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Abstract

Graph Drawing Beyond Planarity is a rapidly growing research area that classifies and studies
geometric representations of non-planar graphs in terms of forbidden crossing configurations. Aim of
this survey is to describe the main research directions in this area, the most prominent known results,
and some of the most challenging open problems.

1 Introduction

In the mid 1980s, the early pioneers of graph drawing had the intuition that a drawing with too many
edge crossings is harder to read than a drawing of the same graph with fewer edge crossings (see, e.g.,
[35, 36, 72, 190]). This intuition was later confirmed by a series of cognitive experimental studies (see,
e.g., [180, 181, 203]). As a result, a large part of the existing literature on graph drawing showcases elegant
algorithms and sophisticated data structures under the assumption that the input graph is planar, i.e.,
it admits a drawing without edge crossings. When the input graph is non-planar, crossing minimization
heuristics are used to insert a small number of dummy vertices in correspondence of the edge crossings, so
to obtain a planarization of the input graph. A crossing-free drawing of the planarization can be computed
by using one of the algorithms for planar graphs and then the crossings are reinserted by removing the
dummy vertices. This approach is commonly adopted and works well for graphs of relatively small size,
up to a few hundred vertices and edges (see, e.g., [87, 152]). However, the technological advances of the
last twenty years have generated torrents of relational data that are typically modeled as large graphs
with thousand (or more) vertices. These graphs are often hard to visually analyze due, mainly, to their
large size which typically implies that a high number of edge crossings is unavoidable even by the most
sophisticated planarization approaches. As a consequence, a strong consensus has developed that a new
theory of non-planar graph drawing is needed.

In this context, in the early 2000s Mutzel ran an informal experiment with computer scientists at a
Dagstuhl workshop, where she presented two different drawings of the same bipartite graph: One has
the minimum number of edge crossings, the second has 41% more edge crossings but it has skewness
four, which means that all crossings can be removed by deleting four edges in the drawing. All computer
scientists found the drawing with skewness four more readable than the one with fewer edge crossings.
This is reported in [166] as anecdotal evidence that the topological properties of the edge crossings may
be more important than their number.

Besides the topological properties of the edge crossings, the impact of their geometric properties on the
readability of a non-planar drawing was evaluated in a pioneering sequence of user experiments performed
in the graph drawing research lab at the University of Sydney. By means of an eye-tracking device, the
experiments present statistical evidence that crossings significantly affect human understanding if they
form acute angles, but if these angles vary in the range from about π

3 to π
2 they guarantee good readability

properties [146, 150, 148].
These empirical experiences suggest that a new theory of non-planar graph drawing can be developed

under the assumption that not only the number of edge crossings but also their (topological and/or
geometric) properties have an impact on the readability of a diagram. Hence, a natural step towards
understanding non-planar representations of graphs is to classify and study them in terms of forbidden
crossing configurations. This is, in a broad sense, the aim and scope of the rapidly growing research
area of graph drawing beyond planarity. Table 1 reports some examples of beyond-planar graphs with a
description of their forbidden crossing configurations1.

1The table only shows a subset of the graph families described in this paper.
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(a) (b) (c) (d)

Figure 1: (a)-(b) Two drawings with the same rotation system but with different embeddings. (c)-(d)
Two planar embeddings that differ for the choice of the outer face.

Overview and paper organization. The goal of this survey is to classify and describe prominent results
and promising research directions in the fertile area of graph drawing beyond planarity. The survey
addresses the following questions.

Q1 What are the forbidden crossing configurations and the main research directions that have been
studied so far?

Q2 For each such direction, what are the main combinatorial results and which algorithms have been
designed, experimented, and engineered?

Q3 What are the most relevant open problems and the least explored research directions in this area?

In order to answer Question Q1, in Section 3 we define graph families that avoid forbidden crossing
configurations and we present a taxonomy of the main research directions in the area of graph drawing
beyond planarity. Sections 4–10 address Question Q2, using the taxonomy as a guideline to classify the
main combinatorial and algorithmic results. At the end of each section we shall address Question Q3 by
discussing some relevant open problems. Question Q3 is further discussed in Section 11. Basic definitions
on graph drawing can be found in Section 2.

2 Basic definitions on Graph Drawing

Let G = (V,E) be a graph. If not otherwise specified, we assume that G may contain multiple edges
but no self-loops. A drawing Γ of G maps each vertex v ∈ V to a distinct point pv of the plane and
each edge (u, v) ∈ E to a simple Jordan arc with endpoints pu and pv. In notation and terminology,
we make no distinction between the vertices and edges of a graph and the points and arcs representing
them, respectively. Two edges of Γ cross if they have a point in common distinct from their endpoints;
this point is a crossing. We assume that an edge does not contain a vertex other than its endpoints, no
two edges meet tangentially, and no three edges share a crossing. Γ is simple if any two edges intersect in
at most one point, which is either a common endpoint or an interior point where the two edges properly
cross. Thus in a simple drawing two adjacent edges do not cross and two non-adjacent edges cross at
most once.

A drawing Γ of G divides the plane into topologically connected regions, called faces. The infinite
region is called the external face; the other regions are the internal faces. Note that the boundary of a
face may contain both vertices of the graph and crossings. An embedding of G is an equivalence class of
drawings of G under homeomorphism of the plane, i.e., is a class of drawings of G that define the same set
of (external and internal) faces. A graph with a fixed embedding is called an embedded graph. A drawing
without crossings is planar. A planar graph is a graph that admits a planar drawing. A planar embedding
is the embedding of a planar drawing. A planar graph with a fixed planar embedding is an embedded
planar graph, or briefly a plane graph. Note that, an embedding of a graph G defines, for each vertex v
and for each crossing c, the clockwise circular order of the edges incident to v and to c. A rotation system
of G is a relaxation of an embedding of G in which the clockwise circular order of the edges is fixed only
for each vertex, while no information is given about which pairs of edges cross and in which order. If G
is planar, a planar embedding of G corresponds to a rotation system plus the choice of the external face
(see Fig. 1).

In a polyline drawing of a graph each edge is a chain of segments; a bend is a point where two segments
of the same edge meet. A k-bend drawing is a polyline drawing with at most k bends per edge. A 0-bend
drawing is also called a straight-line drawing.
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We remark that, in the literature, a drawing of a graph is sometimes called a topological graph and a
straight-line drawing is sometimes called a geometric graph. In the remainder of this paper we shall use
the pair of terms drawing and topological graph, and the pair straight-line drawing and geometric graph,
interchangeably.

3 Forbidden Configurations and Main Research Directions

In Section 3.1 we survey forbidden crossing configurations; in Section 3.2 we present a taxonomy of the
most explored research directions in graph drawing beyond planarity.

3.1 Graph Families

The beyond-planar graph families considered in this survey are defined as graphs that admit drawings not
containing specific forbidden configurations, that is, sets of edges that violate some desired topological or
geometric property of the edge crossings. Table 1 provides a schematic illustration of some beyond-planar
graph families, among the most studied in the literature. For each family X, we define what a drawing of
type X is. A graph belongs to family X if it admits a drawing of type X. Definitions based on first-order
logic formulas have been recently proposed for many of these types of drawings [58].

k-planar drawings. A k-planar drawing (k ≥ 1) does not contain an edge crossed more than k times.
The family of k-planar graphs, for k = 1, was introduced in 1965 in the context of the simultaneous
vertex-face coloring of planar graphs [182]. The study of k-planar graphs, for k > 1, was proposed for the
first time as a tool for finding lower bounds on the crossing number of a graph [177], i.e., on the minimum
number of crossings in a drawing of a graph.

k-quasi planar drawings. A k-quasi planar drawing (k ≥ 3) does not have k mutually crossing edges. The
first results about k-quasi planar graphs date back in the 80s and 90s, when the problem of determining
the maximum number of edges for these graphs was addressed [13, 176], answering questions posed even
earlier [29, 161, 9].

Skewness-k drawings. A skewness-k drawing (k ≥ 1) is such that the removal of at most k edges makes
the drawing planar. In terms of forbidden configuration it means that the drawing does not contain a
set of crossings not covered by (at most) k edges. A graph has skewness k if it admits a skewness-k
drawing. Graphs with skewness k are mainly studied for k = 1, under the name of almost planar (or near
planar) graphs, especially in terms of crossing number [69, 70]. The problem of efficiently computing
a skewness-k drawing of a graph G = (V,E) (k ≥ 1) with the minimum number of crossings and with
a fixed planar subgraph G′ = (V,E \ F ), where |F | = k, was also studied [136, 77]. For k = 1, this
problem is linear-time solvable and the solution gives an approximation to the crossing number of the
almost planar graph G [136].

k-apex drawings. A k-apex drawing (k ≥ 1) is such that the removal of at most k vertices makes the
drawing planar. It means that the drawing does not contain a set of crossing edges not covered by (at
most) k vertices. It is immediate to see that a skewness-k drawing is also a k-apex drawing, but not
vice versa. It is known that 1-apex graphs, mainly recognized as apex graphs in the literature, are closed
under the operation of taking minors. They have connections with other aspects of graph minor theory
(see, e.g., [185, 197]) and play a role in the relations between treewidth and graph diameter [122, 85]. The
problem of efficiently computing an apex drawing with minimum number of crossings and an identified
apex vertex was studied [76].

(k, l)-grid-free drawings. For k, l ≥ 1, a (k, l)-grid-free drawing does not contain a (k, l)-grid, i.e., two
groups of k and l edges, respectively, such that each edge of the first group crosses all the edges of the
second group [172]. If the k edges are incident to the same vertex, the (k, l)-grid is radial ; if the l edges
are also incident to the same vertex, the (k, l)-grid is biradial. A (k, l)-grid is natural if all its edges are
independent and no two edges in the same group cross.

k-fan-crossing-free drawings. A k-fan-crossing-free drawing does not contain k ≥ 2 adjacent edges
that cross a third one. A 2-fan-crossing-free drawing is also called fan-crossing-free [75]. The class of
k-fan-crossing-free graphs coincides with the class of radial (k, 1)-grid-free graphs, for k ≥ 2.

Fan-planar drawings. A fan-planar drawing does not contain two independent edges that cross a third
one or two adjacent edges that cross another edge from different “sides” [154]. This family of drawings is
somehow opposite to the class of fan-crossing-free drawings. From a practical point of view, fan-planar
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Table 1: Examples of beyond-planar graph families.

Graph Family Forbidden Configuration
Name Example Description Illustration

k-planar (k ≥ 1)

k = 2
An edge crossed more than k

times

k = 2

k-quasi planar

(k ≥ 3)

k = 3

k pairwise crossing edges

k = 3

skewness-k

(k ≥ 1)

k = 1
Set of crossings not covered by

at most k edges

k = 1

fan-planar

Two independent edges that

cross a third one or two

adjacent edges that cross

another edge from different

“sides”

2-fan-crossing-

free

(fan-crossing-

free)

Two adjacent edges that cross a

third one

straight-line RAC
Two edges crossing at an angle

smaller than π
2

< π
2

α-SHPED

(0 < α < 1
2
)

α = 1
4

Two α-stubs that cross

α = 1
4
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(a) (b) (c) (d)

Figure 2: (a) A fan-planar drawing of a graph G with 12 crossings. (b) A confluent drawing of G with 3
crossings. (c) A fan-planar drawing with 16 crossings of another graph G′. (d) A confluent drawing of
G′ with 8 crossings.

drawings can be used to create drawings with few edge crossings per edge in a confluent drawing style [103]
(see, e.g., Fig. 2). Note that a fan-planar drawing cannot contain a (k, l)-grid that is not radial, for k ≥ 2.

RAC drawings. A straight-line drawing such that any two crossing edges form π
2 angles at their crossing

point is straight-line RAC (RAC stands for Right Angle Crossing). The introduction of RAC draw-
ings [107] was motivated by cognitive studies that suggest a positive correlation between large crossing
angles and human understanding of graph visualizations [146, 150, 148], and by the common use of large
angle crossings in handmade real-world diagrams, such as metro maps [201, 183]. Clearly, a straight-line
RAC drawing is fan-crossing-free. RAC drawings with edge bends are also studied in the literature and
will be discussed in this survey.

ACEα and ACLα drawings. ACEα and ACLα drawings are variants of RAC drawings that are para-
metric in a value α ∈ (0, π2 ). In a straight-line ACEα drawing any two crossing edges form an angle
equal to α. Graphs that admit this type of drawing were originally introduced with the name of αAC=

graphs [5, 6]. In a straight-line ACLα drawing the value of any crossing angle is at least α. These
drawings were independently introduced by two different works; in [94] they are named LACα drawings
and in [116] they are called αAC drawings. As for RAC drawings, ACEα and ACLα drawings with edge
bends are also considered in this survey.

Partial edge drawings (α-SHPEDs). In an α-SHPED (Symmetric Homogeneous Partial Edge Drawing)
(0 < α < 1

2 ), each edge (u, v) is (partially) drawn as a pair of straight-line segments, called α-stubs, one
incident to u, the other incident to v, and each being a fraction α of segment uv; the two stubs do not
cross. The idea behind this drawing style was introduced to visualize network overload between switches
of the AT&T long distance telephone network in the U.S. [37]. The α-SHPED model has been formally
defined only recently [65], and has inspired both theoretical [64] and practical research (see, e.g., [51, 66]).
An extension of this model for graphs with maximum degree four where the drawings are orthogonal and
have at most one bend per edge is also studied [67].

k-gap-planar drawings. In a k-gap-planar drawing it is possible to map each crossing to one of the
two corresponding crossing edges so that, for each edge e at most k crossings are mapped to e. This
family generalizes k-planar graphs and was introduced in [31] with a practical motivation inspired by
edge casing, a method commonly used to alleviate the visual clutter caused by crossing lines [21, 124].
In a cased drawing of a graph, each crossing is resolved by locally interrupting one of the two crossing
edges, and a k-gap-planar graph can be equivalently defined as a graph that admits a cased drawing in
which each edge has at most k gaps.

H-self-intersecting-free drawings. Given a graph H, a straight-line H-self-intersecting-free drawing
(H-sif drawing) does not contain a self-intersecting geometric graph isomorphic to H. This specializes
the more general definition of H-free drawing, i.e., a drawing containing no graph isomorphic to H.
Typical forbidden configurations considers self-intersecting paths or cycles [179, 173].

Planarly-connected drawings. In a planarly-connected drawing each pair of crossing edges is independent
and there is a crossing-free edge that connects their endpoints [7]. As it will be discussed in Section 7,
this family includes meaningful subfamilies of 1-planar and fan-planar drawings.

3.2 Main Research Directions

The tree of Fig. 3 synthetically describes a taxonomy of the graph drawing beyond planarity area. The
first-level nodes identify the main research directions that have been studied so far; we classify the results
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Figure 3: Tree that summarizes the taxonomy used in this survey.

in the literature according to these main research directions. The intermediate nodes are refinements
of these main research directions. The leaves refer to the sections of this survey where the research
directions are described in detail; most of these sections report one or more summarizing tables, which
are also referred in the corresponding leaves. Hereunder we shortly describe the main research directions.

Density. Since the mid-1960s different authors (see, e.g., [29, 54, 161]) initiated the study of the following
Turán-type problem: What is the maximum number of edges that a drawing of a graph can have without
containing a given type of forbidden crossing configuration? Since then this question has been long studied
for all families of beyond-planar drawings. Results about the edge density of beyond-planar graphs are
discussed in Section 4.

Recognition. In contrast with planarity testing, which is solvable in linear time [145], recognizing whether
a graph belongs to a certain family of beyond-planar graphs is computationally hard for most of the
cases. For some subfamilies of beyond-planar graphs and/or under additional restriction of the input
the recognition problem is polynomial-time solvable. Results about the recognition problem of different
families of beyond-planar graphs are surveyed in Section 5.

Stretchability. The stretchability problem asks the following question: Let G be a topological graph with
a fixed embedding; does G admit a drawing where all edges are straight-line segments and such that the
given embedding is preserved? Remarkably, while the stretchability of planar drawings has been studied
since the mid 1930s (see, e.g., [202, 127, 189]), the question has received only little attention when the
drawing is non-planar and some crossing configurations are forbidden. Results about the stretchability
of beyond-planar graphs are discussed in Section 6.

Relationships. Studying the combinatorial relationships between different families of beyond-planar
graphs is a fundamental step towards developing a comprehensive theory of graph drawing beyond pla-
narity. The typical question in this context is the following: Let F and F ′ be two forbidden types of
crossing configurations (for example, F may be “four mutually crossing edges” and F ′ may be “an edge
crossed by three distinct edges”). If a graph G admits a drawing where F is forbidden, does G also admit
a drawing where F ′ is forbidden? Results about relationships of inclusion or of intersection between
families of beyond-planar graphs are described in Section 7.

Aesthetics. In addition to requiring that some types of edge crossings are forbidden in a non-planar
drawing, one can pursue some geometric optimization goals, often called aesthetic requirements, such as
minimizing the drawing area for a given resolution rule, maximizing the drawing aspect ratio, minimizing
the number of different slopes used to draw the edges or the number bends per edge. Such aesthetic
requirements have a strong impact on the visual complexity of a drawing (see, e.g., [87, 155]). Results
about this research direction are presented in Section 8.

Constraints. Depending on the type of graph and/or application, additional constraints can be imposed
on a drawing. For example, for bipartite graphs a typical constraint is to represent the vertices of each
partition set on one of two parallel lines, which is a fundamental step in the so-called “Sugyiama approach”
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(a) (b) (c) (d)

Figure 4: (a) A maximally-dense 1-planar graph with 5 vertices. (b) A 1-planar graph with 12 vertices
that is maximal but not optimal. (c) An optimal 1-planar graph. (d) An optimal straight-line RAC
graph.

for layered drawings [190]. Other constraints require that all vertices are collinear in the so-called k-page
drawing model [170, 44] or co-circular in the circular layout model [188]. Results about constrained
beyond-planar graphs are surveyed in Section 9.

Engineering and Experiments. The road towards an effective technology transfer of the algorithmic
solutions developed in the area of graph drawing beyond planarity has just begun. The initial steps in
this direction are summarized in Section 10.

4 Edge Density

The problem of establishing the maximum number of edges in a given type of beyond-planar graph has
been extensively studied in the literature. We recall some basic definitions needed to describe the main
results in this research direction. Let F be a beyond-planar graph family and let G be an n-vertex graph
in F . G is maximal (in F) if adding any edge to G leads to a graph that is not in F . G is maximally
dense if it has the maximum number of edges over all n-vertex graphs in F . The edge density of G is the
ratio between its number of edges and its number of vertices. G is optimal if it has the maximum edge
density over all graphs of F . Note that an optimal graph is also maximally dense, while the converse may
not be true; similarly, a maximally dense graph is maximal, but there are maximal graphs that are not
maximally dense; Fig. 4(a) shows a maximally-dense 1-planar graph with 5 vertices that is not optimal;
Fig. 4(b) shows a 1-planar graph with 12 vertices that is maximal but not optimal, and Fig. 4(c) shows
an optimal 1-planar graph with 12 vertices.

Density of k-planar graphs. For 1 ≤ k ≤ 4, Pach and Tóth prove that k-planar graphs have at most
(k + 3)(n − 2) edges [177], and also use this result to improve an earlier lower bound on the crossing
number of a graph. In particular, the resulting bounds are tight for k = 1 and for k = 2, which means
that the optimal 1-planar graphs have 4n− 8 edges and the optimal 2-planar graphs have 5n− 10 edges.
The best known upper bounds for k = 3 and k = 4 are 5.5n− 11 [174] and 6n− 12 [3], respectively. For
k > 4, the best known upper bound is 4.108

√
kn [177]. Lower bounds on the edge density of maximal

1-planar graphs are given in [56]. For bipartite 1-planar graphs, Karpov proves a tight bound of 3n− 6
when n is even and n 6= 6, and of 3n − 9 otherwise [153]. Different subfamilies of 1-planar graphs have
also been studied, such as 1-planar graphs where no two pairs of crossing edges share an end-vertex,
called IC-planar graphs, and those for which two pairs of crossing edges share at most one end-vertex,
called NIC-planar graphs. We report these bounds in Table 2. More results about the edge density of
1-planar graphs are surveyed in [159].

Density of k-quasi planar graphs. In 1996, Pach, Shahrokhi, and Szegedy conjectured that, for any
fixed k ≥ 2, there exists a constant ck, depending only on k, such that every k-quasi planar graph on n
vertices has at most ckn edges. This conjecture has been proved for k = 3 and k = 4 by various authors,
with the best upper bounds currently known being 6.5n − 20 [8] and 72(n − 2) [1], respectively. For
k > 4 the conjecture remains unproved, but several superlinear upper bounds have been established; the
current best upper bound is ckn log n, for a suitable constant ck [191]. An O(n log n) upper bound for
k-quasi planar graphs with x-monotone edges is also known [198, 199].

Density of fan-planar, k-fan-crossing-free, and k-gap graphs. Both fan-planar and 1-gap planar graphs
on n vertices have at most 5n− 10 edges, which is a tight bound [154, 31]. Recall that the same bound
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holds for 2-planar graphs. For k > 1, a k-gap planar graph has O(
√
kn) edges [31]. A fan-crossing-free

graph has at most 4n− 8 edges, and at most 4n− 9 if the edges are drawn as straight lines [75]. These
bounds are analogous to those for topological and geometric 1-planar graphs. For k > 1, k-fan-crossing-
free graphs have at most 3(k − 1)(n− 2) edges [75].

Density of straight-line RAC graphs, ACEα graphs, and ACLα graphs. Since straight-line RAC
graphs are fan-crossing-free, they cannot have more than 4n− 9 edges. In fact, the maximum number of
edges of a straight-line RAC graph is 4n− 10 [107], and for each k ≥ 3 there exists a straight-line RAC
graph Gk with n = 3k − 5 vertices and 4n− 10 edges (i.e., optimal). Graph Gk is constructed as follows
(see Fig. 4(d)): (i) start from a triangulated plane graph on k vertices; (ii) add to this graph its dual,
except for the node corresponding to the external face; (iii) for each node u of the dual, add the three
edges that connect u to the three vertices of the face corresponding to u. The fact that two edges of a
straight-line RAC drawing Γ of a graph G can cross only at right angles immediately implies that the
crossing graph of Γ is bipartite; the crossing graph of Γ has a vertex ve for each edge e of G and an edge
(ve, ve′) if the e and e′ cross in Γ. Hence, we can bi-color the edges of G such that each color set induces a
planar graph, which implies that G has at most 6n−12 edges. The 4n−10 bound is proved by exploiting
a finer coloring of the edges of G with three colors and different counting arguments based on Euler’s
formula for planar graphs [107]. Dujmovic et al. provide an alternative proof of this bound, based on
charging techniques [116]. They also show that straight-line ACLα graphs have at most π

α (3n− 6) edges;
the proof is based on a partition of the edges into distinct buckets, according to their directions, so that
each bucket induces a planar graph. With similar arguments, it is shown that straight-line ACEα graphs
have at most 3(3n− 6) edges [5]. These bounds for ACLα and ACEα graphs are not known to be tight.

Density of other graph families. Since a skewness-k graph G becomes planar after the removal of at
most k edges, G has at most 3n − 6 + k edges. This bound is trivially achieved by adding k edges to a
maximal planar graph. Similarly, removing at most k vertices from an n-vertex k-apex graph yields a
planar graph, and thus k-apex graphs have at most 3(n− k)− 6 +

∑k
i=1(n− k + i− 1) edges. A graph

attaining this bound is constructed from a maximal planar graph, iteratively adding one vertex connected

to all other vertices of the graph. (k, l)-grid-free and radial-(k, l)-grid-free graphs have at most 16 ·244
l

kn
edges and 8·24lkn edges, respectively [172], while a bound O(n log4k−6 n) is proved for natural-k-grid-free
graphs [4]. Concerning straight-line (3-length-path)-sif and straight-line (4-length-path)-sif graphs, it is
shown that they have O(n log n) and O(n log n/ log log n) edges, respectively [173], while straight-line
(4-length-cycle)-sif graphs have O(n8/5) edges [179]. Finally, planarly-connected graphs have c · n edges,
where c is an absolute constant [7].

Table 2 summarizes the discussed bounds on the edge density of beyond-planar graphs.

Open Problems. Although Turán-type questions on beyond-planar drawings have been studied for a
long time and the geometric graph theory literature is reach of results, there are still many beautiful
open problems. For several families of beyond-planar graphs the upper bounds on the maximum number
of edges reported in Table 2 are not tight. Hence, the goal of achieving tight bounds for each of these
families gives rise to an array of challenging problems. In particular, we find of particular interest the
following (see also [63, 196]).

Problem 1 Find a tight upper bound on the edge density of k-quasi planar graphs for k > 4. The problem
is relevant also when the edges are drawn as x-monotone curves.

Problem 2 Find tight upper bounds on the edge density of (simple) k-planar graphs for k ≥ 3.

Starting references for Problem 1 include [129, 191, 198, 199]. We recall that Pach et al. conjecture
an upper bound that is linear in the number of vertices [175]. Concerning Problem 2, recent papers that
discuss the edge density of (not necessarily simple) 3-planar graphs include [41, 42].

Another research direction is concerned with providing lower bounds on the number of edges of
maximal beyond-planar graphs. This type of question is mostly unexplored; results are known for 1- and
2-planar graphs [27, 56]. We suggest the following.

Problem 3 Find a lower bound on the edge density of maximal straight-line RAC graphs.

5 Recognition

Given a graph G and a family F of beyond-planar graphs, the recognition problem studies the complexity
of deciding whether a graph G belongs to F . As we have seen in Section 4, several families of beyond-
planar graphs are sparse and this may suggest a correspondence with planar graphs, which can be
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Table 2: Density. Most of the bounds in the table hold for simple drawings only; while few of them are
still valid for non-simple drawings. The symbol × in column Tightness means that either the bound is
far from being tight or that it is tight only up to a multiplicative or additive constant.

Graph Family Max. Num. Edges Tight References

1-planar 4n− 8 X [53, 177]

straight-line 1-planar 4n− 9 X [104, 2]

bipartite 1-planar
3n−8 for even n 6= 6
3n− 9 otherwise

X [153]

IC-planar 3.25n− 6 X [208]

NIC-planar 3.6n− 7.2 X [79]

2-planar 5n− 10 X [177]

3-planar 5.5(n− 2) × [174]

4-planar 6n− 12 × [3]

k-planar (k ≥ 5) 4.108
√
kn × [177]

3-quasi planar 6.5n− 20 × [8]

4-quasi planar 72(n− 2) × [1]

k-quasi planar (k ≥ 5) ckn logn × [191]

skewness-k 3n− 6 + k X Trivial

k-apex 3(n− k)− 6 +
∑k
i=1(n− k + i− 1) X Trivial

(k, l)-grid-free 16 · 244
l
kn × [172]

radial-(k, l)-grid-free 8 · 24lkn × [172]

natural-k-grid-free O(n log4k−6 n) × [4]

straight-line natural-k-grid-free O(kn log2 n) × [4]

fan-crossing-free 4n− 8 X [75]

straight-line fan-crossing-free 4n− 9 X [75]

k-fan-crossing-free (k ≥ 3) 3(k − 1)(n− 2) × [75]

fan-planar 5n− 10 X [154]

straight-line RAC 4n− 10 X [107]

straight-line ACEα 3(3n− 6) × [5]

straight-line ACLα π
α

(3n− 6) × [116]

1-gap-planar 5n− 10 X [31]

k-gap-planar (k > 1) O(
√
kn) × [31]

straight-line (3-length-path)-sif O(n logn) × [173]

straight-line (5-length-path)-sif O(n logn/ log logn) × [173]

straight-line (4-length-cycle)-sif O(n8/5) × [179]

planarly-connected cn × [7]
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recognized in linear-time [145]. Unfortunately, this is not the case, and for most of the studied beyond-
planar graph families the recognition problem is in fact hard.

Recognizing 1-planar graphs is NP-complete in general [133, 160] and it remains NP-complete even
if the skeweness of the input graph is 1 [69]. The problem is however fixed-parameter tractable with
respect to the vertex-cover number, the cyclomatic number, or the tree-depth of the input graph [32].
Recognizing 1-planar graphs remains NP-complete also when the input graph comes with a fixed rotation
system, which must be preserved [28]. On the positive side, deciding whether a graph with n is optimal 1-
planar (i.e., it is 1-planar and has 4n− 8 edges) is O(n)-time solvable [59]; the testing algorithm exploits
a structural characterization of optimal 1-planar graphs [192]. We refer the reader to the annotated
bibliography by Kobourov et al. for further references on recognizing meaningful subclasses of 1-planar
graphs [159]. It is worth remarking that several papers present interesting bounds of graph parameters
for 1-planar and k-planar graphs, which shed some light on the structure of these graphs and thus which
may be of interest for the design of fixed-parameter tractable recognition algorithms. For example, k-
planar graphs on n vertices have O(log n) book thickness [115], O(

√
kn) treewidth and O(k) layered

treewidth [114], and bounded expansion [167] (see [159] for more results).
Recognizing skewness-k graphs is NP-complete in the general case [164], but the problem can be

solved in O(n) time for any fixed value of k (i.e., it is FPT with parameter k) [158].
The set of 1-apex graphs is closed under the operation of taking minors [135], hence these graphs

have a forbidden graph characterization by the Robertson-Seymour theorem [184]. However, the set
of obstructions for these graphs has only been partially discovered [165]. Recognizing n-vertex k-apex
graphs is NP-complete [162], but there is an O(n)-time algorithm if k is a fixed constant [157].

Recognizing fan-planar graphs is NP-complete [48], even for fixed rotation system [39]. The same
holds for 1-gap-planar graphs [31].

Recognizing straight-line RAC drawable graphs is NP-hard in general [23], while it can be solved in
linear time for complete bipartite graphs [106]. As recently shown, even the more restricted problem
of deciding whether a graph admits a straight-line RAC drawing with at most one crossing per edge is
NP-hard [40]. It is however unknown if any of these two problems belongs to NP, because it is unknown
the complexity of deciding whether an embedded graph admits an embedding-preserving straight-line
RAC (1-planar) drawing. On the other hand, every 1-plane graph admits a 1-bend RAC drawing with
at most one crossing per edge [40, 74] (see also Section 8).

Concerning α-SHPEDs, there are necessary or sufficient conditions for their existence, although the
complexity of the recognition problem has not been established. If an n-vertex complete graph has a
1
4 -SHPED, then n < 165; also, if a graph has bandwidth k, it has a Θ( 1

k )-SHPED [64]. Similar bounds
are given for complete bipartite graphs. In [64] it is also studied the problem of maximizing the total
stub length (or ink), so to turn a geometric graph into a partial edge drawing that is symmetric but
not necessarily homogeneous (the value of α may not be the same for all the edges). This problem is
NP-hard, but becomes polynomial-time solvable for geometric 2-planar graphs.

Table 3 summarizes the results discussed in this section.

Open Problems. As Table 3 shows, the recognition problem remains unexplored for many families of
beyond-planar graphs. This poses several open questions. For example:

Problem 4 What is the complexity of deciding whether a graph is k-quasi planar? The question is
already interesting when k = 3.

It is know that every graph has a RAC drawing with at most three bends per edge [107] and that it
has O(n) edges if either one bend or two bends per edge are allowed [25] (see Section 8). Recognizing
straight-line RAC graphs is NP-hard [23], but the following question is still open.

Problem 5 What is the complexity of recognizing whether a graph admits a k-bend RAC drawing, for
k ∈ {1, 2}?

A characterization of the graphs that admit an α-SHPED is unknown.

Problem 6 What is the complexity of deciding whether a graph admits an α-SHPED? In particular,
what is the complexity for α = 1

4?
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Table 3: Recognition.

Graph Family Restrictions Complexity References

1-planar NP-complete [133, 160]

1-planar bounded bandwidth, pathwidth, or treewidth NP-complete [32]

1-planar bounded cyclomatic number or treedepth O(n) [32]

1-planar fixed rotation system NP-complete [28]

1-planar skewness-1 NP-complete [70]

optimal 1-planar O(n) [59]

skewness-k NP-complete [164]

skewness-k bounded k O(n) [158]

k-apex NP-complete [162]

k-apex bounded k O(n) [157]

fan-planar NP-complete [48]

fan-planar fixed rotation system NP-complete [39]

straight-line RAC NP-hard [23]

staight-line 1-planar RAC NP-hard [40]

1-gap-planar NP-complete [31]

1-gap-planar fixed rotation system NP-complete [31]

Table 4: Stretchability.

Graph Family Restrictions Complexity of testing References

1-planar fixed embedding O(n) [144]

1-planar fixed pairs of crossing edges O(n) [142]

maximal skewness-1 fixed embedding O(n) [118]

6 Stretchability

The famous Fáry’s theorem states that every plane graph is stretchable, i.e., it has an embedding-
preserving straight-line drawing [127] (this result was also independently proven by Wagner [202] and
Stein [189]). So far, limited effort has been done to extend this result in the context of graph draw-
ing beyond planarity. In 1988, Thomassen initiated the study of the stretchability problem for 1-plane
graphs [195]. He proved that, differently from plane graphs, a 1-plane graph admits an embedding-
preserving straight-line drawing if and only if it contains neither B-configurations nor W-configurations
as subgraphs [195] (see Figs. 5(a)-5(b)). Later on, Thomassen’s characterization has been used to design
a linear-time algorithm to test whether a 1-plane graph is stretchable [144]. This algorithm is based on
an efficient procedure that checks whether a 1-plane graph G contains any B- or W-configuration, and, if
not, it also returns a straight-line drawing of G. Figs. 5(c)-5(d) show a stretchable 1-plane graph G and
a straight-line drawing of G, respectively. Recently, Hong and Nagamochi have studied the stretchability
problem of 1-plane graphs in a more relaxed setting [142]. They describe a linear-time algorithm that
tests whether a 1-plane graph is stretchable assuming that the rotation system and the external face of
the graph can change, while it is required that the pairs of crossing edges stay the same. Eades et al.
study the stretchabilty problem for skewness-1 graphs [118]. They characterize the maximal topological
skewness-1 graphs that are stretchable, and give a linear-time testing and drawing algorithm based on
this characterization.

Table 4 summarizes the aforementioned results.

Open Problems. The stretchability problem for beyond-planar graphs is a fertile and essentially un-
explored research subject. As a matter of fact, for any type of forbidden crossing configuration, the
corresponding stretchability question gives rise to an open problem. For example:

Problem 7 Characterize the k-quasi planar topological graphs that are stretchable. This question is
interesting also when k = 3.

Another research stream is about embedding-preserving drawings with good crossing angle resolution.
This question is interesting even for structurally simple topological graphs. For example:
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(a) (b) (c) (d)

Figure 5: (a) B-configuration. (b) W-configuration. (c) A 1-plane graph G. (d) An embedding-preserving
straight-line drawing of G.
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Figure 6: (a) Schematic illustration of a straight-line RAC graph that is not 1-planar; each dashed edge
(u, v) represents four paths of three edges between u and v, like those connecting vertices {3, 4} and
vertices {2, 5}. (b) A 1-plane graph with 4n−10 edges that does not admit a straight-line RAC drawing;
an infinite family of this type of graphs can be obtained by recursively plugging the whole graph inside
the 4-cycle {5, 6, 7, 8}. (c) A 1-planar 1-bend RAC drawing of the graph in Figure 6(b).

Problem 8 Does every topological graph of maximum vertex degree three admit an embedding-preserving
straight-line RAC drawing?

Finally, we recall that a characterization of the almost-plane graphs that are stretchable is known
only when the number of edges is 3n− 5 (a characterization for fewer edges is known on the sphere but
not in the plane) [118]. Hence, a natural question is the following.

Problem 9 Characterize the topological skewness-k graphs that are stretchable. This question is inter-
esting also when k = 1 and the number of edges is smaller than 3n− 5.

7 Relationships Between Graph Families

Some families of beyond-planar graphs have similar edge densities or exhibit similar structural and topo-
logical properties. In these cases it is natural to ask whether they have some inclusion relationships. In
what follows, we survey the main results concerning this research direction.

RAC graphs and 1-planar graphs. One of the most studied problems on the subject is the relationship
between RAC graphs and 1-planar graphs. Recall that straight-line RAC drawings have at most 4n− 10
edges, while topological (resp. geometric) 1-planar graphs have at most 4n−8 edges (resp. 4n−9). This
immediately implies that optimal 1-planar graphs are not straight-line RAC. Eades and Liotta proved in
fact that these two families are in general incomparable, and provide a series of interesting results about
their relationships [119]. They exhibit an infinite subfamily of straight-line RAC graphs with n ≥ 85
vertices that are not 1-planar (see, e.g., Fig. 6(a)), and they show that there exist infinitely many 1-
planar graphs with 4n − 10 edges that are not straight-line RAC (see, e.g., Fig. 6(b)). On the positive
side, every optimal straight-line RAC graph is 1-planar (see, e.g., Fig. 4(d)).

Brandenburg et al. study the RAC drawability of the 1-planar graphs with independent pairs of
crossing edges (the IC-planar graphs) [60]. They show that every IC-planar graph has a straight-line
RAC drawing, while this is not true for the larger class of the NIC-planar graphs [30].
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The incomparability of straight-line RAC graphs and 1-planar graphs, together with the fact that IC-
planar graphs always admit a straight-line RAC drawing (which is also 1-planar), suggest two interesting
questions: (i) What is the complexity of deciding whether a graph admits a drawing that is both 1-planar
and straight-line RAC? (ii) Does every 1-planar graph admit a 1-planar drawing that is also RAC if we
allow at most one bend per edge? These questions have been recently answered [40]: Question (i) is
NP-hard, as already mentioned in Section 5 (see Table 3), while Question (ii) has a positive answer.
Figure 6(c) shows a 1-planar RAC drawing with at most one bend per edge of the graph in Fig. 6(b).
Additional inclusion relationships between 1-planar and straight-line RAC drawings have been studied
for constrained drawings and they are summarized in Section 9.

k-planar graphs and k-quasi planar graphs. Note that the tight bounds on the edge density of 3-planar
and 3-quasi planar graphs imply the existence of 3-quasi planar graphs that are not 3-planar. On the
other hand, for k ≥ 1, every k-planar graph is clearly (k + 2)-quasi planar. These two observations have
motivated a recent work on the relationship between k-planar graphs and k-quasi planar graphs [14].
This work proves that, for k ≥ 3, every k-planar graph is (k + 1)-quasi planar. The proof is based
on a rerouting argument that starts from a k-planar drawing and resolves all possible bundles of k + 1
pairwise crossing edges. The drawing produced by this technique is (k + 1)-quasi planar, but it may not
be k-planar anymore. This result has been later extended to the case k = 2 [138]. Thus, every k-planar
graph is (k + 1)-quasi planar, for k ≥ 2.

k-planar graphs and fan-planar graphs. Since optimal fan-planar graphs have the same density as
optimal 2-planar graphs (optimal n-vertex graphs have 5n − 10 edges for these two families), Binucci
et al. study the relationship between fan-planar and k-planar graphs [48]. They prove that these two
families are incomparable. On the one hand, they show that for any k ≥ 2 there exists a fan-planar graph
that is not k-planar; the proof uses a complete 3-partite graph K1,3,h, where the index h depends on k;
this graph is clearly fan-planar but any of its drawings contains too many crossings to be k-planar. On
the other hand, they exhibit 2-planar graphs that are not fan-planar.

k-gap planar graphs, k-planar graphs, k-quasi planar graphs. Bae et al. studied the relationship
between k-gap planar graphs and both k-planar and k-quasi planar graphs [31]. By using Hall’s theorem,
they prove that for every k ≥ 1 all 2k-planar graphs are k-gap planar. On the other hand, for every fixed
k ≥ 1, there exists a 1-gap planar graph that is not k-planar. Similarly, by using a counting argument
on the number of crossings, they prove that all k-gap planar graphs are 2k+ 2-quasi planar, while for all
k ≥ 1 they exhibit a quasi planar graph that is not k-gap planar.

Planarly-connected graphs, 1-planar graphs, fan-planar graphs. Ackerman motivates the study of
planarly-connected graphs with the fact that both maximally dense 1-planar graphs and maximally dense
fan-planar graphs are planarly-connected [7]. For 1-planar graphs, the high-level idea is to consider a
drawing with the minimum number of crossings of a maximally dense graph; in such a drawing, for every
pair of crossing edges there is a crossing-free edge that connects their endpoints, as otherwise one could
contradict either the fact that the drawing is crossing minimal or the fact that the graph is maximally
dense. The idea for fan-planar graphs is similar.

The intersection relationships between the different families of beyond-planar graph families are sum-
marized in Table 5. Each family in a row (resp. column) is represented by a thin (resp. thick) circle.
Each cell reports the relationship between the corresponding row and column using the common Venn
diagram notation. Note that, some relationships immediately derive from the definitions. For example,
a fan-planar drawing is always k-quasi planar (for each k ≥ 3), because three mutually crossing edges
imply that two independent edges are crossed by a third one.

Open Problems. Table 5 shows that some pairs of beyond-planar graph families have a non-empty
intersection that is not an inclusion. In these cases, it is interesting to characterize the graphs that
belong to both families. For example, there are 1-planar graphs that are not straight-line RAC, there are
straight-line RAC graphs that are not 1-planar, all optimal straight-line RAC graphs are 1-planar, and
all IC-planar graphs are straight-line RAC [119, 60]. However, the following is still open.

Problem 10 Characterize the straight-line RAC graphs that are 1-planar.

Other questions can be asked for those cells of Table 5 that show a proper inclusion between two fam-
ilies of beyond-planar graphs. For example, while it is known that every k-planar graph is (k + 1)-quasi
planar [14, 138] and that optimal 3-planar graphs are known to be 3-quasi planar [42], some funda-
mental questions on the combinatorial relationships between k-planarity and h-quasi planarity remain
unanswered. For example:
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Table 5: Relationships. In each pairwise comparison, when applicable, we assume k ≤ h. The table does
not report inclusion relationships about restricted subfamilies, such as IC-planar graphs, NIC-planar
graphs, and optimal straight-line RAC graphs. These relationships are discussed in the text.

1-planar h-planar h ≥ 2 h-quasi pl. h ≥ 3 fan planar straight-line RAC h-gap planar h ≥ 1 planarly-conn.

1-planar

k-planar k ≥ 2 h ≥ k + 1 k = 2 k = 2h

k-quasi pl. k ≥ 3 k = 3

fan planar h = 2

straight-line RAC

k-gap planar k ≥ 1 k = 1 h = 2k + 2

planarly-conn.

Problem 11 Is a k-planar graph also k-quasi planar? For sufficiently large values of k, is every k-planar
graph f(k)-quasi planar, for some function f(k) = o(k)?

Finally, the relationships between some pairs of beyond-planar graph families have not yet been
studied. For example:

Problem 12 What is the relationship between k-gap planar and fan-planar graphs, for k ≥ 1?

8 Aesthetics

While beyond-planar graphs focus on properties of edge crossings, other aesthetic requirements have
been extensively used in the literature in order to produce geometric representations of graphs that are
clear and pleasing for the reader. For example, in a polyline drawing, the vertices of the graph are
points and the edges are polylines whose complexity should be kept as low as possible to assist the
reader. A common measure to capture the edge complexity of a polyline drawing is the number of bends
per edge. Results concerning the edge complexity of beyond-planar graphs are in Section 8.1. Other
drawing paradigms, like visibility representations and contact representations, convey edges as horizontal
or vertical segments and shift the complexity to the vertices, which are drawn using more general shapes
such as bars, rectangles, or polygons. We survey work related to the vertex complexity of beyond-planar
graphs in Section 8.2. Finally, a common goal for polyline drawings is to use integer coordinates for
vertices and bend points and to fit the drawing into a small bounding box, so to display the drawing
onto a screen with finite resolution. In particular, the area of a polyline drawing is the area occupied
by its bounding box, i.e., by the minimum axis-aligned box containing the drawing. If the bounding box
has side lengths X − 1 and Y − 1, we say that the drawing has area X × Y . Results concerning the
area requirement of beyond-planar graphs in combination with edge/vertex complexity requirements are
considered in Sections 8.1−8.2. Furthermore, Section 8.3 discusses results about area-crossings trade-offs
for beyond-planar drawings of planar graphs.

8.1 Edge Complexity

As reported in Section 6, the class of 1-plane graphs admitting a straight-line drawing has been char-
acterized [195]. The same characterization has been re-discovered by Hong et al., who also show that
there exist 1-plane graphs such that every embedding-preserving straight-line drawing requires expo-
nential area [144]. Later on, it was proven that every 3-connected 1-planar graph admits a 1-planar
embedding that can be realized as a straight-line drawing except for at most one edge [10]; this drawing
has quadratic area. On the other hand, it is immediate to see that every 1-plane graph admits a 1-bend
drawing, as it suffices to replace each crossing with a dummy vertex and compute a straight-line drawing
of the resulting plane graph (possible overlaps of bend points can be removed by slight perturbations).
Furthermore, it is not difficult to see that every 1-plane graph can be drawn with at most two bends
per edge in O(n4) area. The idea is the following, refer to Fig. 7. Replace each crossing with a dummy
face of degree four; augment the resulting plane graph to be 3-connected so that no edge is inserted
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Figure 7: Illustration of a technique for computing 2-bend drawings of 1-plane graphs in O(n4) area.

in the dummy faces; compute a straight-line planar drawing such that all the faces are strictly convex
and the area of the drawing is O(n2)×O(n2) [33]; replace all dummy vertices with bend points, remove
all dummy edges, and reinsert the crossings. Chaplik, Lipp, Wolff, and Zink prove that every n-vertex
1-plane graph actually admits an embedding-preserving 1-bend RAC drawing; if two bends per edge are
allowed, a RAC drawing can be computed in O(n6) area [74, 210]. They also prove that every NIC-plane
graph admits an embedding-preserving 1-bend RAC drawing in quadratic area. We remark that the
existence of 1-bend 1-planar RAC drawings for every 1-plane graph was already known [40], but only
assuming that the drawing algorithm can change the 1-planar embedding of the input graph. We also re-
mark that for a simple family of 1-plane graphs, called kite-triangulations, an Ω(n3) area lower bound for
embedding-preserving straight-line RAC drawings is established [17]. A kite-triangulation is obtained by
augmenting a plane triangulation with edges inside pairs of adjacent faces. Additional results concerned
with other restricted classes of 1-planar graphs, such as the IC-planar graphs, are surveyed in [159].

The edge complexity of RAC drawings has also been studied regardless of the number of crossings
per edge. It is known that every n-vertex graph has a 3-bend RAC drawing in O(n4) area [107], while
1-bend and 2-bend RAC drawable graphs have at most 6.5n− 13 edges or 74.2n edges, respectively [25].
If we allow up to four bends per edge, every graph can be drawn RAC in O(n3) area [94]. For graphs
with bounded vertex degree, we have the following results [17]: (i) every graph with vertex degree at
most three has a 1-bend RAC drawing; (ii) every graph with vertex degree at most six has a 2-bend
RAC drawing. Both in (i) and (ii), the drawing is computed in O(n) time and has O(n2) area.

Concerning ACEα drawings with one or two bends per edge, it is proven that they have at most 27n
edges and 385n edges, respectively [5, 6]. On the other hand, every graph admits an ACLα drawing with
one bend per edge in O(n2) area [94].

Table 6 summarizes the main results concerning trade-offs between the number of bends per edge and
the area requirement of beyond-planar drawings.

Table 6: Edge complexity and area requirement trade-offs. ∆ denotes the maximum vertex degree. The
question mark indicates that no area bound is known.

Number of bends per edge

Graph Family 0 1 2 3 4 References

IC-planar O(n2) O(n2) O(n2) O(n2) O(n2) [60]

NIC-plane RAC ? O(n2) O(n2) O(n2) O(n2) [210]

1-planar Ω(2n) ? O(n4) O(n4) O(n4) [144], this paper

1-plane RAC Ω(2n) ? O(n6) O(n6) O(n6) [144, 210]

RAC Ω(n2) O(n2), if ∆ ≤ 6 O(n2), if ∆ ≤ 3 O(n4) O(n3) [17, 94, 107]

ACLα ? O(n2) O(n2) O(n2) O(n2) [94]

8.2 Vertex Complexity

A bar visibility representation of a graph G maps each vertex of G to a distinct horizontal segment,
called bar, and each edge of G to a vertical unobstructed segment, called visibility, between the two bars
corresponding to its end-vertices. This kind of representation is intrinsically planar, and on the other
hand every planar graph admits this representation2 (see, e.g., [194, 205]). In order to realize non-planar
graphs, other visibility models have been proposed, such as bar k-visibility representations and rectangle
visibility representations.

2Here we refer to the so-called weak model, in which the existence of a visibility between a pair of bars does not necessarily
imply the existence of an edge in the graph between the two corresponding vertices.
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In a bar k-visibility representation each visibility intersects at most k bars [82]. In particular, it is
proven that every 1-planar graph has a bar 1-visibility representation [57, 125]. A rectangle visibility
representation maps each vertex to an axis-aligned rectangle and each edge to a horizontal or vertical
visibility between the two corresponding rectangles [187]. In general there are 1-plane graphs, and even
IC-plane graphs, that do not admit such a representation. Biedl et al. describe a linear-time algorithm
to test whether a 1-plane graph admits an embedding-preserving rectangle visibility representation, and
to compute one if it exists [46]. The algorithm is based on a characterization that extends the set of
obstructions used by Thomassen to characterize the stretchable 1-plane graphs [195] (see Section 6).
The rectangle visibility model has been recently generalized to extend the class of representable graphs;
namely, in a generalized model, called ortho-polygon visibility representations, the vertices are drawn
as general orthogonal polygons [91]. Di Giacomo et al. prove that every 1-plane graph admits an
embedding-preserving ortho-polygon visibility representation [91]. If the input graph is 3-connected, one
can construct a representation such that each vertex has at most 12 reflex corners, while 2 reflex corners
may be needed. If the graph is only 2-connected, it may require at least one vertex with a linear number
of reflex corners.

A further visibility model, called L-visibility representations, maps every vertex to a horizontal and a
vertical segment sharing an endpoint (i.e., by an L-shape in the set { , , , }), and each edge to a
horizontal or vertical visibility segment joining the two L-shapes corresponding to its two end-vertices.
It is proven that every IC-planar graph admits an L-visibility representation [163].

Visibility representations of 1-planar graphs have been studied also in 3D. A z-parallel visibility rep-
resentation maps the vertices of a graph to isothetic disjoint rectangles parallel to the xy-plane, and the
edges to visibilities parallel to the z-axis. Every 1-plane graph has a z-parallel visibility representation [16].
The computed drawing is such that there is a plane orthogonal to the rectangles of the representation
and the intersection of this plane with the representation defines a bar 1-visibility representation of the
graph.

Finally, Alam et al. studied contact representations in which vertices are represented by axis-aligned
polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding
polyhedra [12]. They prove that every optimal 1-plane graph can be realized as a contact representation
where vertices are axis-aligned boxes if it contains no separating 4-cycles, or as a contact representation
where vertices are L-shaped polyhedra otherwise.

Table 7 summarizes the main results on visibility and contact representations of 1-planar graphs.

Table 7: Vertex complexity. × indicates that there are instances of the graph family not admitting that
visibility or contact representation. Xmeans that all instances in the graph family can be drawn with
that visibility or contact representation. The question mark means that it not known whether the answer
is × or X. LEGEND: RVR = rectangle visibility representation, B1VR = bar 1-visibility representation,
kOPVR = ortho-polygon visibility representation, LVR = L-visibility representation, ZPR = z-parallel
visibility representation, BCR = box contact representation, LCR = L-shaped contact representation.

Visibility Contact

Graph Family RVR B1VR OPVR LVR ZPR BCR LCR References

IC-planar X X X X X ? ? [12] [16]

[46] [57]

[91] [125]

[163]

optimal 1-planar with no separating 4-cycles × X X X X X X

optimal 1-planar × X X X X ? X

1-planar × X X × X ? ?

8.3 Area-Crossing Trade-offs for Planar Graphs

Many papers in graph drawing study the area requirement of planar straight-line drawings. Different
popular results establish that an n-vertex planar graph can always be drawn with straight-line edges in
O(n2) area [81, 186]. It is also proven that this bound is worst-case optimal for the family of planar
graphs, as there are infinitely many planar graphs that require quadratic area to be drawn in the plane
without edge crossings [81]. Several attempts have been done to prove the existence of straight-line planar
drawings with o(n2) area for specific sub-families of planar graphs, such as trees, outerplanar graphs, and
series-parallel graphs (see, e.g., [97] for references on these results).

A natural question that arises from the aforementioned results is whether allowing some edge crossings
may help to reduce the area of a drawing of a planar graph. In other words, what is the area requirement
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of beyond-planar drawings of planar graphs? Wood shows that, for any fixed positive integer k > 0,
all k-colorable graphs have a straight-line drawing in linear area; this implies that planar graphs always
admit O(n) straight-line drawings with crossing edges [206]. However, the technique by Wood can give
rise to drawings where some edges contain a linear number of crossings and the angles at which two edges
cross can be arbitrarily small.

The use of edge crossings that form large angles is studied in different papers. Straight-line RAC
drawings of planar graphs may require Ω(n2) area [17], thus right angle crossing drawings do not help
to reduce the area requirement bound for planar graphs in the general case. On the positive side, for
infinitely many values of n, there exists an n-vertex planar graph whose requirement is Θ(n2) for straight-
line planar drawings and Θ(n) for straight-line RAC drawings [200]. Analogous results hold for other
aesthetics such as uniform edge length and angular resolution [200]. In addition, every planar graph

admits an ACLα drawing with two bends per edge in O(n
5
3 ) area [19] and every planar graph with

vertex-degree at most ∆ admits a 4-bend RAC drawing in O(n
√

∆n) area [19]. Note that, if ∆ is a
sublinear function of n, these RAC drawings have subquadratic area.

Compact non-planar drawings of planar graphs with constant or sublinear number of crossings per
edge are also studied [97]. Every n-vertex outerplanar graph admits a straight-line drawing with O( n

logn )

crossings per edge in O(n log n) area. Also, for any given ε > 0, every n-vertex outerplanar graph admits
a straight-line drawing with O(n1−ε) crossings per edge in O(n1+ε) area, which gives a clear trade-off
scheme between area requirement and number of crossings per edge. Both these results are based on
a linear-time drawing algorithm, which can also be applied to other sub-families of planar graphs that
admit a “level” drawing with specific properties, such as flat series-parallel graphs with bounded degree
(see [97] for a definition of these families). On the other hand, if we insist in having a constant number
of crossings per edge, planar and non-planar drawings of planar graphs have in general the same area
requirement. This is true even for series-parallel graphs [98].

On the positive side, every n-vertex planar graph has a straight-line o(n)-quasi planar drawing in
o(n2) area. More precisely, by combining drawing techniques in [98] with results on the track number of
planar graphs [113], one can prove that every n-vertex planar graph admits either a straight-line O(log n)-
quasi planar drawing in O(n log3 n) area or a straight-line O(log2 n)-quasi planar drawing in O(n log n)
area. Also, every partial 2-tree admits a linear-area straight-line drawing with thickness at most 10,
and hence a linear-area 11-quasi planar straight-line drawing [98]. Furthermore, outerplanar graphs and
flat series-parallel graphs with bounded vertex degree (which are partial 2-trees) have quasi planar and
5-quasi planar drawings in linear area, respectively [96].

Table 8 summarizes the main results concerning area-crossings trade-offs for beyond-planar drawings
of planar graphs.

Table 8: Area-Crossings Trade-Offs for Planar Graphs. ∆ denotes the maximum vertex degree. The
question mark indicates that bounds better than those for planar drawings are not known. For reasons
of space, the table does not report the corresponding references.

Planar

Beyond-planar straight-l. k-planar straight-l. k-quasi planar k-bend RAC k-bend ACLα

Area k Area k Area k Area k

outerplanar
O(n1+ε) O(n1−ε)

O(n) 3 ? ?

O(n logn) O( n
logn

)

flat series-parallel bounded degree O(n1+ε) O(n1−ε)
O(n) 5 ? ?

O(n logn) O( n
logn

)

partial 2-tree Ω(n2
√

logn) O(1) O(n) 11 ? ?

planar
Ω(n2) O(1) O(n log3 n) O(logn) Ω(n2) 0

O(n
5
3 ) 2

O(n) O(n) O(n logn) O(log2 n) O(n
√

∆n) 4

Open Problems. Several open problems can be deduced by looking at the “?” in Tables 6, 7, and 8. For
example:

Problem 13 It is known that every 1-planar graph has a RAC drawing with at most 1-bend per edge [40].
However, it is not known whether such a drawing can be computed in polynomial area.

About the problem above, it has been recently shown that NIC-plane graphs admit an embedding-
preserving 1-bend RAC drawing in quadratic area [74].

17



u1 u2 u3 u4

v1 v2 v3 v4

(a)

u1

u2

u3

u4v1

v2

v3

v4

(b) (c)

Figure 8: (a) A ladder G; (b) A 2-layer 1-planar drawing of G that is also RAC. (c) A snake.

Problem 14 Do 1-planar graphs admit a box contact representation? The question is interesting even
for subfamilies of 1-planar graphs, such as IC-planar graphs.

Problem 15 Do planar graphs admit a k-bend RAC drawing in subquadratic area with k ≥ 4?

When k = 4, the answer is affirmative if the maximum vertex-degree is sublinear [19].

9 Constraints

Several papers concentrate on beyond-planar drawings where the vertices and/or the edges have additional
geometric constraints. We discuss the main scenarios studied in the literature.

9.1 Vertices on lines, circles, and external boundary

The study of graph layouts in which vertices are placed on a given set of horizontal lines, often called
layers, or on a set of concentric circles, has a well-established tradition in graph drawing [87, 93].

2-layer drawings. In the beyond planarity context, straight-line 2-layer drawings have been investigated
for RAC, 1-planar, and fan-planar graphs, in terms of both edge density and recognition. In a 2-layer
drawing the vertices are distributed along two horizontal layers, and vertices of the same layer cannot
be adjacent. Thus, the graph is necessarily bipartite. The study of 2-layer drawings has two main
motivations: (i) they are a natural way to visually convey bipartite graphs; (ii) algorithms that compute
2-layer drawings are building blocks of the popular Sugiyama’s framework [190], used to draw graphs on
multiple horizontal layers.

Characterizations for those graphs that admit either 2-layer RAC drawings [90], or 2-layer 1-planar
drawings [104], or 2-layer fan-planar drawings [47] are known; all of them can be regarded as generaliza-
tions of caterpillars, the class of 2-layer planar drawable graphs [120]. The upper bounds on the edge
density of these graph families are reported in Table 9. In particular, the optimal 2-layer 1-planar graphs
coincide with the optimal 2-layer RAC graphs, and have 1.5n−2 edges, where n is the number of vertices
of the graph. They are called ladders and consist of two paths of the same length 〈u1, u2, . . . , un2 〉 and
〈v1, v2, . . . , vn2 〉, plus the edges (ui, vi), (i = 1, 2, . . . , n2 ); see Figs. 8(a) and 8(b). A maximal 2-layer fan-
planar graph is called snake, and is obtained from an outerplane ladder, by adding, inside each internal
face, an arbitrary number (possibly none) of paths of length two joining a pair of non-adjacent vertices of
the face. Intuitively, a snake is a bipartite planar graph composed of a chain of complete bipartite graphs
K2,h; see Fig. 8(c). The family of optimal 2-layer fan-planar graphs on n vertices includes K2,n−2 [48].

From the algorithmic point of view, there exist linear-time testing and drawing algorithms for 2-layer
RAC graphs [90] and for 2-connected 2-layer fan-planar graphs [47], while it is still open the complexity
of recognizing 2-layer fan-planar graphs when the graph is only 1-connected. For 2-layer RAC graphs,
it is also possible to compute, in O(n2 log n) time, a 2-layer RAC drawing with minimum number of
crossings [90]. We remark that the crossing minimization problem is a well-known NP-complete problem
in the general case, which remains hard even for 2-layer drawings without the restriction that crossing
edges are orthogonal [121].

k-page Drawings. Let ` be a line, called spine. In a k-page drawing3 of a graph each vertex is mapped
to a distinct point of ` and each edge is drawn as a semicircle in one of k distinct half-planes incident
to `. Each of these half-planes is called a page. Binucci et al. study the problem of computing 2-page

3We recall that k-page drawings are among the oldest and more common graph drawing conventions and they can be
found with different names in the literature. For example, they are sometimes called linear layouts (see, e.g., [117]); also,
a 2-page drawing is sometimes called permutation representation (see, e.g., [169]) or linear drawing (see, e.g., [68]), while a
1-page drawing is also called arc diagram (see, e.g., [204])
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Table 9: Density for Constrained Families.

Graph Family Max. Num. Edges Tight References

2-layer 1-planar 1.5n− 2 X [104]

2-layer RAC 1.5n− 2 X [90]

2-layer fan-planar 2n− 4 X [48]

outer 1-planar 2.5n− 4 X [104, 26]

outer fan-planar 3n− 5 X [48]

convex geometric k-quasi planar 2(k − 1)n−
(2k−1

2

)
X [71]

convex geometric fan-crossing-free b5n/2− 4c X [62]

and 1-page drawings where the number of crossings per edge does not depend on the size of the input
graph [50] . They describe linear-time algorithms to compute 2-page drawings of planar 3-trees with at
most 2∆ crossings per edge, where ∆ is the maximum vertex-degree of the graph, and 1-page drawings
of partial 2-trees with at most ∆2 crossings per edge. In both cases, the authors show that the number
of crossings per edge cannot be bounded by a constant.

If no two edges cross, a k-page drawing is called k-page book embedding (or k-stack layout). The
minimum value of k such that a graph G has a k-page book embedding is the book thickness (or stack
number) of G. An O(log n) upper bound on the book thickness of k-planar graphs has been recently
proved [115], while for 1-planar graphs O(1) upper bounds are knwon [11, 38].

Outer and convex drawings. Beyond-planar graphs that admit a layout in which all vertices lie on a
circle enclosing the whole drawing or, more in general, on the external boundary of the drawing, can be
regarded as generalizations of the outerplanar graphs. For any integer k > 0, a k-planar drawing with
this property is an outer k-planar graph. Outer 1-planar graphs have at most 2.5n − 4 edges [26, 104],
which is a tight bound. They can be recognized in linear time [26, 141] and drawn in linear time, both as
straight-line drawings with all vertices on the external face in O(n2) area and as visibility representations
in O(n log n) area [26]. Hong and Nagamochi extended the recognition problem to full outer 2-planar
graphs, i.e., outer 2-planar graphs with no crossing on the external boundary [143]. They prove that also
this class of graphs can be recognized in linear time.

Density and recognition results are described also for outer fan-planar graphs. They have at most
3n− 5 edges (see Table 9), but, in contrast with outer 1-planar graphs, the complexity of the recognition
problem is not known in general, while it is linear-time solvable for maximal outer fan-planar graphs [39].

Table 9 also reports some other tight bounds for geometric beyond-planar graphs with all vertices in
convex position, such as k-quasi planar graphs and fan-crossing-free graphs. Bounds for more specific
families are listed in the geometric graph theory chapter of the Handbook of Discrete and Computational
Geometry [171]. Note that, the edge crossings in a geometric graph with all vertices in convex position
are the same as the edge crossings of a 1-page drawing in which the order of the vertices along the spine
is the same as the circular order of the vertices on the convex polygon.

Table 10: Recognition for Constrained Families.

Graph Family Complexity References

2-layer RAC O(n) [90]

2-connected 2-layer fan-planar O(n) [47]

outer 1-planar O(n) [26, 141]

full outer 2-planar O(n) [143]

maximal outer fan-planar O(n) [39]

circular RAC O(n) [84]

upward RAC NP-hard [17]

simultaneous RAC NP-hard [134]

k-SEFE NP-complete [134]

straight-line point-set RAC NP-hard [128]

Several interesting properties of convex geometric k-planar and k-quasi planar graphs have been
recently investigated [73]. It is shown that convex geometric k-planar graphs are b

√
4k + 1c+1-degenerate

and consequently b
√

4k + 1c+ 2-colorable. Furthermore, they have a balanced separator of size at most
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2k+ 3, which allows the design of a quasi-polynomial time recognition algorithm for this class of graphs,
i.e., the recognition problem is not NP-hard unless ETH (Exponential Time Hypothesis [151]) fails.
Convex geometric k-planar graphs in which all the vertices form a simple cycle can be recognized in
linear time, because they can be expressed in extended monadic second-order logic and have bounded
threewidth. In [73] we can also find families of 3-quasi planar graphs that are convex geometric and
families that are not convex geometric.

A characterization of the class of graphs that admit a RAC drawing in which all vertices lie on a circle,
along with a linear-time testing and layout algorithm are given in [84]. Outer 1-planar graphs have been
studied in combination with other types of constraints or beyond-planar graphs. Dehkordi and Eades
show that every outer 1-planar graph admits an outer RAC drawing [83]. Di Giacomo et al. study how
to draw outer 1-planar graphs with a small number of edge slopes [100]. They prove that every outer
1-planar graph admits an outer 1-planar straight-line drawing that uses O(∆) different slopes, where ∆
is the maximum vertex-degree of the graphs.

9.2 Upward RAC Drawings, Simultaneous RAC and Point-set RAC Embed-
ding

RAC drawings have been studied in combination with other popular graph drawing conventions that
impose additional geometric constrains on the layout, namely the upward drawing convention for directed
graphs (digraphs for short), the simultaneous embedding convention for multiple graphs with the same
vertex set, and the point-set embedding convention. We discuss them below.

Upward RAC Drawings. An upward drawing of a digraph G is such that each edge is drawn as a
curve monotonically increasing in the vertical direction (see, e.g., [87]). This kind of drawings is used to
visually convey the structure of acyclic digraphs; extensions of upward drawings are also effective for the
visualization of several types of networks, such as Petri Nets or social networks with both directed and
undirected edges [45, 49]. One of the most studied problems concerned with upward drawability is the
design of algorithms that test whether a given planar digraph admits an upward planar drawing (i.e., an
upward drawing without crossings), and in the affirmative case that compute one (refer to [105] for a sur-
vey). Although polynomial-time testing algorithms are known for specific subfamilies of planar digraphs
or when the digraph has a fixed embedding, the testing problem is NP-complete in the general [131].
Also, although a planar digraph has an upward planar drawing if and only if it has a straight-line upward
planar drawing [88], there are digraphs for which every straight-line upward planar drawing requires
exponential area [88, 89], while quadratic area is always achievable if we allow edge bends.

The use of right angle crossings for the upward drawability of acyclic planar digraphs has been
investigated to overcome the aforementioned limits of upward planar drawings. In particular, it is natural
to ask whether every planar acyclic digraph admits an upward RAC drawing and if every digraph with
an upward RAC drawing admits one with straight-line edges in polynomial area. Unfortunately, both
these questions have a negative answer and testing whether a planar digraph admits an upward RAC
drawing remains NP-hard [17].

Simultaneous RAC embedding. Given two planar graphs G1 = (V,E1) and G2 = (V,E2) with the
same vertex set, a simultaneous embedding of G1 and G2 is a pair of planar drawings, Γ1 of G1 and Γ2

of G2, such that each vertex v ∈ V has the same position in Γ1 and Γ2 (the edges of Γ1 are allowed to
cross those of Γ2). The simultaneous embedding problem is motivated by several practical scenarios. For
example, they are useful to visually compare two social networks consisting of the same set of subjects
but representing different types of relationships (e.g., friendships and work collaborations). It can also
be applied to the visualization of an evolving network, whose edges change over time. The simultaneous
embedding problem was introduced a decade ago [61], and since then it has been widely investigated in
the literature (see, e.g., [52] for a survey). When the edges are drawn as polylines, an important variant
of the problem is the so called SEFE (Simultaneous Embedding with Fixed Edges), in which edges that
occur in both graphs are drawn in the same way in both graphs (thus, they cannot be crossed).

A simultaneous RAC embedding of two graphs G1 and G2 has the additional property that the union
of the two planar drawings Γ1 and Γ2 is a RAC drawing. The idea is to avoid sharp angles that may
affect the readability of the whole layout. The simultaneous RAC embedding problem was originally
introduced for straight-line drawings [22], showing that only restricted pairs of planar subgraphs admit
such an embedding; for example, a wheel and a cycle might not admit a straight-line simultaneous RAC
embedding. The more general problem of deciding whether a pair of graphs admits a simultaneous RAC
embedding (with straight-line edges) is NP-hard [134]. More recently, it has been proven that, if we use
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polyline edges, every pair of planar graphs has a simultaneous RAC embedding with at most six bends
per edge [43]. The number of bends per edge can be further reduced for some combinations of specific
subfamilies of planar graphs, also in the SEFE scenario. For example, every pair consisting of a tree
and of a matching has a simultaneously RAC embedding with fixed edges in which the tree is drawn
with at most one bend per edge and the matching is drawn without bends. Moreover, simultaneous
RAC embeddings with at most two bends per edge are possible for those pairs of graphs admitting a
special type of visibility representation in which vertices are drawn as axis-aligned L-shapes and edges
are vertical or horizontal lines of sight connecting pairs of such shapes [126].

The k-SEFE problem is a variant of SEFE, in which those edges that belong to one graph only may
receive at most k crossings each, where k is a prescribed positive integer. Deciding if a pair of graphs is
a positive instance of the k-SEFE problem is NP-complete for any fixed positive k [134].

We remark that another variant of simultaneous embedding in graph drawing beyond planarity con-
siders a simultaneous embedding of two graphs G1 and G2 in which each of the two drawings Γ1 and
Γ2 is allowed to have some desired type of crossings. This setting generalizes the classical simultaneous
embedding instead of restricting it. For example, Di Giacomo et al. study simultaneous geometric quasi
planar embedding (SGQPE), where each Γi is a straight-line quasi-planar drawing [95]. They show for
instance that a tree and a path always admit an SGQPE, in contrast with the negative result in the
simultaneous geometric planar embedding setting [20]. More in general, they prove that trees and other
meaningful subfamilies of the outerplanar graphs admit an SGQPE.

Point-set RAC Embeddings. Given a set S of points in the plane and a graph G with n = |S| vertices,
a point-set embedding Γ of G on S is a drawing of G such that the vertices are placed to the points of
S through a one-to-one mapping, which can be given as part of the input (see, e.g. [178]) or not (see,
e.g. [156]). Fink et al. studied point-set RAC embeddings of graphs, where the points of S belong to an
n×n grid and no two points are horizontally or vertically aligned [128]. They concentrate on computing
point-set RAC embeddings with few bends per edge, where bends must occupy grid points as for the
vertices. Different algorithmic results and bounds on the number of bends per edge are given, also under
the assumption that the edge segments are restricted to be on grid lines. Among their results, they prove
that every graph with n vertices and m edges admits a point-set RAC embedding on any n × n grid
point set with at most three bends per edge in O((n + m)2) area. Note that, this result implies that
every planar graph G admits a RAC drawing with at most three bends per edge in quadratic area, which
improves a previous result [19] in terms of maximum number of bends per edge (see also Section 8.3). On
the negative side, they show that testing whether a graph admits a point-set RAC embedding without
bends is NP-hard.

Open Problems. Although the study of planar book embeddings has a long tradition in graph drawing
(see, e.g., [170, 44, 207]), the study of its beyond-planar counterpart is much more recent. The question
can be studied by either considering k-page drawings with forbidden crossing configurations (see, e.g., [47])
or by focusing on k-page book embeddings of beyond-planar graphs (see, e.g., [38, 11, 115]). For example,
we mention the following two problems.

Problem 16 Is there a function f(·) such that every planar graph of vertex-degree at most ∆ admits a
2-page drawing that is f(∆)-planar?

Problem 17 Establish tight bounds on the book thickness of k-planar graphs. This question is interesting
also when k = 1.

Every pair of planar graphs sharing their vertex set admits a simultaneous RAC embedding with at
most six bends per edge [43]. On the other hand, if no restriction on the edge crossings is given, such a
pair admits a simultaneous embedding with at most two bends per edge [132].

Problem 18 Does every pair of planar graphs that share their vertex set admit a simultaneous RAC
embedding with less than six bends per edge?

A set S of points in the plane is universal for a family of graphs if every element of the family admits
a point-set embedding on S with straight-line edges. A well-known result is that a universal point set
of size n that supports straight-line crossing-free drawings of all planar graphs with n vertices does not
exist [81]. One may wonder whether a beyond-planar version of this problem is more likely to have a
positive answer. In particular, we ask the following.

Problem 19 Is there a set S of n points in the plane such that every planar graph with n vertices admits
an f(n)-planar point-set embedding on S with straight-line edges such that f(n) ∈ o(n)?
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(a) (b) (c)

Figure 9: (a)-(b) Examples of drawings computed with the topology-driven force-directed approach. (c)
A straight-line drawing computed with a force-directed algorithm (left) and a subsequent drawing with
improved crossing angle resolution, obtained using smoothed curves (right).

10 Experiments and Engineering

The applied research in graph drawing beyond planarity has been mainly pursued along two directions:
(i) Cognitive experiments aimed to better understand the impact of some types of forbidden configura-
tions on the capability of a user to execute visualization-based analysis tasks. (ii) The implementation
and experimentation of algorithms to compute beyond-planar graph drawings, and the development of
visualization systems for real-world application domains. We briefly discuss the contributions in these
two directions.

Cognitive studies. Early cognitive experiments on beyond-planar graphs estimate the effects of crossing
angles on human eye movements and performance, through the use of eye-tracking systems [146, 147].
The results show that sharp angles may trigger extra eye movements, causing delays for path search
tasks, whereas crossings have usually little impact on node locating tasks. Subsequent experiments
confirm the importance of large angle crossings to execute visualization-based analysis tasks [150, 148],
thus motivating and stimulating the rich literature about RAC graphs and related graph families [108].
Further studies give some evidence that relevant improvements on the readability of graph layouts derive
from finding a good trade-off between different quality metrics, rather than optimizing only one of them;
the considered metrics include both crossing angles and vertex angles [149].

We recall that Partial Edge Drawing (PED) is a graph drawing style aimed at reducing edge crossings
and visual clutter. PEDs are straight-line drawings where the central part of each edge is erased, and
the length of the two remaining segments are computed so to preserve useful geometric information [37].
Given a straight-line drawing, an α-SHPED of this drawing is immediately defined for a fixed value of
α [65]. In particular, some edge crossings may not be avoidable, although the amount of ink removed
from the original drawing might be large (e.g., 50% when α = 1

4 ). On the other hand, it is possible to
maximize the ink and remove edge crossings by renouncing to homogeneity. Binucci et al. present a user
study in which PEDs obtained via heuristics are compared with the standard model 1

4 -SHPED [51]. The
results suggest that the benefit of homogeneity overcomes in terms of readability the benefit of fewer
crossings and more ink.

Another line of user experiments on beyond-planar graphs focuses on assessing a so-called edge strati-
fication approach to analyze complex visualizations of graphs [99]. The approach is based on partitioning
the edge set of a drawing into a minimal number of layers, such that the edges in each layer define a
drawing with some desired properties related to crossings. Other than requiring that the drawing of each
layer is planar, other possibilities are that the drawing of each layer has crossing angles larger than a
given constant α, or that it is k-planar for some fixed k. The experiments show that the stratification
approach is mainly useful for local tasks such as counting the degree of a vertex, while it is less effective
for more global tasks such as finding shortest paths between pairs of vertices. The edge stratification
algorithms proposed by Di Giacomo et al. are sometimes computationally expensive, especially when the
drawing on each layer is required to be k-planar for relatively large values of k; most of these algorithms
can be successfully applied to drawings with few hundred vertices and edges [99].

Algorithms and systems. Several papers describe heuristics that attempt to optimize some desired prop-
erties for edge crossings, often in combination with classical graph drawing conventions. For example, in
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order to improve the readability of circular layouts, a post-processing algorithm, called MAXCIR [168],
aims to increase crossing angles by using Quadratic Programming; experiments show that this algorithm
is fast in practice and yields better results compared to a traditional equal-spacing algorithm. BIGAN-
GLE [149] is a force-directed algorithm that computes drawings of graphs with multiple aesthetics being
improved at the same time; these aesthetics include crossing and vertex angle resolution. Argyriou et
al. describe the design and the implementation of another force-directed algorithm that computes draw-
ings with low crossing and vertex angle resolution [24]. A further contribution in the same direction as
BIGANGLE is the topology-driven force-directed framework [110]. It allows the design of graph drawing
algorithms that find good trade-offs between different aesthetics such as number of crossings, crossing
angle resolution, geodesic edge tendency, and number of edge bends. This approach is based on combining
force-directed techniques with the popular topology-shape-metrics approach, originally proposed for the
computation of bend-minimum orthogonal drawings of graphs [193]. Examples of drawings computed
by topology-driven force-directed algorithms are shown in Figs. 9(a) and 9(b). As a follow-up of this
work, the same authors implement an algorithm that first computes a straight-line drawing with a force-
directed technique and then it runs a post-processing procedure to improve crossing angle resolution by
representing edges as smoothed curves (see, e.g., Fig. 9(c)); each curve is monotone in the direction of
the straight-line segment connecting its end-points. The algorithm is also applied to the simultaneous
embedding of suitably defined networks in a system for conceptual Web-site traffic analysis [109].

With the aim of computing layered drawings of graphs with large-angle crossings (see Section 9), Di
Giacomo et al. describe building block heuristics for extracting a maximum 2-layer RAC subgraph of a
given bipartite graph [92]. They study both the setting in which the input graph has no fixed ordering
for the vertices of each partition set and the setting in which one of the two sets has a given linear order,
which must be preserved by the RAC subgraph.

We finally mention the implementation of an algorithm that computes ortho-polygon visibility rep-
resentations (OPVRs) of (non-planar) graphs [91]. As explained in Section 8.2, in an OPVR of a graph
G, each vertex is represented as an orthogonal polygon and each edge is either a horizontal or a vertical
segment. The vertex complexity of an OPVR is the maximum number of reflex angles inside a poly-
gon representing a vertex. Assuming that the graph G comes with a fixed embedding, the algorithm

in [91] tests in O(n2) time whether an OPVR of G exists and, if so, it computes in O(n
5
2 log

3
2 n) time

an embedding-preserving OPVR of G with minimum vertex complexity. This algorithm has also been
experimented on a large set of 1-plane graphs (1-plane graphs always admit an OPVR). The experimental
results show that, in practice, the computed OPVRs have usually a high percentage (up to 90% in some
cases) of vertices drawn with no reflex corners (i.e., as rectangles).

Open Problems. There is a general lack of user-studies to assess the effectiveness of the beyond-planar
graph models in practice. For example, a variant of PEDs for orthogonal drawings has been recently
introduced [67] but its effectiveness in practice has not yet been investigated.

Problem 20 Perform a user study in order to understand whether orthogonal PEDs are more readable
than traditional orthogonal drawings.

One of the most popular techniques to draw graphs is the so-called “Sugiyama’s approach” [190]. We
recall here that this approach places the vertices of the graph on several layers (horizontal lines) and
one of its main objectives is to minimize the edge crossings between two consecutive layers (see [87] for
a comprehensive description of this approach). As mentioned in the introduction, Mutzel observed that
the readability of a 2-layer drawing may not just depend on the number but also on the type of edge
crossings [166]. Hence we propose the study of the following problem, for which some efforts have been
limited so far to RAC drawings [92].

Problem 21 Design heuristics that reduce the number of forbidden crossing configurations in 2-layered
drawings of bipartite graphs, integrate them into Sugiyama’s approach, and perform a user-study to com-
pare the obtained drawings with those computed by means of 2-layer crossing minimization heuristics.

Finally, it would be interesting to analyze the practical impact that the various forbidden edge crossing
configurations have in real-world drawings. For example, one could consider a large benchmark of real-
world graphs with various sizes, draw these graphs by using different algorithms (e.g., force-directed
algorithms) and then analyze the frequency of occurrence of each forbidden edge crossing configuration
in these drawings. We summarize this problem as follows.

Problem 22 Analyze the impact of various forbidden edge crossing configurations in a large set of real-
world drawings.
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11 Concluding Remarks

The treatment of edge crossings in graph visualization embraces other topics that have not been discussed
in the previous sections. Although these topics are not properly recognized as part of the literature on
graph drawing beyond planarity, recent works have established interesting connections with beyond-planar
graph families, which highlight new interesting research directions.

Crossing Minimization. Computing drawings of graphs with minimum number of crossings is a problem
with a long tradition, and a huge amount of papers has been devoted to it (see [68] for a survey). It
is well known that the crossing minimization problem is NP-complete and it remains hard also in very
restricted scenarios, for instance when the graph is bipartite and we look for a straight-line 2-layer drawing
of it [130]. However, for 2-layer RAC drawable graphs the problem can be solved efficiently [90], which
suggests that the crossing minimization problem might be polynomial-time solvable also with respect to
other forbidden crossing configurations.

Relaxed Clustered Planarity. In a clustered graph, vertices are grouped into (hierarchical) clusters. In
a drawing of a clustered graph each cluster should be clearly represented as a closed region containing
all (and only) its vertices and all (and only) its subclusters. Also, an edge should not traverse (i.e.,
cut) a cluster if both its endvertices are outside the cluster. Many papers study how to efficiently
test whether a clustered planar graph admits a crossing-free drawing that meets the aforementioned
properties [155, 78], and practical drawing heuristics have also been conceived, even for non-planar and
large graphs (e.g., [86, 55, 112, 111]). In the spirit of graph drawing beyond planarity, relaxed models of
clustered planarity can be studied, in which only some types of crossings are disallowed. Initial steps in
this direction can be found in [18].

Hybrid Visualizations. The use of matrix-based representations combined with the classical node-link
representation has been proposed to diminish the negative effect of visual clutter in large and locally
dense networks [137, 34]. More recently, the planarity testing and embedding problem of this type of
hybrid visualizations have been further formalized [80, 101], and new families of beyond-planar graphs
related to hybrid visualizations have been defined [102].

Edge Bundling. The idea of grouping edges to get planar drawings of non-planar graphs was originally
proposed under the name of confluent drawings [103, 123]. Later on, practical edge-bundling techniques
were used to cope with the visual clutter problem in node-link diagrams of large and dense graphs [139,
140, 209]. The idea is that “similar” edges are deformed and grouped into bundles, thus providing a more
abstract and uncluttered view of the original drawing at the expenses of possible ambiguities in terms of
connections between vertices. Very recently, the use of edge bundling has been proposed in the context
of graph drawing beyond planarity, with the introduction of the family of 1-fan-bundle planar graphs,
which combines edge bundling with fan-planar graphs [15]. Following this example, other families can be
conceived and studied.

Finally, we remark that a very promising research direction is to perform new experiments and de-
velop new theories on graph drawing beyond planarity based on the following user-centered approach:
(i) Develop theories on how people read graphs with crossings based on HCI experiments; (ii) Define
Optimization criteria on the edge crossings and their configurations; (iii) Design combinatorial models
and efficient algorithms; (iv) Experimentally verify the efficiency and effectiveness of the algorithms with
new experiments that may lead to refining the model and/or the optimization goals.
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