
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

xx

xx

Motion-aware Compression and Transmission of Mesh
Animation Sequences

BAILIN YANG, LUHONG ZHANG, FREDERICK W.B. LI, JIANG XIAOHENG, DENG
ZHIGANG, MENG WANG, MINGLIANG XU

With the increasing demand in using 3D mesh data over networks, supporting effective compression and efficient
transmission of meshes has caught lots of attention in recent years. This paper introduces a novel compression
method for 3D mesh animation sequences, supporting user-defined and progressive transmissions over networks.
Our motion-aware approach starts with clustering animation frames based on their motion similarities, dividing
a mesh animation sequence into fragments of varying lengths. This is done by a novel temporal clustering
algorithm, which measures motion similarity based on the curvature and torsion of a space curve formed by
corresponding vertices along a series of animation frames. We further segment each cluster based on mesh
vertex coherence, representing topological proximity within an object under certain motion. To produce a
compact representation, we perform intra-cluster compression based on Graph Fourier Transform (GFT) and Set
Partitioning In Hierarchical Trees (SPIHT) coding. Optimized compression results can be achieved by applying
GFT due to the proximity in vertex position and motion. We adapt SPIHT to support progressive transmission
and design a mechanism to transmit mesh animation sequences with user-defined quality. Experimental results
show that our method can obtain a high compression ratio while maintaining a low reconstruction error.

CCS Concepts: • Information systems → Data mining; • Computing methodologies → 3D imaging; Image
compression;

Additional Key Words and Phrases: 3D Mesh Animation, Progressive Transmission, Compression, Clustering,
Graph Fourier Transform.

ACM Reference Format:
Bailin Yang, Luhong Zhang, Frederick W.B. Li, Jiang Xiaoheng, Deng Zhigang, Meng Wang, Mingliang Xu .
2018. Motion-aware Compression and Transmission of Mesh Animation Sequences. ACM Trans. Intell. Syst.
Technol. x, x, Article xx (December 2018), 21 pages.
https://doi.org/10.1145/3300198

1 INTRODUCTION
Highly detailed three-dimensional (3D) meshes have been widely used in virtual reality, online virtual
worlds, simulation, training, and education. A 3D mesh typically comprises connectivity information
(topology) and geometry information (3D vertex positions). When storing and transmitting such
highly detailed 3D meshes, large amounts of storage space and network bandwidth are required. It is
even more challenging when processing mesh animation sequences, since their raw data sizes can be
many multiples of that of a static mesh. Particularly, complicated mesh animations may comprise
long sequences of highly accurate motion details. Their raw representations will result in large files,
becoming very expensive to store and transmit. Hence, it is demanding to have a method significantly

Bailin Yang, Luhong Zhang, are with the School of Computer Science & Information Engineering, Zhejiang Gongshang
University, Hangzhou, 310018, China. Frederick W.B. Li is with the Department of Computer Science, University of Durham,
UK. Zhigang Deng is with the Department of Computer Science, University of Houston, Houston, Texas, USA. Meng Wang
is School of Computer Science & Information Engineering, HeFei University of Technology,Jiang Xiaoheng, Mingliang XU
is with the School of Information Engineering, Zhengzhou University, Zhengzhou, 450000, China.
Manuscript received xx, 2017; revised xx, 2017.
https://doi.org/10.1145/3300198

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

https://doi.org/10.1145/3300198
https://doi.org/10.1145/3300198

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

xx:2 B. Yang et al.

Fig. 1. Illustration of animation frame clustering based on motion similarity.

optimizing such representations, in order to support effective storage and transmission of mesh
animation sequences.

We propose a novel approach to compress mesh animation sequences, exploiting spatial and
temporal redundancies as well as the geometrical properties of curvature and torsion. The animated
deer example in Fig. 1 illustrates the motivation of our compression method. Obviously, frames
with similar motions are highly redundant and can be grouped into one cluster. We also observe
that closely located frames may not be necessarily more correlated than frames at other parts of the
animation sequence. For instance, frames #1 and #21 exhibit a similar motion, so do frames #11 and
#31. We hence develop a novel compression method exploiting such motion similarity. In contrast,
existing work typically only focused on identifying coherence between neighboring frames. Our
method clusters the frames in a mesh animation sequence based on motion similarities between any
frames to remove redundancy. The compression ratio achieved by our method can be easily escalated
when the number of frames becomes larger.

Technically, we reduce temporal and spatial redundancies based on mesh motion similarity,
generating a set of motion fragments. The motion similarity measure is designed based on curvature
and torsion, since they jointly characterize the shape of a spatial curve, offering a mathematical
formulation to model vertex motion in a 3D space. After temporal-spatial clustering, instead of
transforming an entire animation sequence into components as many existing work did, we apply
Graph Fourier Transform (GFT) [17] to each motion fragment independently. Since GFT is optimal
for decomposing smooth objects, it works well with our generated motion fragments as mesh
frames in each fragment are highly coherent. We then select significant GFT coefficients from
all the fragments and encode them together to compress the animation sequence. We validate the
effectiveness of our method through a set of comparisons with state-of-the-art methods. Our main
contributions include:

• A new motion similarity metric through curvature and torsion, being effective to identify and
reduce spatio-temporal redundancies in mesh animation sequences.

• A novel progressive transmission scheme for mesh animation sequences, which allows a coarse
sequence with a minimal data size to be transmitted initially and streams fine details of mesh
animation gradually. We also allow the reuse of a received mesh animation part to replace a
required part without transmission if they are similar enough.

The rest of the paper is organized as follows. After reviewing previous works in Section 2, we
give our method overview in Section 3. Sections 4 and 5 describe technical details about modeling of
motion change and motion-based segmentation, respectively. Section 6 elaborates our compression

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:3

method and Section 7 presents a user-defined transmission mechanism. Experiment results are
presented in Section 8. Finally, we conclude our paper in Section 9.

2 RELATED WORK
Given an input model, a main purpose of compression is to seek for a compact representation
reducing the model data size, such that effective storage and fast transmission can be supported. A
variety of researches have been conducted to compress mesh animation sequences. Generally, they
utilize temporal redundancy (small difference between neighboring frames) [30, 31, 36, 37] and/or
spatial redundancy (small difference between neighboring vertices in the same frame) [32, 35, 36] to
reduce data size. We can broadly classify existing mesh animation compression methods into four
categories, including Principal components analysis (PCA) based methods [42], prediction based
methods [12, 18, 39], segmentation based methods [26, 29], and wavelet based methods [9, 33].
Meanwhile, according to their supported transmission mechanism, these methods can also be
classified into single-rate and progressive compression.

PCA based methods transform mesh vertices from the Cartesian space to a new basis space
formed by linearly uncorrelated eigen-vectors. Compression can be achieved by only retaining
most significant components (i.e., those eigen-vectors with largest eigen-values) of the new basis
space. Alexa and Müller [2] proposed the first PCA-based method to compress a mesh animation
sequence based on decomposing the sequence into principal components by analyzing keyframe
geometries globally. The principal component representation allows adaptive lossy compression
of a mesh animation sequence with a factor up to 1:100. Later, various extensions have been
further developed such as [36] that applied PCA to spatial clusters and [28] that applied PCA on
temporal clusters. Ramanathan et al. [35] proposed a method to identify an optimized clustering
to give the best compression ratio. In a nutshell, these methods produce a set of eigen-trajectories
with their corresponding PCA coefficients. To further compress the resulting PCA coefficients,
researchers combine PCA with Linear Predictive Coding (LPC) [23], or re-compress the resulting
eigen-vectors by LPC [41]. To support progressive coding, [22] separately decomposed connectivity
into progressive mesh and mesh geometry into PCA components, with vertex trajectories clustered
by K-means to optimize compression ratio. Modeling connectivity with a global progressive mesh
likely cannot match well with significant motion changes, causing undesired geometric distortions to
reconstructed animation. Also, applying global PCA decomposition implicitly restricts reconstruction
to be happened only if the data of an entire animation sequence is available (despite it can be lower-
quality versions). This seriously limits the scalability for supporting long animation sequences.
Recently, [25] attempted to decompose the global PCA computation process into local ones based
on block of frames. This improved computational scalability and optimized output data size by
constructing adaptive local eigen-space. [40] alternatively focused on improving the reconstructed
output mesh quality by modifying the high-pass encoding scheme to limit error accumulation in the
mesh encoding process.

Prediction based methods exploit the typical fixed connectivity property of mesh animation
sequence, utilizing the recovered vertex positions at previous frames to predict the new vertex
positions at the next frame. Different from PCA based methods, prediction methods exploit local
coherence and thus are computationally efficient. The first work along this direction [10] only used
Delta encoding: the vertex position to encode was predicted based on the position of the same
vertex at the previous frame; the Delta, the vector between the two positions, was then encoded.
Bajaj et al. [7] introduced a second-order predictor that encoded the difference between consecutive
delta predictions. Alternatively, Stefanoski and Ostermann [38] proposed a scalable predictive
coding (SPC) to decompose mesh animation sequences in temporal and spatial layers and to perform
prediction in the space of rotation-invariant coordinates, compensating local rigid motion for effective

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

xx:4 B. Yang et al.

encoding. Later, it has been improved by applying both weighted spatial prediction and weighted
refinement based on the angular relations of triangles between current and previous frames [8].
Recently, Ahn et al. [1] improved the multilayer prediction of the above SPC method [38] to achieve
30% performance gain.

Segmentation-based compression for mesh animation sequences is to divide mesh vertices into
groups of similar motions, followed by encoding each group with a small number of representative
vectors or parameters [26]. Gupta et al. [15] used multilevel k-way partitioning algorithm on the
basis of proximity in the connectivity and the number of parts specified by a user. Amjoun et al. [4]
partitioned mesh vertices into clusters by applying k-means clustering [21], where vertex motions
can be described by unique 3D affine transforms. A region growing based method has been proposed
in [4], which was simple to implement, but the results were seriously dependent on the choice of
initial seed vertices. Alternatively, [36] clustered vertex trajectories by integrating Lloyd’s algorithm
and PCA, followed by compressing each cluster independently.

Wavelet based methods have also been used to deal with mesh animation compression, aim-
ing to de-correlate geometric data and to generate a sequence of detail coefficients. Guskov and
Khodakovsky [16] used wavelets to perform multiresolution analysis along an animation sequence
and applied delta coding on wavelet coefficients to improve the compression ratio. Payan and An-
tonini [34] proposed a temporal wavelet filtering together with an efficient bit allocation process.
Alternatively, [43] performed remeshing on a mesh animation sequence facilitating wavelet transform,
but being inherently prone to geometric distortions, which likely propagate along the entire sequence.
Despite pre-defined wavelet coefficient weightings were proposed to fix the problem, it was still hard
to guarantee proper coding and reconstruction of sequences with complicated mesh motions.

In addition, a number of previous research efforts [5, 6, 20, 42] have been focused on connectivity-
based compression. Their core idea is to exploit connectivity information of a mesh. Unlike these
approaches, our method does not focus on mesh connectivity but geometry information. This is critical
as when a mesh animation sequence goes large in terms of frame numbers, geometry information
will become the dominated part of data in the sequence.

3 METHOD OVERVIEW
This section gives an overview of our method. A mesh animation sequence is typically formed by
F frames of meshes M1, . . . ,MF sharing the same topology (connectivity). Positions of vertices of
the j-th frame are represented as a set of vectors vi j = (vxi j ,v

y
i j ,v

z
i j), where i = 1, . . . ,N , j = 1, . . . , F ,

and N is the number of vertices of a frame. Our method focuses on compressing such geometry
information. Mesh connectivity information is separately compressed by [14], as it is defined once
and shared among all frames, making the data size relatively insignificant, particularly for long
animation sequences.

Fig. 2 illustrates the pipeline of our compression process. We start with performing temporal
(frame) clustering to obtain K clusters of mesh frames, exploiting motion similarity, which will be
discussed in Section 4. We then partition mesh vertices of each cluster into S segments through spatial
segmentation. Thereafter, each segment obtained is relatively smooth both spatially and temporally,
since the vertices of its mesh frames are highly proximal exhibiting similar motions. This allows us
to apply Graph Fourier Transform (GFT) [17], converting each segment into orthogonal components.
Each component is characterized by a GFT coefficient Ci j , where i and j are the indices with their
ranges determining by the number of vertices contained in a segment. Eventually, we may select a
subset of most significant coefficients and apply Set Partitioning in Hierarchical Trees (SPIHT) [13]
to encode these coefficients. On the other hand, the connectivity information as well as the clustering

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:5

Fig. 2. The compression process in our approach

and segmentation information (i.e., frame/vertex correspondence to cluster/segment) will also be
compressed by GFT.

Decompression is the inverse process of compression, which is illustrated in Fig. 3. To proceed,
we firstly perform SPIHT decoding to recover GFT coefficients and the information of clustering
and segmentation. These will be processed by GFT to obtain corresponding GFT bases. Together
with connectivity information recovered by [14], decompressed geometry information of the mesh
animation sequence can then be reconstructed.

4 MODELING OF MOTION CHANGE
Differential geometry literature shows that curvature and torsion measure how a spatial curve bends.
Curvature measures the degree of curve bending along the tangential direction near a point. Torsion
measures how sharply a spatial curve twists out of the plane of curvature, i.e., the degree of curve
distortion. Imagine when a vertex moves in a space, its motion essentially forms a spatial curve,
while the curve shape represents vertex motion change. Therefore, curvature and torsion are suitable
parameters for evaluating motion change and thus the motion similarity between two frames. Based
on this, we define motion strength to measure the degree of motion change of a vertex, calculating as
the weighted average of curvature and torsion. Its definition will be described later in this section.

Curvature and torsion capture between-frame motions of mesh vertices. They serve as a foundation
to divide a mesh animation into logical parts exhibiting similar motions. This allows us to identify both

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

xx:6 B. Yang et al.

Fig. 3. The decompression process in our approach

intra-mesh and inter-mesh motion redundancy while methods based on standard vertex coordinates
usually do not explore intra-mesh motion redundancy. Using our method is particularly beneficial for
compressing models with parts of similar motions, e.g., leg motions of animal walk.

To implement, for each vertex in a mesh frame, we connect it with all its instances across all mesh
frames to obtain a spatial curve modeling the motion of this vertex. Mathematically, the motion of a
vertex vi j is then formulated by curvature and torsion of the spatial curve, represented by ki j and τi j ,
respectively, as follows:

ki j =
∥
−→
r ′i j ×

−→
r ′′i j ∥

∥
−→
r ′i j ∥

3
(1)

τi j =
(
−→
r ′i j ,

−→
r ′′i j ,

−→
r ′′′i j)

(
−→
r ′i j ×

−→
r ′′i j)

2
(2)

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:7

−→ri j represents as a spatial curve describing the motion change of the i-th vertex in the vicinity
of frame j. We approximate the derivatives of the above equations using differential geometry. To
simplify the calculation, we set the step length to be 1. This allows us to calculate the first order
derivative

−→
r ′i j of the spatial curve based on the values at two neighboring frames, i.e. frame i and

frame i + 1. Similarly, the second order derivative
−→
r ′′i j can be calculated based on the two neighboring

first order derivatives, and we can perform similar calculations to obtain the third order derivative
−→
r ′′′i j .

On top of curvature and torsion, we define motion strength Ri , j as in Eqn. (3). We experimentally set
β = 0.5, since we assume curvature and torsion have are of equal importance.

Ri j = β ∗ ki j + (1 − β) ∗ τi j (3)

Fig. 4. Example Cow model with 2904 vertices and 5804 triangles. (Left) Wireframe rendering of the
model. (Right) Zoomed view of the highlighted model part.

Table 1. motion strength of the five selected vertices as in Fig. 4

Index 1 2 3 4 5
motion strength 58.01 59.47 60.05 89.68 77.19

Fig. 4 shows an example of a cow mesh frame. The wireframe rendering on the left depicts the
topological structure of the mesh, while the zoomed view on the right shows a highlighted mesh
part with five labeled vertices. The corresponding values of motion strength of these vertices are
shown in Table 1. We can see that the 2nd and the 3rd vertices exhibit similar motion strength, while
the 2nd and the 4th vertices exhibit quite different motion strength. In order to validate whether
similarity/difference in motion strength can represent spatial curve trajectory similarity/difference,
we plot the trajectories of the five vertices as exhibited in the first ten mesh frames in Fig. 5(a). Fig.
5(b) plots the computed motion strength values of the five vertices. The trajectories of the 2nd, 3rd
and 4th vertices are plotted in red, blue and green, respectively. We can clearly see that the motion
trajectories in red and blue are very similar, while those in red and green are quite different. By
observing the changes of corresponding motion strength values along the mesh frames, it shows
similarities/differences of these values agree with the above findings, supporting the validation.

5 MOTION-BASED SEGMENTATION
With the mathematical motion change modeling based on curvature and torsion, mesh animations are
allowed to group into segments, such that each contains vertices exhibiting similar motions along
certain mesh frames. We apply K-means clustering [21] for this purpose due to its simplicity and
efficiency. This motion-based segmentation process is critical for achieving a better compression

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

xx:8 B. Yang et al.

(a)

(b)

Fig. 5. (a) Trajectories and (b) motion strength of five selected cow model vertices during the first ten
frames. Color codes of the 1st to 5th vertices are black, red, blue, green and black, respectively.

performance and particularly enabling user-defined transmission, which is not supported by previous
methods.

5.1 Temporal clustering
To start the process, we perform temporal clustering grouping vertices based on their motion similarity
to facilitate temporal redundancy discovery. This is motivated by the idea that an animation sequence
may exhibit similar model deformations from time to time, e.g., existence of cyclic or repetitive
motions, inducing significant data redundancy. In such situations, similar frames may be found at
different parts of a mesh animation sequence, where these frames may not be necessarily adjacent
to each other. Based on our motion change modeling, motion information of a mesh animation
sequence can be formulated with T as in Eqn. (4), representing the details of mesh motion change
over time along the animation sequence. Each column models the motion of an individual mesh
vertex, while each row presents global mesh motion change in the vicinity of a particular frame,
where i = 1, . . . ,N and j = 1, . . . , F − 1.

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:9

T =
©­­­­«
k11 τ11 . . . ki1 τi1
k12 τ12 . . . ki2 τi2
...

...
...

...
...

k1j τ1j . . . ki j τi j

ª®®®®¬
(4)

To implement temporal clustering, our strategy is to group frames with similar motion change into
the same cluster, i.e., putting similar rows of matrix T (Eqn. (4)) into one group based on K-means.
Simple Euclidean distance ∥vj −vh ∥ is used to measure the motion similarity between two rows of
matrix T , where vi = (k1j , τ1j , . . . ,kN j , τN j) given that j,h = 1, . . . , F and j , h.

5.2 Spatial Segmentation
Temporal clustering facilitates the discovery of data redundancy by exploiting mesh frame coherence.
In fact, data redundancy also exists within the mesh model itself, which could be significant if mesh
model complexity is high. Although some existing methods also worked along this line, they have
usually focused on exploring spatial redundancy from one mesh frame, e.g., the first frame, and
reused the obtained result for an entire animation sequence. In fact, this might not fit to other frames
due to posture/motion changes, producing non-optimal results. We therefore extend spatial coherence
to incorporate motion changes, becoming motion-aware.

To proceed with spatial segmentation, we formulate a motion-aware spatial representation for a
mesh animation sequence with matrix R as in Eqn. (5), which consists of N rows and 3+ 2S columns,
where S is the number of mesh frames contained in a temporal cluster.

R =
©­­­­«

αx̂1 αŷ1 αẑ1
1−α
2 k11

1−α
2 τ11 . . .

1−α
2 k1S

1−α
2 τ1S

αx̂2 αŷ2 αẑ2
1−α
2 k21

1−α
2 τ21 . . .

1−α
2 k1S

1−α
2 τ2S

...
...

...
...

...
...

...
...

αx̂N αŷN αẑN
1−α
2 kN 1

1−α
2 τN 1 . . .

1−α
2 k1S

1−α
2 τNS

ª®®®®¬
(5)

In R, each row encloses the motion-aware representation of each vertex, where x̂i , ŷi and ẑi denote
the average coordinates of the i-th vertex within a given set of mesh frames, ki j and τi j respectively
denote the curvature and torsion of the i-th vertex of the j-th frame, and α denotes the weight of
coordinates. We do not incorporate all mesh vertex coordinates of the entire animation sequence since
this will enormously escalate the matrix data size, which is redundant, as we already incorporate a
more concise representation of them, namely the curvature and torsion. In addition, including only
the averages coordinate of each vertex is possible since a mesh animation sequence comes with a
fixed mesh connectivity, and that each vertex has a well-defined correspondence across all frames.
During segmentation, we consider three factors to determine the similarity among mesh vertices,
namely vertex position, curvature, and torsion. Considering the magnitudes of these three factors
are different, we apply min-max normalization to their corresponding values under each column of
the matrix R, i.e., updating each of these values u by u = (u −umin)/(umax −umin), where umin and
umax are the smallest and largest u in a column.

Regarding the motion-aware component of the matrix R, we set the weights of both curvature and
torsion to (1 − α)/2 since their importances are approximately equivalent. On the other hand, we
set α as the weight for each component of the averaged vertex coordinates, allowing us to adjust
the importance between geometrical and motion feature of a mesh animation sequence. Specific
values of α are determined by our experiments as presented in Section 7. As shown in Eqn. (5), since
each row of matrix R represents the motion of a vertex across a set of frames, if the corresponding
rows of two vertices are similar, it would mean their geometrical and motion characteristics are

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

xx:10 B. Yang et al.

comparable. Consequently, we perform K-means clustering to group similar rows of matrix R by
minimizing within-cluster sum of squares, which is measured by evaluating the Euclidean distance
between different rows. Unfortunately, it is not trivial to automatically determine the optimal number
of clusters. We determine a suitable segment number for each mesh animation through experiments
by trading off reconstruction error against compression rate, as will be described in Section 7.2.

Our motion-aware spatial segmentation essentially allows some spatially distant vertices per-
forming the same motion to be grouped together. This could be useful in terms of increasing the
compression ratio, since it helps reduce the number of segments produced. Moreover, for mesh
animation retrieval applications as will be discussed in Section 7.4.3, being able to group spatially
proximal vertices will be more favorable, since they provide logical representations of mesh part
motions. We refer this as preserving spatial continuity, which is controlled by α in the matrix R.
Section 7.2 shows results about how different values of α affect the spatial continuity.

6 COMPRESSION
Considering the segments produced by the temporal-spatial clustering are relatively smooth in terms
of their contents, we hence apply Graph Fourier Transform (GFT) [17] to encode these segments.
In this way, most of the obtained coefficients would be close to zero, while those coefficients with
relatively large values represent low-frequency information of the corresponding segments. To
compress the results, we only choose to store those relatively large coefficients, essentially removing
high-frequency information. Note that we can retain more coefficients, incorporating certain high-
frequency information to improve the reconstruction quality if needed. To achieve progressive
transmission, we choose the Set Partitioning In Hierarchical Trees (SPIHT) algorithm [13] to encode
the selected coefficients.

6.1 Graph Fourier Transform (GFT)
We apply GFT to encode the results from temporal-spatial clustering, i.e., the segments obtained in
Section 5.2. We choose GFT over other types of transforms due to the following reasons: (i) From the
perspective of progressive transmission, although some methods such as Fourier and discrete cosine
transforms [9, 16] also support progressive transmission, they require the input to be organized in a
regular grid, being incapable to transform any input arbitrary meshes without remeshing. Instead,
GFT can directly handle any input mesh connected by a graph, including meshes presented in this
work. (ii) Since each segment is relatively smooth, applying GFT can produce optimal results.

Suppose we need to apply GFT to Si , j , i.e. the j-th segment of the i-th cluster, where i = 1, . . . ,K ,
j = 1, . . . , S . First, we compute the Laplacian matrix L = D − A of Si , j , where A is an adjacency
matrix encoding the connectivity of every pair of vertices within Si , j . D is a diagonal matrix with
each diagonal element encoding the degree (number of immediate neighbors) of each vertex within
Si , j . L, D, A are all square matrices and their orders are ∥Si , j ∥ × ∥Si , j ∥, where ∥Si , j ∥ denotes the
number of vertices of the j-th segment in the i-th cluster. Then, we compute the eigenvectors V of
matrix L, where V is also a square matrix and its orders are ∥Si , j ∥ × ∥Si , j ∥. Subsequently, we project
the x , y, z coordinates of all the vertices in the same segment to the corresponding bases to obtain
GFT coefficients. Finally, we retain the first kn group of coefficients, corresponding to the most
significant bases. Determining kn is related to the expected compression quality defined by the user
and the resource availability. Further discussion of the selection of kn is presented in Section 7.

6.2 SPIHT Coding
In this part, we describe how we encode the selected GFT coefficients. Instead of applying some
classical coding algorithms such as Huffman coding and predictive coding, we adopt embedded
coding. Embedded coding encodes information based on importance and supports multiple bit rates

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:11

for decompression. It is done by encoding most important information into the initial part of the
output code stream and gradually adding information into the stream based on the reduction in
importance. This allows lower rate streams to be embedded in a high rate code stream. Hence,
embedded coding supports progressive transmission, where the encoder can stop at any point and the
decoder can also stop at any time when receiving the code stream. In this way, embedded coding can
precisely control the coding rate. Once the coding distortion or bit rate meets user requirements, we
can stop the decoding process accordingly. So the embedded coding is suitable to support progressive
transmission of mesh animations in this work.

The most representative algorithms of embedded coding are EZW, SPIHT and Set Partition
Embedded block (SPECK) [24], where EZW coding algorithm is important to wavelet encoding
technology. It achieves effective organization of wavelet coefficients by introducing zero-tree data
structure. SPIHT coding algorithm makes some improvements on data structure on the basis of
Embedded Zerotree Wavelets Encoding (EZW) and achieves a better performance. Similar to EZW,
SPIHT is based on the zero-tree structure and additionally puts a tree node and all successor nodes
into a cluster. It finishes the embedded coding by initializing, sorting, refining, and updating the
quantization step. SPIHT coding is not only simple in data structure but can also achieve a high
coding efficiency without any training; it also produces a good reconstruction quality.

7 RESULTS AND APPLICATIONS
In this section, we show the experiment results of our method and compare our method with state-of-
the-art mesh animation compression methods.

7.1 Animation Data
In our experiments, we used eight well-known mesh animation sequences as the test set, including
cow, dance, deer, snake, chicken, man, tiger and dog [3]. The geometric features of these models are
described in Table 2. It is clear that major portion of data size is contributed by geometry information
rather than topology information in each test model. Note that the data sizes of geometry and topology
information are uncompressed sizes.

Table 2. Test models used in our experiments

Animation Sequence cow snake deer dance chicken man dog tiger
Number of vertices 2904 9179 2969 7061 3030 1070 1179 587
Number of faces 5804 18354 5832 14118 5664 2176 3504 1126
Number of frames 204 134 201 201 400 301 201 291
Geometry information (KB) 12689 72499 5722 48230 19064 3340 4060 1821
Topology information (KB) 21 71 22 48 22 8 13 5

7.2 Compression and Reconstruction
To compare the reconstruction errors of different methods, an effective metric is required. We choose
the Karni-Gotsman error (KGerror) [23] because it is specifically designed for mesh animation
sequences. The metric works on matrices representing mesh animation, where matrix columns
describe trajectories of respective vertices of the animation. It is used for evaluating the amount of
distortions caused by compression for a mesh animation sequence. Also, the state-of-the-art methods
[22, 28, 42] in our comparison relied on this metric to evaluate their results. There are other metrics
available [11], such as Da , 4D Hausdorff and PerceptualDiff. They are not suitable metrics due
to lack of rotation invariance, high computation cost and pixel-based measurement, respectively.
Alternatively, STED measures both local vertex and temporal edge changes, serving as a perceptual

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

xx:12 B. Yang et al.

metric. This metric does not provide a fair measurement to our method, since we involve mesh
animation simplification for supporting progressive transmission. Therefore, KGerror is preferable
for assessing the effectiveness of our algorithm, which is defined as follows:

KGerror = 100 ×
||B − B′ | |

| |B − E(B)| |
% (6)

As in Eqn. (6), B is a matrix composed of 3N rows and F columns of geometry information, where
N is the number of vertices and F is the number of frames in the animation sequence. B′ is also
a 3N × F matrix, representing the reconstructed animation sequence. E(B) is a matrix of the same
dimensions as B, in which the values have been replaced by per-frame averages. The reconstruction
error is calculated with Frobenius norm.

To compare the effectiveness of compression, we define r as in Eqn. (7) to represent the bit size
per vertex per frame (bpvf):

r =
M

N · F
(7)

where M represents the total amount of bits after compression, N is the number of all the vertices,
and F is the number of frames in a mesh animation sequence. In our method, we first perform a
temporal clustering along an animation sequence. To perform spatial segmentation, we then divide
mesh vertices of each cluster into S segments. In order to investigate the effects of different S , Table
3 shows the compression rate (r) and the reconstruction error (KGerror) of different animation
sequences when different numbers of segments are applied. We attempt to identify a good number
of segments for each mesh animation by considering the tradeoff between r and KGerror . For
instance, both the cow and snake animations reduce in KGerror when their segment numbers are
being increased, which is benefitical. Meanwhile, the compression rates of them become larger, being
less favorable. We observe that when the segment number of both mesh animations are increased
further after 6 segments, KGerror will no longer drop significantly while r may still grow gradually.
We conclude that 6 is the best segment number for both the cow and snake animations. For dance and
deer animations, the best segment numbers are 10 and 7, respectively. From the table, we can see that
with the increase in the number of segments, the reconstruction error is reduced and the compression
rate becomes larger in general. This makes sense because the more segments we divide, data within
each segment become more coherent, which help improve the reconstruction quality.

Fig. 6 shows the influence of kn on the reconstruction error of the test sequences, where kn
denotes the number of GFT bases and their corresponding coefficients used for mesh animation
reconstruction. As shown in the figure, the reconstruction error becomes smaller with the increase in
kn . The reconstruction quality of a compressed animation sequence will be increased when larger kn
is used. When kn = 1, it means only one GFT basis and the corresponding coefficient are chosen for
reconstructing the coarsest version of mesh animation. Such reconstruction is suffered from a large
error since no other GFT bases and their corresponding coefficients are involved. However, since our
work adopts GFT rather than other transformation methods, mesh animation reconstruction error can
be reduced significantly when a relatively small kn is used, e.g., kn = 7. In practical applications,
we should take both user-desired compression quality and resource availability into account when
we determine kn . For example, we should select a relatively large kn if we want to reconstruct fine
animation details of a heart movement for medical visualization. On the other hand, if an application
emphasizes on performance rather then producing very high quality animation, such as online games
[27], we may select a relatively small kn to improve compression rate, given that a certain level of
reconstruction quality can be achieved.

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:13

Table 3. Compression performance with different number of segments

Animation Sequence S KGerror r

cow
3 0.0957 0.48
6 0.0783 0.56
9 0.0752 0.65

dance
4 0.0782 0.33

10 0.0574 0.42
12 0.0752 0.44

deer
3 0.0815 0.63
7 0.0504 0.72
9 0.0498 0.75

snake
3 0.0492 0.47
6 0.0325 0.55
9 0.0321 0.64

chicken
2 0.0621 0.53
4 0.0489 0.61
6 0.0494 0.69

man
2 0.0183 0.39
3 0.0177 0.43
4 0.0175 0.49

tiger
4 0.0415 0.37
7 0.0236 0.48
9 0.0231 0.56

dog
2 0.0523 0.62
3 0.0369 0.69
5 0.0375 0.83

As described in Section 5, α represents the weight of the geometric information during the
compression process. Fig. 7 illustrates the influence of weight α on the reconstruction quality. In
the spatial segmentation, preserving spatial coherence offers better performance to user-defined
and progressive transmission, so we set α ≥ 0.5. Here, we use the proportion of topologically
unconnected vertices to measure the reconstruction quality. Such vertices refer to those locating at
topologically disjointed mesh parts, while spatial coherence measures proximity of mesh vertices
in each segment. From the figure, we observe that for the majority of the test animation sequences,
the proportion of topologically unconnected vertices will not be further reduced when α > 0.7 ,
indicating α can no longer significantly affect the proportion. Because adjacent vertices’ motions
must be spatially similar, the weight of curvature and torsion also contribute to the weight of vertex
coordinates.

7.3 Comparison with State-of-the-Art Methods
We choose three state-of-the-art methods [22, 28, 42] for comparison. The work of [42] compresses
geometry data by removing redundancy among vertices. [28] alternatively groups similar frames
together and perform intra-cluster compression. On the other hand, [22] supports progressive coding.

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

xx:14 B. Yang et al.

Fig. 6. The influence of different kn on reconstruction quality

0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

Weight

Pr
op

or
tio

n

cow
dance
deer

snake
chicken

man
tiger
dog

Fig. 7. The influence of different α values on the proportion of topologically unconnected vertices in
the reconstructed results

We choose rate-distortion (R-D) curves to measure the quality of a mesh animation sequence com-
pression algorithm. Fig. 8 and Fig. 9 compare R-D curves of our method against the state-of-the-art
methods by running tests on the aforementioned 8 test models. In order to investigate the importance
of temporal clustering, we further compare our method with and without temporal clustering. In the
figure, “Temporal_spatial” denotes running our method with both temporal clustering and spatial
segmentation, while “Spatial” denotes running our method without performing temporal clustering.
Unsurprisingly, in terms of R-D curve, “Temporal_spatial” is clearly better than “Spatial”, validating
the contributions of our proposed method.

Figs. 8 and 9 also clearly show that our method performs better than the existing methods [22, 28,
42]. Our method consistently produces a lower KG error under different compression rates for all the
tested animation sequences. Also, our method generally produces a higher compression rate than
the existing methods, under the same reconstruction quality. However, the result of the snake model
by our method is not good enough when r < 0.45. It is because the topology information of the
snake model occupies a relatively large storage space, substantially reducing the available data rate

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:15

Fig. 8. Performance comparison in terms of the Rate-Distortion curve (R-D curve) among Kao’s [22],
Váša’s [42], Luo’s [28], and our method without and with temporal clustering.

Fig. 9. Performance comparison in terms of the Rate-Distortion curve (R-D curve) among Kao’s [22],
Váša’s [42], Luo’s [28], and our method without and with temporal clustering.

for holding the geometry information. Hence, our method had a relatively high reconstruction error

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

xx:16 B. Yang et al.

in such a situation. When handling the snake model, Luo’s method [28] also performs worse than
Váša’s method [42]. Because Luo’s method divides a mesh animation into clusters and compresses
each by exploiting its intra-similarity. Without a good amount of geometry information available,
such a compression cannot perform well. With our method, this is not a critical issue. Particularly,
when the length of an animation sequence becomes large, its topology information will become
insignificant as such information occupies a constant data size regardless the length of the sequence.
In other words, more space will be available for storing geometry information. We also observe
that our method works best with the deer animation. Because this animation is featured with many
repeated animation frames, which benefits from the temporal clustering of our method.

On the other hand, we also show compression and decompression timing of different methods in
Table 4. All the methods were implemented with Matlab and ran on the same off-the-shelf computer
with Intel Xeon 3.90 GHz PC and 16 GB RAM. As shown in Table 4, our method runs much faster
than [42] in term of both compression and decompression, but not as efficient as [28] for compression.
Because our method can support progressive transmission, we can transmit the base animation from
the server to a client first, and then transmit more details to refine the reconstruction quality. Note
that [22] is not involved in this part of comparison since the method focuses only on progressive
coding rather than compression.

Table 4. Compression and decompression time [seconds]

Cow Deer Dance Snake Chicken Man Tiger Dog

[42] Compression 26.23 25.13 24.61 20.46 23.44 18.64 23.84 25.76
Decompression 3.24 4.52 4.73 4.94 3.14 2.75 3.72 5.13

[28] Compression 0.67 0.69 0.73 0.58 0.87 0.53 0.97 0.72
Decompression 0.61 0.58 0.74 0.77 0.82 0.57 0.92 0.75

Our method Compression 7.97 7.82 8.43 8.12 8.45 6.24 7.14 7.93
Decompression 0.48 0.43 0.64 0.47 0.57 0.41 0.58 0.45

In our method, we have to transmit three types of information from the server to a client, namely
topology information, temporal-spatial clustering results, and selected coefficients, in order to
reconstruct the base mesh animation. Here, we select 2% coefficients to reconstruct the base mesh
animation. During the progressive reconstruction, we transmit more coefficients, e.g., we transmit
fine details by adding 20% coefficients each time. As shown in Table 5, if we only transmit the
information for the base mesh animation, our method uses significantly less time on decompression
than [28]. It is reasonable because when we reconstruct the base mesh animation at the client side,
we can transmit more coefficients to improve the reconstruction quality at the same time.

Table 5 compares the time used for progressive transmission by our method and Kao’s method [22],
which is the most recent method supporting progressive coding for mesh animation to our knowledge.
We conducted experiments under a local area network with a bandwidth of 4.49Mbit/sec. Table
5(a) shows the breakdown of model transmission time with our method. The first column (“Base
mesh anim. (2%)”) shows the time used to transmit topology information, temporal-spatial clustering
results, and the selected 2% of coefficients of each model we have tested. The next column (“Add
20%”) shows the added time for transmitting 20% of coefficients on top of the base mesh animation
to improve rendering quality. Moreover, each of the remaining columns shows both the added
transmission time for sending a specific percentage of additional coefficients on top of the base
mesh animation and the added transmission time (in the parentheses) for sending 20% of additional
coefficients on top of that of the previous column. Because the coefficients are arranged in a
descending order according to their importance, the coefficients added subsequently will be more
closer to zero, becoming computationally more efficient for mesh animation reconstruction. In this
way, we can achieve real time transmission to a certain extent.

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:17

Table 5. Time used for progressive transmission [milliseconds]

Base mesh anim. (2%) Add 20% Add 40% Add 60%
Cow 320 67 115(48) 138(23)
Deer 355 75 120(45) 152(32)
Dance 451 84 135(51) 171(36)
Snake 487 63 95(32) 109(14)
Chicken 347 65 108(43) 129(21)
Man 302 61 86(25) 95(9)
Tiger 324 75 127(52) 165(38)
Dog 315 69 99(30) 126(27)

(a) Our Method

Base mesh anim. (20%) Add 40% Add 60%
Cow 284 849(565) 1102(253)
Deer 292 870(578) 1095(225)

Dance 341 986(645) 1206(220)
Snake 374 1107(733) 1397(290)

Chicken 293 868(575) 1069(201)
Man 260 771(511) 991(220)
Tiger 288 873(585) 1065(192)
Dog 279 836(557) 1073(237)

(b) Kao’s method [22]

In contrast, Kao’s method [22] performs progressive coding of mesh topology to support pro-
gressive transmission. Both topology information and geometry information are therefore required
to progressively transmit. In contrast, our method maintains static topology information, which is
only required to transmit once. As a result, [22] signficantly needs more time to support progressive
transmission than our method during the course of mesh animation reconstruction, as shown in Table
5(b). It also cannot generate a much concise base mesh animation than our method, where they
require 20% of geometry information to be encoded in the base mesh animation.

7.4 Selected Applications
7.4.1 User-defined Transmission. User-defined transmission is a mechanism to control how

much data is transmitted. It arranges a suitable amount of mesh data to transmit. When the re-
construction quality satisfies the user requirements, we can stop transmitting more data. Having
such a mechanism is important, as the requirement of reconstruction quality varies among different
applications. Our temporal-spatial clustering method can generate segments, each of which comprises
vertices exhibiting similar motions both in space and time. So, it may be unnecessary for the user to
always request all frames of a segment for transmission as long as the user has already received at
least one frame from the segment. The other frames can be approximated based on that frame if the
reconstructed quality is acceptable.

To support user-defined transmission, we classify those segments obtained by temporal-spatial
clustering into different classes, namely classes of drastic motion, gentle motion, and relatively steady
motion. Our method handles the three classes differently. For a drastic motion class, we transmit all
of its frames, and for the classes of gentle and relatively steady motions, we transmit them with an
interval of k1 and k2 frames, respectively. Missing frames will be substituted by an available frame

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

xx:18 B. Yang et al.

which is of high proximity in the same segment. The values of k1 and k2 can be application-specific,
specified by the user. For example, in a mobile application, we can dynamically compute them
based on the available network bandwidth, display resolution, and cache size. In this way, we can
significantly reduce the amount of transmitted data.

7.4.2 Progressive Transmission. Since the SPIHT algorithm can produce an embedded bit
stream, we can decompress and reconstruct the mesh even if there is an interruption of flow at any
point. Therefore, we adapt the SPIHT algorithm to support progressive transmission. In our method,
we support progressive transmission by controlling the selected number (kn) of GFT coefficients to
satisfy the reconstruction requirement specified by users. The encoder running at the server side can
stop at any point and the decoder at the client side can also stop at any time while receiving the data
stream. More GFT coefficients can be transmitted to enhance the reconstruction result if more time
or network bandwidth resources are available. Specifically, at the client side, the user reconstructs
the animation based on the information received from the server side, which includes topology
information, temporal-spatial clustering results, and some selected coefficients. In order to support
progressive transmission, we first transmit a data packet including topology information, temporal-
spatial clustering results, and a small number of coefficients to the client side, and then progressively
improve the reconstruction quality by transmitting more coefficients. One progressive transmission
example by our approach is shown in Fig. 10. For the cow animation, its topology information and
temporal-spatial results occupy about 19KB storage space, all the others are coefficients. Obviously,
with the increase in the transmitted data, the reconstructed animation can be refined gradually.

Fig. 10. A progressive transmission example (the cow model) by our approach

7.4.3 Mesh Animation Retrieval. Mesh animation retrieval has caught increasing attention in
the community. Motion patterns of different mesh animations could be very similar. For example,
given the dancing mesh animations of two different people, although their topology and geometry
information are different, their motions could be very similar. Such animations should be grouped
togther to a certain extent.

Fig. 11(a) plots the motion strength across all frames of dog and deer animations. The curves
in red and blue are for the dog and the deer models, respectively. From the motion strength of the
two different animations, we can see their motions are similar though their shapes are substantially
different. From the motion aspect, they could be grouped into one cluster. According to Fig. 11(a), we
found that the frames with the biggest, the average, and the smallest differences in motion strength of
the two animations are the #42nd, #65th, and #170th frames, respectively. The corresponding graphs
are shown in Fig. 11(b), from which we can see their motions are indeed very similar.

8 DISCUSSION AND CONCLUSION
We introduce a novel compression method to improve the compression rate by removing temporal-
spatial redundancies from an animated mesh sequence. In our method, curvature and torsion are
chosen to measure the motion of a vertex. Instead of clustering frames based on their temporal

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:19

(a) motion strength of all frames in the dog
(red) and the deer (blue) animations.

(b) Comparisons of the frame with the biggest
difference, the frame with the average differ-
ence, and the frame with the smallest difference
between the dog and the deer animations.

Fig. 11. Illustration of potential mesh animation retrieval application, using the dog and the deer
animations as an example.

adjacency, we cluster frames by motion similarity. Our method also ensures mesh coherence in the
spatial domain, which is favorable to support user-defined transmission.

In addition, we perform intra-cluster compression based on GFT and SPIHT coding. Because
every segment within a cluster exhibits similar motion, GFT can effectively reduce the amount of
data using to encode those segments. Also, SPIHT is applied to code the GFT coefficients to support
progressive transmission. Our method is computationally efficient and outperforms state-of-the-art
methods for compressing mesh animation sequences.

A limitation of our approach is raised from compressing mesh animations without repeated posture
or motion patterns, where our temporal clustering method may not significantly improve compression
effectiveness. But in fact, if the length of an animation sequence is long enough, similar model
poses or motions may likely exist, and that the sequence can be effectively compressed by our
method. Another limitation is that we generate GFT bases directly at the client side, which consumes
about two seconds in our experiments. In future work, we plan to improve spatial segmentation in
order to make this bases recovery more efficient. Besides, the number of segments is required to
manually specify in our current method. As shown in Table 3, the segment number is a major factor
to determine compression performance, we therefore would also like to investigate a way to identify
segment number automatically [19].

REFERENCES
[1] Jae-Kyun Ahn, Yeong Jun Koh, and Chang-Su Kim. 2013. Efficient fine-granular scalable coding of 3D mesh sequences.

IEEE Transactions on Multimedia 15, 3 (2013), 485–497.
[2] Marc Alexa and Wolfgang Müller. 2000. Representing animations by principal components. In Computer Graphics

Forum, Vol. 19. Wiley Online Library, 411–418.
[3] Rachida Amjoun. 2009. Compression of static and dynamic three-dimensional meshes. Ph.D. Dissertation. Universität

Tübingen.
[4] Rachida Amjoun, Ralf Sondershaus, and Wolfgang Straßer. 2006. Compression of complex animated meshes. In

Advances in Computer Graphics. Springer, 606–613.
[5] Rachida Amjoun and Wolfgang Straßer. 2009. Single-rate near lossless compression of animated geometry. Computer-

Aided Design 41, 10 (2009), 711–718.

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

xx:20 B. Yang et al.

[6] Marco Attene, Bianca Falcidieno, Michela Spagnuolo, and Jarek Rossignac. 2003. Swingwrapper: Retiling triangle
meshes for better edgebreaker compression. ACM Transactions on Graphics (TOG) 22, 4 (2003), 982–996.

[7] Chandrajit L Bajaj, Valerio Pascucci, and Guozhong Zhuang. 1999. Single resolution compression of arbitrary triangular
meshes with properties. Computational Geometry 14, 1 (1999), 167–186.

[8] M Oguz Bici and Gozde B Akar. 2011. Improved prediction methods for scalable predictive animated mesh compression.
Journal of Visual Communication and Image Representation 22, 7 (2011), 577–589.

[9] Jae W Cho, Sébastien Valette, Ju H Park, Ho Y Jung, and Rémy Prost. 2010. 3-D mesh sequence compression using
wavelet-based multi-resolution analysis. Appl. Math. Comput. 216, 2 (2010), 410–425.

[10] Mike M Chow. 1997. Optimized geometry compression for real-time rendering. In Visualization’97., Proceedings. IEEE,
347–354.

[11] M. Corsini, M. C. Larabi, G. Lavoué, L. Petříša, and K. Wang. 2013. Perceptual Metrics for Static and Dynamic Triangle
Meshes. Computer Graphics Forum 32, 1 (2013), 101–125.

[12] Clément Courbet and Céline Hudelot. 2011. Taylor prediction for mesh geometry compression. In Computer Graphics
Forum, Vol. 30. Wiley Online Library, 139–151.

[13] T. W. Fry and S. A. Hauck. 2005. SPIHT Image Compression on FPGAs. IEEE Transactions on Circuits and Systems
for Video Technology 15, 9 (Sept 2005), 1138–1147.

[14] Stefan Gumhold and Wolfgang Straßer. 1998. Real time compression of triangle mesh connectivity. In ACM Computer
graphics and interactive techniques. ACM, 133–140.

[15] Sumit Gupta, Kuntal Sengupta, and Ashraf A Kassim. 2002. Compression of dynamic 3D geometry data using iterative
closest point algorithm. Computer Vision and Image Understanding 87, 1 (2002), 116–130.

[16] Igor Guskov and Andrei Khodakovsky. 2004. Wavelet compression of parametrically coherent mesh sequences. In ACM
SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 183–192.

[17] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets on graphs via spectral graph theory.
Applied and Computational Harmonic Analysis 30, 2 (2011), 129–150.

[18] Lawrence Ibarria and Jarek Rossignac. 2003. Dynapack: space-time compression of the 3D animations of triangle
meshes with fixed connectivity. In ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics
Association, 126–135.

[19] Timor Kadir and Michael Brady. 2001. Saliency, scale and image description. International Journal of Computer Vision
45, 2 (2001), 83–105.

[20] Felix Kälberer, Konrad Polthier, Ulrich Reitebuch, and Max Wardetzky. 2005. FreeLence-Coding with Free Valences. In
Computer Graphics Forum, Vol. 24. Wiley Online Library, 469–478.

[21] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and Angela Y Wu. 2002.
An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 24, 7 (2002), 881–892.

[22] C. K. Kao, B. S. Jong, and T. W. Lin. 2010. Representing Progressive Dynamic 3D Meshes and Applications. In Pacific
Conference on Computer Graphics and Applications. 5–13.

[23] Zachi Karni and Craig Gotsman. 2004. Compression of soft-body animation sequences. Computers & Graphics 28, 1
(2004), 25–34.

[24] Umut Konur, Uluğ Bayazit, Fikret Gürgen, and Ozgur Örcay. 2006. Compressing Mesh Geometry using Spectral
Methods and a Set Partitioning Approach. In IEEE Signal Processing and Communications Applications. IEEE, 1–4.

[25] Aris S. Lalos, Andreas A. Vasilakis, Anastasios Dimas, and Konstantinos Moustakas. 2017. Adaptive Compression of
Animated Meshes by Exploiting Orthogonal Iterations. The Visual Computer 33, 6-8 (June 2017), 811–821.

[26] Jerome Edward Lengyel. 1999. Compression of time-dependent geometry. In ACM Symposium on Interactive 3D
graphics. ACM, 89–95.

[27] Frederick W. B. Li, Rynson W. H. Lau, Danny Kilis, and Lewis W. F. Li. 2011. Game-on-demand:: An Online
Game Engine Based on Geometry Streaming. ACM Transactions on Multimedia Computing, Communications, and
Applications 7, 3, Article 19 (Sept. 2011).

[28] Guoliang Luo, Frederic Cordier, and Hyewon Seo. 2013. Compression of 3D mesh sequences by temporal segmentation.
Computer Animation and Virtual Worlds 24, 3-4 (2013), 365–375.

[29] Khaled Mamou, Titus Zaharia, and Françoise Prêteux. 2006. A skinning approach for dynamic 3D mesh compression.
Computer Animation and Virtual Worlds 17, 3-4 (2006), 337–346.

[30] Khaled Mamou, Titus Zaharia, Françoise Prêteux, Nikolce Stefanoski, and Jörn Ostermann. 2008. Frame-based
compression of animated meshes in MPEG-4. In IEEE International Conference on Multimedia and Expo. IEEE,
1121–1124.

[31] K Muller, A Smolic, M Kautzner, and P Eisert. 2005. Predictive compression of dynamic 3D meshes. In IEEE Image
Processing. I–621–4.

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Motion-aware Compression and Transmission of Mesh Animation Sequences xx:21

[32] K. Muller, A. Smolic, M. Kautzner, and T. Wiegand. 2006. Rate-Distortion Optimization in Dynamic Mesh Compression.
Applied Energy 87, 4 (2006), 1122–1133.

[33] Frédéric Payan and Marc Antonini. 2005. Wavelet-based compression of 3d mesh sequences. In ACIDCA-ICMI’2005.
[34] Frédéric Payan and Marc Antonini. 2007. Temporal wavelet-based compression for 3D animated models. Computers &

Graphics 31, 1 (2007), 77–88.
[35] Subramanian Ramanathan, Ashraf A Kassim, and Tiow-Seng Tan. 2008. Impact of vertex clustering on registration-based

3D dynamic mesh coding. Image and Vision Computing 26, 7 (2008), 1012–1026.
[36] Mirko Sattler, Ralf Sarlette, and Reinhard Klein. 2005. Simple and efficient compression of animation sequences. In

ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM, 209–217.
[37] Nikolce Stefanoski and Jorn Ostermann. 2006. Connectivity-Guided Predictive Compression of Dynamic 3D Meshes. In

International Conference on Image Processing. 2973–2976.
[38] Nikolče Stefanoski and Jörn Ostermann. 2010. SPC: fast and efficient scalable predictive coding of animated meshes. In

Computer Graphics Forum, Vol. 29. Wiley Online Library, 101–116.
[39] Libor Váša and Guido Brunnett. 2013. Exploiting connectivity to improve the tangential part of geometry prediction.

IEEE Transactions on Visualization and Computer Graphics 19, 9 (2013), 1467–1475.
[40] L. Váša and J. Dvořák. 2018. Error Propagation Control in Laplacian Mesh Compression. Computer Graphics Forum

37, 5 (2018), 61–70.
[41] Libor Váša and Václav Skala. 2009. Cobra: Compression of the basis for PCA represented animations. In Computer

Graphics Forum, Vol. 28. Wiley Online Library, 1529–1540.
[42] Libor Váša and Václav Skala. 2010. Geometry-Driven Local Neighbourhood Based Predictors for Dynamic Mesh

Compression. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1921–1933.
[43] Jeong-Hyu Yang, Chang-Su Kim, and Sang Uk Lee. 2005. Progressive coding of 3D dynamic mesh sequences using

spatiotemporal decomposition. IEEE International Symposium on Circuits and Systems (2005), 944–947 Vol. 2.

Received August 2017; revised August 2018; accepted December 2018

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, Article xx. Publication date: December 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Method Overview
	4 Modeling of Motion Change
	5 Motion-based Segmentation
	5.1 Temporal clustering
	5.2 Spatial Segmentation

	6 Compression
	6.1 Graph Fourier Transform (GFT)
	6.2 SPIHT Coding

	7 Results and Applications
	7.1 Animation Data
	7.2 Compression and Reconstruction
	7.3 Comparison with State-of-the-Art Methods
	7.4 Selected Applications

	8 Discussion and Conclusion
	References

