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ABSTRACT

Due to the ever-growing concerns on the air pollution and
energy security, many cities have started to update their
taxi fleets with electric ones. Although environmentally
friendly, the rapid promotion of electric taxis raises prob-
lems to both taxi drivers and governments, e.g., prolonged
waiting/charging time, unbalanced utilization of charging
infrastructures and reduced taxi supply due to the long charg-
ing time. In this paper, we make the first effort to understand
the long-term evolving patterns through a five-year study
on one of the largest electric taxi networks in the world, i.e.,
the Shenzhen electric taxi network in China. In particular,
we perform a comprehensive measurement investigation
called ePat to explore the evolving mobility and charging
patterns of electric vehicles. Our ePat is based on 4.8 TB taxi
GPS data, 240 GB taxi transaction data, and metadata from
117 charging stations, during an evolving process from 427
electric taxis in 2013 to 13,178 in 2018. Moreover, ePat also
explores the impacts of various contexts and benefits during
the evolving process. Our ePat as a comprehensive inves-
tigation of the electric taxi network mobility and charging
evolving has the potential to advance the understanding of
the evolving patterns of electric taxi networks and pave the
way for analyzing future shared autonomous vehicles.
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1 INTRODUCTION

In the vision of smart cities, vehicle electrification has be-
come inevitable since it contributes to significant emission
reduction for better air quality and less energy consumption
[2, 36, 47-50]. Compared to personal cars, taxis as shared ve-
hicles have high gas consumption and emissions due to their
long-time daily operations. For example, replacing a conven-
tional gas taxi with an Electric Taxi (ET) creates an emission
impact that is equivalent to replacing eight New York City
personal cars with electric vehicles [30]. It provides a higher
incentive for city governments to replace conventional gas
taxis with ETs. In the recent decade, many cities around the
world have initiated the process of taxi electrification, e.g.,
New York City, London, Beijing, and Shenzhen [35]. Among
these cities, the Chinese city Shenzhen has started the taxi
electrification process from 2010 and achieved the largest ET
network in the world by 2017 [9]. In particular, the number
of ETs in Shenzhen has increased from 50 in 2010 to 12,518
in 2017 [26], and it is projected to be over 18,000 in 2020,
becoming an ET-only taxi network.
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Understanding such long-term evolving patterns of the
Shenzhen ET network is essential for predicting and quanti-
fying ET development roadblocks and benefits for Shenzhen
and other cities. The understanding of ET networks may
be potential for future shared autonomous vehicles [3, 15],
which can be treated as ETs without human drivers [18].

However, the unique characteristics of ETs, e.g., the long
charging durations and unexpected waiting time for refuel-
ing compared with gas taxis, make their operation and charg-
ing patterns very complicated regarding the 5-year evolving.
For example, the average daily operation distance of ETs in
Shenzhen is 430 km, which causes frequent charging activ-
ities because of the limited battery capacity, e.g., average
3.5 times per day [33]. Besides, due to the limited charging
station supply and uneven charging demand, the average
charging time combined with the waiting time for a charging
activity is about 1.5 hours, which reduces the overall taxi
business time by 13.6%. Moreover, the energy consumption
of ETs varies in different contexts, e.g., the lower mileages
caused by the air conditioners at low temperatures. All these
factors, along with a city’s ET evolving process (e.g., more
ETs, more charging stations, better vehicular make/model),
make it extremely challenging to understand the long-term
evolving patterns of a large-scale ET network.

In this paper, we perform a comprehensive measurement
investigation called ePat to explore the evolving patterns of
the ET network based on multi-source datasets. With ePat,
we systematically measure the mobility and charging evolv-
ing patterns of ETs, combined with the accessory charging
network evolving patterns. Finally, an in-depth discussion
is made on the potential applications of our measurement
investigation for other cities that plan to promote large-scale
ET fleets and future shared autonomous vehicles. In particu-
lar, the major contributions of this paper include:

e To our best knowledge, we conduct the first work to
measure and understand the long-term evolving pat-
terns of electric vehicle networks. Our data-driven
investigation has three key features: (i) a long period,
i.e., more than five years; (ii) a large number of ETs, i.e.,
13,178 ETs; (iii) a large number of charging stations and
points, e.g., 117 charging stations. Such a large-scale
data-driven investigation enables us to understand the
evolving process of the mobility and charging patterns
of the ET network, which are difficult to be achieved
with a small-scale or short-term investigation.

e We present a measurement investigation called ePat
for a systematical context-aware measurement study
for ET networks. In addition to ET data and charging
station data, various contextual data are also lever-
aged for spatiotemporal modeling, including urban

partition, weather conditions, etc. We report our mea-
surement results on various metrics related to spatial,
temporal, mobility, energy, CO, emissions, and dri-
vers’ incomes. More importantly, we explain possible
causalities based on various correlation analyses.

e Based on our measurement results, we provide some in-
depth discussions for the lessons and insights learned,
including ET and charging network evolving patterns,
along with how to apply our experiences to other cities
for charging station deployment and policy guidance.
Some of our data-driven insights have been provided
to the Shenzhen transportation committee for a better
future ET development.

2 RELATED WORK

Most investigations of ETs can be classified into two types
based on the investigating periods, i.e., long-term investiga-
tion (over one year) and short-term investigation. For the
existing research, some works are based on large-scale real-
world data (over 1,000 vehicles), while others leverage a small
dataset or simulations. Based on these two factors, we divide
the ET research into four categories, as given in Table 1.

Table 1: Categories of related works

Electric Vehicles Small-Scale Large-Scale
Short-Term | [12, 23, 28, 31, 33] | [13, 24, 37, 38, 41, 42]
Long-Term [16, 27, 32, 54] ePat (Our work)

2.1 Short-Term Investigation

Small-scale: Numerous studies [1, 4, 10, 11, 19, 22, 29, 34,
39, 40, 43-46, 51-53] have been carried out for dealing with
real problems in the ET domain, e.g., charging station siting
and deployment, charging schedule. However, most of the
existing works are based on small-scale real-world ET data
or utilize conventional gas taxi data to simulate ET scenarios.
[12] develops a real-time scheduling approach for ET fleets
based on GPS trajectory records of 550 ETs. [23] develops
an optimal charging station deployment framework based
on 490 ETs’ trajectory records. Compared to these research,
our dataset includes the real-time GPS records of more than
13,000 ETs.

Large-scale: [41] presents an opportunistic wireless charger
deployment scheme for ET fleets to minimize the total de-
ployment cost and maximize the opportunity of picking up
passengers at the chargers based on a large-scale gas taxi tra-
jectory data. [37] develops a scheduling strategy for future
city-scale ETs to avoid congestion in the swapping stations
by leveraging the data of the existing conventional taxi fleet.
But they are based on short-term gas taxi data, which is diffi-
cult to uncover the operating and charging characteristics of



Table 2: Examples of all data sources

GPS plate ID longitude latitude time speed (km/h)
TIDXXXX 114.022901 22.532104 2016-06-16 08:34:43 22
Transaction plate ID pickup time dropoff time cost (CNY) travel distance (m)
TIDXXXX 2015-09-03 13:47:58 2015-09-03 13:57:23 22.6 6954
Urban Partition region ID  longitudel latitudel longitude2 latitude2
114.31559657 22.78559093 114.311230763 22.78220351

ETs, whereas we study a five-year real-world dataset from a
large-scale ET network.

2.2 Long-Term Investigation

Small-scale: There are also some existing works for the
long-term investigation of the ET mobility patterns. [32]
investigates four years’ GPS trace data from 850 ET in Shen-
zhen to understand the battery degradation of ETs. [54] ana-
lyzes a two-year dataset from 34 ETs in Beijing to understand
the operational status, benefits, and charging facilities. These
small networks cannot fully reveal the complexity and ad-
vantage of city-scale networks. Besides, few existing works
investigate the mobility patterns evolving of ETs.
Large-scale: Different from the existing work, we delve the
long-term (over five years) mobility and charging patterns
evolving for a large-scale (over 13,000) ET network. To our
best knowledge, ePat is the first work of data-driven inves-
tigation on studying the long-term mobility and charging
patterns for large-scale ET networks.

2.3 Summary

Existing works mostly study the mobility and charging pat-
terns of ETs with small-scale and short-term data, e.g., fewer
than 1000 taxis and within one week. Even though some
works investigate the mobility patterns of ETs from a large-
scale perspective, they only leverage data in several days.
However, our ePat is the first work to study the long-term
mobility and charging patterns for large-scale ET networks.
Such a long-term data-driven investigation enables us to
identify the real-world ET mobility and charging patterns
evolving, which cannot be revealed using simulation studies,
small-scale data or under a short-term setting.

3 METHODOLOGY

In this section, we introduce our investigation methodol-
ogy by (i) describing our large-scale and multi-source ET
datasets; (ii) contextualizing ET activities by defining opera-
tion and charging characteristics; and (iii) introducing some
quantification measurement metrics.

3.1 Data Description

For this project, we obtain four datasets from Shenzhen,
which is a city with more than 12 million population and
an area of 792 mi?. The time span of these datasets is from
September 2013 to July 2018, during which the percentage
of ETs among all taxis has increased from 2.7% to 65.2%.
The four datasets include 4.8 TB taxi GPS data, 240 GB taxi
transaction data, 117 charging station data, and the urban
partition data with 491 regions of Shenzhen. An example
including some primary fields of each dataset is shown in
Table 2.

3.2 ET Contextualization

We leverage Figure 1 to illustrate how we put the operation
and charging patterns of ETs into contexts from three di-
mensions, i.e., spatial, temporal, and energy. As shown in
Figure 1, the period from ¢, to t5 is defined as a complete
operation and charging cycle.

e Overhead After Charging t,;cking = t1 — to: At time
to, the ET is fully charged and in the full battery capac-
ity status, and then it starts to cruise to seek passengers.
At time 1, it has the first passenger after the charging.
During this process, the battery capacity of the ET
is decreasing. We denote the time from the charging
station to pick up the first passenger as tpicking-

e Normal Operation t,perarion = t2 — ti: Due to the
limited battery capacity and high range anxiety caused
by low battery capacity, ET drivers will start to seek
charging stations when the battery capacity declines
to a certain level [33]. Hence, we define the period
from the first pickup after a charge to the last drop-off
before the next charge as the t,perarion. During this
period, the energy level is non-increasing.

e Overhead Before Charging tsccring = t3 — to: Af-
ter dropping off a passenger at time t,, the ET driver
will stop seeking passengers and go to a charging sta-
tion. At time ¢, it arrives at a charging station, and
we denote the time of seeking a charging station as
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Figure 1: Operation and charging patterns of electric taxis

tseeking- Note that an ET driver may not go to the near-
est charging station due to various factors [31], e.g.,
traffic conditions, and the t;¢cking varies when drivers
choose different charging stations. During this period,
the energy level is always decreasing.

e Overhead for Charging t\4iting + tcharging: At 13,
the ET arrives at a charging station. However, due
to the limited charging points and drivers’ heuristic
charging station searching behaviors, there may be
heavy queuing phenomena in the station at t3, which
results in long waiting time in this station. When there
is a charging point available in the station at t,, this ET
will start to charge and its battery capacity increases.
We leverage the t,,4;ing to stand for the waiting period
for an available charging point (i.e., twaiting = ta —
t3), followed by the charging time in the station (i.e.,
tcharging = ts — tg). After fully charged, this ET will
start to cruise and seek for passengers again.

We define a charging activity as the process of a driver starts
to seek a charging station (i.e., f;) and until he/she finishes
the charging activity (i.e., t5), which is tseeking + twaiting +
tcharging- An operation activity includes the overhead after
charging t,;cking because it happens after charging, so the
duration of an operation activity is tpicking + toperation-

3.3 Quantification Metrics

Mobility Evolving Measurement: We investigate the mo-
bility pattern evolving of the ET network from both spatial
and temporal perspectives. For the spatial pattern evolving,
we define the ET coverage density and the daily operation
distance for quantification. For the temporal pattern evolv-
ing, we utilize the t,;ckingy evolving pattern for quantification,
which has been defined in Section 3.2.

Charging Evolving Measurement: For the charging mea-
surement, we investigate the t\qiring and tcparging €volving
patterns. Besides, we define two quantitative metrics, i.e.,

charging network connectivity and charging station utiliza-
tion rate to quantify the charging network evolving. We also
investigate the charging supply and demand evolving pat-
terns from both temporal and spatial aspects over five years,
from which some insights are derived.

4 INVESTIGATION RESULTS

We present our measurement results from four aspects: (i) the
ET mobility evolving patterns; (ii) the ET charging evolving
patterns; (iii) the impacts of different contexts; and (iv) the
benefits of ET evolving. The details are shown below.

4.1 Mobility Evolving

ET Coverage Density Evolving: We define the ET cover-
age density as the number of GPS in a specific region to
investigate the ET mobility patterns. We leverage the urban
partition data to divide Shenzhen into 491 regions, which is
provided by the Shenzhen government. As in Figure 2, the
darker red means fewer ET activities in this region and the
lighter yellow stands for more ET activities in this region. We
also show the number of GPS records distribution in these
regions in the northeast corners. We have the following ob-
servations: (i) The ET density in Shenzhen has increased
significantly during the five years, especially from 2015 to
2017, almost all the regions have a higher ET density com-
pared to the previous year, which was also observed from
the distributions. Quantitatively, the growth of the density
from 2015 to 2017 has increased 25 times compared with
the previous growth; (ii) the ETs are gathered in the central
business district (CBD) area from 2013 to 2015, but more ETs
start to operate in the suburban areas after 2015. One fac-
tor may be the urbanization process in Shenzhen, e.g., more
companies built and more people live in former suburban
areas [5]. Another reason may be the upgrading of the charg-
ing infrastructures, e.g., more charging stations are built in
suburban areas, which we will investigate in Section 4.2.2.
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Figure 2: The ET coverage density evolving pattern in 491 urban regions

Operation Activity Evolving: In this subsection, we in-
vestigate the long-term operation evolving patterns of ETs
using tp;cking and daily operation distance, which are shown
by box plots as Figure 3 and Figure 4. The top and bottom of
each “box” are the 25th and 75th percentiles of the data. The
middle red lines are the median values. The top and bottom
of each black dash line indicate the maximal and minimal
values. The top red crosses are outliers, which are values
that more than 1.5 times the interquartile range away from
the top value or bottom value of the box.
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Figure 3 shows the evolving of #,;cking, i.€., the duration
from the fully charged time to the first pickup time as shown
in Figure 1. We found that the median value of t;cking is
almost stable at 10 minutes, while the maximal values have
a trend of decrease. We show the daily operation distance
of ETs in Figure 4. Intuitively, there are no obvious evolving
patterns since the new adopted ETs can increase the average
operation distance of the ET fleet even though the battery
degradation nature, which results in relatively stable average
daily operation distance. However, there is a significant drop
in May 2014. We carefully studied the causality, and we
found there is exceptionally severe weather in this month
with heavy rain, resulting in many ETs break down.

4.2 Charging Evolving

We perform an in-depth investigation of the charging activity
evolving for ETs, coupled with the evolving patterns of the
accessory charging network.

4.2.1 Charging Activity Evolving. We leverage t.yqiting and
tcharging to investigate the charging activity evolving of ETs
from year 2013 to 2017.

As shown in Figure 5, the overall trend for t,,4i¢ing is grow-
ing from 2013 to 2017. We then further investigate causalities
behind this phenomenon and one possible reason is that the
number of ETs increased too fast; whereas the increase of
charging infrastructure cannot keep up. Specifically, from
2013 to 2014, the number of ETs had increased about two
hundred, but the number of charging points only increased
by 2, which causes waiting time increases. From 2015 to 2017,
the number of ETs had dramatically increased; whereas only
limited charging stations are built.
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Figure 5: T\yqiting evolving Figure 6: Teparging €volving

Figure 6 shows the average tcharging evolving pattern.
Even though the highest charging time has an increasing
trend, the medians, the 25th, and the 75th percentiles are
close, i.e., about 60, 45, and 75 minutes, respectively. It indi-
cates that most drivers have a relatively stable charging time.
Since the t;¢eking is mainly related to the urban traffic con-
ditions, which is decided by many non-mobility factors, e.g.,
government traffic management and urban road network
evolving, we do not report it as it is difficult to find obvious
evolving patterns even after an in-depth investigation.

4.2.2 Charging Supply Evolving. In Figure 7, we visualize
the evolving pattern of charging supply for ETs in Shenzhen
from year 2013 to 2018 in 491 urban regions. We found the
total number of charging stations has increased from 31 in
2013 to 117 in 2018. Intuitively, ET charging stations are
unevenly distributed in Shenzhen, and the general trend of
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Figure 7: Charging station deployment evolving

the charging station deployment is from the urban areas to
suburban areas, with an accelerated deployment speed from
2013 to 2018, especially from 2016 to 2018, during which
more than 60 charging stations were deployed. We further
compare the increase of charging stations and ETs, which
is given in Figure 8. We found that the number of ETs has
not increased too much from September 2013 to June 2016,
but there is a large-scale adoption after 2016. Especially at
the end of 2017, there is a sharp expansion of ETs, while the
growth rate of charging stations is much lower.

We further investigate the quantitative evolving patterns
of the charging supply by defining the charging network
connectivity, which is the average shortest distance between
charging stations and their neighbor stations shown as Equa-
tion 1. N
2. SD;
i=1

= )
where N is the total number of charging stations in the
charging network net; SD; is the shortest distance neighbor
of the ith charging station.

The charging network connectivity can reflect on aver-
age how far there is another charging station for a given
charging station. We first study the distribution of the dis-
tances between any two charging stations. We found that
the distances between two charging stations can be as short
as 200 meters and as long as 70 km based on our statistics,
but most charging stations have a neighbor station within
5 km. Figure 9 shows the number of charging stations with
at least another charging station within a certain distance,
e.g., from 1 km to 5 km over five years. From Table 3, we
found the charging network connectivity has increased from
2.76 in 2014 to 1.31 in 2018, which indicates the charging
network in 2018 is more resilient to cope with the long wait-
ing phenomena in charging stations. We also found that in
recent two years most charging stations (e.g., 96 stations in
2018, i.e., more than 82% of all 117 stations) have at least
one station within 2 km, making the Shenzhen ET charging

Conn(net) =

network well connected. In this case, if some drivers find
there are no charging points available when they arrive at a
station, they can quickly go to other nearby stations.
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Table 3: Charging network connectivity evolving

Year 2013 | 2014 | 2015 | 2016 | 2017 | 2018
Connectivity (km) | 2.25 | 2.76 | 2.62 | 2.13 | 2.00 | 1.31

4.2.3 Charging Demand Evolving. To understand the charg-
ing demand evolving of ETs, we investigate both the spatial
and temporal charging demands of the ET network, which
are shown in Figure 10 and Figure 11, respectively. As shown
in Figure 10, we found there are four charging demand peaks
in each day, i.e., 3:00-5:00, 11:00-13:00, 16:00-17:00 and 22:00-
23:00. Such a temporal pattern has not changed significantly
in the last five years. Among the four charging peaks, the
first and third ones are before the rush hours for picking
up taxi passengers, which can make them have enough bat-
tery energy to pick up passengers. The second one is during
the lunchtime when the electricity price is relatively low.
We then investigate the electricity prices during the four
peaks, and we find all of the four peaks are in relatively low
electricity price durations.
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Figure 11 shows the accumulative charging demand in
the charging network. Further, we found out that 20% of
charging stations accommodate 80% of charging demand in
2013 due to their convenient locations, e.g., most of them are
located in downtown areas, where the possibility for ETs to



pick up passengers after charging is high. However, such an
unbalanced spatial pattern has improved since 2015 given
the increased charging stations. For example, the charging
demand in top 20% popular charging stations accounts for
only 60% of the total charging demand of the ET fleet in
September 2017, which indicates the unbalanced charging
station utilization phenomenon has improved with more
charging stations deployed.

4.2.4 Charging Station Utilization Rate Evolving. To further
study the relationship between charging demand and supply
at the station level, we define the utilization rate of a charging
station i as the ratio of the daily number of charging events
CE(i) over the charging points CP(i) in this station, as shown
in Equation 2.

. )

()

Figure 12 shows the charging station utilization evolving
during the five years. We found that the highest utilization
rate has doubled from 2013 to 2018 as more ETs promoted,
resulting in more charging demand. However, the charging
station sizes with the highest utilization rates are different,
so we further investigate the geographical feature of the
charging stations. We found the highest utilization rate of
2013 happens in the largest charging station in the CBD area,
which has 112 charging points. This station was also the
largest charging station in 2015 and it remained relatively
high utilization rate in 2015. However, it has been closed
in 2016 due to some security concerns. In 2018, there are
five large charging stations with more than 100 charging
points located in Shenzhen suburban areas to accommodate
the skyrocketing ETs. Even though the utilization rates in
these charging stations is not too low, they are not too high
compared to some small charging stations. We found that
the highest top 5 utilization rates’ charging stations have
the same common features, i.e., (i) located in suburban areas,
e.g., Shenzhen airport, and (ii) include less than 40 charging
points, which is an interesting finding.
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The above utilization rate evolving patterns have the po-
tential to provide guideline for other cities, which have plans

to promote large-scale ETs. For example, if it is feasible to
deploy large charging stations in the urban CBD areas, then
those charging stations have the potential to achieve the
highest utilization rate, which can improve the charging in-
frastructure utilization and reduce the resource waste. If it is
not feasible, more median/small charging stations with less
than 40 charging points should be placed in some important
suburban areas, e.g., airports and transportation hubs.

4.25 Charging Station Field Study. To investigate the charg-
ing patterns of ETs in Shenzhen, our team has performed a
series of field studies at charging stations in Shenzhen from
2015 to 2017. Figure 13 shows the charging station status
observed by us during one of the field studies. As we can
see, a line of charging points are installed under a shelter,
which is used for charging protection; an ET was queuing
at the entrance of the station since there were no charging
points available at that time (12:31 PM); another ET was ap-
proaching a charging point since there was a fully charged
ET leaving the charging point. In this field study, we found
all of the 42 charging points in this station were occupied
from 11:30 - 13:00 and there were queuing phenomena since
12:26 PM and the longest waiting time is up to 31 minutes,
which indicate this charging station may have a high utiliza-
tion rate and a severe queuing phenomenon. This long-time
queuing phenomenon also reflects the unbalanced charging
demand and/or insufficient charging supply.
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Figure 13: Charging and queuing in our field study

4.3 Contextual Factors

4.3.1 Impact of Daytime and Nighttime. In Figure 14, we
found that the operation distance of ETs is different if they
charged in different hours. For example, if an ET is charged
at 3:00, it may be fully charged at 4:30 and leave, then it
travels about 120 km before next charging. We also found
that the charging starting time from 3:00-8:00 and 20:00-
22:00 may result in a more extended operation distance for
ETs even with potential congestion at rush hours. We then
explore the possible reason by considering the passengers’
travel demand, as shown in Figure 15. We found that there is
higher taxi demand around 9:00 and 22:00, which is alighted



with the period that ETs were fully charged and started to
pick up passengers. It may indicate that ET drivers would
prefer to charge before the rush hour for longer cruising
distances, which can potentially reduce their income loss
caused by the long charging time.
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Figure 14: After-charging Figure 15: Passengers’
distance travel demand

4.3.2 Impact of Temperatures & Weather. We select three
temperature levels and three weather conditions to investi-
gate their impacts on ETs’ mobility patterns, i.e., high (27 -
34 °C),low (6 - 8 °C), mild (17 - 25 °C), and sunny, heavy rain
and typhoon. As in Table 4, the average operation distance
under mild temperature is the longest; the average operation
distance under low-temperature is the shortest. One expla-
nation is that the energy consumption rate is the highest in
cold days because of the air conditioners for heating.

As the impacts of different weather, we found that the
average operation distance of ETs in sunny days is longer
than rainy days; the operation distance in hurricane days is
the shortest.

The potential reason could be that in sunny days, ET dri-
vers may reduce the charging time for longer operation dis-
tance. In rainy days, drivers have longer operation distance
than in typhoon days. Hence, we conclude that different
weather conditions have various impacts on the mobility pat-
terns of ETs, e.g., severe weather conditions will potentially
reduce the daily operation distances of ETs.

Table 4: Daily Oper. Distance in Different Contexts

Weather | Distance (km) | Temperatures | Distance (km)
Sunny 447 Mild 437
Heavy Rain 413 High 421
Typhoon 406 Low 389

4.4 ET Benefits

Using the emissions and driver incomes as examples, we
quantificationally compare the ETs with conventional gas
taxis to study the evolving of ETs’ benefits based on their
daily mobility patterns, e.g., operation distances.

4.4.1 Emission Reduction. Based on [25], we consider the
real-world traffic conditions (e.g., travel speed), the daily
travel distance of ETs, and daily travel time of ETs to accu-
rately estimate CO, emission reduction of the ET network,
which is represented by

k
E =K. |0.3T +0.028D + 0.056 Z(5i « (04, - )

i=1

where E is the CO, emissions (g); T is the travel time of taxis
(s); D is the travel distance of taxis (m); K, is the coefficient
between gasoline consume and CO, emissions, which is
2322g (COy)/liter(gasoline) for Shenzhen taxis; v; is the speed
at time i (m/s); J; is a tow-value indicator, taking the value
1 when accelerating (v;4; > v;) otherwise 0 (viy; < v;).
Thus, we estimate the
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pecially in the last
two months of 2017,
the number of ET has
increased significantly, e.g., in December 2017, the CO; re-
duction is close to 1.8 million tons, which is equivalent to
CO; emissions from 176,324 homes’ energy use for one year

according to the U.S. Environmental Protection Agency.
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4.4.2  Driver Income Comparison. A key roadblock of ET
deployment is that many drivers worry about their income
reduction caused by the long charging time of ETs com-
pared with refueling of conventional gas taxis. Here, we
comprehensively consider the daily travel distance of taxis
to calculate the profits of ETs and gas taxis, which can be
represented by

P(j) = () = EG) = 1) = D() * Cy % P @)
where P(j) and I(j) stand for the daily profit and income of
driver j. E(j) includes all costs, e.g., refueling costs, mainte-
nance fees. In this paper, we only consider the refueling costs
because they are the major expenses for the daily operation
of taxis, which depend on taxis’ daily operation distance
D(j) and energy consumption rate C,. For a gas taxi, the
fuel consumption per 100 km is 9 liters, so the energy con-
sumption rate C, for gas taxis is 9 liter/100km. Besides, the
unit oil price P is 1.015$/liter (2017) in Shenzhen. For ETs,
the energy consumption rate C, is 26kWh/100km and the
average electricity price P is 0.1$/kWh in Shenzhen.



In Figure 17, we show the profits evolving of ET drivers
and gas taxi drivers during two years. We found that the av-
erage daily income of each ET driver is about 15% more than
each gas taxi driver per day even though the ET drivers have
lower income. Besides, we also found that the daily opera-
tion time of ETs is about 5% less than gas taxis, from 1.1 h to
0.26 h, which is shown in Figure 18. When considering these
two figures, we found that even though the operation time
decreases for ETs, the profit of ETs can potentially increase
by energy saving, in addition to other benefits, i.e., fewer
emissions, less noise, and more rest time for drivers during
charging. However, since our work focused on operation of
ETs, our analyses did not account for the initial vehicle pur-
chase cost of ETs, which are typically higher than gas taxis.
For example, even with Shenzhen government subsidies, a
BYD e6 costs $29,400; whereas a gas taxi costs $13,200.
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Figure 17: Daily Profit Figure 18: Daily operation
comparison time comparison

5 INSIGHTS AND DISCUSSIONS

In this section, we provide a few insights we obtained in our
measurement study and some discussions.

5.1 Insights

Our long-term investigation has the potential to provide
some insights for (i) city governments, e.g., how to deploy
charging stations and address the unbalanced charging sup-
ply and demand issues; (ii) taxi drivers, e.g., their profits
would not reduce although they have more time to rest; and
(iii) society, e.g., how to promote large-scale ET networks
and how much the quantitative emission reduction. We sum-
marize some key insights below.

Charging Station Deployment: Charging stations play
a key role in large-scale ET promotion. Insufficient charging
infrastructure will result in a longer waiting time for charg-
ing points, as shown in Figure 5. However, even though
enough charging points are deployed, the unbalanced tem-
poral or spatial charging demand and supply reduce the
efficiency of the overall charging network. We found that
the uneven supply and demand phenomena can be improved
by building more charging station in the right locations, as
shown in Figure 11. Based on our investigation of Figure 12,

we found that those large charging stations in urban CBD
area has the best chance to achieve a higher utilization rate,
which can improve the charging infrastructure utilization
and reduce the charging resource waste. Hence, if it is feasible
to deploy large stations in urban CBD area for other cities, it
would be beneficial for promoting their large-scale ET networks;
if it is hard to place large stations in CBD areas due to some
reasons (e.g., land resources unavailable), more median/small
charging stations with less than 40 charging points may be
placed in some important suburban areas (e.g., airports and
transportation hubs), to improve the overall charging efficiency.

Charging Behavior Patterns: There is a stable tempo-
ral charging pattern of ET drivers as shown in Figure 10.
We found a very large gap between the four charging peaks
and the charging valleys, which inevitably result in the un-
derutilized charging and the overcrowded charging during
different hours. The major causality behind this phenome-
non is that Shenzhen has time-varying electricity prices, and
the charging peaks happen in relatively low price periods.
Another reason is that the ET drivers may have the potential
to pick up more passengers as some charging peaks are one
hour before the rush hours. Once this phenomenon exists,
it must need to build more charging stations to accommo-
date ETs, while it will also cause the resource waste in many
hours of every day. This phenomenon will happen with a
very high possibility during the ET promotion process of
other cities, and it is important to address it. One possible
approach is to adjust the electricity prices, e.g., setting lower
electricity prices during the valleys and higher prices for the
peaks for ETs only. For taxi drivers, our investigation can guide
them to charge for minimizing their t,,qiring and reduce the
possible operation loss, e.g., they can charge during 23:00-3:00
as there is the lowest electricity price in Shenzhen.

Charging Contexts: The following three contexts are
explored for their impacts on ET mobility patterns.

e Nighttime: There is no obvious observation indicates
that the cruising mileage of ETs decreases significantly
during the night as shown in Figure 14, even though
we thought that the cruising mileage should drop be-
cause of the headlights compared to the daytime. The
reason may be that typically there is no server traffic
congestion during nights, which results in more ex-
tended cruising range compared to the daytime even
with energy consumption of headlights [6].

e Temperature and Weather: Even though the adverse
temperatures and weathers will decrease the daily op-
eration distance of ETs, e.g., about 4% in hot days and
9% in hurricane days, the reduction is still less than
operation distance reduction of gas taxis under the
same situations based on our investigation. We do not
report the details of gas taxis because we focus on the



ET patterns in this paper. This finding can help better
promote ETS, since the ETs may achieve a higher energy
efficiency even in adverse contexts.

ET Benefits: Even though the overall daily operation time
of ETs has reduced compared to gas taxis, the profits of ET
drivers are potentially higher than gas taxis’ due to the low
electricity prices, (e.g., ET drivers’ daily profits are about
$20 higher than gas taxi drivers’). This finding may lead to a
higher incentive for drivers to accept electric vehicles. Most
importantly, the overall emission reduction can be beneficial
for public health and air quality (e.g., CO; reduction by adopt-
ing ETs in Shenzhen is about 1.8 million tons in December
2017), which is important for a sustainable society.

5.2 Discussions

Limitation. In this work, we only utilize ET data from Shen-
zhen to study the ET evolving process. Due to certain features
of Shenzhen (e.g., the most crowded city in China with the
fastest economic growth, a tropical city with mild winters),
the results we have in Shenzhen may not be applied all other
cities. However, we argue that our investigation along with
electric vehicle operation models [12, 20, 23, 24] can provide
envisions for other cities to predict and understand their ET
evolving process by considering their own city features.

Privacy Protections and Data Management. During
this project, we establish a secure and reliable transmission
mechanism with a wired connection, which feeds our server
the filtered ET data collected by Shenzhen transportation
committee by using a cellular network. The filtering process
replaces sensitive data, e.g., plate ID with a serial number for
privacy protections. We utilize a 34 TB Hadoop Distributed
File System (HDFS) on a cluster consisting of 11 nodes, each
of which is equipped with 32 cores and 32 GB RAM. For
daily management and processing, we utilize the MapReduce
based Pig and Hive since our analyses are based on log data,
instead of streaming data. Due to long-term GPS data and
transaction data, we have been dealing with several kinds of
errant data (e.g., duplicated data, missing data, and logical
errors of data) to obtain the data for this project.

A Balance between ET and Station Evolving: The re-
lationship between electric vehicles and charging infrastruc-
ture (i.e., both charging stations and charging points) is in-
terdependent on lots of factors. If the charging points and
charging stations are not enough, it is challenging to promote
electric vehicles. However, if the charging infrastructure is
much more than necessary in a city with only a small num-
ber of electric vehicles, many charging points will be idle,
leading to low utilization rates. As a result, a balance needs
to be achieved between the number of electric vehicles and
the number of charging stations and charging points. One
possible solution to achieve the balance could be designing an

intelligent charging recommendation system for the ET net-
work under a centralized management mode. In this case, we
can know information of all ETs and charging stations in the
ET network, and then we can recommend ETs to charging sta-
tions for minimizing their charging overhead and balancing
the utilization rates of charging stations at the same time. With
the charging recommendation system, we can potentially know
how many charging stations/points are enough for the ETs to
avoid low-efficient charging resource deployment.

Current Impacts. Based on ePat, our understanding of
mobility and charging patterns of ET fleets at city scale can
be valuable to charging infrastructure providers, ET drivers
and government managers. For example, a charging infras-
tructure provider can build more efficiently charging stations
near the frequently-traveled road segments by ETs. Further,
taxi drivers may also potentially reduce their charging over-
head because there are more charging points available in
short distance. Moreover, Shenzhen government agency will
benefit from mobility and charging pattern understanding
as well because they may evaluate their current ET devel-
opment for better future upgrading. We have reported our
insights from our investigation to Shenzhen transportation
committee for better charging station deployment and ET
adoption, including some recommended charging station
locations and the possible electricity price mechanism for
ET charging. These insights were well received but it needs
to take some time to see the actual results. Even though
the government officials think our results provide valuable
technical insights, the real-world deployment is extremely
complicated and mostly dependent on policies. As a result,
instead of deciding the development and evolving strategy,
our next objective is to utilize our framework to quantify the
benefit of a pre-defined evolving strategy.

Potential Impacts. (i) A good charging station deployment
strategy is also beneficial for promoting large-scale ET net-
works. Our investigation has the potential to guide other
cities to deploy the charging stations more efficiently and
economically, achieving success ET promotion. For example,
We can guide them where to deploy charging stations and
how many charging points are appropriate for each charg-
ing station. More specifically, urban CBD areas would be
the best places for large cities if the land resources are avail-
able for them. Some median/small charging stations with
less than 40 charging points in some important suburban
areas are also good choices for charging station deployment.
We can also estimate how many charging points are suffi-
cient for other cities based on Shenzhen model and their taxi
operation patterns. (ii) Our investigation can help people
learn the quantitative benefits of ETs and accept this new
thing, which can potentially promote other electric vehi-
cles, e.g., electric cars. (iii) Based on the current prediction
[18], shared autonomous vehicles [7, 8, 11, 14, 17, 21] are



most likely to be electric vehicles, which will be cursing
around a city to pick up and drop off passengers or parking
until dispatched. These features make shared autonomous
vehicles very similar to ETs, except the human driver factors.
Hence, our investigation on ET evolving process is extremely
valuable to predict and quantify the impact of future shared
autonomous vehicles. For example, our results on various
metrics may be reapplied to shared autonomous vehicles
with some modified targeting human driver factors, future
parking, and charging models, etc.

6 CONCLUSION

In this paper, we conduct the first work to understand the
long-term ET network evolving mobility and charging pat-
terns based on the ET network in the Chinese city Shenzhen,
which includes more than 13,000 ETs and 117 charging sta-
tions. Our study is from a comprehensive spatiotemporal
perspective to investigate the long-term evolving patterns
of an ET network. We provide a few insights regarding the
evolving process of charging station deployment and utiliza-
tion, ET coverage density, operation, and mobility patterns
under various contexts. We also quantify the emission re-
duction and driver income benefits of the ET network based
on their mobility patterns. For the immediate benefit, un-
derstanding long-term evolving patterns of Shenzhen ET
network provides valuable experiences for Shenzhen and
other cities to further promote ETs. For the long-term ben-
efit, our ePat may be used to predict the evolving process
of future shared autonomous vehicles and quantify their
benefits due to their similar characteristics to ETs.
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