skip to main content
research-article

Detecting and Assessing Anomalous Evolutionary Behaviors of Nodes in Evolving Social Networks

Authors Info & Claims
Published:23 January 2019Publication History
Skip Abstract Section

Abstract

Based on the performance of entire social networks, anomaly analysis for evolving social networks generally ignores the otherness of the evolutionary behaviors of different nodes, such that it is difficult to precisely identify the anomalous evolutionary behaviors of nodes (AEBN). Assuming that a node's evolutionary behavior that generates and removes edges normally follows stable evolutionary mechanisms, this study focuses on detecting and assessing AEBN, whose evolutionary mechanisms deviate from their past mechanisms, and proposes a link prediction detection (LPD) method and a matrix perturbation assessment (MPA) method. LPD describes a node's evolutionary behavior by fitting its evolutionary mechanism, and designs indexes for edge generation and removal to evaluate the extent to which the evolutionary mechanism of a node's evolutionary behavior can be fitted by a link prediction algorithm. Furthermore, it detects AEBN by quantifying the differences among behavior vectors that characterize the node's evolutionary behaviors in different periods. In addition, MPA considers AEBN as a perturbation of the social network structure, and quantifies the effect of AEBN on the social network structure based on matrix perturbation analysis. Extensive experiments on eight disparate real-world networks demonstrate that analyzing AEBN from the perspective of evolutionary mechanisms is important and beneficial.

References

  1. L. A. Adamic and E. Adar. 2003. Friends and neighbors on the web. Social Networks 25, 3 (2003), 211--230Google ScholarGoogle ScholarCross RefCross Ref
  2. R. Ahmed and G. Karypis. 2015. Algorithms for mining the coevolving relational motifs in dynamic networks. ACM Transactions on Knowledge Discovery from Data 10, 1 (2015), 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. M. Ahmed and L. Chen. 2016. An efficient algorithm for link prediction in temporal uncertain social networks. Information Sciences 331 (2016), 120--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. M. Aiello, A. Barrat, R. Schifanella, C. Cattuto, B. Markines, and F. Menczer. 2012. Friendship prediction and homophily in social media. ACM Transactions on the Web 6, 2 (2012), 1--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Leman Akoglu and Christos Faloutsos. 2008. Event detection in time series of mobile communication graphs. In Army Science Conference.Google ScholarGoogle Scholar
  6. L. Akoglu, H. Tong, and D. Koutra. 2015. Graph based anomaly detection and description: a survey. Data Mining and Knowledge Discovery 29, 3 (2015), 626--688. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ferraz Costa Alceu, Yamaguchi Yuto, Juci Machado Traina Agma, Traina Caetano, and Faloutsos Christos. 2017. Modeling temporal activity to detect anomalous behavior in social media. ACM Transactions on Knowledge Discovery from Data 11, 4 (2017), 49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Araujo, S. Papadimitriou, S. Günnemann, C. Faloutsos, P. Basu, and A. Swami. 2014. Com2: fast automatic discovery of temporal (comet) communities. In PAKDD'14.Google ScholarGoogle Scholar
  9. B. Barzel and A. L. Barabási. 2013. Network link prediction by global silencing of indirect correlations. Nature Biotechnology 31, 8 (2013), 720--725.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. 2009. Network analysis in the social sciences. Science 323, 5916 (2009), 892.Google ScholarGoogle Scholar
  11. C. Chelmis and V. K. Prasanna. 2013. Social link prediction in online social tagging systems. ACM Transactions on Information Systems 31, 4 (2013), 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Chen and Y. Saad. 2012. Dense subgraph extraction with application to community detection. IEEE Transactions on Knowledge and Data Engineering 24, 7 (2012), 1216--1230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Clauset, C. Moore, and M. E. Newman. 2008. Hierarchical structure and the prediction of missing links in networks. Nature 453, 7191 (2008), 98--101.Google ScholarGoogle Scholar
  14. K. Do, T. Tran, S. Venkatesh. 2018. Energy-based anomaly detection for mixed data. Knowledge and Information Systems 57, 2, 413--435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Xiaowen Dong, Mavroeidis Dimitrios, Calabrese Francesco, and Frossard Pascal. 2015. Multiscale event detection in social media. Data Mining and Knowledge Discovery 29, 5 (2015), 1374--1405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Stilo Giovanni and Velardi Paola. 2016. Efficient temporal mining of micro-blog texts and its application to event discovery. Data Mining and Knowledge Discovery 30, 2 (2016), 372--402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Grinstein, C. Plaisant, S. Laskowski, T. O'Connell, J. Scholtz, and M. Whiting. 2008. VAST 2008 Challenge: Introducing mini-challenges. In VAST'2008.Google ScholarGoogle Scholar
  18. R. Guimerà and M. Sales-Pardo. 2010. Missing and spurious interactions and the reconstruction of complex networks. In National Academy of Sciences of the United States of America 106, 52 (2010), 22073.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. Gupta, J. Gao, Y. Sun, and J. Han. 2012. Integrating community matching and outlier detection for mining evolutionary community outliers. In SIGKDD'12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Hamdi, V. Krishnamurthy, and G. Yin. 2014. Tracking a Markov-modulated stationary degree distribution of a dynamic random graph. IEEE Transactions on Information Theory 60, 10 (2014), 6609--6625.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. A. Hanley and B. J. Mcneil. 1982. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 143, 1 (1982), 29--36. -->Google ScholarGoogle ScholarCross RefCross Ref
  22. K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, and L. Akoglu. 2012. RolX: structural role extraction and mining in large graphs. In SDMKDD'12. 1231--1239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Hoefer. 2013. Local matching dynamics in social networks. Information and Computation 222, 4 (2013), 113--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lvlin Hou, M. Small, and S. Lao. 2014. Maximum entropy networks are more controllable than preferential attachment networks. Physics Letters A 378, 46 (2014), 3426--3430.Google ScholarGoogle ScholarCross RefCross Ref
  25. W. Hu and G. G. Yen. 2015. Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Transactions on Evolutionary Computation 19, 1 (2015), 1--18.Google ScholarGoogle ScholarCross RefCross Ref
  26. H. Huang, J. Tang, L. Liu, J. D. Luo, and X. Fu. 2015. Triadic closure pattern analysis and prediction in social networks. IEEE Transactions on Knowledge and Data Engineering 27, 12 (2015), 3374--3389. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. D. Hunt and J. R. Deller. 1995. Selective training of feed forward artificial neural networks using matrix perturbation theory. Neural Networks 8, 6 (1995), 931--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Ibrahim, A. Elbagoury, M. S. Kamel, and F. Karray. 2018. Tools and approaches for topic detection from twitter streams: survey. Knowledge and Information Systems 54, 3 (2018), 511--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Jonnalagadda, and L. Kuppusamy. 2018. Overlapping community detection in social networks using coalitional games. Knowledge and Information Systems 56, 3 (2018), 637--661. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. U. Kang, S. Papadimitriou, J. Sun, and H. Tong. 2011. Centralities in large networks: algorithms and observations. In SDM'11.Google ScholarGoogle Scholar
  31. B. Klimt and Y. Yang. 2004. The enron corpus: a new dataset for email classification research. Lecture Notes in Computer Science 3201 (2004), 217--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Danai Koutra, Neil Shah, Joshua T. Vogelstein, Brian Gallagher, and Christos Faloutsos. 2016. DeltaCon: principled massive-graph similarity function with attribution. ACM Transactions on Knowledge Discovery from Data 10, 3 (2016), 1--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Leskovec and C. Faloutsos. 2006. Sampling from large graphs. In SIGKDD'06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Leskovec, J. Kleinberg, and C. Faloutsos. 2006. Overview of the 2003 KDD cup. In SIGKDD'06. 149--151.Google ScholarGoogle Scholar
  35. J. Leskovec, J. Kleinberg, and C. Faloutsos. 2007. Graph Evolution: densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data 1, 1 (2007), 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Leskovec, K. J. Lang, and M. Mahoney. 2010. Empirical comparison of algorithms for network community detection. In WWW'10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. K. Lewis, M. Gonzalez, and J. Kaufman. 2012. Social selection and peer influence in an online social network. National Academy of Sciences of the United States of America 109, 1 (2012), 68--72.Google ScholarGoogle ScholarCross RefCross Ref
  38. D. Liben-Nowell and J. Kleinberg. 2007. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58, 7 (2007), 1019--1031. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Y. H. Lin, S. H. Shao, Y. Wang, and X. Yin. 2015. A low temperature expansion for matrix quantum mechanics. Journal of High Energy Physics 5 (2015), 136.Google ScholarGoogle ScholarCross RefCross Ref
  40. L. Lü and T. Zhou. 2011. Link prediction in complex networks: a survey. Physica A Statistical Mechanics and Its Applications 390, 6 (2011), 1150--1170.Google ScholarGoogle ScholarCross RefCross Ref
  41. L. Lü, C. H. Jin, and T. Zhou. 2009. Similarity index based on local paths for link prediction of complex networks. Physical Review E 80, 4 (2009), 593--598.Google ScholarGoogle ScholarCross RefCross Ref
  42. L. Lü, L. Pan, T. Zhou, Y. C. Zhang, and H. E. Stanley. 2015. Toward link predictability of complex networks. Proceedings of the National Academy of Sciences of the United States of America 112, 8 (2015), 2325.Google ScholarGoogle ScholarCross RefCross Ref
  43. A. Mahmood, M. Small, S. Almaadeed, and N. Rajpoot. 2017. Using geodesic space density gradients for network community detection. IEEE Transactions on Knowledge and Data Engineering 29, 4 (2017), 921--935. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. V. Martínez, F. Berzal, and J. C. Cubero. 2016. A survey of link prediction in complex networks. ACM Computing Surveys 49, 4 (2016), 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. A. Marvel, S. H. Strogatz, and J. M. Kleinberg. 2009. Energy landscape of social balance. Physical Review Letters 103 (2009), 19.Google ScholarGoogle ScholarCross RefCross Ref
  46. P. Mazumdar, B. K. Patra, K. S. Babu, and R. Lock. 2017. Hidden location prediction using check-in patterns in location-based social networks. Knowledge and Information Systems 57, 3 (2017), 571--601. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. L. Mei, and S. W. Zhang. 2007. Coupling technique of variational iteration and homotopy perturbation methods for nonlinear matrix differential equations. Computers and Mathematics with Applications 54, 7 (2007), 1092--1100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. V. H. Moghaddam, and J. Hamidzadeh. 2016. New hermite orthogonal polynomial kernel and combined kernels in support vector machine classifier. Pattern Recognition 60 (2016), 921--935. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. M. Mongiovi, P. Bogdanov, R. Ranca, A. K. Singh, E. E. Papalexakis, and C. Faloutsos. 2013. Netspot: spotting significant anomalous regions on dynamic networks. In SDM'13.Google ScholarGoogle Scholar
  50. M. C. V. Nascimento. 2014. Community detection in networks via a spectral heuristic based on the clustering coefficient. Discrete Applied Mathematics 176, 3 (2014), 89--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. C. C. Noble and D. J. Cook. 2003. Graph-based anomaly detection. In SIGKDD '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. J. P. Onnela, J. Saramaki, J. Kertész, and K. Kaski. 2005. Intensity and coherence of motifs in weighted complex networks. Physical Review E Statistical Nonlinear and Soft Matter Physics 71, 6 (2005), 531--536.Google ScholarGoogle ScholarCross RefCross Ref
  53. L. Pan, T. Zhou, L. Linyuan, and C. K. Hu. 2016. Predicting missing links and identifying spurious links via likelihood analysis. Scientific Reports 6 (2016), 22955.Google ScholarGoogle ScholarCross RefCross Ref
  54. E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos. 2012. ParCube: Sparse parallelizable tensor decompositions. In ECML-PKDD'12.Google ScholarGoogle Scholar
  55. A. Paranjape, A. R. Benson, and Leskovec. 2017. Motifs in Temporal Networks. In WSDM'17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. A. Pecli, M. C. Cavalcanti, and R. Goldschmidt. 2018. Automatic feature selection for supervised learning in link prediction applications: a comparative study. Knowledge and Information Systems 56, 1 (2018), 85--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Panzarasa Pietro, Opsahl Tore, and M. Carley Kathleen. 2009. Patterns and dynamics of users' behavior and interaction: network analysis of an online community. Journal of the American Society for Information Science and Technology 60, 5 (2009), 911--932. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabási. 2002. Hierarchical organization of modularity in metabolic networks. Science 297, 5586 (2002), 1551.Google ScholarGoogle Scholar
  59. R. Rossi, B. Gallagher, J. Neville, and K. Henderson. 2012. Role-dynamics: fast mining of large dynamic networks. In WWW'12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson. 2013. Modeling dynamic behavior in large evolving graphs. In WSDM'13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. K. Saito, M. Kimura, K. Ohara, and H. Motoda. 2016. Super mediator -- a new centrality measure of node importance for information diffusion over social network. Information Sciences 329 (2016), 985--1000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. A. Shapiro. 2010. Perturbation analysis of optimization problems in banach spaces. 2010. Numerical Functional Analysis and Optimization 13, 1 (2010), 97--116.Google ScholarGoogle ScholarCross RefCross Ref
  63. P. Shoubridge, M. Kraetzl, W. D. Wallis, and H. Bunke. 2002. Detection of abnormal change in a time series of graphs. Journal of Interconnection Networks 3, 1 (2002), 85--101.Google ScholarGoogle ScholarCross RefCross Ref
  64. Y. Sun, J. Han, J. Gao, and Y. Yu. 2009. iTopic model: information network-integrated topic modeling. In ICDM'09. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. W. Q. Wang, Q. M. Zhang, and T. Zhou. 2011. Evaluating network models: a likelihood analysis. EPL 98, 2 (2011), 28004--28009.Google ScholarGoogle ScholarCross RefCross Ref
  66. H. Wang, W. Hu, Z. Qiu, and B. Du. 2017. Nodes' evolution diversity and link prediction in social networks. IEEE Transactions on Knowledge and Data Engineering 29, 10 (2017), 2263--2274.Google ScholarGoogle ScholarCross RefCross Ref
  67. W. Wei and K. M. Carley. 2015. Measuring temporal patterns in dynamic social networks. ACM Transactions on Knowledge Discovery from Data 10, 1 (2015), 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. R. C. Wilson, E. R. Hancock, and B. Luo. 2005. Pattern vectors from algebraic graph theory. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 7 (2005), 1112--1124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Xiaowei Xue, Min Yao, and Zhaohui Wu. 2017. A novel ensemble-based wrapper method for feature selection using extreme learning machine and genetic algorithm. Knowledge and Information Systems 57, 2 (2017), 389--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. T. Zhou, L. Lü, and Y. C. Zhang. 2009. Predicting missing links via local information. The European Physical Journal B-Condensed Matter and Complex Systems 71, 4 (2009), 623--630.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Detecting and Assessing Anomalous Evolutionary Behaviors of Nodes in Evolving Social Networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Knowledge Discovery from Data
          ACM Transactions on Knowledge Discovery from Data  Volume 13, Issue 1
          February 2019
          340 pages
          ISSN:1556-4681
          EISSN:1556-472X
          DOI:10.1145/3301280
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 23 January 2019
          • Accepted: 1 November 2018
          • Revised: 1 September 2018
          • Received: 1 March 2018
          Published in tkdd Volume 13, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format