementation
Table 2 presents the implementation of the Keccak-f function step
by step. This part describes each step in detail and computes the
number of cycles and instructions needed, which are summarized
in Table 3.

3.4.1 step θ . Line 1 in Algorithm 1 is a five-input XOR opera-
tion. Before starting it, one cycle will be spent on precharging
words 25-34 (i.e., the locations of C[x] and D[x]) in DCM to 1.
Then, A[x,0] is read into DMR and written to DCM on the address
of C[x]. This is shown in Table 2. After that, A[x,1] is read into
XR and XORed with the data at the location of C[x]. The second
step is repeated 4 times with inputs A[x,1] to A[x,4]. Overall, it
takes (Nr ead+Nwrite)+4×(Nr ead+Nxor)=18 cycles and 2+4×2=10
instructions to update one element of C[x]. Nr ead , Nwrite , and
Nxor denote the latencies of read, write, and XOR operations, which
equal 1, 1, and 3, respectively. Since C[x] has 5 elements, line 1 of
Algorithm 1 requires 5×18+1 (for precharging)=91 cycles and 50
instructions in total.

Line 2 in Algorithm 1 takes one read and one write to write
C[x+1] and then one read and one XOR for XORing C[x-1] and
C[x+1]. Data rotation (C[x + 1] ≪ 1) is achieved with a column

Tech Session 8: Quantum Circuits and Emerging Technologies GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

198

Table 2: Step-by-step implementation of Keccak-f .
(* indicates bit shift during write)

Step Op Input Output Repeat

θ1

read DCM (A[x,0]) DMR
write DMR DCM (C[x])
read DCM (A[x,i]) XR

i=1 to 4
XOR XR, DCM (C[x]) DCM (C[x])

θ2

read DCM (C[x+1]) DMR
write* DMR DCM (D[x])
read DCM (C[x-1]) XR
XOR XR, DCM (D[x]) DCM (D[x])

θ3
read DCM (D[x]) XR
XOR XR, DCM (A[x,i]) DCM (A[x,i]) i=0 to 4

ρ & read DCM (A[x,y]) DMR x=1 to 4
π write* DMR DCM (A[x,y]) y=1 to 4

χ1

read DCM (B[x+2,y]) DMR
write DMR DCM (A[x,y]) x=1 to 4
read DCM (B[x+1,y]) DMR y=1 to 4
AND DMR, DCM (A[x,y]) DCM (A[x,y])

χ2
read DCM (B[x,y]) XR x=1 to 4
XOR XR, DCM (A[x,y]) DCM (A[x,y]) y=1 to 4

shifter and does not bring any extra cycle, as shown in Figure 5.
Overall, this line requires 5× (Nr ead +Nwrite +Nr ead +Nxor) = 30
cycles and 5×4=20 instructions in total.

Line 3 of Algorithm 1 updates the 5×5 state matrix A[x,y]. For
each row, D[x] is read into the XR register once and used as the input
for the entire row. Therefore, each row takes Nr ead +5×Nxor = 16
cycles and 6 instructions. The entire state takes 80 cycles and 30
instructions to update.

3.4.2 steps ρ and π . This step reads from matrix A and writes to
matrix B. Same as before, this step requires one cycle for precharg-
ing words 25-49 (i.e., the locations of B[x,y]) so as to save write
latency. Then, A[x,y] is read into DMR and written into B[y,2x+3y].
Overall, this step requires 1+25×(Nr ead + Nwrite)=51 cycles and
50 instructions.

3.4.3 step χ . This step computes matrix A based on matrix B. First,
words 0-24 (i.e., the locations of A[x,y])) are precharged. Then,
B[x+2,y] is read into DMR and then written into the location of
A[x,y]. Next, B[x+1,y] is read into DMR and then ANDed with
the data at the location of A[x,y]. Note that as Figure 1(c) shows,
when I=0, Ri+1=VRi . In other words, by flowing −ISHE through
the heavy medal, we directly get A[x,y]= B[x + 1,y] ∧ B[x + 2,y].
This line requires 1+25×(Nr ead+Nwrite+Nr ead+Nand)=101 cycles
and 100 instructions to complete.

In line 6 of Algorithm 1, B[x,y] is readout and then XORed with
A[x,y]. It requires 25×(Nr ead+Nxor)=100 cycles and 50 instructions
in total.

3.4.4 step ι. This step (line 7 of Algorithm 1) involves a single
XOR of the round constant RC and the element A[0, 0]. It takes
(Nr ead+Nxor)=4 cycles and 2 instructions to complete.

Table 3: Implementation details of SHA-3 round function
Step Cycle # Instruction #
θ1 91 50
θ2 30 20
θ3 80 30

ρ and π 51 50
χ1 101 100
χ2 100 50
ι 4 2

Total 457 302

θ1 θ2 θ3 ρ and π χ1 χ2 ι

91 30 80 51 101 100 4

1A 1B 1C 1D 1E 2A 2B

1A 1B 1C 1D 1E 2A

1A 1B 1C 1D 1E

1A 1B 1C 1D

1A 1B 1C

24D 24E

23E 24A 24B 24C 24D 24E

24A 24B 24C 24D 24E

24B 24C 24D 24E

24C 24D 24E……
……
…

A B C D E

Msg i

Msg i

Msg i

Msa i+1

Msg i+2

Msg i+3

Msg i+4

time(c)

(b)

(a)

θ1 θ2 θ3 ρ and π χ1 χ2 ι

Figure 7: Different implementations of the Keccak function.
(a) Unpipelined implementation. Each round takes 457cy-
cles. (b) A 5-stage pipeline with a longest stage (B) of 110
cycles. Each round takes 550 cycles. (c) Steps for processing
5 messages for 24 rounds. ‘1A’ indicates stage A of round 1.

3.5 Unpipelined vs. Pipelined Implementations
The proposed VG-SHE driven MTJ implementation of SHA-3 can be
done in both unpipelined and pipelined forms. For single message
hash (SMH), the input of each round function relies on the output of
the previous round. As a result, an unpipelined implementation such
as the one in Figure 7(a) is used. As each round takes Nround=457
cycles and loading the initial state A[x,y] takes 25 cycles, the overall
latency of the unpipelined implementation is 24×Nround+25 =
10993 cycles.

While the different rounds of a singlemessage cannot be pipelined
because of data dependency, a pipelined implementation can be
used for multiple message hash (MMH). Figure 7(b) shows a 5-
stage pipeline which merges θ2 and θ3 as well as χ2 and ι. The
pipeline length is constrained by the longest stage (θ2 and θ3)
which takes 110 cycles. This implementation requires a larger DCM
to hold 5 messages simultaneously (i.e., 250 words). as well as 5
individual ports so that different messages can be processed in par-
allel at different pipeline stages, as shown in Figure 7(c). It takes
110×(24×5+4)=13640 cycles to process 5 messages and 5 cycles to
load the first message (since there are 5 ports), while the latency
for loading the other messages is completely hidden. Therefore the
overall latency of the pipelined implementation is 13645 cycles.

4 EXPERIMENTAL RESULTS
The proposed VG-SHE driven MTJ based crossbar memory is simu-
lated with NVSim [14]. Both SMH and MMH implementations are

Tech Session 8: Quantum Circuits and Emerging Technologies GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

199

Table 4: Key parameters of NVSim
VG-MTJ [7] RRAM [11]

feasure size = 80 nm feasure size = 10 nm
read time = 0.5 ns set time = 1 ns

switching time = 2.3 ns reset time = 1 ns
read energy = 5 fJ read energy = 0.6 pJ
write energy = 12 fJ write energy = 0.6 pJ

low resistance = 50 kΩ low resistance = 100 kΩ
high resistance = 100 kΩ high resistance = 1000 kΩ

DCM size = 400 bytes DCM size = 344 bytes

Table 5: Results of NVSim

Tech. area energy frequency Efficiency
mm2 µ J MHz

RRAM 0.1438 1.53 471.70 83.55
VG-MTJ (SMH) 0.3608 0.39 401.61 282.5
VG-MTJ (MMH) 1.4263 0.40 392.15 274.0

Table 6: Comparison of different SHA-3 implementations

Tech. f Area Latency Throughput
MHz cycles Mbps

Virtex5[12] 248 134 slices 1730 250
Virtex6[13] 285 188 slices 466 77
ReVAMP[9] 472 0.144 mm2 27920 18.38
Pro.(SMH) 402 0.361 mm2 10993 39.75
Pro.(MMH) 392 1.426 mm2 13645 156.34

simulated. Meanwhile, the RRAM-based SHA-3 implementation
introduced in [9] is also simulated. The key device parameters are
listed in Table 4, while the simulation results are shown in Table 5.

Compared with RRAM, the proposed VG-SHE driven MTJ-based
crossbar consumes much lower energy per round, as a result of
the fewer cycles and lower read/write energy of the device. On the
other hand, it requires more area due to the larger feature size of
the device. Note that the area of MMH is more than 5 times of the
area of SMH due to the need of extra I/O ports as well as registers
between pipeline stages. Finally, cycle time is computed as the
longest read/write latency, and frequency is determined accordingly.
The cycle times of VG-SHE drivenMTJ-based crossbar is about 18%–
20% slower than RRAM. However, this does not necessarily implies
performance degradation since the proposed PIM impelementation
requires fewer cycles to process each round of the message hash.

Table 6 compares the proposed SMH and MMH implementations
with existing FPGA-based (first two rows) and RRAM-based (3rd
row) SHA-3 implementations. Data of frequency, area, latency, and
throughput are reported. Moreover, the efficiency of the PIM imple-
mentations is reported in Table 5. Throughput and efficiency are
computed with the following equations:

Throuдhput =
Blocksize × #MH

Latency
× Frequency (2)

Ef f iciency =
Throuдhput
Area × Enerдy

(3)

Blocksize is the length of the message block processed by the
hash function at a given time, and #MH equals 1 and 5 in SMH
and MMH, repestively. Each slice of Vertex 5 and 6 family is com-
prised of 450 and 256 bits, respectively. The proposed PIM design,

in comparison to the FPGA-based implementations, implements a
lightweight controller and requires far less hardware. In terms of
latency, the proposed SMH and MMH implementations outperform
the RRAM implementation by 2.54 and 2.05 times, respectively.
Such latency improvement directly leads to 2.16 and 8.51 times
throughput improvement, thus confirming the performance advan-
tage of the proposed designs. Finally, in terms of design efficiency,
the proposed VG-SHE driven MTJ implementations are more than
3 times of ReVAMP, making it a suitable candidate for resource
constrained systems.

5 CONCLUSIONS
NVM-based Processing-In-Memory (PIM) architectures open up a
new direction to break through the bottleneck in traditional von
Neumann architectures. This paper presented a PIM architecture
built with VG-SHE driven MTJ devices and showed a comprehen-
sive implementation of SHA-3, including the design of the cross-
bar circuit, the instruction set, the step-by-step implementation
of Keccak-f function, and both unpipelined single message hash
(SMH) and pipelined multiple message hash (MMH) implemen-
tations. Our design outperforms FPGA-based and RRAM-based
implementations in terms of throughput and efficiency, making it a
suitable candidate for resource constrained systems.

REFERENCES
[1] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams,

“‘Memristive’ switches enable ‘stateful’ logic operations via material implication,”
Nature, vol. 464, no. 7290, p. 873, 2010.

[2] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and
G. De Micheli, “The programmable logic-in-memory (PLiM) computer,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2016, pp. 427–432.

[3] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser, “Magic-Memristor-Aided Logic,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, 2014.

[4] S. Gao, G. Yang, B. Cui, S. Wang, F. Zeng, C. Song, and F. Pan, “Realisation of all
16 Boolean logic functions in a single magnetoresistance memory cell,” Nanoscale,
vol. 8, no. 25, pp. 12 819–12 825, 2016.

[5] C. Wan, X. Zhang, Z. Yuan, C. Fang, W. Kong, Q. Zhang, H. Wu, U. Khan, and
X. Han, “Programmable spin logic based on spin hall effect in a single device,”
Advanced Electronic Materials, vol. 3, no. 3, 2017.

[6] J. Lee, D. I. Suh, and W. Park, “The universal magnetic tunnel junction logic gates
representing 16 binary Boolean logic operations,” Journal of Applied Physics, vol.
117, no. 17, 2015.

[7] H. Zhang, W. Kang, L. Wang, K. L. Wang, and W. Zhao, “Stateful reconfigurable
logic via a single-voltage-gated spin hall-effect driven magnetic tunnel junction
in a spintronic memory,” IEEE Transactions on Electron Devices, vol. 64, no. 10, pp.
4295–4301, 2017.

[8] P. Pritzker and P. Gallagher, “SHA-3 standard: Permutation-based hash and
extendable-output functions,” Information Tech Laboratory National Institute of
Standards and Technology, pp. 1–35, 2014.

[9] D. Bhattacharjee, V. Pudi, and A. Chattopadhyay, “SHA-3 implementation us-
ing ReRAM based in-memory computing architecture,” in 18th International
Symposium on Quality Electronic Design (ISQED), 2017, pp. 325–330.

[10] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay, “ReVAMP: ReRAM based
VLIW architecture for in-memory computing,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, pp. 782–787.

[11] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp.
1951–1970, 2012.

[12] J. Winderickx, J. Daemen, and N. Mentens, “Exploring the use of shift register
lookup tables for Keccak implementations on Xilinx FPGAs,” in 26th International
Conference on Field Programmable Logic and Applications (FPL), 2016, pp. 1–4.

[13] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M. de Dormale,
and F.-X. Standaert, “Compact FPGA implementations of the five SHA-3 finalists,”
in International Conference on Smart Card Research and Advanced Applications.
Springer, 2011, pp. 217–233.

[14] X. Dong, C. Xu, N. Jouppi, and Y. Xie, “NVSim: A circuit-level performance,
energy, and area model for emerging non-volatile memory,” in Emerging Memory
Technologies. Springer, 2014, pp. 15–50.

Tech Session 8: Quantum Circuits and Emerging Technologies GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

200

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 VG-SHE Driven MTJ Device
	2.2 VG-SHE Driven MTJ Crossbar
	2.3 Introduction to SHA-3

	3 Proposed SHA-3 Implementation
	3.1 XOR and Write Implementations
	3.2 Generation of Crossbar Control Signals
	3.3 Data Layout
	3.4 Keccak-f Implementation
	3.5 Unpipelined vs. Pipelined Implementations

	4 Experimental Results
	5 Conclusions
	References

