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Crowdsourcing has become an integral part of many systems and services that deliver high-quality results

for complex tasks such as data linkage, schema matching, and content annotation. A standard function of

such crowd-powered systems is to publish a batch of tasks on a crowdsourcing platform automatically and to

collect the results once the workers complete them. Currently, these systems provide limited guarantees over

the execution time, which is problematic for many applications. Timely completion may even be impossible

to guarantee due to factors speciic to the crowdsourcing platform, such as the availability of workers and

concurrent tasks. In our previous work, we presented the architecture of a crowd-powered system that reshapes

the interaction mechanism with the crowd. Speciically, we studied a push-crowdsourcing model whereby the

workers receive tasks instead of selecting them from a portal. Based on this interaction model, we employed

scheduling techniques similar to those found in distributed computing infrastructures to automate the task

assignment process. In this work, we irst devise a generic scheduling strategy that supports both fairness and

deadline-awareness. Second, to complement the proof-of-concept experiments previously performed with the

crowd, we present an extensive set of simulations meant to analyze the properties of the proposed scheduling

algorithms in an environment with thousands of workers and tasks. Our experimental results show that, by

accounting for human factors, micro-task scheduling can achieve fairness for best-efort batches and boosts

production batches.
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algorithms;
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1 INTRODUCTION

Thanks to micro-task crowdsourcing platforms, such as Amazon ℧echanical Turk (A℧T) and
Crowdlower (now Figure-Eight), it is today possible to build crowd-powered systems combining
both the scalability of computers with the yet unmatched cognitive abilities of the human brain.
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Fig. 1. An analysis of three months of activity logs on Amazon MTurk (January-March 2014) obtained from
mturk-tracker.com [29] The crawler frequency is 20 minutes, hence it might miss some batches. All tasks
considered in this plot are rewarded $0.01. Throughput measured in task/minute for batches of diferent sizes.

℧icro-task crowdsourcing has already been used in database systems and search engines [18, 24].
In such systems, human and machines behave fundamentally diferently: Ωhile machines can deal
with large volumes of data, with real-time requests, and with locks of concurrent users interacting
with the system, crowdsourcing is mostly used as a batch-oriented, oline data processing paradigm.
℧oreover, crowdsourcing platforms do not provide guarantees on task completion times, due to
the unpredictability of the crowd workers, who are free to come and go at any point in time and to
selectively focus on an arbitrary subset of the tasks (also known as Human Intelligence Tasks or
HITs) only.

Ωith increased momentum around crowdsourcing for both academic and commercial purposes,
obtaining timely responses has become indispensable. Practitioners circumvent this issues by
adjusting the price of the tasks or by repeatedly re-publishing them [7, 19, 23]. Ωe argue that some
of these issues are due to the pull-based model of A℧T, where the workers can browse and choose
among a list of batches. Before delving into the details of our work, we irst present the issues
surrounding a pull-based platform by performing an analysis of logs collected from A℧T, and
discussing the operating model of select services that use crowdsourcing.

1.1 Motivation I: Batch Starvation

To showcase the disparity in the treatment of batches running on A℧Twe computed the throughput
(i.e., the number of tasks completed per minute) of every batch publicly visible during a three
months period. Ωe grouped the batches into four categories: tiny (less than 10 HITs), small (10-100
HITs), medium (100-1000 HITs), and large (more than 1000 HITs). The results are depicted in Figure
1. Ωe observe that large batches dominate the throughput of A℧T even if the vast majority of the
running batches are very small (less than 10 HITs). As a result, large batches are irst completed at
a faster rate then gradually lose momentum as the inal remaining tasks take a much longer time
to inish.
Such a batch starvation phenomenon has been observed in a number of recent reports, e.g., in

[23, 49] where authors observe that the batch completion time depends on its size and HIT pricing.
A similar observation was made in [24], where the authors compared the throughput of diferent
batch sizes and concluded that large batches have the highest throughput. Ωorkers on A℧T tend to
explore new batches with many HITs, since they have a high reward potential, without requiring
to search for and select a new type of HIT, these conclusions were reached in qualitative and
quantitative studies in [11, 14].
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1.2 Motivation II: Production versus Best-efort Batches

By examining the logs of batches that appeared on A℧T, we observed that the demand (new batches
arriving) exhibits a strong weekly periodicity [14]. From this observation, we conjuncture that
crowdsourcing is used routinely for production purposes. Although industry surveys [37] supports
this claim, it is diicult to characterize the needs and constraints of diferent requesters. Broadly,
we can distinguish two classes of demand:

Ð Production Batches: These are tasks that are posted routinely by large production pipelines,
e.g., real-time trend detection on Twitter [9], slow search queries [16], active learning [39],
etc. Routine batches can also be submitted by service providers such as SpeechPad.com,
Grammarly.com, or Tagasaurus.com, that use human computation as a backend to fulill
their own customers’ requests. In these production setups, a time-bounded response is often
critical to the service.

Ð Best-efort Batches: Other crowdsourcing tasks can be published in a best-efort manner by
engineers and scientists for a wide variety of purposes, e.g., data gathering, running surveys,
testing or debugging. Also, oline systems that publish large batches can operate in that mode,
for instance, annotating a large number of pictures to improve an existing machine learning
model. Ωhile such use-cases do not necessarily have a time constraint, steady progress is
often desirable or expected.

Currently, on a pull-crowdsourcing platform, these two classes of batches run side-by-side,
and compete for the same pool of workers, whereas both have diferent execution requirements.
For instance, consider the extreme case of a crowdsourced customer service agent CrowdIO.com
that needs to be assigned within seconds from the chat initiation. Or, a transcription service like
SpeechPad that has several pricing schemes for diferent turnaround levels (as short as 24 hours).
At peak demand, such services will still have access to the same crowd and would share the
workforce along with thousands of concurrent batches, including annotation tasks and surveys. To
solve this issue, other service providers like CloudFactory.com and ScaleAPI.com have built their
crowd communities. A similar approach is being adopted by multiple large corporations who have
developed internal platforms powered by their employees. This solution guarantees a dedicated
crowd but fails to scale when necessary.

1.3 Contributions

In this line of work, we propose to overhaul the pull-crowdsourcing scheme by taking control of
the distribution process of tasks submitted by multiple requesters. In [20], we have proposed a
push-crowdsourcing architecture that automatically assigns tasks to workers. Such architecture
allows us to order the execution of the tasks and to apply scheduling strategies tailored to the
unpredictable nature of the humans. The focus was on analyzing human factors in task scheduling
environment, and we investigated the following questions: łCan we apply scheduling algorithms
to an online human workforce?" and łΩhat are the adaptations required to schedule micro-tasks
on crowdsourcing platforms successfully?".

In the present work, we revisit our push-crowdsourcing architecture by providing a theoretical
scheduling framework that supports productions batches in systems with multiple requesters (aka
tenants). Ωe irst review our previous results concerning human factors in scheduling environments.
Next, and while we do not support explicit soft or hard deadlines, we make production batches
łdeadline-awarež, that is by giving them priority to complete before concurrent jobs. Finally, in
addition to previous results reported on a real crowd, we perform an empirical crowd-simulation
to test the viability of our proposed solutions on a realistic scale.
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In our empirical evaluation, we vary the size of the crowd, the ordering, priority, as well as the
size of the batches. Ωe take into account the characteristics of crowd workers such as the efects
of context switching and work continuity to devise our crowd-aware scheduling algorithms. Our
experimental settings include i) a controlled setup with a ixed number of workers involved in the
experiments, ii) a real-world setup with varying number of workers and workloads taken from a
real crowdsourcing platform, as well as iii) a simulation with realistic parameters demonstrating
the ability of our scheduling algorithm to handle simultaneously best-efort batches and production
batches that require a boost in execution speed. The results of our evaluations indicate that using
scheduling approaches for micro-task crowdsourcing minimizes the overall latency of the batches,
gracefully balances the workload, and signiicantly improves the productivity of the workers
measured as their average execution time.
In summary, the main contributions of this paper are:

Ð A crowdsourcing architecture that enables task scheduling;
Ð A scheduling system that assigns pending tasks to available workers;
Ð A theoretical scheduling framework and algorithms that optimize for both fairness and

deadline-awareness among tasks;
Ð A delayed scheduling mechanism that lessens the efects of context switching caused to

workers when exposed to series of heterogeneous tasks;
Ð A series of experiments with real crowd workers to study the factors that impact human task

scheduling;
Ð An extensive empirical evaluation using a crowd simulator to analyze the properties of the

proposed algorithms.

The rest of the paper is structured as follows. Ωe introduce our new architecture in Section 2
with the diferent design requirements that we aim for. In Section 3, we provide a formal problem
deinition and diferent scheduling algorithms that tackle fairness, deadline-awareness, and worker-
consciousness. Section 4 presents the results of our extensive experimental evaluation of the
proposed techniques. Section 5 gives a brief overview of current approaches in crowd-powered
systems and micro-task crowdsourcing, and why they motivated our investigation. Finally, we
highlight some real-world aspects that should be taken into account when using task scheduling in
Section 6, before we conclude the paper in Section 7.

2 THE ARCHITECTURE OF MULTI-TENANT CROWD-POWERED SYSTEMS

Ωe start by describing a task scheduling architecture that works on top of an existing crowdsourcing
platform. This system engineering step is necessary when we do not have access to a dedicated
crowd.

2.1 Setup

Ωe utilize A℧T as a medium to create a virtual pool of workers. To do so, we introduce the concept
of HIT-BUNDLE, that is, a batch container where heterogeneous tasks of comparable complexity
and reward get published. The HIT-BUNDLE acts as a container for a stream of tasks, which allows
us to apply custom scheduling strategies. Furthermore, we assume a single crowd-powered system
with an administrator and multiple users (tenants) whose tasks get pushed through the system and
onto the backlog of the HIT-BUNDLE.

2.2 Architecture

Our general framework is depicted in Figure 2. The input to our system comes from the diferent
crowdsourced queries submitted through a crowdsourcing interface. A Crowdsourcing Decision
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Fig. 2. The role of the HIT Scheduler in a Multi-Tenant Crowd-Powered System Architecture.

Engine takes the role of extracting the parts of the queries (and their input) to crowdsource.
Subsequently, the HIT-Manager generates HIT batches together with a given monetary budget,
and passes its requests to the HIT-Scheduler. This last step diferentiate us from traditional
crowd-powered systems, where batches are directly sent to the crowdsourcing platform.
The HIT-Scheduler aims at improving the execution time of selected HITs. Once new HIT

batches are generated, they are put in a container of tasks to be crowdsourced. The scheduler is
constantly monitoring the progress of the work through A℧T’s Application Programming Interface
(API) and assigning dynamically the next HIT to the next available worker based on a scheduling
algorithm. ℧ore speciically, the HIT Scheduler collects in its Batch Catalog the set of HIT batches
generated by the HIT-Manager together with their reward and priorities.

Finally, the HIT-BUNDLE Manager creates crowdsourcing batches on A℧T. Based on the schedul-
ing algorithm adopted, a HIT queue (specifying which HIT must be served next in the HIT-BUNDLE)
is generated and periodically updated. As soon as a worker is available, the HIT Scheduler serves
the irst element in the queue. Ωhen HITs are completed, the results are collected and sent back to
the system for aggregation, merging and forwards the inal results to the end-users.

Ωorkers are may accept, skip, or return HITs they decide not to complete. The workers can also
leave the system at any point in time. In these cases, the scheduler reacts accordingly by updating
its queue.

2.3 HIT Scheduling Requirement Analysis

Next, we formulate a set of design requirements that we aim to achieve with our crowd scheduler.

(R1) Runtime Scalability: Unlike parallel schedulers, where the compiled query plan dictates
where and when the operators should be executed, crowd-powered systems are bound to
adopt a runtime scheduler that i) dynamically adapts to the current availability of the crowd,
and ii) scales to make realtime scheduling decisions as the work demand grows higher.

(R2) Fairness: An important feature that any shared system should provide is fairness across
the users of the system. By taking control of task scheduling, the scheduler acts as the load
balancer of tasks across the available workforce. Ωith this capability, the scheduler should
ensure that large and small batches are treated alike.

(R3) Deadline-Awareness: Production batches may have a deadline associated with them. It is,
however, often unclear whether missing a deadline of a crowdsourcing batch leads to batch
failures, e.g., completing 90% of a crowdsourced worklow might still be useful. Therefore, we
introduce a deadline-awareness requirement, where the goal is to give production batches
priority towards the inish line.

AC℧ Transactions on Social Computing, Vol. 2, No. 1, Article 1. Publication date: January 2019.
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(R4) Priority: In a multi-tenant system, some queries have a higher priority than others. For this
reason, the tasks generated from the queries should be scheduled according to their priority.
In a crowdsourcing scheduling setting, as workers are not committed to the platform and
can leave at any point in time, the scheduler should be best-efort, that is, the system should
do its best to meet the priority requirements without any hard guarantee.

(R5) Worker Conscious: In contrast to CPUs, human performance is impacted by many factors
including: bias, priming, boredom, fatigue, etc. Scheduling approaches over the crowd should
take these factors into account. In this paper, we experimentally test worker-conscious
scheduling approaches that aim at balancing the trade-of between serving similar tasks to
workers and providing fair execution to diferent batches.

Next, we will briely revisit common scheduling approaches found in computing environments
like Apache Hadoop or High-Performance Computing (HPC) clusters. Ωe also provide an early
discussion of the advantages and drawbacks of scheduling algorithms when applied to the crowd.

2.4 Basic Space-Sharing Schedulers

Crowdsourcing platforms usually operate in a non-preemptive mode, that is, they do not interrupt
a worker performing a task of low priority to have her perform a task of higher priority. Ωe
consider common algorithms where a crowd worker is assigned a task until it is inished, returned
or abandoned.

2.4.1 First-in, First-out (FIFO). On crowdsourcing platforms, this scheduling has the efect of
serving lists of tasks of the same batch to the workers until they are inished. By concentrating the
entire workforce on a single batch until it is done, FIFO provides the best throughput per batch1

one can expect from the platform at a given moment in time, after the batch has started.
The potential shortcomings of this scheme are as follows: i) short batches and high priority batches

can get stuck behind long-running tasks, minimizing the overall eiciency of the crowdsourcing
system, and ii) when a batch has a large number of tasks, assigned workers can potentially get
bored [44].

2.4.2 Shortest Job First (SJF). Other simple scheduling schemes ofer diferent trade-ofs depend-
ing on the requirements of the multi-tenant system. Shortest Job First (SJF) ofers fast turn-around
for short batches, and can lead to a minimum of a context switch for part of the crowd since the
shortest batches are either quickly inished or scheduled to the irst available workers. In detail,
with this approach, the next served task is the one with the least expected time to complete (as
estimated by the system and indicated by the requester).
However, SJF is not strategy-proof on current crowdsourcing platforms as the requesters can

lie about the expected HIT execution times. Hence, these schemes should be used in trusted
settings mostly (e.g., in enterprise crowd-Database ℧anagement Systems (DB℧Ss)). ℧oreover,
these schemes do not systematically interweave tasks from diferent batches, and thus, present also
the same shortcomings as FIFO.

2.4.3 Earliest Deadline First (EDF). Used mainly in real-time operating systems application,
an Earliest Deadline First scheduler assigns dynamically a worker to the batch with earlier dead-
line2 [10] . EDF guarantees the best performances if the resources are enough, but sufers from
fairness problems and from pathological cases when a new batch with a short deadline arrives,
potentially disrupting the previous batches in the queue. Ωe will consider this algorithm in our
simulation of batches with deadlines.

1The number of HITs completed per unit of time for a speciic batch.
2A deadline is the the latest time by which the batch should be completed.
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2.4.4 Round Robin (RR). The previous schemes do not meet our fairness requirement, in the
sense that they give an advantage to one batch over the others. Round Robin resolves this issue
by assigning HITs from batches in a cyclic fashion. In this way, all the batches are guaranteed
to make regular progress. Ωhile Round Robin ensures an even distribution of the workforce and
avoids starvation, it does not meet one of our requirement (R4) since it is not priority-aware: All the
batches are treated equally with the side efect that batches with short HITs would (proportionally)
get more workforce than longer HITs. Another risk is that a worker might ind herself bouncing
across tasks and being forced to continuously switch context, hence loosing time to understand
the speciic instructions of the tasks. The negative efect of a context switch is evident from our
experimental results (see Section 4) and should be avoided.
In the next section, we introduce more sophisticated scheduling algorithms that meet some or

all of our design requirements.

3 HIT SCHEDULING MODELS

Ωe start by formalizing the problem of task scheduling on a crowdsourcing platform. Then we
propose new scheduling algorithms adapted to the case of a shared crowd workforce.

3.1 Problem Definition

Ωhen a new request is submitted to the system it generates a batch b of HITs. Ωe deine a batch as
a set containing a total of Tb HITs to be crowdsourced. Each batch batch has additional metadata
attached to it: a monetary budgetMb and a priority value Pb . Ωe assume that the priority value
is proportional to the price and is controlled by and administrator. Batches with higher priority
should be executed before batches with lower priority. If a high-priority batch is submitted to the
platform while a low-priority batch is still uncompleted, the HITs from the high-priority batch are
to be scheduled to run irst.
A scheduling algorithm takes as input a set of N batches currently queued {b1, ..,bN }, and a

set W of crowd of workers {w1, ..,wm} currently active on the platform, the algorithm mainly
computes an ordered list of batches indexed. And, when a workerwi is available, the system assigns
a task from the list of ordered batches.

At any moment in time and a given batch b, let Lb be the number of remaining HITs (currently
running or not yet started); Rb the number of currently running HITs but not yet completed; Cb

the number of completed HITs. Additionally, let B the set of non-empty batches (batches with
Cb < Tb ); and Ab the set of workers currently assigned tasks to a batch b. Note that: |Ab | = Rb .

Ωe introduce x ∈ RB to be the weighted workforce vector at any given time. For each batch b ∈ B,
the component xb of the vector represents a function of the number of active workers Rb and,
when applicable, the number of unassigned tasks Lb . A scheduling algorithm will then minimize

the cost of a joint combination of the workforce vector components. For example, when xb =
Rb
Tb

,

the workforce vector is simply the vector where each component represents the proportion of
active workers currently assigned to batch b.

Finally, letX be the set of all feasible vectors resulting from an assignment decision that scheduler
can make at run time i.e., assigning a task from a batch bi to workerw j . In other words, it is the set
of possible ways to allocate the available workers to the uncompleted batches, keeping in account
the constraint of number of tasks left per batch and available workforce. Ωe will show in the
following how choosing diferent workforce functions will afect the behavior of the scheduling
algorithms.
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3.2 Fair Schedulers

In order to deal with batches of HITs having diferent priorities while avoiding starvation, we build
on techniques used in cluster computing. Sharing heterogeneous resources across tasks having
diferent priorities is a well-known problem, one popular approach is Fair Scheduling (FS) [25]. In
this work, we expand on our approach introduced in [20] and propose a universal model of fairness,
one that can directly embed several aspects deined in our requirements described in Section 2.3.
Following the work of Lan et al. [33] on the axiomatic theory of fairness, all diferent fair-

ness indices can be represented by a universal index Jβ (x) of the weighted workforce vector x,
parametrized with the real β , as:

Jβ (x) = sign(1 − β)


∑
b ∈B

©­«
xb∑

c ∈B
xc

ª®¬
1−β 

1
β

(1)

This fairness index corresponds to Jain’s fairness index [30] when β = −1, and it favours more fair
(and potentially less eicient) allocations as β grows. The limit for β → ∞ will seek for fairness
only, disregarding eiciency completely, obtaining as fairness measure:

J∞(x) = −max
b ∈B

∑
c ∈B

xc

xb
(2)

Ωe can represent various scheduling algorithms as maximization of the fairness index using
diferent functions to deine the vector x and varying β . The scheduling algorithm will have to
assign the available worker to maximize Jβ , i.e., x = argmax

x∈X Jβ (x). Subsequently, we will focus
on the fairness index J∞, changing only vector x to achieve diferent fairness goals. Ωhile the cost
of computing such index is negligible, it is important to notice that to be able to optimize the index
over time, it is necessary to evaluate the whole set X every time a group of workers become ready.
This might not be feasible because the cardinality of such a set grows linearly with the number
of batches, and exponentially with the number of workers available at the same time3. Luckily,
in practice we can achieve a good approximation for J∞ by choosing the batch with the lowest
workforce value and performing the scheduling one worker at a time. Ωe will compare the two
approaches in Section 4.6.

3.2.1 Fair Scheduling (FS). In our previous work [20], we proposed a Fair Scheduler that operates
with the following strategy: Ωhenever a worker is available, assign a HIT from the batch with the
lowest number of currently assigned HITs Rb . Unlike Round Robin, this ensures that all the batches
continuously get a non-zero amount of resources. Algorithm 1 gives a pseudo code of this strategy.

In our universal model, when it is not feasible to evaluate the index over the whole X , by setting

β → ∞ and xb =
Rb
Tb
, assigning the worker to the batch with less active workers ratio is the best

approximation of argmax
x∈X J∞(x).

3.2.2 Weighted Fair Scheduling (WFS). In order to schedule batches with higher priority irst
(see R2 in Section 2.3), we use weighted fair scheduling to assign a task from the batches with

the least Rb
Pb

value. Algorithm 1 (Line 2) gets in that case updated to: Sort B by increasing
Rb
Pb
.

Intuitively, this gives higher priority to batches with fewer running tasks and a high priority value.
The normalized fair share of resources (i.e., number of active crowd workers) allocated to each

batch in B is given by Pb∑N
1 Pi

.

3This exponential growth will not happen if the selection is done continuously as a new worker becomes free: it is thus

problematic only at the start of a scheduling process.
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Algorithm 1 Basic Fair Sharing

Input: B = {b1, . . . ,bN } set of batches currently queued, each with:

Ð priority Pb ,
Ð initial number of HITs per batch Tb ,
Ð number of assigned tasks Rb ,
Ð number of unassigned tasks per batch Lb .

Output: HIT h.
1: Ωhen a worker is available for a task
2: BSor ted = Sort B by increasing Ri
3: h = BSor ted .top.getHit()
4: return h

Algorithm 2 Generalized Deadline-Aware β-Fair Scheduling

Input: B = {b1, . . . ,bN } set of batches currently queued, each with:

Ð priority Pb ,
Ð initial number of HITs per batch Tb ,
Ð number of assigned tasks Rb ,
Ð number of unassigned tasks per batch Lb ,
Ð fairness parameter β ∈ [0,∞],

Ð weighted workforce function vector xb e.g., DAFS xb =
1

PbTb

∑Rb−1
i=0 f

(
Lb−i
Tb

)
Output: HIT h.
1: Ωhen a set of workers is available for a task
2: compute the set X of feasible actions
3: x = argmax

x∈X Jβ (x)

4: b = argminb ∈B xb
5: return b.getHit()

In our universal model, when it is not feasible to evaluate the index over the whole set X , by

setting β → ∞ and xb =
Rb
PbTb

, then maximizing J∞(x) is equivalent to fair weighted scheduling.

3.3 Deadline-Aware Fair Scheduling (DAFS)

Ωhile weighted fair scheduling weighs each task in a batch equally, we might want to give a higher
priority to the tasks as we progress in a batch, in order to ensure that a production batch will be
more likely to be served than a best-efort one. ℧oreover, we want such per-task priority to be
low at the beginning of a batch when few workers are involved, and to grow as more workers
get involved in the batch. In this way, a new batch that just entered the system will not overtake
batches that are almost inished, solving a typical problem of EDF schedulers.
A natural way to extend ΩFS is to consider each component of the workforce vector xb as a

sum over the number of running tasks. ℧oreover, we consider a calibration function f , which will
be decreasing as the batch gets closer to completion. Choosing:

xb =
1

PbTb

Rb−1∑
i=0

f

(
Lb − i

Tb

)
(3)
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allows us to introduce a Deadline-Aware Fair Scheduler (DAFS) by maximizing J∞(x). This scheduler
can work seamlessly in combination with best-efort batches, for example by simply using xb as
deined in Section 3.2.2 for best-efort batches. A possible choice for f is the identity function, or
even a logarithmic function to obtain a more dramatic efect when the number of running tasks
approaches Tb . Unless otherwise speciied, in the rest of the work we will use the latter. DAFS is
thus a particular case of our Generalized Deadline-Aware β-Fair Scheduling algorithms family,
described in Algorithm 2, choosing β → ∞.
Ωe also deine a Simpliied Deadline-Aware Fair Scheduler (SDAFS) that is particularly useful

when computing the whole X is not feasible. By choosing the batch assignment with lower xb at
each scheduling decision, as shown in Algorithm 3, and as before choosing β → ∞. Ωe compare
the performance of the various schedulers in detail in Section 4.6, where we also evaluate the efect
of this simpliication.

Algorithm 3 Simpliied Deadline-Aware β-Fair Scheduling

Input: B = {b1, . . . ,bN } set of batches currently queued, each with:

Ð priority Pb ,
Ð initial number of HITs per batch Tb ,
Ð number of assigned tasks Rb ,
Ð number of unassigned tasks per batch Lb ,
Ð fairness parameter β ∈ [0,∞],
Ð weighted workforce function vector xb , e.g.:

FS xb =
Rb
Tb

WFS xb =
Rb
PbTb

SDAFS xb =
1

PbTb

∑Rb−1
i=0 f

(
Lb−i
Tb

)
Output: HIT h.
1: Ωhen one worker is available for a task
2: b = argminb ∈B xb
3: return b.getHit()

3.4 Worker Conscious Fair Scheduler (WCFS)

From a worker perspective, scheduling can lead to randomly alternating task types that a single
worker might receive. In such a situation, the worker has to adapt to the new task instructions,
interface, question, and the like, and this could be penalizing (see the related work section below
5.4). This overhead is called context switch. Our goal is to avoid as much as possible that a worker
jumps back and forth between diferent tasks. Ωe propose a Ωorker Conscious Fair Scheduler
(ΩCFS) that increases the chances that a worker receives a task from a batch that he completed
recently. In order to preserve the properties of previous algorithms, we employ a light weight
modiication that achieves this goal. In detail, when selected, a batch may concede its turn if the
available worker has been doing other types of tasks recently. Each batch can concede his turn up
to K times, a predeined concession threshold, which is reset to zero every time a task from this
batch is assigned. This approach is the equivalent of Delay Scheduling [52].

4 EXPERIMENTAL EVALUATION

Ωe describe in the following our experimental setting and results. As a general experimental setup,
we implemented the architecture described in Section 2 on top of A℧T. To test the scalability
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Algorithm 4Ωorker Conscious Fair Scheduler

Input: B = {b1, . . . ,bN } set of batches currently queued, each with:

Ð priority Pb ,
Ð initial number of HITs per batch Tb ,
Ð number of assigned tasks Rb ,
Ð number of unassigned tasks per batch Lb ,
Ð number concessions Kb initialized to 0.

Input: W = {w1, ..,wm} set of active workers, each with:

Ð lj is the last batch thatw j worked on initialized to null.

Input: k = maximum number of allowed concessions.
Output: HIT h.
1: Ωhen a workerw j is available for a HIT do:

2: BSor ted = Sort B by increasing Rb
Pb

3: for b in BSor ted do

4: if (lj == b) or (lj == Null ) then
5: Kb = 0
6: lj = b
7: return b.getHit()
8: else if Kb < k then

9: Kb = Kb + 1
10: continue
11: else

12: Kb = 0
13: lj = b
14: return b.getHit()
15: end if

16: end for

of our methods, we also resorted to simulated experiments. Our implementation and datasets
are available as an open-source project for reproducibility purposes and as a basis for potential
extensions: https:⁄⁄github.com⁄XI-lab⁄HIT-Scheduler.

4.1 Datasets

For our experiments, we used a dataset composed of 7 batches of varying complexity, size, and
reference price. The data was partly created by us and partly collected from related works; and
overall includes a representative mix of crowdsourcing tasks. Table 1 gives a summary of our
dataset and provides a short description and references when applicable. Ωe note that for the
purpose of our experiments, we vary the batch sizes and prices according to the setup.

4.2 Micro Benchmarks

The goal of the following micro-benchmark experiments is to validate some of the hypotheses that
motivate the use of a HIT-BUNDLE and the design of a worker-aware scheduling algorithm that
minimizes tasks switching for the crowd workers.

4.2.1 Batch Split-up. The irst question we try to answer is whether smaller or larger batches of
homogeneous HITs are more attractive to the workers on A℧T. Ωe experimentally check if a single

AC℧ Transactions on Social Computing, Vol. 2, No. 1, Article 1. Publication date: January 2019.
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ID Dataset Description

Price

per

HIT

#HITs

Avg.

Time

per

HIT

B1
Customer Care

Phone Number

Search

Find the customer-care phone num-

ber of a given US-based company

using the Ωeb.

$0.07 50 75sec

B2
Image Tagging Type all the relevant keywords re-

lated to a picture from the ESP game

dataset. [48]

$0.02 50 40sec

B3
Sentiment

Analysis

Classify the expressed sentiment of

a product review (positive, negative,

neutral).

$0.05 200 22sec

B4

Type a Short

Text

This a is study on short memory,

where a worker is presented with

text for a few seconds, then he is

asked to type it from memory. [47]

$0.03 100 11sec

B5
Proof

Reading

A collection of short paragraphs to

proof-read from StackExchange.
$0.03 100 36sec

B6

Butterly Image

Classiication

Classify a butterly image to one of 6

species (Admiral, Black Swallowtail,

℧achaon, ℧onarch, Peacock, and

Zebra). [36]

$0.01 600 15sec

B7

Item ℧atching Uniquely identify products that can

be referred to by diferent names

(e.g., ‘iPad Two’ and ‘iPad2nd Gen-

eration’). [50]

$0.01 96 22sec

Table 1. Description of the batches constituting the dataset used in our experiments.

large batch executes faster than when breaking the same batch into smaller ones. To this end, we
use the batch B6 which we split into 1, 10 and 60 individual batches, containing respectively 600, 60
and 10 HITs each. Next, we run all these batches on A℧T concurrently with non-indicative titles
and similar unit prices of $0.01. Note that the batch combinations were published at the same time
on the crowdsourcing platform to have all the variables (like crowd population and size, concurrent
requesters, and rewards) the same across the diferent settings.
Figure 3 shows how the three diferent batch splitting strategies executed over time on B6. Ωe

observe that running B6 as one large batch of 600 HITs completed irst. Ωe also observe that the
strategy with 10 batches only really kicks-of when the large batch inishes (and similarly for the
strategy with 60 batches). From this experiment, we conclude that larger batches provide better
throughput and constitute a better organizational strategy. This inding is especially interesting for
requesters who would periodically run queries that use a common crowdsourcing operator (albeit,
with a diferent input), by pushing new HITs into an existing HIT-BUNDLE.

4.2.2 Merging Heterogenous Batches. Ωe extend the above experiment to compare the execution
of two heterogenous batches run separately or within a single HIT-BUNDLE. Unlike the previous
experiment, where the ine-grained batches were one to two orders of magnitude smaller than the
larger one, this scenario involves two batches of type B6 and B7 containing 96 HITs each, versus
one HIT-BUNDLE regrouping all 192 HITs. Ωe run the three batches concurrently on A℧T, with
non-indicative titles and similar unit prices of $0.01 and without altering the default serving order
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Fig. 4. A performance comparison of batch execution time using diferent grouping strategies publishing two
distinct batches of 192 HITs separately vs combined inside a HIT-BUNDLE.

within the HIT-BUNDLE (Ωe observe that A℧T randomly selects the input to serve). The results are
depicted in Figure 4.

Again, the HIT-BUNDLE exhibits a faster throughput as compared to individual batches. ℧oreover,
the embedded batches both inish before their counterparts that are running separately.

At this point, we have shown that requesters who would run queries invoking diferent crowd-
sourcing operators can also beneit from pushing their HITs into the same HIT-BUNDLE. Since a
system might support multiple crowdsourcing operators, the next question we explore is whether
context switches (i.e., alternating HIT types) afects workers eiciency.

4.2.3 Workers’ Sensitivity to Context Switch. The following experimental setup involves three
groups of 24 distinct workers each. Each group was exposed to three types of HIT serving strategies,
namely:

Ð RR: a worker in this group would receive tasks in alternating order from batches B6 and B7.
Ð SEQ10: here the workers will receive 10 tasks from B6 then 10 tasks from B7 then again 10

from B6 and so on.
Ð SEQ25: similar to SEQ10 but with sequences of 25 tasks. To cause the context switch for each

participant, the workers were asked to do at least 10, and up to 100, tasks.
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Fig. 5. Average Execution time for each HIT submited from the experimental groups RR, SEQ10 and SEQ25.

Figure 5 shows the distribution (with violin plot and boxplot) of the per-user average execution
time of all the 100 HITs under each execution group. Ωe observe that the HITs average execution
time is worst when using RR as compared to workers performing longer alternating sequences
in SEQ10 and SEQ25. To test the statistical signiicance of these improvements, and since the
distribution of HIT execution time cannot be assumed to be normally distributed, we perform
a Ωillcoxon signed-rank test. SEQ10 has a p=0.09 which is not enough to achieve statistical
signiicance. However, the SEQ25 improvement over RR is statistically signiicant with p<0.05.
In conclusion, context switch generates a signiicant slowdown for the workers, thus reducing

their overall eiciency. Hence, this result motivates the design of a scheduling algorithm that takes
into account workers eiciency by scheduling more extended sequences of HITs of the same type.

4.3 Scheduling HITs for the Crowd

Ωe now move our attention to experimentally comparing the scheduling algorithms that are used
to manage the distribution of HITs within a HIT-BUNDLE.

4.3.1 Controlled Experimental Setup. To develop a clear understanding of the properties of
classical scheduling algorithms when applied to crowdsourcing, we put in place an experimental
setup that mitigates the efects of workforce variability over time.
In our controlled setting, each experiment that we run involves a number of crowd workers

ranging between: Minw ≤ |workforce| ≤ Maxw , at any point in time. To be within this range
target, the workers who arrive irst are presented with a reCaptcha to solve (paid $0.01 each), until
Minw workers join the system, at that point, the experiment begins serving tasks. From that point
on, new workers are still accepted up to a maximumMaxw . If the number of active sessions drops
belowMinw , then the system starts accepting new workers again.
Unless otherwise stated, we use the following coniguration:
Ð Number of workers: 10 ≤ |workforce| ≤ 15.
Ð Ωeighted Fair Sharing, with price as weighting factor.
Ð a HIT-BUNDLE composed of {B1,B2,B3,B4,B5}.
Ð FIFO order is [B1,B2,B3,B4,B5].
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Fig. 6. Scheduling approaches applied to the crowd.

Ð SJF order is [B4,B3,B5,B2,B1].
Also, we note that each experiment involves a distinct crowd of workers to avoid any further
training efects on the tasks.

4.3.2 Comparing Scheduling Algorithms. First, we compare how diferent scheduling algorithms
perform from a latency point of view, taking into account the results of individual batches as well as
the overall performance. Ωe create a HIT-BUNDLE out of –B1,B2,B3,B4,B5˝, which is then published
to A℧T. In each run, we use a diferent scheduling algorithm from: FIFO, FS, RR, and SJF, with
10 ≤ |workforce| ≤ 15.

Figure 6 shows the completion time of each batch in our experimental setting and the cumulative
execution time of the whole HIT-BUNDLE.
FS achieved the best overall performance, thus maximizing the system utility, though, at the

batch level, FS did not always win (e.g., for B2). Ωe see how FIFO assigns tasks from a batch until it
is completed. In our setup, we used the predeined order of the batches, which explains why B1
is getting preferential treatment as compared to B5, which inishes last. Similarly, SJF performs
unfairly over all the batches but manages to get B4 completed extremely fast. In fact, SJF uses
statistics collected from the system on the execution speed of each operator (see Table 1); this
explains the fast execution of B4. On the positive side, we observe that both RR and FS perform best
in terms of fairness with respect to the diferent batches, i.e., there was no preferential treatment.

4.3.3 Varying the Control Factors. To test our priority control mechanism across diferent batches
of a HIT-BUNDLE (tuned using the price), we run an experiment with the same setup as in Section
4.3.2, but varying the price attached to B2 and using the FS algorithm only. Figure 7a shows that
batches with a higher priority (reward) lead to faster completion times using the FS scheduling
approach (green bar of B2 lower than the red one). This comes at the expense of other batches
being completed later.

Another dimension that we vary is the crowd size. Figure 7b shows the batch completion time of
two diferent crowdsourcing experiments when we vary the crowd size from 10 ≤ |workforce| ≤ 15
to 20 ≤ |workforce| ≤ 25 (keeping all other settings constant). Ωe can see batches being completed
faster when more workers are involved. However, diferent batches obtain diferent levels of
improvement.

AC℧ Transactions on Social Computing, Vol. 2, No. 1, Article 1. Publication date: January 2019.



1:16 D. Difallah, A. Checco, G. Demartini, P. Cudré-Mauroux

0

300

600

900

B1 B2 B3 B4 B5
Batch

T
im

e 
(s

ec
on

ds
)

B2:$0.02

B2:$0.05

(a)Vary The Price

0

250

500

750

1000

B1 B2 B3 B4 B5
Batch

T
im

e 
(s

ec
on

ds
)

10 workers

20 workers

(b) Vary The Workforce

Fig. 7. (a) Efect of increasing B2 priority on batch execution time. (b) Efect of varying the number of crowd
workers involved in the completion of the HIT batches for the FS algorithm.

4.4 Live Deployment Evaluation

After the initial evaluation of the diferent dimensions involved in scheduling HITs over the
crowd, we now evaluate our proposed fair scheduling techniques FS and ΩCFS in an uncontrolled
crowdsourcing setting using HIT-BUNDLE, and compare it against a standard A℧T execution.

℧ore speciically, we create a workload that mimics a 1-hour activity on A℧T from a requester
who had 28 batches running concurrently. Since we do not have access to the input of the batches,
we randomly select batches from all our experimental datasets and adapt the price and the size to
the actual trace. The trace used in that sense is composed of 28 batches with similar rewards of
$0.01; the largest batch has 45 HITs and the smallest 1 HIT only. For analysis purposes, we group
batches by size: 16 small batches (1-9 HITs), 8 medium batches (9-15 HITs), and 4 large batches
(16-45 HITs). The total size of this trace is 286 HITs.

4.4.1 Live Deployment Experimental Setup. Ωe publish the 28 batches concurrently from the pre-
viously described trace as individual batches (standard approach) as well as into two HIT-BUNDLEs,
one using FS and the other using ΩCFS. The individual batches use meaningful titles and descrip-
tions of their associated HIT types; on the other hand, the HIT-BUNDLE informs the crowd workers
that they might receive HITs from diferent categories. Other parameters like requester name and
reward are similar.

4.4.2 Average Execution Time. Figure 8 shows the average HIT execution time obtained by the
diferent setups. Ωe observe that workers perform better when working on individual batches
because of the missing context switch efect (though the performance diference is minimal and
not statistically signiicant), in accordance with the results from Section 4.2.3. Instead, when HITs
are scheduled, execution time increases with the beneit of prioritizing certain batches. Ωe also see
that ΩCFS provides a trade-of between letting workers work on the same type of HITs longer and
having the ability to schedule batches fairly as we shall see next.

4.4.3 Results of the Live Deployment Run. Ωe plot the CDFs of HIT completion per category in
Figure 9. For example, 25% of small batches completed in 500 seconds when running individually.
For all batch sizes, we observe that individual batches started faster. However, in all cases they also
ended last, especially for smaller batches sufering from some starvation (i.e., a long period without
progress); here, we see the beneits of both FS and ΩCFS at load balancing.
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The inal plot (Figure 10) shows how a large workload executes over time on the crowdsourcing
platform. Ωe can see how many workers are involved in each setting and which HIT batch they
are working on (each color represents a diferent batch). Finally, as expected, the number of active
workers varied wildly over time in each setup. Corroborating the results of the previous paragraph,
Individual Batches received more workforce in the beginning (they start faster) then workers
either left or took some time to join the remaining batches in the [11:25 - 11:35] time period. Our
main observation is that FS and ΩCFS i) achieve their desired property of load balancing the
batches when there are a suicient number of workers, ii) they inish all the batches well before
the individual execution (10-15 minutes considering the 95th percentile).

4.5 Large Scale Crowd Scheduling Simulations

In the previous sections, we have presented the results of an experimental system that we have
implemented on top of Amazon ℧echanical Turk to allow push-crowdsourcing with real workers.
The workers on the platform were presented tasks that the schedulers picked given a speciic
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workload derived from crowdsourcing platform logs. Each color represents a diferent batch.

strategy. To reach general conclusions about the properties, running a large number of experiments
is necessary. For this purpose we have a implemented a simulator for crowd workers and tested
our methods at scale in a simulated environment. Our simulator mimics the main property of
crowd workers that is the uncertainty (quality and response time) associated with the responses.
In particular, and since our primary focus is the eiciency of the overall system, we modeled the
crowd worker as stochastic processes having a response time following a lognormal distribution.
In the following, we keep the same task properties introduced in table 1, and vary the crowd size,
schedulers and priorities. All the experiments were repeated 100 times.

4.5.1 Scheduling Algorithms in a Crowd Simulation. Like in section 4.3.2, we compare how
diferent scheduling algorithms perform from a latency point of view, taking into account the results
of individual batches, the overall performance as well as the efect of having a large size of available
workers on the platform. Ωe again use an experiment composed of batches –B1,B2,B3,B4,B5˝. In
each run, we use a diferent scheduling algorithm from FIFO, FS, RR, and SJF, with 10, 20, 50, 100
and 200 workers.

Figure 11 shows the completion time of each batch in our experimental setting (left panel) and the
cumulative execution time (right panel). Ωe recall that an ideal strategy is one that maximizes the
overall utility of the system while avoiding batch starvation. First, we note that having a larger pool
of simulated crowd workers yields a shorter execution time across the diferent experimental setups.
This is due to higher parallelism, in fact, our largest coniguration (i.e., 200 simulated workers)
represents half of the available tasks.
Next, we observe that all the strategies inish the work approximately at the same time except

for SJF which seems to perform signiicantly worse when we reduce the size of the workforce. This
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Fig. 11. Simulated scheduling approaches: completion time distribution of each batch in our experimental
seting (let panel), and cumulative execution time (right panel).

corroborates the results seen in section 4.3.2. Finally, we observe how discriminatory strategies
(such as FIFO and SJF) consistently give an advantage to their preferred batches. Again, we observe
that both RR and FS perform best in terms of fairness to the diferent batches, i.e., there is no
preferential treatment. It is worth noting that FS and RR have a much closer average execution
time for the batches, with FS exhibiting a slightly higher variance than RR that is the result of auto
balancing large and fast batches versus small and slow batches.
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Fig. 12. Efects of increasing B2 priority on batch execution time. We can see how B2 gets beter performance,
while other batches collectively counterbalance the need for resources.

4.5.2 Tuning the Priority in Fair Sharing. The proof of concept results shown in section 4.3.3
demonstrated how a priority weight could play a role in pushing more tasks from a speciic batch in
a fair sharing environment. To conirm this observation in our simulation framework, we increased
the priority of batch B2 from 1 to 50, while simulating 25 workers. Figure 12 shows the results of the
experiment. Overall, we could conirm our previous observation. Fair sharing can be utilized as an
efective mechanism to boost a speciic batch gradually, while slightly degrading the performance of
the other executions. In practice, a company administrator could be in charge of such performance
tuning parameters. In an open market, the priority can be bound to a price for the additional service.

4.6 Large Scale Best-efort and Production Simulations

Ωe now turn to larger scale experiments. As summarized in Table 2, we generated a set of 100
synthetic scenarios to evaluate DAFS, described in Section 3.3, and compared it with the other
schedulers. Ωe analyzed the behavior of the scheduler over a time window of 2400 seconds
(unless otherwise speciied), during which 200 workers arrive according to a homogeneous Poisson
distribution [23] (the time window can be considered small enough to allows us to ignore non-
homogeneity) and have an exponential distributed service time with an average s̃ of 11 seconds.

Ωe set the simulator so that at the beginning of the time window, 1000 batches are already active.
During the time window, an average of 80 more batches arrives each minute following a Poisson
distribution, with some of them (the largest 10%) are production batches.

In order to choose a meaningful deadline horizon, we span from the smallest deadline (achievable
when enough workers are available to allow full parallelization) to the largest one corresponding to

the case when only one worker is available. ℧ore rigorously: f (α) = αTb (s̃ −
s̃
W
)+ (1−α) s̃

min(W ,Tb )
,

whereW is an upper bound on the number of workers expected to be available in the time window.
Ωhen α = 0, we simulate full parallelization, linearly sweeping towards full serialization as α
approaches 1 (and α > 1 will mean an even longer deadline). In some scenarios, a large batch
may arrive towards the end of the time window; this will cause that particular scenario to be
unsatisiable during the given time window, i.e., in some situations it is not possible to have all
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Parameter Values Notes

Time window 2400s ś
Deadline parameter α [0 − 1] 0 is full parallel

1 is full serial
Ωorkers 200 Poisson arrivals
Service time 11s Exponential
Pre-existing batches 1000 ś
New batches 3200 Poisson arrivals

deadline to longest
10%

Table 2. Synthetic scenarios parameters.
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Fig. 13. Schedulers performance for synthetic scenarios varying deadline times parameter α .

deadlines satisied during the given time window. This is a design choice, as we want to capture
the dynamic behavior of batch arrivals. Ωe ensure a fair comparison by repeating the experiments
for all diferent scheduling algorithms with the same workers and batch arrivals for each scenario.
Ωe use the following metrics to evaluate the diferent schedulers: for the batches deadlines,

we consider the ratio of batches that are completed in time and the standard deviation of the
completion of all batches as an indication of the completion disparity. For best-efort batches, we
consider the mean and standard deviation of the completion level. The latter is a good indicator of
global fairness. The instantaneous fairness index J∞(x) is instead an indicator of how one scheduler
behaves over time. Ωe analyze such behavior in Section 4.6.2.

4.6.1 Performance. The performance of the various schedulers are shown in Figure 14, for the
case where α = 0.4; intermediate values of this parameter are especially interesting as they show
how the schedulers behave when a solution is hard to ind. Ωe focus on fair schedulers irst. The
median deadline success ratio of the DAFS is ten times higher than the value of FS. Interestingly,
this is obtained without sacriicing too much the performance of the best efort batches: using
DAFS corresponds to a median loss of 5% in term of best efort batches completed compared to FS.
Ωe notice that while EDF obtains the best performance in term of batches with deadlines, it is

at the expense of a loss in performance for the best efort batches. Regarding fairness, the EDF
scheduler has a standard deviation for best efort batches completion that is 8 times worse than the
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mean dead. std dead. mean b. efort std b. efort sim. time [s]

DAFS 0.968 0.001 0.943 0.018 22983.559
EDF 0.988 0.001 0.760 0.082 795.865
FS 0.972 0.115 0.999 0.012 682.937
SDAFS 0.883 0.001 0.888 0.050 750.643

Table 3. Schedulers batch completion statistics for synthetic scenarios: Mean completion ratio and standard
deviation for deadline and best-efort batches together with the scheduling computation cost in seconds.
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Fig. 14. Schedulers performance with α = 0.4.
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Fig. 15. Schedulers performance with α = 2.

one of FS or DAFS, while FS performs poorly on the completion of batches with a deadline. This is
even more apparent in Figure 15, for α = 2, where the deadlines are easy to satisfy, but where the
EDF scheduler wastes a lot of resources focusing also on late batches that are not satisiable.
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Fig. 16. Fairness index evolution for diferent schedulers over 1200 seconds.

The results are summarized in Figure 13 and Table 3. Regarding SDAFS, while the loss in
performance compared to DAFS are signiicant (50% for deadline success ratio), it may still be
preferred in situations where the additional computational power required cannot be met. Table 3
also shows the computation cost (in seconds): DAFS needs at least one order of magnitude more
time than the other schedulers to be executed.

4.6.2 Fairness Index Dynamics. Ωe visualize how the diferent schedulers behave in term of the
fairness index J∞(x) in Figure 16. Ωe note that DAFS is the best in keeping the index high for most
of the time. Interestingly, all algorithms except EDF show a trend towards favoring fairness as time
passes and the number of new arrivals decreases.

4.7 Discussion

Ωe presented above the results of a series of empirical crowdsourcing experiments and simulations
where we varied diferent parameters to have a realistic scale experiment of production and best
efort batches.

Ωe started by identifying two features that impact the crowd work in a task scheduling environ-
ment i) crowd workers prefer larger batches that guarantee a continuous stream of tasks, and ii)
their productivity is sensitive to context switch. Ωe also show that to obtain better execution times,
it is possible to increase the monetary reward of a batch. However, this solution is not scalable and
might have a negative impact on the quality of the results.

Based on these observations, wemake a number of design choices that are aimed to reduce context
switch while at the same time tackling batch starvation and deadline issues without incurring
higher costs. From our results, we conclude that the proposed Deadline-Aware Fair Scheduler
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allows batches to be fairly treated, boosts production batches, and also takes into account work
continuity to minimize the context switch for a given worker.
To summarize, the main observations that we draw from our experiments are:

Ð Large batches attract a larger workforce which yields a higher throughput;
Ð Using a HIT-BUNDLE has a positive impact on task latency as it tends to attract larger work-

forces;
Ð Individual workers perform slightly better whenworking on homogeneous batches (compared

to batches regrouping diferent types of HITs);
Ð Fair Scheduling techniques make it possible to prioritize production batches while being fair

with all running batches and all involved workers;
Ð Ωorker Conscious Fair Scheduling (ΩCFS) uses delayed scheduling to reduce the efects of

context switch for the workers while maintaining the beneits of fair scheduling;
Ð Our Deadline-Aware Fair Scheduler prevents common pathological cases that are problematic

with other deadline schedulers, e.g., the disruption of existing batches in the queue when a
new batch is introduced.

Ð The techniques we evaluated are beneicial even on top of existing micro-task crowdsourcing
platforms.

5 RELATED WORK

5.1 Micro-task Crowdsourcing

Paid micro-task crowdsourcing has been used for a wide range of applications including entity
resolution [50], schema matching [53], entity linking and instance matching [13, 15], word sense
disambiguation [45], relevance judgements [1] etc.
Ωe can distinguish two types of crowdsourcing paradigms: pull-crowdsourcing and push-

crowdsourcing [35]. The key diference is that pull-crowdsourcing platforms allow the workers
to browse and choose among available tasks posted by the requesters, while push-crowdsourcing
assigns tasks to workers by considering selection criteria such as skills, location or interests in
order to assign tasks to the best available workers. In [8, 22], for example, authors leverage online
social network proiles and activities to ind better suited candidates and push tasks to them.
In this article, we focus on push-crowdsourcing which in order to apply task scheduling tech-

niques and to decide which task should be served to the next available worker. Hence, our focus
is on improving the crowd eiciency without the need of deploying a dedicated crowdsourcing
platform but rather allowing us to reuse an existing crowdsourcing platforms such as A℧T.
In our work, we have observed that latency and throughput can be controlled with the crowd

size and pricing dimensions. The workforce size is generally a dynamic factor that inluences the
performance of a scheduling system, especially when we have to prioritize production batches.
℧ethods for estimating the size of a dynamic crowd population have been studied in [21]. Optimal
payment strategies, reward schemes, and incentive mechanisms for crowdsourcing have been
studied [19, 31, 46] and may also be applied in combination to crowdsourcing scheduling techniques
in order to maximize throughput as well as the quality of the results.

5.2 Low-latency Crowdsourcing

Some methods aim at to reducing the latency of crowdsourced batches, which is an objective related
to ours. In [5], authors propose methods to have workers always available to synchronously work
on tasks and achieve faster task completion time. This is done by means of retainer pools where
workers actively wait for tasks to be available for them [6]. In [28] authors show how combining
workers retained to wait for tasks with on-demand workers on a crowdsourcing platform can
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provide low-latency results in the long term. Also looking at retainer pools of workers, [27] tackles
diferent causes of latency in crowdsourcing and propose active learning methods to speed up
task execution. Similarly to our work, Cioppino [26] looks at considering human factors when
load balancing a crowd workforce across tasks that need to be completed. Their experimental
results show similar improvements in platform throughput and cost reductions as we do but do not
consider the aspect of deadline-aware approaches. Compared to these approaches, in our work we
build on traditional micro-task crowdsourcing platforms and build a task scheduling layer on top
instead of forming a dedicated pool of workers that we can notify on demand.

5.3 Task Assignment and Scheduling

Scheduling tasks for the crowd has been recently discussed in the context of work quality mostly,
while we focus on eiciency. In CrowdControl [41], authors propose a scheduling approach to
assign tasks to workers based on their history and how they learn by completing tasks. Instead, we
focus on the requester needs for scheduling and look at priorities of batches, while still taking into
account the human dimension of crowdsourcing. ℧oreover, [41] evaluates the proposed approaches
by means of simulation while in our work we assess the efectiveness of the proposed algorithms
over a real deployment over the crowd.
Similarly, SmartCrowd [43] considers task assignment as an optimization problem based on

worker skills and their reward requirements. As compared to this, we rather focus on the system-side
requirements for scheduling, by making sure that all competing batches are completed appropriately
by the crowd.
Further pieces of work recently studied scheduling approaches focused on work quality: [32]

shows, by means of simulations, how approaches that take into account worker skills outperform
standard scheduling approaches, while [40] suggests scheduling tasks according to the required
skills and the previous feedback from the requesters.

A diferent type of scheduling has been addressed in [17], where authors look at crowdsourcing
tasks that need to take place in a speciic real-world geographical location. In this case, it is necessary
to schedule tasks for workers in order to minimize spatial movements by taking into account their
geographical location.

Task allocation in teams has been studied in [2], where authors deined the problem, studied its
complexity, and proposed greedy methods to allocate tasks to teams and accordingly adjust their
size. Team formation given a task has been studied in [3] looking at worker skills. In our work, we
rather focus on assigning tasks to individual workers to balance the load on the crowdsourcing
platform.

Allocation of crowdsourcing tasks to individual workers has been studied in [38] where authors
looked at optimal task allocation solutions based on available and required skills. Contrary to
them, our scheduling problem focuses on optimizing the execution time of tasks that may have an
execution deadline.

5.4 The Efect of Switching Tasks

Ωhen scheduling tasks for the crowd, it is necessary to take the human dimension into account.
Recent work [34] showed how disrupting tasks continuity degrades the eiciency of crowd workers.
Taking this result into account, we designed worker-conscious scheduling approaches that aim at
serving tasks of the same type in sequence to crowd workers in order to leverage training efects
and to avoid the negative efects of context switching.

Studies in the psychology domain have shown that switching between diferent tasks types has a
negative efect on worker reaction time and on the quality of the work done (see, for example, [12]).
In addition to this, in our work we show how context switch leads to an overall larger latency in
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work completion (Section 4.2) and propose scheduling techniques that take this human factor into
account. The authors of [51] study the efect of monetary incentives on task switching concluding
that providing such incentives can help in motivating quality work in a task switching situation. In
our work, we rather aim at reducing task switching by consciously scheduling tasks to workers.
Related to this is the study of multi-tasking in crowdsourcing [42] where studies show how diferent
types of tasks can be efectively completed in parallel without extending their individual execution
time.

5.5 Similarities with the Cloud

Our system draws a parallel with scheduling and sharing costly resources in the cloud. A cloud-
based clusters manage tens of thousands of computers with varying storage capacities, CPUs
and GPUs. A internal resource managers operate using scheduling algorithms to orchestrate the
allocations of the diferent resources eiciently. Our system is designed in the same spirit, and
thus we can apply similar techniques to be resistant to adversarial behavior. Instead of having
multi-tenants running computing jobs in the cloud, we have multiple users (or systems) launching
crowdsourcing microtasks on A℧T. For instance, the concept of weighted priority is achieved
through dynamic pricing or admission control. Ωhile this is beyond the present work, we refer the
reader to recent literature in this area in the context of cloud computing [4].

Compared to our previous work [20], here we additionally consider the existence of production
batches. The key diference of this paper is looking at a deadline-aware setting were production
batches get additional priority boost toward the inish line. However, we do not support soft or hard
deadlines mostly due to the unpredictability of the workforce availability.Ωe propose novel methods
and experimental evidence that show how such requests can be satisied by also considering the
presence of other batches running concurrently on the crowdsourcing platform. Previous research
described in Section 5.2 looked at ways to speed-up task execution using techniques such as worker
pools available in real time and active learning methods. Instead, we look at scheduling techniques
that can deal with diferent batch priorities. ℧ost of the task assignment methods proposed in the
literature (Section 5.3) consider the problem of matching worker skills with task requirements.
Compared to them, rather than skill⁄requirement matching, we focus on batch priorities to schedule
tasks and balance the workload to optimize their execution. Ωork described in Section 5.4 looks
at human factors that afect eicient task completion. Ωe build on top of these indings to design
worker-aware scheduling algorithms that can deal with such human factors while scheduling tasks
and still optimize for task completion time.

6 REAL-WORLD DEPLOYMENTS CONSIDERATIONS

Task-scheduling can readily be utilized in three diferent types of crowdsourcing environments
i) Existing platforms with a large crowd and multipurpose tasks, e.g., A℧T, ii) Platforms with
niche applications and self-recruited crowds, e.g., ScaleAPI, and iii) Enterprise crowdsourcing,
where only the employees of a company can perform the published tasks. Each deployment would
require adaptations, for instance in this paper we showcased the use of a HIT-BUNDLE to publish
and schedule tasks on ℧turk. However, smaller platforms can support scheduling natively, which
might create new challenges as they grow to a broader user and crowd base. Ωe summarize the
key diferences of using task scheduling across the three types of platforms types in Table 4. In
particular, we note the possibility of adversarial requester behavior where the users can game the
system by strategically regrouping and repricing their tasks. This is an aspect that we do not tackle
directly in this work as we assume a stable enterprise-like crowdsourcing environment with an
administrator. Nevertheless, as mentioned in the section 5.3, strategy-proof research for resource
allocation can be easily extended to the case of the crowd, especially since the concept of priority is

AC℧ Transactions on Social Computing, Vol. 2, No. 1, Article 1. Publication date: January 2019.



Scheduling in Multi-Tenant Crowd-Powered Systems 1:27

constrained to the price a requester is willing to pay or to bid for. ℧oreover, since we centralize the
task scheduling and distribution process, we allow the integration of future strategy proof methods.
Finally, to facilitate further developments in this line of research, we have set up a project for

simulating crowdsourcing demand and supply along with the current source code of the simulations
we have conducted in this paper at https:⁄⁄github.com⁄dedcode⁄CrowdScheduler.

Table 4. Limitations and challenges of task-scheduling when used in existing crowdsourcing environments.

Task Scheduling

Integration

Scalability Strategy Proofness

Large Platforms Add-on Scheduling
(with a redirect to an external
page)

Large pool of workers

that contribute to the

throughput of the sys-

tem

Requester are not restricted to the sched-

uling algorithms and can game the sys-

tem via regular tasks

Specialized Platforms Built-In Scheduling Crowd size depends

on growth and eforts

of the platform to ofer

new services

New pricing schemes and strategy-proof

algorithms are needed to handle a grow-

ing user-base

Enterprise Platforms Built-In Scheduling Limited to the com-

pany employees

Usually supervised by an Admin

7 CONCLUSIONS

In this paper, we extend our previous work on scheduling crowdsourced tasks by supporting best-
efort batches as well as production batches with a deadline. Ωe explored solutions for scheduling
crowdsourcing tasks that support both fairness and deadline-awareness. Ωe derived variants of the
Fair Scheduling algorithms, where the deadline and the number of incomplete tasks give priority
to production batches.
Ωe experimentally show that a crowdsourcing system can increase its overall eiciency by

bundling requests into a single batch we name HIT-BUNDLE, and then taking control of the distri-
bution process of the tasks. Our experiments show that this approach has two beneits i) it creates
larger batches that have a higher throughput, and ii) it gives to the system control on what HIT
to push nextÐa feature that we leverage to push high-priority requests for example. ℧oreover,
controlling the task execution makes it possible to develop more sophisticated crowdsourcing
operators e.g., worklow execution, collaborative tasks.

Ωe also showed how workers could be sensitive to context switch that arbitrary task assignment
causes. The adverse efects of context switchingwere visible in our experiments and are corroborated
by related studies in psychology. In that context, we proposed a Ωorker Conscious Fair Scheduling
(ΩCFS), a new scheduling variant that strikes a balance between minimizing the context switches
and the fairness of the system.

Ωe experimentally validated our algorithms over real crowds of workers on a popular paid micro-
task crowdsourcing platform running both controlled and uncontrolled experiments. Our results
show that it is possible to achieve i) a better system eiciencyÐas we reduce the overall latency of a
set of batchesÐwhile ii) providing fair executions across batches, resulting in iii) non-starving small
batches. In addition, we validated our deadline-aware algorithms through simulations, showing
that we can obtain results comparable to earlier deadline schedulers in terms of number of batches
completed by their deadline (more than 90% of the one achieved by EDF in all cases), with the
advantage of not sacriicing fairness amongst the best efort batches and avoiding pathological
instances in which EDF can fail.
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