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ABSTRACT
Internet of Things (IoT) has built a network with billions of con-
nected devices which generate massive volumes of data. Processing
large data on existing systems requires significant costs for data
movements between processors and memory due to limited cache
capacity and memory bandwidth. Processing-In-Memory (PIM) is
a promising solution to address the issue. Prior techniques that
enable the computation in non-volatile memory (NVM) are de-
signed on a bipolar switching mode, which suffers from a high
sneak current in a crossbar array (CBA) structure. In this paper,
we propose a unipolar-switching logic for high-density PIM ap-
plications, called UPIM. Our design exploits a unipolar-switching
mode of memristor devices which can be operated in 1D1R struc-
ture hence suppresses the sneak current that exists in prior PIM
technologies. Moreover, UPIM takes advantages of a 3D vertical
crossbar array (CBA) structure to increase memory utilization per
unit area for high-density applications. Our evaluation on a wide
range of applications shows that the UPIM achieves up to 31.3× en-
ergy saving and 113.8× energy-delay product (EDP) improvement
as compared to a recent GPGPU architecture. As compared to the
state-of-the-art PIM design based on the bipolar switching mode,
our design achieves 3.1× lower energy consumption.
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1 INTRODUCTION
Many of today’s applications face huge challenges to improve their
performance, since the amount of data to be processed significantly
increases with the emergence of the Internet of Things [1]. Al-
though electronic circuit integration and scaling of semiconductor
devices have significantly increased the number of processing units
and memory sizes, the limited on-chip memory capacity and mem-
ory bandwidth hinder further efficiency improvement on the con-
ventional computing systems [2–4]. Processing-in-memory (PIM)
is a promising technique to address the issue of data movement
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congestion between processing cores and memory by perform-
ing essential operations inside the memory, instead of sending all
the data to processing cores [5–11]. It can significantly reduce the
amount of data transferred between the memory and processing
cores, thus accelerating big data applications.

Prior studies show that non-volatile memories (NVMs) have
great potential to enable the PIM functionalities by exploiting ana-
log characteristics of the memory devices. High density, lower en-
ergy consumption, and scalability of NVMs make them suitable can-
didates to replace the memories in conventional architectures [12].
For example, the work in [13, 14] proposed a modified sense am-
plifier to enable bitwise operations. The work in [15–18] support
in-memory bitwise operations or arithmetic operations with a few
Boolean functions. The existing NVM-based PIM designs enable es-
sential logic functions in a crossbar array (CBA) structure which is
suitable for memristor devices due to its small cell size (4F 2). How-
ever, when applying their techniques to a large CBA structure, there
are two main drawbacks. First, most of these designs work with a
bipolar switching mode, which is vulnerable to sneak current paths
during read and write operations [19]. The sneak current becomes
more serious when the array size increases because it increases the
number of unselected cells which form undesired sneak current
paths. Second, to execute arithmetic operations, e.g., addition and
multiplication, they require extra cells to store intermediate compu-
tation results with multiple cycles of bitwise operations [6, 18, 20].
This hinders area efficiency for the high-density applications.

In this paper, we propose UPIM, a novel processing-in-memory
architecture, which enables PIM functions using unipolar-switching
mode with 3D-layered structure. The main contributions of this
paper include:

• To the best of our knowledge, this is the first work that sup-
ports PIM logic with unipolar-switching memristors for the
1D1R cell structure. This design offers a sneak current reduc-
tion compared to the existing bipolar-based 1R structure for
a high-density CBA.

• We show our proposed design that supports fundamental
Boolean operations in the memory, including NOR, NAND,
and NOT. They enable PIM-based arithmetic operations, e.g.,
addition and multiplication.

• We also propose a PIM-enabled 3D vertical crossbar structure
to further increase the area efficiency by overlapping the
intermediate cells.

Our experimental results show that the proposed design achieves up
to 31.3× energy saving and 113.8× EDP improvement, as compared
to a recent GPGPU architecture.

2 DESIGN OVERVIEW
2.1 Memristor Switching Modes
There are two classes of ReRAM switching mode depending on
the applied bias polarity. One is ‘unipolar’, where the switching
between high resistance state (HRS) and low resistance state (LRS)
is not relevant to the polarity of the operating voltage and the
other is ‘bipolar’, where the reset switching (LRS → HRS) and set
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switching (HRS → LRS) take place with the opposite of the bias
polarity [21]. Unipolar switching has the following advantages:
(i) the symmetric property in polarity which provides an easier
implementation in the memory arrays and (ii) reducing the sneak
current and write disturb by adding a selector device such as a
diode [22]. Consider an M×N array, there are (N − 1)(M − 1) sneak
current paths when a single cell on the black line is intended to be
read. Therefore, the total current includes the summation of sneak
current with original cell current. The overall sneak current can be
represented by Eq. (1) [19].

ISN EAK = VR ×

(
RF

N − 1
+

RR
NM −M − N + 1

+
RF

M − 1

)−1
(1)

whereVR is the applied voltage, and RF and RR are the correspond-
ing resistance when forward and reverse current flow, respectively.
Eq. (1) has a significant implication that since majority of cells have
sneak current paths in reverse direction, increasing RR to rectify
the reverse current is a critical requirement to suppress sneak cur-
rent dissipation. In contrast to most prior work which enables PIM
functions in bipolar devices [6, 15, 16, 18], in this paper we propose
a unipolar-based logic family which can reduce the sneak current
and results in static energy saving. In the following subsections,
we explain how the design enables logic functions using unipolar
devices.

2.2 Unipolar-based logic within NVM
Fig. 1(a) shows the basic structure of the proposed UPIM. To sim-
plify the explanation, we show a logic that supports two-input
NOR operation, but it can be extended to multi-input logics in a
straight-forward way. Each unipolar device consists of a memristor
device and a diode. The input values are stored in two memris-
tors, RI N 1 and RI N 2, while the other memresistor, ROUT stores the
computation result. The logical values are stored in each memre-
sistor as resistance states in the input/output memristors. HRS in
either RI N 1,2 or ROUT indicates the logical value of 0, while LRS
represents 1. In our experiment, we exploit the memristor model
in [23], whose RLRS and RHRS are 10KΩ and 10MΩ, respectively.
Our logic also has one additional resistor, RG , whose resistance is
configurable. In this work, we select RG = 300KΩ, a value between
RLRS and RHRS based on the consideration of process variation.We
explain the detailed configuration in Section 3.3. All four resistors
are connected to the BL. Fig. 1(b) shows how to set the operation
voltage, VI N and VOUT , considering VSET . In our design, VI N has
a lower voltage than VSET , and a VOUT is higher than VSET .

To perform the NOR operation, our design first initializes the
ROUT to RHRS . We then apply the VI N 1 and VI N 2 voltages to
the input memristors and VOUT to the output memristor. Fig. 1(c)
shows how the proposed logic performs the NOR operation. In the
two-input case, the stored values in the input memristors have
four combinations: 00, 01, 10 and 11. When both inputs have high
resistance, i.e., ‘00’, the voltage on the BL (VBL) is almost pulled
into ground, while the voltage across ROUT (VOUT -VBL) is close
to VOUT . Since VOUT -VBL is larger than VSET , it incurs the SET
switching of the ROUT to RLRS . Note that the applied voltage
across the diode is negligible as compared to the voltage applied
to ROUT since ROUT is previously initialized as HRS. In all other
cases (i.e., 01, 10, and 11), at least one of the input memristors
has a low resistance state. Therefore, the VBL voltage has a higher
voltage close to VI N . For instance, if the case of ‘10’, where RI N 1
and RI N 2 have LRS and HRS, respectively, the net resistance is
close to RI N 1. Since the voltage ratio of RI N 1 to RG is close to zero,
(≈ 0.03 in our experiment), VBL is almost VI N . Thus, the ROUT

Figure 1: Proposed unipolar–based NOR logic: (a) Schematic
of the NOR gate (b) Voltage conditions (c) NOR gate simu-
lation result (d) Resistance behaviors depending on input
states
keeps the high resistance state representing the logical 0. Fig. 1(d)
shows the resistance behavior of the UPIM NOR gate. ROUT and
ROUT ′ indicate resistance states from the output resistor prior to
operation and after applying VI N , respectively. Except for the case
of ‘00’ which the SET switching occurs in ROUT , all the other cases
keep the ROUT as high resistance state, presenting NOR operation.

2.3 Integration to 3D CBA structure
The proposed design executes arithmetic functions using NOR op-
erations. Existing NOR-based approaches require additional cells to
store intermediate results. The area overhead due to the generated
intermediate states is not suitable for high-density applications.
In this work, we utilize a 3D structure to minimize the area cost.
Fig. 2(a) shows the conventional 2D logic implemented in a memory
array. In this structure, the intermediate operation results are stored
in the same plane while consuming an extra cell area. In contrast,
as shown in Fig. 2(b), the 3D structure can store the intermediate
results in a different layer. Therefore, the intermediate cell is hidden
under/over the memory cells, increasing chip density as compared
to the 2D case.

Fig. 3 presents the comparison diagram of 2D and 3D cases. We
denote the area of memory cells, which is used to store data, by
Amemory . Aloдic and Ashif t are the areas of intermediate cells
for storing logic results and of the interconnects, respectively. We
define cell efficiency as the ratio of the memory area over the total
area. In the 2D design, since the intermediate cells take chip area,
the cell efficiency is represented byAmemory /(Amemory +Aloдic +
Ashif t ). In contrast, for the 3D case, the intermediate cells for all
arithmetic logic can be completely stacked on the top of thememory
cells. If the number of layers is n, the cell efficiency of 3D design
is given by (n ×Amemory )/(Amemory +Ashif t ). This means that,
with the 3D logic stacking, it can achieve high area efficiency.

Fig. 4 shows our integration design of 3D logic-in-memory. The
VI N andVOUT are applied to wordlines connected to memory cells
and intermediate cells, respectively. For example, if the VI N is ap-
plied to ‘A’ and ‘B’ cell, the result of NOR operation is stored at
a cell where the VOUT is applied. As appeared in the figure, the
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Figure 2: Schematic of (a) Prior 2D and (b) Proposed 3D logic
in memory

Figure 3: Diagram of prior 2D (left) and proposed 3D (right)
PIM structures
proposed 3D structure can improve the chip density by storing the
intermediate results in a different layer compared to the 2D struc-
ture. Moreover, a memory layer and a computation layer are paired
and they can be stacked with multiple layers. Therefore, our design
enables parallel operation with a single input signal. In the case of
Fig. 4, the UPIM NOR operations of A and B, D and E can be exe-
cuted in parallel with a single PIM operation. Table. 1 summarizes
the comparison of the proposed UPIM to existing technologies.

3 EXPERIMENTAL RESULTS
3.1 Experimental Setup
Performance and energy consumption have been obtained by Ca-
dence Virtuoso and Spectre simulators with 45nm CMOS process
technology. We use VTEAM memristor model [23] with RLRS and
RHRS of 10KΩ and 10MΩ respectively. We implement the diode
model with saturation current (IS), ohmic resistance (RS) and emis-
sion coefficient (N ) for 1.8e-5A, 1.43Ω and 1.22, respectively. We
compare the efficiency of the proposed UPIM design with AMD
R390 GPU and state-of-the-art PIM designs, [15, 18, 24].

3.2 Energy and Performance
As discussed in Section 2.1 and 2.2, our unipolar-based logic is
operated in the 1D1R structure, which shows lower static power
consumption by reducing sneak current dissipation. Fig. 5 shows
the energy and energy-delay product (EDP) improvements of run-
ning applications on proposed UPIM and state-of-the-art PIM de-
signs [15, 18, 24], which use 1D1R and 1R cell structures, respec-
tively. All results are normalized to energy and EDP of AMD GPU.
For each application, the size of the input dataset is fixed to 512MB.
In traditional cores, the energy and performance of computation
consist of two terms: computation and data movement. In conven-
tional cores, the data movement is restricted by a small cache size of
a transitional core which increases the number of cache miss. Con-
secutively, this degrades the energy consumption and performance
of data movement between the memory and caches. In contrast,
in PIM architecture the dataset is already stored in the memory
and computation is a major cost. Although the memory-based com-
putation is slower than transitional CMOS-based computation (i.e.
floating point units in GPU), in processing the large dataset, the

Figure 4: The integrated structure of 3D UPIM
Table 1: performance of proposed UPIM and other technolo-
gies

IMPLY [18] MAGIC [15] 2D-UPIM 3D-UPIM
Cell Structure 1R 1R 1D1R 1D1R
Condition 2(Vcond , Vset ) 1(V0) 2(Vin , Vout ) 2(Vin , Vout )

Functions IMPLY (False) OR, NOR, NOT,
AND, NAND

Power High leakage High leakage Low Low
Density Low Low Low High

PIM works significantly faster than GPU. Our evaluation shows
that UPIM achieves 31.3× energy efficiency, and 113.8× EDP im-
provement as compared to GPU. As compared to the state-of-the-art
PIM design based on the bipolar switching mode, UPIM achieves
3.1× lower energy consumption. The higher efficiency of the UPIM
comes from its more efficient approach in calculating a single NOR
operation as explained in Sec. 2.2.

3.3 Process Variation
The UPIM design uses a configurable resistor, RG . To make our
design robust, we determine the resistor value with consideration
of process variation, which most of today's technology suffers. In
our experiment, there are two major factors that induce process
variation, memristor dimension, and near-far cell difference. The
dimension variation comes from a diameter deviation during litho-
graph and etching process in the formation of pillar memristors,
which results in the resistance variation on UPIM [25]. The resis-
tance variation also occurs between near and far cells in a memory
array. We consider the near-far effect on the UPIM operations in a
mat array with the size of 1Mb as shown in Fig. 6(a). When RG and
ROUT are located on an edge of the mat, the resistance recognized
from either RG or ROUT are different over near and far cells. For
example, in the case of the far cells, the BL resistance are added to
a memristor resistance. Since VBL is the electrical potential of the
point at which RG meets the BL, RI N [1023] additionally includes
the resistance of the BL connected to 1024 cells, while RI N [0] does
not have such an effect.

Fig. 6(b) shows VBL characteristic as a function of RG , when
input values are 00 and 01, considering the factors of the process
variation. All VBL transfer curves are presented with dimension
variation of 10%, denoted as (H). As RG increases, the electrical
potential in the BL increases due to an escalation of the voltage
applied to RG .VOUT −VBL has to be higher thanVSET for the case
of 00 and lower than VSET for other cases, i.e., 10,01,11. Thus, the
gap between VOUT − VBL@10 and VOUT − VBL@00 needs to be
enough wide for operation stability. The voltage gap, denoted as
VBL margin, is tunable by adjusting RG value. Fig. 6(c) shows the
simulation results of the VBL margin for different RG . We extract
an optimized RG point from the graph of VBL margin with an RG .
Based on this analysis, we choose the optimal RG value, RG,OPT , by
300KΩ to guarantee computation accuracy, despite existing process
instability.

3.4 Evaluation for Area Efficiency
We evaluated the area efficiency of our design as compared to the
MAGIC [15], a state-of-the-art PIM design. The area efficiency of
the PIM techniques is mainly dependent on two factors, i.e., the
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(a) Energy (b) Energy-Delay Product
Figure 5: Energy and Energy-delay product improvement of UPIM and state-of-the-art [15, 18, 24] for different applications.

Figure 6: VBL margin and RG optimization

area overhead for intermediate cells and for interconnects. The two
overheads were defined by ALOGIC / AMEM and AI NT / AMEM
where ALOGIC and AI NT are the area of additional cells for logic
functions and interconnect design, and AMEM is the area of origi-
nal memory cells. As shown in Fig 7(a), the UPIM outperforms the
MAGIC in terms of the logic overhead. Since the UPIM design stacks
the intermediate cells on different layers, it can implement the arith-
metic operations, i.e., addition and multiplications, without area
penalty for the logic. On the other hand, Fig. 7(b) shows the effect of
3D-stacked structure on integration density for the interconnects.
The result shows that the interconnects in the 3D-stacked design
require additional overhead for vertical shifts. However, since the
UPIM design exploits the vertical transistors for the interconnects,
it occupies less area over the conventional planar transistor. This
makes the interconnect overhead minimal, i.e., only 3.1% compared
to the MAGIC design. Fig. 7(c) shows the area efficiency comparison
in terms of the cell size for different 3D stack decisions. Although
the cell size difference between UPIM and MAGIC is less than 5% in
a single layer, the efficiency increases as more stacks are exploited.
For the six-layered structure, the cell size of UPIM reaches 0.67F 2,
which is much less than 4F 2, considered as the minimum cell size
of 2D-based memristor design.

4 CONCLUSION
We present an energy efficient and high-density PIM architecture
which enables logic-in-memory based on unipolar-switching mem-
ristors. The proposed design resolves the static power issue due to
the sneak current by implementing the logic in the 1D1R cell struc-
ture. Our design also addresses the low cell-density of other PIM
technologies due to extra area consumption for storing computation
results by implementing them in 3D CBA. The experimental results
show that our design presents 3.1× and 31.3× improvement in en-
ergy consumption compared to the state-of-the-art PIM designs
and the GPU architecture, respectively.
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