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ABSTRACT
Implementing solutions for optimisation problems with general
purpose high-level programming languages is a time consuming
task that can only be carried out by professional software develop-
ers who typically are not domain experts. We address this problem
by developing the Domain Specific Language Athos that allows
declarative specification of Vehicle Routing Problems with Time
Windows (VRPTW). The model is input to a generator that cre-
ates programs to solve the VRPTW in a multi-agent environment
(NetLogo) which is further extended with a Genetic Algorithm
optimiser.

We discuss the overall Athos architecture and compare the mod-
els with the generated code to demonstrate the benefit for develop-
ers by discussing general language related considerations. A case
study with a published benchmark gives proof for the practical
feasibility of our approach.

Beyond the quality criteria discussed in this paper future work
will include extensive field experiments with domain experts ap-
plying the language to harden the language and improve usability.

Keywords – Genetic Algorithms, Model Driven Software Devel-
opment, Multi Agent Systems, Vehicle Routing Problems

CCS CONCEPTS
• Applied computing → Transportation; Forecasting; • Soft-
ware and its engineering→ Source code generation; System
modeling languages; Software development techniques;
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1 INTRODUCTION
This paper describes the application of a DSL, named Athos, to the
domain of Vehicle Routing Problems (VRPs). VRPs are a range of
real-world problems which require the planning of one or more
vehicles to visit a number of customers. There exists many variants
of the basic problem which can encompass constraints such as
loading capacities, time windows for visits or requirements for
breaks from driving. Traditionally, VRPs have been modelled in a
general-purpose, high-level language, such as C or Java. The model
is typically coded in the same language as the algorithm used to
solve it. This approach frequently leads to each attempt to solve a
VRP being coded from scratch, which has two major drawbacks:
• Development time is wasted producing many similar VRP
models in a high level language.
• Domain experts (e.g. transport planners) normally lack soft-
ware development experience and need to engage the ser-
vices of a software engineer to develop the model.

The authors believe that the development of a DSL for VRPs will
overcome the above two problems. The specification of a model
using a DSL will be quicker than using a high-level language. The
use of a DSL should allow a domain expert to be able to undertake
some or all of the model development. This approach allows faster
development of models and also increases the influence of the
domain export on the model formulation. Our principle motivation
in carrying out this work is to empower the domain expert allowing
them to apply their expertise and experience directly to the problem
via the DSL. We examine the question how a DSL can simplify the
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modelling of a VRP and allow the model to be solved and visualised.
After discussing related work this paper presents the Athos DSL and
its architecture i.e. the Athos syntax and the process of generating
code for a target platform. General language quality issues are
addressed before the practical feasibility of Athos is demonstrated
with a case study inspired by a real world problem derived from a
cooperating company business case. We relate the case study to a
published benchmark and to compare results.

2 RELATEDWORK
In [15] Steil et al. present a model for the the expression, execution,
evaluation and engagement of routing plans to which they refer as
the 4Es model. They use the model to map all relevant steps in the
domain of patrol routing to appropriate software components. In
the presented approach, routing algorithms are defined by means
of a DSL named Turn. The DSL is used to describe algorithms that
allow an agent to determine its next target node in a graph network.
To this end, Turn enables the user to specify algorithms for target
selection as a composition of so-called set reduce functions (SRFs).
An SRF is given a set of possible target nodes and reduces this set
according to certain criteria. Turn is used to chain and configure an
arbitrary number of such SRFs and optionally assign an execution
probability for each SRF. An SRF chain then is executed until only
one node is left which becomes the new target node. If the subset
comprises multiple nodes, one of these nodes is chosen randomly as
the next target node. Algorithmswritten in Turn are executed by the
PatrolSim environment which also evaluates routes produced by the
algorithms according to a pre-defined set of metrics. A geographic
information system (GIS) engages users through provision of patrol
routes upon request.

The presented 4Es model is similar to our approach in that it is
situated in the domain of VRPs. The creation of satisfactory patrol
routes is a problem related to the Vehicle Routing Problem with
Time Windows (VRPTW). What both approaches have in common
is the application of a DSL for the specification of agents’ behaviour.
Though both DSLs can be used to direct agents through a network
of nodes, they differ in the way target nodes are specified. While
Turn is mainly a composition of rules that successively reduce a
set of potential target nodes, Athos descriptions allow an explicit
statement on which node or set of nodes to visit or to create an
optimal tour from a given set of nodes. Another subtle difference
is the way behaviour changes are defined in both languages. In
Turn, events that lead to a change of behaviour are “hidden” inside
the SRF. When an SRF returns an empty set of nodes it is skipped,
which leads to the application of another SRF and thus to the change
of behaviour. However, when exactly an empty set is returned is
defined inside the called SRF. In Athos, it is possible to explicitly
state when a change of behaviour has to occur by providing a
boolean-expression following the keyword when.

Another aspect that completely distinguishes the 4Es model from
our approach is that in the 4Es model the cost to travel between any
two nodes is defined as the minimum number of vertices between
these nodes. In other words, the cost is defined as the minimum
hop-count. This approach is not only one-dimensional, but also
extremely static. Once the distance between two nodes is defined,
it remains the same throughout the entire simulation. Athos allows

the definition of an arbitrary number of cost functions for travelling
inside the network. Moreover, these cost functions can contain
factors that dynamically change depending on the current traffic
situation.

Literature on DSLs designed for the specification of complex
vehicle routing problems in a multi-agent environment is scarce.
By contrast, considerably more research has been conducted on
general DSLs with a focus on multi-agent systems.

The GAMA framework [7] aims to provide support in the cre-
ation of spatialised, multi-scale agent-based models. It features a
DSL named GAML that was created with the intention of facilitat-
ing the design of agent-based simulation experiments. Hence, it
seeks to raise the abstraction level while at the same time allowing
for easy parametrisation and flexible visualisation of the models.
GAML is a feature-rich language that allows to describe arbitrary
details of the model. A characteristic trait of the language is its
capability to integrate multiple-levels of abstraction in one simula-
tion. So it is capable of integrating a coarse-granular model for a
road network with several fine granular models that represent the
inside of buildings adjacent to the roads. GAML can be considered
a language that increases the abstraction level of models compared
to those created in other simulation platforms like Repast or Netl-
ogo. However, since the GAMA framework is not tailored towards
one specific application domain, models written in GAML seem
complex. Domain experts with little to no experience in any pro-
gramming might find concepts such as data types or the definition
of aspects to visualise agents in the simulation hard to understand.

Theoretically, all of these approaches could provide support in
the development of agent-based simulations for real-world VRPs.
However, the main benefit of these approaches would be a sim-
plified modelling of general agent concepts such as facts known
by an agent. None of these approaches can be used to generate
traffic simulations from a DSL specification without considerable
additional effort. This effort would be required for the development
of either an appropriate simulation-platform that processes the
models created by the DSL or a generator which would transform
the DSL programs to an executable traffic simulation.

3 ATHOS
3.1 The Problem Domain
The field of vehicle routing encompasses problems ranging from
the Travelling Salesman Problem (TSP) [4] to the Vehicle Routing
Problem (VRP) [6], environmental considerations, fleet mix (Fleet
Size and Mix Problem) and customer time windows (Vehicle Rout-
ing Problem with Time Windows – VRPTW). For an overview of
problems and problem-solving techniques the reader is directed
to [11].

Within the VRPTW, a set of customers must be visited. Depend-
ing on the context, the visit may be a pick-up or a delivery. Each
visit has to take place within a specified time window. If the vehicle
arrives prior to the commencement of the window, then it must
wait until the window commences. If the vehicle arrives after the
end of the time window then the visit cannot be made. The problem
may have a fixed number of vehicles or the number of vehicles
may be optimised as part of the problem. Vehicles start and end
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Figure 1: Athos’ meta-model elements to represent agents’ behaviour as state machines.

their journeys at a depot. Some formulations of the problem feature
multiple depots.

The VRPTW is typically formulated as an optimisation problem,
typical objective criterion include vehicles, distance travelled, fi-
nancial costs or environmental impact. Initially many studies [5]
formulated the VRPTW as a bi-objective problem, focusing on vehi-
cles and distance travelled. More recent studies have formulated the
VRPTW as a many-objective problem ,and in some cases producing
a range of non-dominated solutions in order to allow the user to
make the final choice of solution [14].

The VRPTW and variants have been applied to many real-world
problems used in an operational context [17] and a planing context
[16] . In both contexts, the user of the software will be a domain
expert, e.g. a logistics analyst or transport planner. In many in-
dustrial contexts the problem to be solved will include constraints
specific to the organisation who own the problem. Such specific
constraints could include the working conditions of staff, the types
of vehicle in use, environmental or financial considerations. The im-
plementation of such constraints leads to an increased workload for
those responsible for the technical implementation, which would
typically utilise a high-level programming language such as Java
or C++. The development of a DSL in this field has two possible
advantages: firstly a reduction in development time, and secondly
the possibility of domain experts producing systems rather then
passing their requirements to a software engineer.

A requirement of any problem instance is travel time data be-
tween customers and depots. Depending on the optimisation cri-
terion used it may also be necessary retain distance or emissions
data as well. Some academic studies (such as [6]) have held such
data in an origin-destination matrix, or simply used the Euclidean
distance between customers. Real-world examples [16] [17] usually
model the underlying street graph, in which case a path-finding
algorithm is required to find the route between customers.

Taking into account the above, a DSL within vehicle routing
must be capable of encompassing many different formulations of
the VRP including differing vehicle types, time windows, capacity
constraints, driving time constraints as well modelling the underly-
ing street graph.

3.2 Usage of Implicit State Machines
In Athos, the behaviour of agents is defined by means of behaviour
blocks. Each agent type features exactly one agent behaviour block
in which an arbitrary number of agent behaviours states is defined.

These behaviours represent the states agents can assume. An agent
can only be in exactly one state at each point in time. The observable
behaviour of an agent – i.e. the actions it displays for the outside
world to perceive – is only one of two parts that form an agent’s
state. The second part is a set of behaviour transitions. These tran-
sitions define which stimuli trigger an agent to change its state
as well as which state to assume when a given stimulus occurs.
This means that an agent can change its state without changing its
observable actions.

As an example, take an agent that is in a state to perform a
delivery tour. If the agent runs low on the product delivered on its
tour, it returns to a depot and replenishes its stock. At a pre-defined
point in time, the agent may change its state but still continue to
deliver products. The difference is in the case when the agent runs
low on the product. Instead of returning to the depot, the agent
now returns home and continues deliveries on the following day.

The meta-model elements Athos uses to represent agent states
are illustrated in Figure 1. EachAgentType is associated with exactly
one AgentBehaviourBlock. The AgentBehaviour block serves as a
container for one or more AgentBehaviourStates. An agent’s state in
Athos is associated with exactly one observable behaviour that the
agent exhibits when being in the respective state. The meta-model
refers to this observable behaviour as anAgentBehaviourDescription.
The DSL already offers several such AgentBehaviourDescriptions.
Future versions of Athos will introduce further behaviour descrip-
tions. Thus, language users already have control on the way agents
behave in the course of the simulation while further additions of
behaviour descriptions will further increase the possibilities of
behaviour descriptions.

As was already mentioned, an agent’s state also features defi-
nitions of stimuli that lead to a change of state. In order to model
this, an AgentBevahiourState also comprises an arbitrary number
of AgentBehaviourTransitions. Each transition is associated with
a conditional expression. This expression represents the stimulus
that triggers the transition. Additionally, each transition is associ-
ated with exactly one target state. This target state can either be
a named state which is accessible to any transition of the respec-
tive AgentBehaviourBlock (in Figure 1 represented by the directed
association relation) or it can be an anonymous state whose defini-
tion is embedded in the definition of the AgentBehaviourTransition
(represented by the composition relation).
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1 agentTypecustomDeliveryAgentcongestionFactor60.0maxWeight100.0
2 behaviourloadVehicleloadCargosoaprelQuantity0.4,towelsrelQuantity0.6
3 whenfinisheddowaitAWeeBit;
4 behaviourwaitAWeeBitidlefor500.0whenfinisheddodeliverGoods;
5 behaviourdeliverGoodsdeliver (n1, n2, n4, n5, n6, n8) everything
6 whenquantityOfsoap< 20.0||quantityOftowels< 10.0doreturn1
7 whenfinisheddoreturn2;
8 behaviourreturn1returnToDepotnearest
9 whenfinisheddoloadVehicle2;
10 behaviourreturn2returnToDepotnearestwhenfinisheddoend;
11 behaviourloadVehicle2loadCargosoaprelQuantity0.3,towelsrelQuantity0.7
12 whenfinisheddoidleSomeMore;
13 behaviouridleSomeMoreidlefor200.0whenfinisheddores;
14 behaviourresresumedeliverGoodsatlast;
15 behaviourendvanish;

Listing 1: Example programwith behaviour specification

The listing above illustrates an example of an agent type that
features multiple states with their associated behaviours and tran-
sitions. The first line defines some general properties of the agent
type. The next line defines the first state an agent of the respective
type can be in. The first state defined for an agent type is always
considered the entry state, i.e. the agent starts in that state.

The Athos concrete syntax does not distinguish between the
state and the behaviour of an agent. In fact, the keywords used in
the concrete syntax deliberately avoid any vocabulary associated
with state machines. The reason for this syntax-design decision is
that the language is intended tomirror theway language users think
about the problems they model with Athos. While state machines
are a powerful concept, not every practitioner in the field of vehicle
routing is familiar with it.

The entry state of the program features a loading behaviour. This
is used to define how the capacity of the vehicle is to be used. In
the concrete example, the agent will load 40 percent of its available
cargo with soap and 60 percent with towels. The next line defines
a transition to the next state. LoadingBehaviour is a state always
associated with an instant behaviour, i. e. by default, it does not
consume any time. In order to model the duration it takes for a
driver to load a vehicle, the target state should be a state associated
with a waiting behaviour. For this, Athos features IdlingBehaviours
that can be used to let agents idle on the map.

The idling state has the agent waiting for 500 ticks and then
transition to a state named ’deliverGoods’ which is associated with
an instance of AgentStrictDeliveryBehaviour. The term strict in this
context refers to the fact that the agent does not do any optimisation
but strictly visits the nodes in the exact order given in the behaviour
definition. The AgentStrictDeliveryBehaviour implicitly has the
agent deliver everything demanded by the agent. Later language
versions will allow a fine-granular specification of which quantity
of which product an agent delivers to a customer. When executing
the delivery behaviour, it is possible that the agent runs low on a
product and it is guaranteed that the agent will have visited every
customer of the specified tour at some point.

In case that the agent runs low on a product (in the example
specified in absolute units), it transitions into state ’return1’. In
this state, the agent will return to the depot. In case that the agent
finished the tour, it will transition to state ’return2’. Just like ’re-
turn1’, ’return2’ is a state in which the agent moves back to the
depot. The difference between both states is, that in the former, the
agent replenishes its stock before it resumes the delivery behaviour,

while in the latter, the agent simply disappears from the simulation
upon return at the depot.

Note that in the resume behaviour (’res’ in the listing), the key-
word at last is used. This specifies that the agent returns to the
last customer visited on the delivery tour. Thus, it is ensured that
the customer’s demand is fulfilled completely before the agent turns
to the next node in the network. Alternatively, the keyword at
next can be used. In that case, the agent will visit the customer
that it would have visited had it not returned to the depot. Further
versions of the language will allow more options to define which
node to visit after replenishment (i.e. only return to last customer if
not all demands were fulfilled or rearrange the order of remaining
customers).

Figure 2 depicts how the behaviour defined for agents of the type
customDeliveryAgent is interpreted as a state machine. Each
behaviour specification from the program is interpreted as a state
in which the respective activities are performed. The conditions for
state changes are translated to transitions that use the conditions
in the program within change and time events. To actually model a
state machine, Athos leverage’s the meta-model element discussed
earlier.

In a final step, the Athos generator translates each state machine
instance to the target language. Though Athos aims to support mul-
tiple target languages, the translation to NetLogo will be used here
as an example. For each state, the generator creates three anony-
mous functions (also known as lambdas). The first anonymous
function, represents the entry behaviour, i.e. it prepares everything
for a proper execution of the second anonymous function. This
second anonymous functions corresponds to UML’s do behaviour.
Here, the observable actions exhibited by the agent when in the
respective state are defined. This anonymous function also com-
prises the code that checks the necessity of a state change due to
the occurrence of a change or time event.

The third anonymous function contains code that may clean up
certain data structures. Most importantly, this anonymous function
also features code that stores important information about the state
that is about to be left. As an example, for a state associated with
the AgentStrictDelivery behaviour, the last customer to be served
as well as the next customer on the list is stored in a dictionary and
later retrieved by the respective resuming state. It is important to
note that the key used in the dictionary cannot simply be created
from the state that the agent is about to leave. Since there may
be several different agents in one simulation that may at some
point perform and leave a delivery state, a unique identifier of the
respective agent instance is added to the key. This ensures that each
agent resumes the correct behaviour.

Listing 2 above illustrates what is generated for each state of a
state machine: For each state three commands are generated, as
explained in the last paragraph. In order to avoid naming conflicts
inside the generated code, every method triple is also given two
identifiers. ’M#’ (where ’#’ represents a number) associates the
commands with state machine number #. Since a given type of
behaviour may be used more than once in a state machine, a second
identifier ’B#’ is needed, that features a number that increases each
time a given behaviour type is used.
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Figure 2: Behaviour of custom delivery agent interpreted as a state machine.
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1 to <BehvrName>-M<#>-B<#>-entry
2 set currentStateFinished false
3 <more initialisation code>
4 transStateAndRun
5 [-> <BehvrName>M<#>-B<#>-main]
6 end
7
8 to <BehvrName>-M<#>-B<#>-main
9 <Activities for behaviour>
10 if <everything done>[set curStateFin true]
11 if <condition> [transStateAndRun
12 [<BehvrName-M<#>-B<#>-exit [newStateName-M<#>-B<#>-entry]]]
13 <Activities for behaviour>
14 if curStateFin
15 [transStateAndRun[<BehvrName-M<#>-B<#>-exit[newStateName-M<#>-B<#>-entry]]]
16 end
17
18 to <BehvrName>-M<#>-B<#> [nextState]
19 <cleaning statements>
20 <write data to tables>
21 transStateAndRun nextState
22 end

Listing 2: Template for generated NetLogo code

The statements that define the observable behaviour of an agent
are defined in the second of the three commands. This command
thus features the code for state transitions. If a specified condition
is true, the exit command is called together with a reference to the
entry method of the next state. The fact that the current state is
finished is represented by a flag ’curStateFin’. This flag allows to
defer the transition to the exit-command in order to perform some
specific actions in the main command for a last time.

3.3 Athos graphextension Package
Figure 3 illustrates the process by which simulations are generated
in Athos. The program is given to a generator that uses templates to
generate code in a target language which in the scope of this paper
is NetLogo. Specifications made in the DSL are thus translated to
NetLogo which solves optimisation tasks by handing the relevant
data to a graphextension package that features several algorithms
for the solution of traffic and transport related optimisation tasks.

The solution is then returned to NetLogo where it is further pro-
cessed. In order to solve VRPTWs, we implemented an evolutionary
algorithm based on the one presented by Ombuki et al. [14].

In order to explain the exact implementation inside Athos graphex-
tension package, a condensed explanation of the relevant steps will
be given now1. The parameters that can be set by the user when
defining a VRPTW problem are underlined. If a user does not ex-
plicitly define parameter values, sensible default values taken from
the literature are applied.
Lines 1 – 3 The algorithm operates on a Graph G(V ,E) that com-
prises a set of nodesV and a set of edges E. The function df assigns
a distance to each edge. The function tf assigns a temporal value
to each edge. This value represents the time it takes an agent to
cross the respective edge. The customer nodes are a proper subset
of the set of all nodes,C ⊂ V . Each customer node has to be visited
by one agent (also referred to as vehicle) of a homogeneous set of
agents with a maximum capacity of cmax . Agents start at a special
node d called a depot. The depot may not be a customer node, thus
d ∈ V \C . The function hf assigns a demand to each customer node.
ef defines an earliest time to each customer. This value represents
the opening of the time window, within which each customer has
to be visited. Along those lines, function lf assigns the ending of a
time window to each customer and the depot. The value assigned
to the depot by lf is the point in time until all vehicles must have
returned to the depot from their respective tour. Via function sf a
service time is associated with each customer. The service time this
is the time a visit at the respective customer takes.

Lines 5 – 6: First, the algorithm creates a timeMatrix and a dis-
tanceMatrix that store the value for the shortest time and the short-
est distance between any two customers or any customer and the
depot. While in complete graphs these matrices just store the re-
spective values of the edge connecting two customers or a customer
and a depot, in non-complete graph the shortest distance as well
as the shortest time between those nodes first has to be computed
using Dijkstra’s algorithm (cf. [8]).

Lines 7 – 24: The next step is the creation of the initial population
whose size is determined by the parameter popSize. For the genera-
tion of a chromosome, the algorithm uses two different strategies.
With a probability of simplePermuProb, the algorithm simply gen-
erates a random permutation of all customers to visit. With the

1The Java source code of our implementation can be downloaded from https://athos.
mnd.thm.de/ParetoCapacitatedSolutionVRPTW.java

https://athos.mnd.thm.de/ParetoCapacitatedSolutionVRPTW.java
https://athos.mnd.thm.de/ParetoCapacitatedSolutionVRPTW.java
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1 Input : G(V , E), df : E → R, tf : E → R, C ⊂ V , d ∈ V \C, cmax ∈ R
2 hf : C → R, ef : C → R, sf : C → R, lf : C ∪ d → R
3 Output : List of routes RTours
4 Begin
5 Derive time matrix Ti j , i, j ∈ C ∪ d using Dijkstra’s and tf .
6 Derive distance matrix Di j , i, j ∈ C ∪ d using Dijkstra’s and d
7 //Create initial population P
8 set P := ∅ ;
9 while |P | < popSize
10 if rand (0 ,1 ) < simplePermuProb
11 create a random permutation p of elements inC and add p to P ;
12 else
13 set Ccopy ← C ;
14 init p as empty chromosome;
15 while Ccopy , ∅ do
16 set p[p . length ] ← getAndRemoveRandomElement(Ccopy ) ;
17 while ∃c ∈ Ccopy : < maxDistance
18 set cnearest ← nearestToFrom(p[p . length − 1] , Ccopy ) ;
19 set p[p . length ] ← cnearest ;
20 set CCopy ← Ccopy \ cnearest ;
21 od
22 od
23 fi
24 od
25 // Derive a List of routes for each chromosome
26 set Ω ← ∅
27 foreach p ∈ P do
28 set Rtours ← ∅
29 set r [] ← newEmptyTour
30 Rtours . add(l [] )
31 foreach c ∈ p do
32 if customer c can be reached inside constraints add c to r []
33 if costomer c can’t be reached and r[] is empty⇒ infeasible
34 else create new empty tour r [], add it to Rtours and try to add c as first customer.
35 od
36 od
37 foreach(Rtours ∈ Ω ) do
38 Try to improve total distance by adding last customer of route ri [] to route ri+1[].
39 od
40 for( i = 0 to generations do
41 for(Rtours ∈ Ω ) do
42 calculate pareto rank for Rtours ;
43 set wΣ(Rtours ) ← w1 · cntTours(Rtours ) +w2 · totalDistance(Rtours ) ;
44 od
45 set MMatinд ← ∅
46 while |MMatinд | < 2· ( popsize − 1) do
47 TTournament ← randomly select tournamentSize elements from Ω
48 if rand (0 ,1 ) < takeBestProb
49 add best element toMMatinд ( decide by rank in case of equality bywΣ())
50 else
51 setMMatinд ← TTournament ∪MMatinд
52 fi
53 od
54 o← perform pairwise BCRC crossing of successive elements ofMMatinд
55 if rand (0 ,1 ) < mutationProb do mutate (o) od
56 add o to next generation .
57 finally add individual with highestwΣ to next generation
58 od
59 return bestIndiviudal ( decide by rank in case of equality by wΣ ) .
60 End

Listing 3: Pseudocode of the evolutionary algorithm

complementary probability a greedy strategy is applied. Here, the
algorithm creates a copy of the set of customers to visit (Ccopy ). The
customers in this set are then transformed into a chromosome by
randomly picking a first customer that is added to the chromosome
p at the top position 0 (which corresponds to the length of the chro-
mosome at this point). Then, the algorithm checks whether there
is a customer remaining in (Ccopy ) whose distance to the customer
at the top of the chromosome (who was last added to the chromo-
some) is less a equal to the threshold parameter maxDistance. In
case that at least one such customer is found, the one with the short-
est distance to the customer at the top is added to the chromosome
and becomes the new customer at the top. The procedure then is
reiterated until no customer within the threshold can be found or
the set of remaining customers is empty (Ccopy = ∅). In the first
case, a new customer from Ccopy is randomly chosen and added at

the top of the chromosome. In the latter case, the loop is left and
depending on the current population size, a new chromosome is
created or the initialisation phase is finished.

Lines 25 – 39 In the next step, the initial population P of chromo-
somes is transformed to a set Ω that contains all lists of tours. For
this, each chromosome p is transformed to a list of tours Rtours
where each tour ri [] is a list of customers. For each chromosome,
customers are processed as they are ordered in the chromosome.
If a customer can be visited within time and capacity constraints,
it is added to the current tour. If a visit would violate any of the
constraints, the old tour is closed and a new one is created. Thus,
the timer and capacity counter (not explicitly given in the listing)
are reset and the customer is placed as the first customer of the
new tour. Should visiting a customer as the first customer of a tour
still violate time or capacity constraints, then the problem is simply
infeasible. This is because the arrival time at a customer who is
first in a tour, is the earliest arrival time possible. Same goes for
the capacity of the agent which is at its maximum possible value
when it arrives at the first customer. In a second phase, for each
list of tours it is checked whether the total distance of all tours can
be improved. This is done by shifting the last customer of tour ri []
to tour ri+1[] and placing this customer as the first customer of
tour ri+1. If the total distance can be improved and the tours do not
violate any constraints, the result is kept.

Lines 40 – 44 The main loop of the algorithm continues to operate
on the tours derived in the previous step. The number of iterations
is specified with the generations parameter. The first step inside
the main loop (line 42) is the calculation of the pareto rank for
every list of tours Rtours ∈ Ω as described by Ombuki et al [14,
p. 22]. In short, this ranking seeks for all non-dominated lists of
tours Rtours ∈ Ω. Such a list is non-dominated, if there is no
other list that comprises less (or the same amount of) tours and a
shorter (or the same) total distance (but it must be less in one of
the two dimensions). When all non-dominated lists of tours are
found, they are assigned rank 1 and removed from the ranking
space. Then, the procedure is repeated for the remaining lists of
tours whose non-dominated lists will be assigned rank 2 and so
on. Next (line 43), a weighted sum wΣ is calculated for each list
of tours. Here, parameter w1 is the weight associated with the
number of vehicles and parameterw2 is the weight associated with
the total distance of all tours. The weighted sum wΣ then simply
is the sum of w1 multiplied by the number of tours in the list
(w1 · cntTours(Rtours )) andw2 multiplied by the total distance of
all tours in the list (w2 · totalDistance(Rtours ).
Lines 45 – 53: The second part of the main loop creates the next
generation. For this, a mating set MMatinд is created. Via tour-
nament selection the mating set is filled until popsize − 2 parent
elements are found. Parent elements are found by creation of a
tournament set which is filled with randomly chosen lists of routes
Rtours from Ω. The exact number of lists is determined by the
tournamentSize parameter. Another parameter, takeBestProb, then
represents a threshold for a randomly generated number in the
interval [0, 1). If the random number falls below the threshold, only
the best list of tours is chosen for the mating population. The best
list is the one with the lowest rank and in case that there are two
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or more lists with the lowest rank, the one with the best weighted
sum valuewΣ is chosen. If the random number exceeds or equals
the threshold, all elements from the tournament set are added to
the mating population.

Lines 54 – 59: In the final part of the main loop, two elements of
the mating setMMatinд are crossed via a BestCostRouteCrossover
(BCRC) operator to produce offspring o. With a probability muta-
tionProb, the offspring is subjected to a mutation operator. Again,
we refer to Ombuki et al. [14] for details on these operators. As a
result, our current implementation only the one list with the best
wSiдma value of the final generation. It is worth noting, that it is
also possible to specifically search for a solution that does not con-
tain more than a given number of tours. This is relevant for cases
when a dispatcher cannot deploy more than a given number of vehi-
cles. However, it might also be possible that the minimum number
of vehicles for a feasible solution exceeds the desired number of
vehicles in which case the problem is to be deemed infeasible.

3.4 Discussion of Quality Criteria
An important but often neglected task in the development of DSLs
is evaluation [2]. Though lines of code (LoC) may not be a conclu-
sive indicator for any quality aspect of a DSL, they can provide a
first impression on the amount of development and maintenance
effort [10]. For DSLs whose programs are translated to another
language, comparison of LoCs in the source programme and LoC
in the generated output can provide a first notion of a DSL’s effi-
ciency [18].

For this reason, the two example programs presented in this
article, as well as the corresponding generated NetLogo code, shall
be discussed to get a first impression of Athos’ potential to ease
the development of agent-based traffic and transport simulations.
At this point it is important to mention that the generator’s target
language, NetLogo, can be considered a DSL in its own right. It
provides concepts and primitives for agent-based programming.
Thus, it can be assumed that NetLogo already reduces development
effort compared to its target language Scala or any other general
purpose language (GPL).

Table 1 gives information on the LoC metric for the two example
programs presented in this article. Example I is the program given
in Listing 1. Example II is the example which will be discussed in
Section 4. For both examples, two columns are defined. The one in
the column labelled ’Athos’ contains information on the amount
of code required by our DSL. Accordingly, the ’NetLogo’ column
informs about the number of generated lines of code in the target
language NetLogo. The table gives information on the total amount
of code as well as code required for behaviour as well as network
definition.

It is obvious, that Athosconsiderably reduces the amount of code
required to model the respective problem. This is true for both
code concerned to define the behaviour of an agent as well as code
used to set up the network in which agents move. Especially in the
second example the amount of network related code in Athos is
only a fraction of the NetLogo code derived from it. This is because
the network defined in the case study features a complete network
of 50 nodes, i.e. 2500 edges. While Athos only requires a few lines of
code for this, the generator derives 2500 edge definitions from this

and another 2500 lines for each edge attribute to be set. Though the
generated amount of code can be drastically reduced by adapting
the generator templates for complete networks, the overall amount
of saved LoC still suggests that Athos facilitates the specification
of traffic and transport problems.

Another metric that can be used to gain insight on the effort
required to test and maintain a programme is McCabe’s cyclomatic
number [12]. For strongly connected control graphs of a program
it is defined as

v(G) = e − n + p (1)

where e denotes the number of edges, n the number of nodes and p
the p the connected components of the control graph.

Figure 5 illustrates two control graphs. The upper graph is the
control graph of the NetLogo state machine code2 generated for
lines 5 – 7, (the specification of a delivery behaviour) of the Athos
program given in Listing 1. As is described in Section 3.2, each
behaviour description in Athos results in three NetLogo commands
(entry, main, exit). The control graph represents the control flow
of the generated state-entry and state-main commands. The state-
exit command was omitted since it does not contain any control
structures. The pseudo-code in Listing 4 is a simplified version of the
NetLogo entry-command in which all relevant control structures
have been preserved. From the control graph it can be seen that the
cyclomatic complexity of the NetLogo program is 43 − 31 + 1 = 13
which is a value that indicates high maintenance and testing effort
for the NetLogo code.

The lower graph is the control graph for the original Athos
code from Listing 1. For this graph, the cyclomatic complexity
is 9-6+1=4. This indicates considerably reduced maintenance and
testing effort compared to the generated NetLogo code. Of course,
similiar to the LoC metric, the cyclomatic complexity applied to a
single example is not a conclusive metric. But it can be considered
another indicator for Athos’ capability of facilitating the creation
of traffic and transport simulations.

Both LoC and cyclomatic complexity are basic quantitative mea-
sures that can be used to coarsely estimate the effort a program
requires to be understood, tested andmaintained. In order to present
a heuristic evaluation (cf. [13]), we conclude this section with an ap-
plication of the cognitive dimensions of notation (CDN) framework
[3].The CDN framework is first and foremost a tool that allows
to discuss several aspects or dimensions of a notation. Thus, it is

2The generated NetLogo state machine code can be inspected at https://athos.mnd.
thm.de/StaticDeliveryBehaviour.txt

Table 1: Lines of code comparison bewteen Athos and Netl-
ogo for two example programmes.

Part Example I Example II

Part Athos NetLogo Athos NetLogo

Behaviour 21 660 4 321
Network 31 579 82 43691
Rest 4 112 3 272
Total 56 1351 89 44284

https://athos.mnd.thm.de/StaticDeliveryBehaviour.txt
https://athos.mnd.thm.de/StaticDeliveryBehaviour.txt
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important that the following statements are be regarded as a criti-
cal self-assessment rather than analytically proven facts. A more
detailed and quantified approach based on the CDN framework (cf.
[1]) is among our future goals.

One of the first steps to be performed in the application of the
CDN framework is the creation of an activity profile. In this profile,
it is to be defined what activity is to be supported by the notation
and which dimensions are especially important for this support.
In order to keep this self-evaluation as short as possible, we will
simply discuss four dimensions from the CDN framework that we
deem of highest importance for a DSL that intends to facilitate the
modelling of agent-based traffic and transport problems.
Visibility This dimension is concerned with how easy it is for
language users to access and/or manipulate relevant aspects of the
problem description. Athos is designed to allows users to create
programs that feature high visibility. Though it could be argued
that the language encapsulates many details inside its abstract and
high-level language elements, it is important to look at what de-
tails are actually encapsulated. Athos seeks to hide those details
that are normally of no relevance to domain experts. This removes
unnecessary distractions and brings attention to elements of actual
relevance. This increases visibility as it allows users to perceive and
understand relevant elements of the program quicker. A good exam-
ple for this is the definition of an optimisation task. For most users,
it might be sufficient to define that the defined task be executed
in a near-optimal manner. Users then just describe the task and
use the optimise keyword. The system will find an appropriate
algorithmwith sensible parameter values and provide an acceptable
solution. Some users, however, may want more control over the
applied algorithm as well as the parameter values used during the

execution of the algorithm. For those users, the language allows for
the selection of a specific algorithm and specification of parameter
values for the selected algorithm. The specified parameters are then
passed to the algorithm in Athos’ graphextension library where
they are considered and processed by the respective algorithm (see
Section 3.3).

Viscosity The number of user interactions certain goals require
is the focus of this dimension. Due to its high abstraction level,
Athosgenerally should be of low viscosity. This is especially true
for The definition of agent-behaviour and optimisation tasks which
can be described in a very concise manner. It is also rather easy to
change the default function for the calculation of the amount of
time agents need to travel a given road in dependence of various
parameters like the current total congestion factor. As is shown in
the case study of this article, Athoshighly facilitates the creation of
complete graphs with homogeneous functions. However, if a non-
default function is to be associated with a great number of roads,
then this requires the user to add the symbolic name of the function
for each road in the network, which. The association of non-default
duration functions to roads can thus be considered ot feature an
increased amount of repetition viscosity. The definition of demands
and time windows for nodes is another language aspect with high
viscosity. The problem in both cases is the fact that aspects which
have to be individually defined for each entity of a system naturally
increase the viscosity of the language.

Closeness of Mapping This dimension is concerned with the
proximity of the language to the domain it is applied to. This dimen-
sion is especially important for a language like Athos that aims to
be usable by domain experts without a background in programming.
To achieve this, appropriate keywords have to be chosen and used
in a logical order that closely resembles the way users would use
them when giving an informal problem description. Though the
DSL’s concrete syntax is designed with this in mind, it is yet to be
formally evaluated by domain experts. In the near future, we will
formally evaluate the appropriateness of the selected keywords and
their general structure. What may be difficult to some users is the
ordering of keywords. There are many cases in which several differ-
ent orders would appear to make sense that it seems impossible to
define a keyword ordering / structure that satisfies the preferences
of any user completely.

Hard mental operations This dimension focusses on the extent
to which a notation draws on the mental capabilities of its users.
This is another dimension we will investigate more formally in the
near future in order to formally proof that Athos considerably re-
duces the amount of cognitive effort required for problemmodelling
compared to general-purpose languages like Java or languages like
NetLogo. Athos facilitates several aspects of traffic and transport
simulations which otherwise would require considerable mental
efforts. One aspect where this becomes especially clear is an agent’s
movement through the modelled network. A large amount of the
generated NetLogo code deals with ensuring that agents adhere to
the movement rules of the simulations. It has to be ensured that
agents follow the correct paths without leaving the roads to roam
freely on the map. Agents must adhere to the speed limitations
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determined by the network’s functions. Agent’s must also be in-
formed when they have arrived at one of their customers so that
they can perform the actual delivery before setting course for their
next customer. All this is transparent to the user when using Athos.
If a user wants an agent to travel from node A to node B, it suffices
to specify a simple destination behaviour in which B is defined as
the target node. The generated system will then take care that the
agent travels from A to B on the shortest route possible. If a user
insists that the agent has a brief stint at node C before moving to B,
then all that needs to be done is to define two different destination
behaviour, namely from A to C and from there to B. Here, it might
be sensible to allow the definition of nodes that must be visited
before arrival at a given destination within one single statement. It
is likely that one of Athos’ future versions will feature such syn-
tactic elements. However, these are more a concern of viscosity or
visibility rather than hard mental operations.

1 to perform-strict-delivery-M1-B1-entry
2 if(agent-resumes-this-state){ 1
3 set tourList = tourDict.getTourListForThisStateAndAgent(self);
4 set tourIdx = indexDict.getIndexForThisStateAndAgent(self);
5 if (tourList[tourIdx] , currentCity){ 2
6 tourIdx = tourIdx - 1;
7 if (tourList[tourIdx] , currentCity){ 4
8 calculateDataToGetTo(tourList[tourIdx + 1]);
9 goToSate(positionCorrection); 6
10 }else{set nextCity tourList[tourIdx];} 5
11 }
12 goToState(perform-strict-delivery-M1-B1-main); 7
13 }else{
14 if (currentCity , tourList[0]){ 3
15 calculateDataToGetTo(tourList[0]);
16 goToState(positionCorrection); 8
17 }else{
18 set nextCity = tourList[1];
19 goToState(perform-strict-delivery-M1-B1-main); 9
20 }
21 }
22 end

Listing 4: Pseudocode for entry command

4 CASE STUDY
In this section we will discuss one of several case studies taken
from the business model of a company that installs and maintains
toilet facilities for others institutions e.g. companies, restaurants.
An integral part of this model is periodically delivering consumed
materials e.g. soap and towels according to an elaborately developed
plan. While this is mostly done in stable, predetermined routine
tours installations for new customers and repairs have to be planned
ad-hoc. For both cases the company keeps depots with stocked
materials and runs a fleet of travelling service technicians who do
maintenance and refilling tours as well as initial installations for
new customers and repairs. Tours have to be planned to minimize
time and fuel consumptionwhile respecting temporal constraints i.e.
opening hours and general availability and the time needed for the
requested service. Routine tours are planned based on experience
and are rearranged on a long term scale only. Installation and repair
tours have to planned whenever there is a demand for it.

The company keeps depots which all have a set of customers
assigned each with a defined service interval to service. So basically
this means that a VRPTW has to be solved for every depot.

Figure 5: Visualized Solomon’s R101.50 problem*

* see http://web.cba.neu.edu/~msolomon/r101.htm

We will now show how repair and installation tours can be
modelled with Athos. For simplicity we only define tours on which
new equipment gets installed.

Athos allows to define a representation of geographical loca-
tions in an abstract network of nodes and edges. Geographical
information can potentially be imported from data sources like
OpenStreetMap3. We have already experimented with that and see
this as a feature that will be implemented later.
network
nodes
noden0 (1.0,1.0)noden1 (1.0,8.0)
noden2 (2.0,11.0)noden3 (4.0,6.0)
noden4 (5.0,12.0)noden5 (8.0,11.0)
...
edges
edgeundirectede0fromn0 to n1
length0.0cfactor2.0functionnormal

edgeundirectede1fromn1 to n2
length0.0cfactor2.0functionnormal

...

Products to be delivered must be defined together with weight,
volume and profit per unit.

productsoapDispenser
weight 8 volume 5
profit15

As service agents can carry out new installations and repair
existing ones we assume homogeneous fleets and therefore only
have to define a single type of agent with required behaviours.
For simplicity we model agents which only deliver products and
therefore only have a single behaviour.

agenttypedeliveryTour
congestionFactor1
maxweight1000

behaviourdeliver
whenfinishedreturnToDepot

3www.openstreetmap.org

http://web.cba.neu.edu/~msolomon/r101.htm
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Agents start their tour in a depot which must be declared to
be sources and keep lists of the clients i.e. demands that they
are responsible for. With the option <textit>optimise maxAgents
n</textit> Athos will create a tour with a number of vehicles less
or equal to n. Without the option Athos will suggest a number of
vehicles.
sources

n1sprouts (staticDelivery)
isDepotsoapDispenser
agentsStartroute (n2, n3, n4)

For each target in a route additional information i.e. demand,
time window, etc. are defined.
demands

n2hasDemandsoapDispenser
absQuantity10.0
earliestTime10latestTime30
serviceTime20

The problem sketched before matches well with the R101.50
benchmark problem published by Solomon 4, which builds a service
tour for a single depot serving 50 customers. We applied Athos to
this setting. The generated NetLogo program with its integrated
Genetic Algorithm produces a tour with a length of 1088 which is
reasonably close to the optimal tour which has a length of 10445.
Athos programs have a simple structure that can easily be integrated
with an ERP program that delivers information about demands.

5 CONCLUSION AND FUTUREWORK
The DSL Athos allows to define optimisation problems declaratively
and shifts implementation details to the generator which creates
code for suitable target platforms. It was applied to TSP-like routing
problems [9] before and extended to be able to define and solve
more complex vehicle routing problems. Argumentation along the
line of quality parameters (e.g. cyclomatic number) showed that
Athos programs are easier to understand and work with. An indus-
try case study which was matched with a published benchmark
demonstrated that the architecture can solve practical problems and
is relevant as a tool for such problems. Future work will extend the
language capabilities to express more problems from the domain.
Beyond the more qualitative aspects of general language quality
criteria discussed here more aspects will be examined and mea-
sured through field studies in which domain experts will compare
working with Athos to using their current tools. While creating
the case study, discussion with companies from the trade showed
that practical applications will use Athos as interface to their trans-
portation management system. The structure of the language make
it suitable for such an integration which will be another aspect of
future research.
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