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Abstract

Generative Adversarial Networks (GAN) have received wide attention in the machine learn-
ing field for their potential to learn high-dimensional, complex real data distribution. Specif-
ically, they do not rely on any assumptions about the distribution and can generate real-like
samples from latent space in a simple manner. This powerful property leads GAN to be applied
to various applications such as image synthesis, image attribute editing, image translation, do-
main adaptation and other academic fields. In this paper, we aim to discuss the details of
GAN for those readers who are familiar with, but do not comprehend GAN deeply or who
wish to view GAN from various perspectives. In addition, we explain how GAN operates and
the fundamental meaning of various objective functions that have been suggested recently. We
then focus on how the GAN can be combined with an autoencoder framework. Finally, we
enumerate the GAN variants that are applied to various tasks and other fields for those who
are interested in exploiting GAN for their research.

1 Introduction

Recently, in the machine learning field, generative models have become more important and
popular because of their applicability in various fields. Their capability to represent complex and
high-dimensional data can be utilized in treating images [2, 12, 57, 65, 127, 133, 145], videos
[122, 125, 126], music generation [41, 66, 141], natural languages [48, 73] and other academic
domains such as medical images [16, 77, 136] and security [109, 124]. Specifically, generative
models are highly useful for image to image translation (See Figure 1) [9, 57, 137, 145] which
transfers images to another specific domain, image super-resolution [65], changing some features of
an object in an image [3, 37, 75, 94, 144] and predicting the next frames of a video [122, 125, 126].
In addition, generative models can be the solution for various problems in the machine learning
field such as semisupervised learning [21, 67, 104, 115], which tries to address the lack of labeled
data, and domain adaptation [2, 12, 47, 108, 111, 140], which leverages known knowledge for some
tasks in other domains where only little information is given.

Formally, a generative model learns to model a real data probability distribution pdata(x)
where the data x exists in the d-dimensional real space Rd, and most generative models, including
autoregressive models [92, 105], are based on the maximum likelihood principle with a model
parametrized by parameters θ. With independent and identically distributed (i.i.d.) training
samples xi where i ∈ {1, 2, · · ·n}, the likelihood is defined as the product of probabilities that
the model gives to each training data:

∏n
i=1 pθ(x

i) where pθ(x) is the probability that the model
assigns to x. The maximum likelihood principle trains the model to maximize the likelihood that
the model follows the real data distribution.

From this point of view, we need to assume a certain form of pθ(x) explicitly to estimate the
likelihood of the given data and retrieve the samples from the learned model after the training. In
this way, some approaches [91, 92, 105] successfully learned the generative model in various fields
including speech synthesis. However, while the explicitly defined probability density function brings
about computational tractability, it may fail to represent the complexity of real data distribution
and learn the high-dimensional data distributions [87].

Generative Adversarial Networks (GANs) [36] were proposed to solve the disadvantages of other
generative models. Instead of maximizing the likelihood, GAN introduces the concept of adversarial
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Figure 1: Examples of unpaired image to image translation from CycleGAN [145]. CycleGAN use
a GAN concept, converting contents of the input image to the desired output image. There are
many creative applications using a GAN, including image to image translation, and these will be
introduced in Section 4. Images from CycleGAN [145].

learning between the generator and the discriminator. The generator and the discriminator act as
adversaries with respect to each other to produce real-like samples. The generator is a continuous,
differentiable transformation function mapping a prior distribution pz from the latent space Z
into the data space X that tries to fool the discriminator. The discriminator distinguishes its
input whether it comes from the real data distribution or the generator. The basic intuition
behind the adversarial learning is that as the generator tries to deceive the discriminator which
also evolves against the generator, the generator improves. This adversarial process gives GAN
notable advantages over the other generative models.

GAN avoids defining pθ(x) explicitly, and instead trains the generator using a binary classifi-
cation of the discriminator. Thus, the generator does not need to follow a certain form of pθ(x).
In addition, since the generator is a simple, usually deterministic feed-forward network from Z to
X , GAN can sample the generated data in a simple manner unlike other models using the Markov
chain [113] in which the sampling is computationally slow and not accurate. Furthermore, GAN
can parallelize the generation, which is not possible for other models such as PixelCNN [105],
PixelRNN [92], and WaveNet [91] due to their autoregressive nature.

For these advantages, GAN has been gaining considerable attention, and the desire to use GAN
in many fields is growing. In this study, we explain GAN [35, 36] in detail which generates sharper
and better real-like samples than the other generative models by adopting two components, the
generator and the discriminator. We look into how GAN works theoretically and how GAN has
been applied to various applications.

1.1 Paper Organization
Table 1 shows GAN and GAN variants which will be discussed in Section 2 and 3. In Section 2,

we first present a standard objective function of a GAN and describe how its components work.
After that, we present various objective functions proposed recently, focusing on their similarities
in terms of the feature matching problem. We then explain the architecture of GAN extending
the discussion to dominant obstacles caused by optimizing a minimax problem, especially a mode
collapse, and how to address those issues.

In Section 3, we discuss how GAN can be exploited to learn the latent space where a compressed
and low dimensional representation of data lies. In particular, we emphasize how the GAN extracts
the latent space from the data space with autoencoder frameworks. Section 4 provides several
extensions of the GAN applied to other domains and various topics as shown in Table 2. In
Section 5, we observe a macroscopic view of GAN, especially why GAN is advantageous over other
generative models. Finally, Section 6 concludes the paper.

2 Generative Adversarial Networks

As its name implies, GAN is a generative model that learns to make real-like data adversarially
[36] containing two components, the generator G and the discriminator D. G takes the role of
producing real-like fake samples from the latent variable z, whereas D determines whether its
input comes from G or real data space. D outputs a high value as it determines that its input
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Table 1: An overview of GANs discussed in Section 2 and 3.

Subject Topic Reference

Object f-divergence GAN [36], f-GAN [89], LSGAN [76]
functions IPM WGAN [5], WGAN-GP [42], FISHER GAN [84], McGAN [85], MMDGAN [68]

Architecture
DCGAN DCGAN [100]
Hierarchy StackedGAN [49], GoGAN [54], Progressive GAN [56]
Auto encoder BEGAN [10], EBGAN [143], MAGAN [128]

Issues
Theoretical analysis Towards principled methods for training GANs [4]

Generalization and equilibrium in GAN [6]
Mode collapse MRGAN [13], DRAGAN [61], MAD-GAN [33], Unrolled GAN [79]

Latent space

Decomposition CGAN [80], ACGAN [90], InfoGAN [15], ss-InfoGAN [116]
Encoder ALI [26], BiGAN [24], Adversarial Generator-Encoder Networks [123]
VAE VAEGAN [64], α-GAN [102]

Table 2: Categorization of GANs applied for various topics.

Domain Topic Reference

Image

Image translation Pix2pix [52], PAN [127], CycleGAN [145], DiscoGAN [57]
Super resolution SRGAN [65]
Object detection SeGAN [28], Perceptual GAN for small object detection [69]
Object transfiguration GeneGAN [144], GP-GAN [132]
Joint image generation Coupled GAN [74]
Video generation VGAN [125], Pose-GAN [126], MoCoGAN [122]
Text to image Stack GAN [49], TAC-GAN [18]
Change facial attributes SD-GAN [23], SL-GAN [138], DR-GAN [121], AGEGAN [3]

Sequential data
Music generation C-RNN-GAN [83], SeqGAN [141], ORGAN [41]
Text generation RankGAN [73]
Speech conversion VAW-GAN [48]

Semi-supervised learning SSL-GAN [104], CatGAN [115], Triple-GAN [67]

Others

Domain adaptation DANN [2], CyCADA [47]
Unsupervised pixel-level domain adaptation [12]

Continual learning Deep generative replay [110]
Medical image segmentation DI2IN [136], SCAN [16], SegAN [134]
Steganography Steganography GAN [124], Secure steganography GAN [109]

is more likely to be real. G and D compete with each other to achieve their individual goals,
thus generating the term adversarial. This adversarial learning situation can be formulated as
Equation 1 with parametrized networks G and D. pdata(x) and pz(z) in Equation 1 denote the
real data probability distribution defined in the data space X and the probability distribution of
z defined on the latent space Z, respectively.

min
G

max
D

V (G,D) = min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z))] . (1)

V (G,D) is a binary cross entropy function that is commonly used in binary classification prob-
lems [76]. Note that G maps z from Z into the element of X , whereas D takes an input x and
distinguishes whether x is a real sample or a fake sample generated by G.

As D wants to classify real or fake samples, V (G,D) is a natural choice for an objective function
in aspect of the classification problem. From D’s perspective, if a sample comes from real data, D
will maximize its output, while if a sample comes from G, D will minimize its output; thus, the
log(1 −D(G(z))) term appears in Equation 1. Simultaneously, G wants to deceive D, so it tries
to maximize D’s output when a fake sample is presented to D. Consequently, D tries to maximize
V (G,D) while G tries to minimize V (G,D), thus forming the minimax relationship in Equation 1.
Figure 2 shows an illustration of the GAN.

Theoretically, assuming that the two models G and D both have sufficient capacity, the equilib-
rium between G and D occurs when pdata(x) = pg(x) and D always produces 1

2 where pg(x) means
a probability distribution of the data provided by the generator [36]. Formally, for fixed G the op-
timal discriminator D? is D?(x) =

pg(x)
pg(x)+pdata(x) which can be shown by differentiating Equation 1.

If we plug in the optimal D? into Equation 1, the equation becomes the Jensen Shannon Diver-
gence (JSD) between pdata(x) and pg(x). Thus, the optimal generator minimizing JSD(pdata||pg)
is the data distribution pdata(x) and D becomes 1

2 by substituting the optimal generator into the
optimal D? term.
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Figure 2: Generative Adversarial Network

Beyond the theoretical support of GAN, the above paragraph leads us to infer two points. First,
from the optimal discriminator in the above, GAN can be connected into the density ratio trick
[102]. That is, the density ratio between the data distribution and the generated data distribution
as follows:

Dr(x) =
pdata(x)

pg(x)
=
p(x|y = 1)

p(x|y = 0)
=
p(y = 1|x)

p(y = 0|x)
=

D?(x)

1−D?(x)
(2)

where y = 0 and y = 1 indicate the generated data and the real data, respectively and p(y =
1) = p(y = 0) is assumed. This means that GAN addresses the intractability of the likelihood by
just using the relative behavior of the two distributions [102], and transferring this information
to the generator to produce real-like samples. Second, GAN can be interpreted to measure the
discrepancy between the generated data distribution and the real data distribution and then learn
to reduce it. The discriminator is used to implicitly measure the discrepancy.

Despite the advantage and theoretical support of GAN, many shortcomings has been found due
to the practical issues and inability to implement the assumption in theory including the infinite
capacity of the discriminator. There have been many attempts to solve these issues by changing
the objective function, the architecture, etc. Holding the fundamental framework of GAN, we
assess variants of the object function and the architectures proposed for the development of GAN.
We then focus on the crucial failures of GAN and how to address those issues.

2.1 Object Functions
The goal of generative models is to match the real data distribution pdata(x) from pg(x).

Thus, minimizing differences between two distributions is a crucial point for training generative
models. As mentioned above, standard GAN [36] minimizes JSD(pdata||pg) estimated by using
the discriminator. Recently, researchers have found that various distances or divergence measures
can be adopted instead of JSD and can improve the performance of the GAN. In this section, we
discuss how to measure the discrepancy between pdata(x) and pg(x) using various distances and
object functions derived from these distances.

2.1.1 f-divergence

The f-divergence Df (pdata||pg) is one of the means to measure differences between two distri-
butions with a specific convex function f . Using the ratio of the two distributions, the f-divergence
for pdata and pg with a function f is defined as follows:

Df (pdata||pg) =

∫
X
pg(x)f

(
pdata(x)

pg(x)

)
dx (3)

It should be noted that Df (pdata||pg) can act as a divergence between two distributions under the
conditions that f is a convex function and f(1) = 0 is satisfied. Because of the condition f(1) = 0,
if two distributions are equivalent, their ratio becomes 1 and their divergence goes to 0. Though f
is termed a generator function [89] in general, we call f an f-divergence function to avoid confusion
with the generator G.

f-GAN [89] generalizes the GAN objective function in terms of f-divergence under an arbitrary
convex function f . As we do not know the distributions exactly, Equation 3 should be estimated
through a tractable form such as an expectation form. By using the convex conjugate f(u) =
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Table 3: GANs using f-divergence. Table reproduced from [89].

GAN Divergence Generator f(t)

KLD t log t
GAN [36] JSD - 2 log2 t log t− (t+ 1) log(t+ 1)

LSGAN [76] Pearson X 2 (t− 1)2

EBGAN [143] Total Variance |t− 1|

supt∈domf?(tu− f?(t)), Equation 3 can be reformulated as follows:

Df (pdata||pg) =

∫
X
pg(x) sup

t∈domf?

(
t
pdata(x)

pg(x)
− f?(t)

)
dx (4)

≥ sup
T∈T

(∫
X
T (x)pdata(x)− f? (T (x)) pg(x)

)
dx (5)

= sup
T∈T

(
Ex∼pdata [T (x)]− Ex∼pg [f?(T (x))]

)
(6)

where f? is a Fenchel conjugate [29] of a convex function f and domf? indicates a domain of f?.
Equation 5 follows from the fact that the summation of the maximum is larger than the max-

imum of the summation and T is an arbitrary function class that satisfies X → R. Note that we
replace t in Equation 4 by T (x) : X → domf? in Equation 5 to make t involved in

∫
X . If we

express T (x) in the form of T (x) = a(Dω(x)) with a(·) : R→ domf? and Dω(x) : X → R, we can
interpret T (x) as the parameterized discriminator with a specific activation function a(·).

We can then create various GAN frameworks with the specified generator function f and
activation function a using the parameterized generator Gθ and discriminator Tω. Similar to the
standard GAN [36], f-GAN first maximizes the lower bound in Equation 6 with respect to Tω to
make the lower bound tight to Df (pdata||pg), and then minimizes the approximated divergence
with respect to Gθ to make pg(x) similar to pdata(x). In this manner, f-GAN tries to generalize
various GAN objectives by estimating some types of divergences given f as shown in Table 3

Kullback-Leibler Divergence (KLD), reverse KLD, JSD and other divergences can be derived
using the f-GAN framework with the specific generator function f , though they are not all rep-
resented in Table 3. Among f-GAN based GANs, LSGAN is one of the most widely used GANs
due to its simplicity and high performance; we briefly explain LSGAN in the next paragraph. To
summarize, f-divergence Df (pdata||pg) in Equation 3 can be indirectly estimated by calculating
expectations of its lower bound to deal with the intractable form with the unknown probability
distributions. f-GAN generalizes various divergences under an f-divergence framework and thus it
can derive the corresponding GAN objective with respect to a specific divergence.

2.1.1.1 Least square GAN

The standard GAN uses a sigmoid cross entropy loss for the discriminator to classify whether its
input is real or fake. However, if a generated sample is well classified as real by the discriminator,
there would be no reason for the generator to be updated even though the generated sample is
located far from the real data distribution. A sigmoid cross entropy loss can barely push such
generated samples towards real data distribution since its classification role has been achieved.

Motivated by this phenomenon, least-square GAN (LSGAN) replaces a sigmoid cross entropy
loss with a least square loss, which directly penalizes fake samples by moving them close to the
real data distribution. Compared to Equation 1, LSGAN solves the following problems:

min
D

VLSGAN (D) = min
D

1

2
Ex∼pdata [(D(x)− b)2] + Ez∼pz [(D(G(z))− a)2] (7)

min
G

VLSGAN (G) = min
G

1

2
Ez∼pz [(D(G(z))− c)2] (8)

where a, b and c refer to the baseline values for the discriminator.
Equations 7 and 8 use a least square loss, under which the discriminator is forced to have

designated values (a, b and c) for the real samples and the generated samples, respectively, rather
than a probability for the real or fake samples. Thus, in contrary to a sigmoid cross entropy loss,
a least square loss not only classifies the real samples and the generated samples but also pushes
generated samples closer to the real data distribution. In addition, LSGAN can be connected to
an f-divergence framework as shown in Table 3.
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2.1.2 Integral probability metric

Integral probability metric (IPM) defines a critic function f , which belongs to a specific function
class F , and IPM is defined as a maximal measure between two arbitrary distributions under the
frame of f . In a compact space X ⊂ Rd, let P(X ) denote the probability measures defined on X .
IPM metrics between two distributions pdata, pg ∈ P(X ) is defined as follows:

dF (pdata, pg) = supf∈F Ex∼pdata [f(x)]− Ex∼pg [f(x)] (9)

As shown in Equation 9, IPM metric dF (pdata, pg) defined on X determines a maximal distance
between pdata(x) and pg(x) with functions belonging to F which is a set of measurable, bounded,
real-valued functions. It should be noted that F determines various distances and their properties.
Here, we consider the function class Fv,w whose elements are the critic f , which can be represented
as a standard inner product of parameterized neural networks Φw and a linear output activation
function v in real space as described in Equation 10. w belongs to parameter space Ω that forces
the function space to be bounded. Under the function class in Equation 10, we can reformulate
Equation 9 as the following equations:

Fv,w = {f(x) =< v,Φw(x) > |v ∈ Rm,Φw(x) : X → Rm} (10)

dFv,w(pdata, pg) = supf∈Fv,w Ex∼pdata f(x)− Ex∼pg f(x) (11)
= max
w∈Ω,v

< v,Ex∼pdata Φw(x)− Ex∼pg Φw(x) > (12)

= max
w∈Ω

max
v

< v,Ex∼pdata Φw(x)− Ex∼pg Φw(x) > (13)

In Equation 13, the range of v determines the semantic meanings of the corresponding IPM
metrics. From now on, we discuss IPM metric variants such as the Wasserstein metric, maximum
mean discrepancy (MMD), and the Fisher metric based on Equation 13.

2.1.2.1 Wasserstein GAN

Wasserstein GAN (WGAN) [5] presents significant studies regarding the distance between
pdata(x) and pg(x). GAN learns the generator function gθ that transforms a latent variable z
into pg(x) rather than directly learning the probability distribution pdata(x) itself. A measure
between pg(x) and pdata(x) thus is required to train gθ. WGAN suggests the Earth-mover (EM)
distance which is also called the Wasserstein distance, as a measure of the discrepancy between
the two distributions. The Wasserstein distance is defined as follows:

W (pdata, pg) = infγ∈u(pdata,pg) E(x,y)∼γ [‖x− y‖] (14)

where u(pdata, pg) denotes the set of all joint distributions where the marginals of γ(x, y) are
pdata(x) and pg(x) respectively.

Probability distributions can be interpreted as the amount of mass they place at each point,
and EM distance is the minimum total amount of work required to transform pdata(x) into pg(x).
From this view, calculating the EM distance is equivalent to finding a transport plan γ(x, y), which
defines how we distribute the amount of mass from pdata(x) over pg(y). Therefore, a marginality
condition can be interpreted that pdata(x) =

∫
y
γ(x, y)dy is the amount of mass to move from point

x and pg(y) =
∫
x
γ(x, y)dx is the amount of mass to be stacked at the point y. Because work is

defined as the amount of mass times the distance it moves, we have to multiply the Euclidean
distance ‖x − y‖ by γ(x, y) at each point x, y and the minimum amount of work is derived as
Equation 14.

The benefit of the EM distance over other metrics is that it is a more sensible objective function
when learning distributions with the support of a low-dimensional manifold. The article on WGAN
shows that EM distance is the weakest convergent metric in that the convergent sequence under the
EM distance does not converge under other metrics and it is continuous and differentiable almost
everywhere under the Lipschitz condition, which standard feed-forward neural networks satisfy.
Thus, EM distance results in a more tolerable measure than do other distances such as KLD and
total variance distance regarding convergence of the distance.

As the inf term in Equation 14 is intractable, it is converted into a tractable equation via
Kantorovich-Rubinstein duality with the Lipschitz function class [99], [43]; i.e., f : X → R,

6



satisfying dR(f(x1), f(x2)) ≤ 1× dX(x1, x2), ∀x1, x2 ∈ X where dX denotes the distance metric in
the domain X. A duality of Equation 14 is as follows:

W (pdata, pg) = sup|f |L≤1 Ex∼pdata [f(x)]− Ex∼pg [f(x)] (15)

Consequently, if we parametrize the critic f with w to be a 1-Lipschitz function, the formulation
becomes to a minimax problem in that we train fw first to approximate W (pdata, pg) by searching
for the maximum as in Equation 15, and minimize such approximated distance by optimizing the
generator gθ. To guarantee that fw is a Lipschitz function, weight clipping is conducted for every
update of w to ensure that the parameter space of w lies in a compact space. It should be noted
that f(x) is called the critic because it does not explicitly classify its inputs as the discriminator,
but rather scores its input.

2.1.2.2 Variants of WGAN

WGAN with gradient penalty (WGAN-GP) [42] points out that the weight clipping for the critic
while training WGAN incurs a pathological behavior of the discriminator and suggests adding a
penalizing term of the gradient’s norm instead of the weight clipping. It shows that guaranteeing
the Lipschitz condition for the critic via weight clipping constraints the critic in a very limited
subset of all Lipschitz functions; this biases the critic toward a simple function. The weight
clipping also creates a gradient problem as it pushes weights to the extremes of the clipping range.
Instead of the weight clipping, adding a gradient penalty term to Equation 15 for the purpose of
implementing the Lipschitz condition by directly constraining the gradient of the critic has been
suggested [42].

Loss sensitive GAN (LS-GAN) [98] also uses a Lipschitz constraint but with a different method.
It learns loss function Lθ instead of the critic such that the loss of a real sample should be smaller
than a generated sample by a data-dependent margin, leading to more focus on fake samples whose
margin is high. Moreover, LS-GAN assumes that the density of real samples pdata(x) is Lipschitz
continuous so that nearby data do not abruptly change. The reason for adopting the Lipschitz
condition is independent of WGAN’s Lipschitz condition. The article on LS-GAN discusses that the
nonparametric assumption that the model should have infinite capacity proposed by Goodfellow
et al. [36] is too harsh a condition to satisfy even for deep neural networks and causes various
problems in training; hence, it constrains a model to lie in Lipschitz continuous function space
while WGAN’s Lipschitz condition comes from the Kantorovich-Rubinstein duality and only the
critic is constrained. In addition, LS-GAN uses a weight-decay regularization technique to impose
the weights of a model to lie in a bounded area to ensure the Lipschitz function condition.

2.1.2.3 Mean feature matching

From Equation 10, we can generalize several IPM metrics under the measure of the inner prod-
uct. If we constrain v with p norm where p is a nonnegative integer, we can derive Equation 18 as a
feature matching problem as follows by adding the ‖v‖p ≤ 1 condition where ‖v‖p = {Σmi=1v

p
i }1/p.

It should be noted that, with conjugate exponent q of p such that 1
p + 1

q = 1, the dual norm of
norm p satisfies ‖x‖q = sup{< v, x >: ‖v‖p ≤ 1} by Holder’s inequality [120]. Motivated by this
dual norm property [85], we can derive a lq mean matching problem as follows:

dF (pdata, pg) = max
w∈Ω

max
‖v‖p≤1

< v,Ex∼pdata Φw(x)− Ex∼pg Φw(x) > (16)

= max
w∈Ω
‖Ex∼pdata Φw(x)− Ex∼pg Φw(x)‖q (17)

= max
w∈Ω
‖µw(pdata)− µw(pg)‖q (18)

where Ex∼P Φw(x) = µw(P) denotes an embedding mean from distribution P represented by a
neural network Φw.

In terms of WGAN, WGAN uses the 1-Lipschitz function class condition by the weight clipping.
The weight clipping indicates that the infinite norm ‖v‖∞ = maxi|vi| is constrained. Thus,
WGAN can be interpreted as an l1 mean feature matching problem. Mean and covariance feature
matching GAN (McGAN) [85] extended this concept to match not only the lq mean feature but
also the second order moment feature by using the singular value decomposition concept; it aims
to also maximize an embedding covariance discrepancy between pdata(x) and pg(x). Geometric
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GAN [72] shows that the McGAN framework is equivalent to a support vector machine (SVM)
[106], which separates the two distributions with a hyperplane that maximizes the margin. It
encourages the discriminator to move away from the separating hyperplane and the generator
to move toward the separating hyperplane. However, such high-order moment matching requires
complex matrix computations. MMD addresses this problem with a kernel technique which induces
an approximation of high-order moments and can be analyzed in a feature matching framework.

2.1.2.4 Maximum mean discrepancy (MMD)

Before describing MMD methodology, we must first list some mathematical facts. A Hilbert
space H is a complete vector space with the metric endowed by the inner product in the space.
Kernel k is defined as k : X ×X → R such that k(y, x) = k(x, y). Then, for any given positive def-
inite kernel k(·, ·), there exists a unique space of functions f : X → R called the reproducing kernel
Hilbert space (RKHS), Hk which is a Hilbert space and satisfies < f, k(·, x) >HK= f(x), ∀x ∈
X ,∀f ∈ Hk (so called reproducing property).

MMDmethodology can be seen as feature matching under the RKHS space for some given kernel
with an additional function class restriction such that F = {f |‖f‖Hk ≤ 1}. It can be related to
Equation 10 in that the RKHS space is a completion of {f |f(x) = Σni=1aiΦxi(x), ai ∈ R, xi ∈ X}
where Φxi(x) = k(x, xi). Therefore, we can formulate MMD methodology as another mean feature
matching from Equation 11 as follows:

dF (pdata, pg) = sup
‖f‖Hk≤1

Ex∼pdata f(x)− Ex∼pg f(x) (19)

= sup
‖f‖Hk≤1

{< f,Ex∼pdata Φx(·)− Ex∼pg Φx(·) >Hk} (20)

= ‖µ(pdata)− µ(pg)‖Hk (21)

where µ(P) = Ex∼P Φx(·) denotes a kernel embedding mean and Equation 20 comes from the
reproducing property.

From Equation 21, dF is defined as the maximum kernel mean discrepancy in RKHS. It is widely
used in statistical tasks, such as a two sample test to measure a dissimilarity. Given pdata(x) with
mean µpdata

, pg(x) with mean µpg and kernel k, the square of the MMD distance Mk(pdata, pg)
can be reformulated as follows:

Mk(pdata, pg) = ‖µpdata
− µpg‖

2

Hk
= Ex,x′∼pdata [k(x, x′)]−2Ex∼pdata,y∼pg [k(x, y)]+Ey,y′∼pg [k(y, y′)]

(22)
Generative moment matching networks (GMMN) [70] suggest directly minimizing MMD dis-

tance with a fixed Gaussian kernel k(x, x′) = exp(−‖x− x′‖2) by optimizing minθMk(pdata, pg).
It appears quite dissimilar to the standard GAN [36] because there is no discriminator that es-
timates the discrepancy between two distributions. Unlike GMMN, MMDGAN [68] suggests ad-
versarial kernel learning by not fixing the kernel but learning it itself. They replace the fixed
Gaussian kernel with a composition of a Gaussian kernel and an injective function fφ as follows:
k̃(x, x′) = exp(−‖fφ(x)− fφ(x′)‖2) and learn a kernel to maximize the mean discrepancy. An ob-
jective function with optimizing kernel k then becomes minθ maxφMk̃(pdata, pg) and now is similar
to the standard GAN objective as in Equation 1. To enforce fφ modeled with the neural network
to be injective, an autoencoder satisfying fdecoder ≈ f−1 is adopted for fφ.

Similar to other IPM metrics, MMD distance is continuous and differentiable almost everywhere
in θ. It can also be understood under the IPM framework with function class F = HK as discussed
above. By introducing an RKHS with kernel k, MMD distance has an advantage over other feature
matching metrics in that kernel k can represent various feature space by mapping input data x
into other feature space. In particular, MMDGAN can also be connected with WGAN when fφ
is composited to a linear kernel with an output dimension of 1 instead of a Gaussian kernel. The
moment matching technique using the Gaussian kernel also has an advantage over WGAN in that
it can match even an infinite order of moments since exponential form can be represented as an
infinite order via Taylor expansion while WGAN can be treated as a first-order moment matching
problem as discussed above. However, a great disadvantage of measuring MMD distance is that
computational cost grows quadratically as the number of samples grows [5].

Meanwhile, CramerGAN [8] argues that the Wasserstein distance incurs biased gradients, sug-
gesting the energy distance between two distributions. In fact, it measures energy distance in-
directly in the data manifold but with transformation function h. However, CramerGAN can
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be thought of as the distance in the kernel embedded space of MMDGAN, which forces h to be
injective by the additional autoencoder reconstruction loss as discussed above.

2.1.2.5 Fisher GAN

In addition to standard IPM in Equation 9, Fisher GAN [84] incorporates a data-dependent
constraint by the following equations:

dF (pdata, pg) = sup
f∈F

Ex∼pdata f(x)− Ex∼pg f(x)√
1
2 (Ex∼pdata f2(x) + Ex∼pg f2(x))

(23)

= sup
f∈F, 12 [Ex∼pdata

f2(x)+Ex∼pg f2(x)]=1

Ex∼pdata f(x)− Ex∼pg f(x) (24)

Equation 23 is motivated by fisher linear discriminant analysis (FLDA) [130] which not only
maximizes the mean difference but also reduces the total with-in class variance of two distributions.
Equation 24 follows from the constraining numerator of Equation 23 to be 1. It is also, as are
other IPM metrics, interpreted as a mean feature matching problem under the somewhat different
constraints. Under the definition of Equation 10, Fisher GAN can be converted into another mean
feature matching problem with second order moment constraint. A mean feature matching problem
derived from the FLDA concept is as follows:

dF (pdata, pg) = max
w∈Ω

max
v

< v,Ex∼pdata Φ(x)− Ex∼pg Φ(x) >√
1
2 (Ex∼pdata f2(x) + Ex∼pg f2(x))

(25)

= max
w∈Ω

max
v

< v,Ex∼pdata Φ(x)− Ex∼pg Φ(x) >√
1
2 (Ex∼pdata vTΦ(x)Φ(x)T v + Ex∼pg vTΦ(x)Φ(x)T v)

(26)

= max
w∈Ω

max
v

< v, µw(pdata)− µw(pg) >√
vT ( 1

2

∑
w(pdata) + 1

2

∑
w(pg) + γIm)v

(27)

= max
w∈Ω

max
v,vT ( 1

2

∑
w(pdata)+ 1

2

∑
w(pg)+γIm)v=1

< v, µw(pdata)− µw(pg) > (28)

where µw(P) = Ex∼P Φw(x) denotes an embedding mean and
∑
w(P) = Ex∼P Φw(x)ΦTw(x) de-

notes an embedding covariance for the probability P.
Equation 26 can be induced by using the inner product of f defined as in Equation 10. γIm of

Equation 27 is anm bym identity matrix that guarantees a numerator of the above equations not to
be zero. In Equation 28, Fisher GAN aims to find the embedding direction v which maximizes the
mean discrepancy while constraining it to lie in a hyperellipsoid as vT ( 1

2

∑
w(pdata) + 1

2

∑
w(pg) +

γIm)v = 1 represents. It naturally derives the Mahalanobis distance [20] which is defined as a
distance between two distributions given a positive definite matrix such as a covariance matrix of
each class. More importantly, Fisher GAN has advantages over WGAN. It does not impose a data
independent constraint such as weight clipping which makes training too sensitive on the clipping
value, and it has computational benefit over the gradient penalty method in WGAN-GP [42] as
the latter must compute gradients of the critic while Fisher GAN computes covariances.

2.1.2.6 Comparison to f-divergence

The f-divergence family, which can be defined as in Equation 3 with a convex function f , has
restrictions in that as the dimension d of the data space x ∈ X = Rd increases, the f-divergence
is highly difficult to estimate, and the supports of two distributions tends to be unaligned, which
leads a divergence value to infinity [117]. Even though Equation 6 derives a variational lower bound
of Equation 3 which looks very similar to Equation 9, the tightness of the lower bound to the true
divergence is not guaranteed in practice and can incur an incorrect, biased estimation.

Sriperumbudur et al. [117] showed that the only non-trivial intersection between the f-divergence
family and the IPM family is total variation distance; therefore, the IPM family does not inherit
the disadvantages of f-divergence. They also proved that IPM estimators using finite i.i.d. samples
are more consistent in convergence whereas the convergence of f-divergence is highly dependent on
data distributions.
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Consequently, employing an IPM family to measure distance between two distributions is advan-
tageous over using an f-divergence family because IPM families are not affected by data dimension
and consistently converge to the true distance between two distributions. Moreover, they do not
diverge even though the supports of two distributions are disjointed. In addition, Fisher GAN
[84] is also equivalent to the Chi-squared distance [131], which can be covered by an f-divergence
framework. However, with a data dependent constraint, Chi-squared distance can use IPM family
characteristics, so it is more robust to unstable training of the f-divergence estimation.

2.1.3 Auxiliary object functions

In Section 2.1.1 and Section 2.1.2, we demonstrated various objective functions for adversarial
learning. Concretely, through a minimax iterative algorithm, the discriminator estimates a specific
kind of distance between pg(x) and pdata(x). The generator reduces the estimated distance to make
two distributions closer. Based on this adversarial objective function, a GAN can incorporate with
other types of objective functions to help the generator and the discriminator stabilize during
training or to perform some kinds of tasks such as classification. In this section, we introduce
auxiliary object functions attached to the adversarial object function, mainly a reconstruction
objective function and a classification objective function.

2.1.3.1 Reconstruction object function

Reconstruction is to make an output image of a neural network to be the same as an original
input image of a neural network. The purpose of the reconstruction is to encourage the generator
to preserve the contents of the original input image [13, 57, 102, 123, 145] or to adopt auto-encoder
architecture for the discriminator [10, 128, 143]. For a reconstruction objective function, mostly
the L1 norm of the difference of the original input image and the output image is used.

When the reconstruction objective term is used for the generator, the generator is trained to
maintain the contents of the original input image. In particular, this operation is crucial for tasks
where semantic and several modes of the image should be maintained, such as image translation
[57, 145] (detailed in Section 4.1.1.2) and auto-encoder reconstruction [13, 102, 123] (detailed in
Section 3.2). The intuition of using reconstruction loss for the generator is that it guides the
generator to restore the original input in a supervised learning manner. Without a reconstruction
loss, the generator is to simply fool the discriminator, so there is no reason for the generator to
maintain crucial parts of the input. As a supervised learning approach, the generator treats the
original input image as label information, so we can reduce the space of possible mappings of the
generator in a way we desire.

There are some GAN variants using a reconstruction objective function for the discriminator,
which is naturally derived from auto-encoder architecture for the discriminator [10, 128, 143].
These GANs are based on the aspect that views the discriminator as an energy function, and will
be detailed in Section 2.2.3.

2.1.3.2 Classification object functions

A cross entropy loss for a classification is widely added for many GAN applications where
labeled data exists, especially semi-supervised learning and domain adaptation. Cross entropy loss
can be directly applied to the discriminator, which gives the discriminator an additional role of
classification [90, 115]. Other approaches [2, 12, 67, 140] adopt classifier explicitly, training the
classifier jointly with the generator and the discriminator through a cross entropy loss (detailed in
Section 4.3 and 4.4).

2.2 Architecture
An architecture of the generator and the discriminator is important as it highly influences

the training stability and performance of GAN. Various papers adopt several techniques such as
batch normalization, stacked architecture, and multiple generators and discriminators to promote
adversarial learning. We start with deep convolutional GAN (DCGAN) [100], which provides a
remarkable benchmark architecture for other GAN variants.
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Figure 3: Illustrations of (a) StackedGAN [49] and (b) Progressive GAN [56].

2.2.1 DCGAN

DCGAN provides significant contributions to GAN in that its suggested convolution neural
network (CNN) [62] architecture greatly stabilizes GAN training. DCGAN suggests an architecture
guideline in which the generator is modeled with a transposed CNN [25], and the discriminator is
modeled with a CNN with an output dimension 1. It also proposes other techniques such as batch
normalization and types of activation functions for the generator and the discriminator to help
stabilize the GAN training. As it solves the instability of training GAN only through architecture,
it becomes a baseline for modeling various GANs proposed later. For example, Im et al. [51] uses a
recurrent neural network (RNN) [38] to generate images motivated by DCGAN. By accumulating
images of each time step output of DCGAN and combining several time step images, it produces
higher visual quality images.

2.2.2 Hierarchical architecture

In this section, we describe GAN variants that stack multiple generator-discriminator pairs.
Commonly, these GANs generate samples in multiple stages to generate large-scale and high-
quality samples. The generator of each stage is utilized or conditioned to help the next stage
generator to better produce samples as shown in Figure 3.

2.2.2.1 Hierarchy using multiple GAN pairs

StackedGAN [49] attempts to learn a hierarchical representation by stacking several generator-
discriminator pairs. For each layer of a generator stack, there exists the generator which produces
level-specific representation, the corresponding discriminator training the generator adversarially at
each level and an encoder which generates the semantic features of real samples. Figure 3a shows
a flowchart of StackedGAN. Each generator tries to produce a plausible feature representation
that can deceive the corresponding discriminator, given previously generated features and the
corresponding hierarchically encoded features.

In addition, Gang of GAN (GoGAN) [54] proposes to improve WGAN [5] by adopting multiple
WGAN pairs. For each stage, it changes the Wasserstein distance to a margin-based Wasserstein
disitance as [D(G(z))−D(x) +m]+ so the discriminator focuses on generated samples whose gap
D(x)−D(G(z)) is less than m. In addition, GoGAN adopts ranking loss for adjacent stages which
induces the generator in later stages to produce better results than the former generator by using
a smaller margin at the next stage of the generation process. By progressively moving stages,
GoGAN aims to gradually reduce the gap between pdata(x) and pg(x).

2.2.2.2 Hierarchy using a single GAN

Generating high resolution images is highly challenging since a large scale generated image is
easily distinguished by the discriminator, so the generator often fails to be trained. Moreover,
there is a memory issue in that we are forced to set a low mini-batch size due to the large size
of neural networks. Therefore, some studies adopt hierarchical stacks of multiple generators and
discriminators [27, 33, 50]. This strategy divides a large complex generator’s mapping space step
by step for each GAN pair, making it easier to learn to generate high resolution images. However,
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Table 4: An autoencoder based GAN variants (BEGAN, EBGAN and MAGAN).

Objective function Details
BEGAN [10] LD = D(x)− ktD(G(z))

LG = D(G(z))
kt+1 = kt + α(γD(x)−D(G(z)))

Wasserstein distance
between loss distributions

EBGAN [143] LD = D(x) + [m−D(G(z))]+

LG = D(G(z))
Total Variance(pdata, pθ)

MAGAN [128] LD = D(x) + [m−D(G(z))]+

LG = D(G(z))
Margin m is adjusted in
EBGAN’s training

Progressive GAN [56] succeeds in to generating high resolution images in a single GAN, making
training faster and more stable.

Progressive GAN generates high resolution images by stacking each layer of the generator
and the discriminator incrementally as shown in Figure 3b. It starts training to generate a very
low spatial resolution (e.g. 4×4), and progressively doubles the resolution of generated images by
adding layers to the generator and the discriminator incrementally. In addition, it proposes various
training techniques such as pixel normalization, equalized learning rate and mini-batch standard
deviation, all of which help GAN training to become more stable.

2.2.3 Auto encoder architecture

An auto encoder is a neural network for unsupervised learning, It assigns its input as a target
value, so it is trained in a self-supervised manner. The reason for self-reconstruction is to encode
a compressed representation or features of the input, which is widely utilized with a decoder. Its
usage will be detailed in Section 3.2.

In this section, we describe GAN variants which adopt an auto encoder as the discriminator.
These GANs view the discriminator as an energy function, not a probabilistic model that distin-
guishes its input as real or fake. An energy model assigns a low energy for a sample lying near the
data manifold (a high data density region), while assigning a high energy for a contrastive sample
lying far away from the data manifold (a low data density region). These variants are mainly
Energy Based GAN (EBGAN), Boundary Equilibrium GAN (BEGAN) and Margin Adaptation
GAN (MAGAN), all of which frame GAN as an energy model.

Since an auto encoder is utilized for the discriminator, a pixelwise reconstruction loss between
an input and an output of the discriminator is naturally adopted for the discriminator’s energy
function and is defined as follows:

D(v) = ‖v −AE(v)‖ (29)

where AE : RNx ⇒ RNx denotes an auto encoder and RNx represents the dimension of an input
and an output of an auto encoder. It is noted that D(v) in Equation 29 is the pixelwise L1 loss
for an autoencoder which maps an input v ∈ RNx into a positive real number R+.

A discriminator with an energy D(v) is trained to give a low energy for a real v and a high
energy for a generated v. From this point of view, the generator produces a contrastive sample
for the discriminator, so that the discriminator is forced to be regularized near the data manifold.
Simultaneously, the generator is trained to generate samples near the data manifold since the dis-
criminator is encouraged to reconstruct only real samples. Table 4 presents the summarized details
of BEGAN, EBGAN and MAGAN. LG and LD indicate the generator loss and the discriminator
loss, respectively, and [t]+ = max(0, t) represents a maximum value between t and 0, which act as
a hinge.

Boundary equilibrium GAN (BEGAN) [10] uses the fact that pixelwise loss distribution fol-
lows a normal distribution by CLT. It focuses on matching loss distributions through Wasserstein
distance and not on directly matching data distributions. In BEGAN, the discriminator has two
roles: one is to reconstruct real samples sufficiently and the other is to balance the generator and
the discriminator via an equilibrium hyperparameter γ = E[L(G(z))]/E[L(x)]. γ is fed into an ob-
jective function to prevent the discriminator from easily winning over the generator; therefore, this
balances the power of the two components. Figure 4 shows face images at varying γ of BEGAN.

Energy-based GAN (EBGAN) [143] interprets the discriminator as an energy agent, which
assigns low energy to real samples and high energy to generated samples. Through the [m −
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Figure 4: Random images sampled from the generator at varying γ ∈ {0.3, 0.5, 0.7} of BEGAN
[10]. Samples at lower γ shows similar images. At high γ values, image diversity seems to increase,
but have some artifacts. Images from BEGAN [10].

L(G(z))]+ term in an objective function, the discriminator ignores generated samples with higher
energy than m so the generator attempts to synthesize samples that have lower energy than m to
fool the discriminator, which allows that mechanism to stabilize training. Margin adaptation GAN
(MAGAN) [128] takes a similar approach to EBGAN, where the only difference is that MAGAN
does not fix the margin m. MAGAN shows empirically that the energy of the generated sample
fluctuates near the margin m and that phenomena with a fixed margin make it difficult to adapt
to the changing dynamics of the discriminator and generator. MAGAN suggests that margin m
should be adapted to the expected energy of real data, thus, m is monotonically reduced, so the
discriminator reconstructs real samples more efficiently.

In addition, because the total variance distance belongs to an IPM family with the function
class F = {f : ‖f‖∞ = supx |f(x)| ≤ 1}, it can be shown that EBGAN is equivalent to optimizing
the total variance distance by using the fact that the discriminator’s output for generated samples
is only available for 0 ≤ D ≤ m [5]. Because the total variance is the only intersection between
IPM and f-divergence [117], it inherits some disadvantages for estimating f-divergence as discussed
by Arjovsky et al. [5] and Sriperumbudur et al. [117].

2.3 Obstacles in Training GAN
In this section, we discuss theoretical and practical issues related to the training dynamics of

GAN. We first evaluate a theoretical problem of the standard GAN, which is incurred from the
fact that the discriminator of GAN aims to approximate the JSD [36] between pdata(x) and pθ(x)
and the generator of GAN tries to minimize the approximated JSD, as discussed in Section 2.3.1.
We then discuss practical issues, especially a mode collapse problem where the generator fails to
capture the diversity of real samples, and generates only specific types of real samples, as discussed
in Section 2.3.2.

2.3.1 Theoretical issues

As mentioned in Section 1, the traditional generative model is to maximize a likelihood of pg(x).
It can be shown that maximizing the log likelihood is equivalent to minimizing the Kullback-Leibler
Divergence (KLD) between pdata(x) and pθ(x) as the number of samples m increases:

θ? = argmax
θ

lim
m→∞

1

m

m∑
i=1

log pg(xi) (30)

= argmax
θ

∫
x

pdata(x) log pg(x)dx (31)

= argmin
θ

∫
x

−pdata(x) log pg(x)dx+ pdata(x) log pdata(x)dx (32)

= argmin
θ

∫
x

pdata(x) log
pdata(x)

pg(x)
dx (33)

= argmin
θ

KLD(pdata||pg) (34)
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Figure 5: Different behavior of asymmetric KLD. Images reproduced from [35]

We note that we need to find an optimal parameter θ? for maximizing likelihood; therefore, argmax
is used instead of max. In addition, we replace our model’s probability distribution pθ(x) with
pg(x) for consistency of notation.

Equation 31 is established by the central limit theorem (CLT) [103] in that as m increases,
the variance of the expectation of the distribution decreases. Equation 32 can be induced because
pdata(x) is not dependent on θ, and Equation 34 follows from the definition of KLD. Intuitively,
minimizing KLD between these two distributions can be interpreted as approximating pdata(x) with
a large number of real training data because the minimum KLD is achieved when pdata(x) = pg(x).

Thus, the result of maximizing likelihood is equivalent to minimizing KLD(pdata||pg) given
infinite training samples. Because KLD is not symmetrical, minimizing KLD(pg||pdata) gives a
different result. Figure 5 from Goodfellow [35] shows the details of different behaviors of asym-
metric KLD where Figure 5a shows minimizing KLD(pdata||pg) and Figure 5b shows minimizing
KLD(pg||pdata) given a mixture of two Gaussian distributions pdata(x) and the single Gaussian
distribution pg(x). θ? in each figure denotes the argument minimum of each asymmetric KLD.
For Figure 5a, the points where pdata 6= 0 contribute to the value of KLD and the other points at
which pdata is small rarely affect the KLD. Thus, pg becomes nonzero on the points where pdata is
nonzero. Therefore, pθ?(x) in Figure 5a is averaged for all modes of pdata(x) as KLD(pdata||pg) is
more focused on covering all parts of pdata(x). In contrast, for KLD(pg||pdata), the points of which
pdata = 0 but pg 6= 0 contribute to a high cost. This is why pθ?(x) in Figure 5b seeks to find an x
which is highly likely from pdata(x).

JSD has an advantage over the two asymmetric KLDs in that it accounts for both mode
dropping and sharpness. It never explodes to infinity unlike KLD even though there exists a point
x that lies outside of pg(x)’s support which makes pg(x) equal 0. Goodfellow et al. [36] showed
that the discriminator D aims to approximate V (G,D?) = 2JSD(pdata||pg)− 2 log 2 for the fixed
generator G between pg(x) and pdata(x), where D? is an optimal discriminator and V (G,D) is
defined in Equation 1. Concretely, if D is trained well so that it approximates JSD(pdata||pg) −
2 log 2 sufficiently, training Gminimizes the approximated distance. However, Arjovsky and Bottou
[4] reveal mathematically why approximating V (G,D?) does not work well in practice.

Arjovsky and Bottou [4] proved why training GAN is fundamentally unstable. When the
supports of two distributions are disjointed or lie in low-dimensional manifolds, there exists the
perfect discriminator which classifies real or fake samples perfectly and thus, the gradient of the
discriminator is 0 at the supports of the two distributions. It has been proven empirically and
mathematically that pdata(x) and pg(x) derived from z have a low-dimensional manifold in prac-
tice [86], and this fact allows D’s gradient transferred to G to vanish as D becomes to perfectly
classify real and fake samples. Because, in practice, G is optimized with a gradient based opti-
mization method, D’s vanishing (or exploding) gradient hinders G from learning enough through
D’s gradient feedback. Moreover, even with the alternate − logD(G(z)) objective proposed in [36],
minimizing an objective function is equivalent to simultaneously trying to minimize KLD(pg||pdata)
and maximize JSD(pg||pdata). As these two objectives are opposites, this leads the magnitude and
variance of D’s gradients to increase as training progresses, causing unstable training and making
it difficult to converge to equilibrium. To summarize, training the GAN is theoretically guaranteed
to converge if we use an optimal discriminator D? which approximates JSD, but this theoretical
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result is not implemented in practice when using gradient based optimization. In addition to the
D’s improper gradient problem discussed in this paragraph, there are two practical issues as to
why GAN training suffers from nonconvergence.

2.3.2 Practical issues

First, we represent G and D as deep neural networks to learn parameters rather than directly
learning pg(x) itself. Modeling with deep neural networks such as the multilayer perceptron (MLP)
or CNN is advantageous in that the parameters of distributions can be easily learned through
gradient descent using back-propagation. This does not require further distribution assumptions to
produce an inference; rather, it can generate samples following pg(x) through simple feed-forward.
However, this practical implementation causes a gap with theory. Goodfellow et al. [36] provide
theoretical convergence proof based on the convexity of probability density function in V (G,D).
However, as we model G and D with deep neural networks, the convexity does not hold because we
now optimize in the parameter space rather than in the function space (where assumed theoretical
analysis lies). Therefore, theoretical guarantees do not hold anymore in practice. For a further
issue related to parameterized neural network space, Arora et al. [6] discussed the existence of the
equilibrium of GAN, and showed that a large capacity of D does not guarantee G to generate all
real samples perfectly, meaning that an equilibrium may not exist under a certain finite capacity
of D.

A second problem is related to an iterative update algorithm suggested in Goodfellow et al.
[36]. We wish to train D until optimal for fixed G, but optimizing D in such a manner is com-
putationally expensive. Naturally, we must train D in certain k steps and that scheme causes
confusion as to whether it is solving a minimax problem or a maximin problem, because D and G
are updated alternatively by gradient descent in the iterative procedure. Unfortunately, solutions
of the minimax and maximin problem are not generally equal as follows:

min
G

max
D

V (G,D) 6= max
D

min
G

V (G,D) (35)

With a maximin problem, minimizing G lies in the inner loop in the right side of Equation 35.
G is now forced to place its probability mass on the most likely point where the fixed nonoptimal D
believes it likely to be real rather than fake. After D is updated to reject the generated fake one, G
attempts to move the probability mass to the other most likely point for fixed D. In practice, real
data distribution is normally a multi modal distribution but in such a maximin training procedure,
G does not cover all modes of the real data distribution because G considers that picking only one
mode is enough to fool D. Empirically, G tends to cover only a single mode or a few modes of real
data distribution. This undesirable nonconvergent situation is called a mode collapse. A mode
collapse occurs when many modes in the real data distribution are not represented in the generated
samples, resulting in a lack of diversity in the generated samples. It can be simply considered as
G being trained to be a non one-to-one function which produces a single output value for several
input values.

Furthermore, the problem of the existence of the perfect discriminator we discussed in the above
paragraph can be connected to a mode collapse. First, assume D comes to output almost 1 for all
real samples and 0 for all fake samples. Then, because D produces values near 1 for all possible
modes, there is no need for G to represent all modes of real data probability. The theoretical and
practical issues discussed in this section can be summarized as follows.

• Because the supports of distributions lie on low dimensional manifolds, there exists the perfect
discriminator whose gradients vanish on every data point. Optimizing the generator may be
difficult because it is not provided with any information from the discriminator.

• GAN training optimizes the discriminator for the fixed generator and the generator for fixed
discriminator simultaneously in one loop, but it sometimes behaves as if solving a maximin
problem, not a minimax problem. It critically causes a mode collapse. In addition, the
generator and the discriminator optimize the same objective function V (G,D) in opposite
directions which is not usual in classical machine learning, and often suffers from oscillations
causing excessive training time.

• The theoretical convergence proof does not apply in practice because the generator and the
discriminator are modeled with deep neural networks, so optimization has to occur in the
parameter space rather than in learning the probability density function itself.
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2.3.3 Training techniques to improve GAN training

As demonstrated in Section 2.3.1 and 2.3.2, GAN training is highly unstable and difficult
because GAN is required to find a Nash equilibrium of a non-convex minimax game with high
dimensional parameters but GAN is typically trained with gradient descent [104]. In this section,
we introduce some techniques to improve training of GAN, to make training more stable and
produce better results.

• Feature matching [104]:
This technique substitutes the discriminator’s output in the objective function (Equation 1)
with an activation function’s output of an intermediate layer of the discriminator to prevent
overfitting from the current discriminator. Feature matching does not aim on the discrimi-
nator’s output, rather it guides the generator to see the statistics or features of real training
data, in an effort to stabilize training.

• Label smoothing [104]:
As mentioned previously, V (G,D) is a binary cross entropy loss whose real data label is 1
and its generated data label is 0. However, since a deep neural network classifier tends to
output a class probability with extremely high confidence [35], label smoothing encourages
a deep neural network classifier to produce a more soft estimation by assigning label values
lower than 1. Importantly, for GAN, label smoothing has to be made for labels of real data,
not for labels of fake data, since, if not, the discriminator can act incorrectly [35].

• Spectral normalization [82]:
As we see in Section 2.1.2.1 and 2.1.2.2, WGAN and Improved WGAN impose the discrimi-
nator to have Lipschitz continuity which constrain the magnitude of function differentiation.
Spectral normalization aims to impose a Lipschitz condition for the discriminator in a differ-
ent manner. Instead of adding a regularizing term or weight clipping, spectral normalization
constrains the spectral norm of each layer of the discriminator where the spectral norm is
the largest singular value of a given matrix. Since a neural network is a composition of
multi layers, spectral normalization normalizes the weight matrices of each layer to make the
whole network Lipschitz continuous. In addition, compared to the gradient penalty method
proposed in Improved WGAN, spectral normalization is computationally beneficial since
gradient penalty regularization directly controls the gradient of the discriminator.

• PatchGAN [52]:
PatchGAN is not a technique for stabilizing training of GAN. However, PatchGAN greatly
helps to generate sharper results in various applications such as image translation [52, 145].
Rather than producing a single output from the discriminator, which is a probability for its
input’s authenticity, PatchGAN [52] makes the discriminator produce a grid output. For one
element of the discriminator’s output, its receptive field in the input image should be one
small local patch in the input image, so the discriminator aims to distinguish each patch in
the input image. To achieve this, one can remove the fully connected layer in the last part
of the discriminator in the standard GAN. As a matter of fact, PatchGAN is equivalent to
adopting multiple discriminators for every patch of the image, making the discriminator help
the generator to represent more sharp images locally.

2.4 Methods to Address Mode Collapse in GAN
Mode collapse which indicates the failure of GAN to represent various types of real samples

is the main catastrophic problem of a GAN. From a perspective of the generative model, mode
collapse is a critical obstacle for a GAN to be utilized in many applications, since the diversity
of generated data needs to be guaranteed to represent the data manifold concretely. Unless multi
modes of real data distribution are not represented by the generative model, such a model would
be meaningless to use.

Figure 6 shows a mode collapse problem for a toy example. A target distribution pdata has
multi modes, which is a Gaussian mixture in two-dimensional space [79]. Figures in the lower row
represent learned distribution pg as the training progresses. As we see in Figure 6, the generator
does not cover all possible modes of the target distribution. Rather, the generator covers only a
single mode, switching between different modes as the training goes on. The generator learns to
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Figure 6: An illustration of the mode collapse problem. Images from Unrolled GAN [79].

produce a single mode, believing that it can fool the discriminator. The discriminator counter acts
the generator by rejecting the chosen mode. Then, the generator switches to another mode which
is believed to be real. This training behavior keeps proceeding, and thus, the convergence to a
distribution covering all the modes is highly difficult.

In this section, we present several studies that suggest methods to overcome the mode collapse
problem. In Section 2.4.1, we demonstrate studies that exploit new objective functions to tackle a
mode collapse, and in Section 2.4.2, we introduce studies which propose architecture modifications.
Lastly, in Section 2.4.3, we describe mini-batch discrimination which is a notably and practically
effective technique for the mode collapse problem.

2.4.1 Object function methods

Unrolled GAN [79] manages mode collapse with a surrogate objective function for the genera-
tor, which helps the generator predict the discriminator’s response by unrolling the discriminator
update k steps for the current generator update. As we see in the standard GAN [36], it updates
the discriminator first for the fixed generator and then updates the generator for the updated
discriminator. Unrolled GAN differs from standard GAN in that it updates the generator based
on a k steps updated discriminator given the current generator update, which aims to capture how
the discriminator responds to the current generator update. We see that when the generator is
updated, it unrolls the discriminator’s update step to consider the discriminator’s k steps future
response with respect to the generator’s current update while updating the discriminator in the
same manner as the standard GAN. Since the generator is given more information about the dis-
criminator’s response, the generator spreads its probability mass to make it more difficult for the
discriminator to react to the generator’s behavior. It can be seen as empowering the generator
because only the generator’s update is unrolled, but it seems to be fair in that the discriminator
can not be trained to be optimal in practice due to an infeasible computational cost while the
generator is theoretically assumed to obtain enough information from the optimal discriminator.

Deep regret analytic GAN (DRAGAN) [61] suggests that a mode collapse occurs due to the
existence of a spurious local Nash Equilibrium in the nonconvex problem. DRAGAN addresses this
issue by proposing constraining gradients of the discriminator around the real data manifold. It
adds a gradient penalizing term which biases the discriminator to have a gradient norm of 1 around
the real data manifold. This method attempts to create linear functions by making gradients have
a norm of 1. Linear functions near the real data manifolds form a convex function space, which
imposes a global unique optimum. Note that this gradient penalty method is also applied to
WGAN-GP [42]. They differ in that DRAGAN imposes gradient penalty constraints only to local
regions around the real data manifold while Improved WGAN imposes gradient penalty constraints
to almost everywhere around the generated data manifold and real data manifold, which leads to
higher constraints than those of DRAGAN.

In addition, EBGAN proposes a repelling regularizer loss term to the generator, which en-
courages feature vectors in a mini-batch to be orthogonalized. This term is utilized with cosine
similarities at a representation level of an encoder and forces the generator not to produce samples
fallen in a few modes.

2.4.2 Architecture methods

Multi agent diverse GAN (MAD-GAN) [33] adopts multiple generators for one discriminator
to capture the diversity of generated samples as shown in Figure 7a. To induce each generator to
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Figure 7: Illustrations of (a) MAD-GAN [33] and (b) MRGAN [13].

move toward different modes, it adopts a cosine similarity value as an additional objective term to
make each generator produce dissimilar samples. This technique is inspired from the fact that as
images from two different generators become similar, a higher similarity value is produced, thus,
by optimizing this objective term, it may make each generator move toward different modes re-
spectively. In addition, because each generator produces different fake samples, the discriminator’s
objective function adopts a soft-max cross entropy loss term to distinguish real samples from fake
samples generated by multiple generators.

Mode regularized GAN (MRGAN) [13] assumes that mode collapse occurs because the generator
is not penalized for missing modes. To address mode collapse, MRGAN adds an encoder which
maps the data space X into the latent space Z. Motivated from the manifold disjoint mentioned
in Section 2.3.1, MRGAN first tries to match the generated manifold and real data manifold
using an encoder. For manifold matching, the discriminator DM distinguishes real samples x and
its reconstruction G ◦ E(x), and the generator is trained with DM (G ◦ E(x)) with a geometric
regularizer d(x,G ◦ E(x)) where d can be any metric in the data space. A geometric regularizer
is used to reduce the geometric distance in the data space, to help the generated manifold move
to the real data manifold, and allow the generator and an encoder to learn how to reconstruct
real samples. For penalizing missing modes, MRGAN adopts another discriminator DD which
distinguishes G(z) as fake and G◦E(x) as real. Since MRGAN matches manifolds in advance with
a geometric regularizer, this modes diffusion step can distribute a probability mass even to minor
modes of the data space with the help of G ◦E(x). An outline of MRGAN is illustrated in Figure
7b, where R denotes a geometric regularizing term (reconstruction).

2.4.3 Mini-batch Discrimination

Mini-batch discrimination [104] allows the discriminator to look at multiple examples in a
mini-batch to avoid a mode collapse of the generator. The basic idea is that it encourages the
discriminator to allow diversity directly in a mini-batch, not considering independent samples in
isolation. To make the discriminator deal with not only each example but the correlation between
other examples in a mini-batch simultaneously, it models a mini-batch layer in an intermediate
layer of the discriminator, which calculates L1-distance based statistics of samples in a mini-batch.
By adding such statistics to the discriminator, each example in a mini-batch can be estimated by
how far or close to other examples in a mini-batch they are, and this information can be internally
utilized by the discriminator, which helps the discriminator reflect samples’ diversity to the output.
For the aspect of the generator, it tries to create statistics similar to those of real samples in the
discriminator by adversarial learning procedure.

In addition, Progressive GAN [56] proposed a simplified version of mini-batch discrimination,
which uses the mean of the standard deviation for each feature (channel) in each spatial location
over the mini-batch. This way do not add trainable parameters which projects statistics of the
mini-batch while maintaining its effectiveness for a mode collapse. To summarize, mini-batch
discrimination reflects samples’ diversity to the discriminator, helping the discriminator determine
whether its input batch is real or fake.
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3 Treating the Latent Space

Latent space, also called an embedding space, is the space in which a compressed representation
of data lies. If we wish to change or reflect some attributes of an image (for example, a pose,
an age, an expression or even an object of an image), modifying images directly in the image
space would be highly difficult because the manifolds where the image distributions lie are high-
dimensional and complex. Rather, manipulating in the latent space is more tractable because the
latent representation expresses specific features of the input image in a compressed manner. In
this section, we investigate how GAN handles latent space to represent target attributes and how
a variational approach can be combined with the GAN framework.

3.1 Latent Space Decomposition
The input latent vector z of the generator is so highly entangled and unstructured that we

do not know which vector point contains the specific representations we want. From this point
of view, several papers suggest decomposing the input latent space to an input vector c, which
contains the meaningful information and standard input latent vector z, which can be categorized
into a supervised method and an unsupervised method.

3.1.1 Supervised Methods

Supervised methods require a pair of data and corresponding attributes such as the data’s class
label. The attributes are generally used as an additional input vector as explained below.

Conditional GAN (CGAN) [80] imposes a condition of additional information such as a class
label to control the data generation process in a supervised manner by adding an information
vector c to the generator and discriminator. The generator takes not only a latent vector z but
also an additional information vector c and the discriminator takes samples and the information
vector c so that it distinguishes fake samples given c. By doing so, CGAN can control the number
of digits to be generated, which is impossible for standard GAN.

Auxiliary classifier GAN (AC-GAN) [90] takes a somewhat different approach than CGAN.
It is trained by minimizing the log-likelihood of class labels with the adversarial loss. The dis-
criminator produces not only the probability that the input samples are from the real dataset but
also the probability over the class labels. Figure 8 outlines CGAN and CGAN with a projection
discriminator and ACGAN where CE denotes the cross entropy loss for the classification.

In addition, plug and play generative networks (PPGN) [88] are another type of generative
model that produce data under a given condition. Unlike the other methods described above,
PPGN does not use the labeled attributes while training the generator. Instead, PPGN learns
the auxiliary classifier and the generator producing real-like data via adversarial learning inde-
pendently. Then, PPGN produces the data for the given condition using the classifier and the
generator through an MCMC-based sampler. An important characteristic of PPGN is that they
can work as plug and play. When a classifier pretrained with the same data but different labels is
given to the generator, the generator can synthesize samples under the condition without further
training.

3.1.2 Unsupervised Methods

Different from the supervised methods discussed above, unsupervised methods do not exploit
any labeled information. Thus, they require an additional algorithm to disentangle the meaningful
features from the latent space.
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Figure 9: A text to image synthesis of StackGAN [142]. StackGAN shows higher output diversity
than other text to image models. Images from [35].

InfoGAN [15] decomposes an input noise vector into a standard incompressible latent vector z
and another latent variable c to capture salient semantic features of real samples. Then, InfoGAN
maximizes the amount of mutual information between c and a generated sample G(z, c) to allow c to
capture some noticeable features of real data. In other words, the generator takes the concatenated
input (z, c) and maximizes the mutual information, I(c;G(z, c)) between a given latent code c and
the generated samples G(z, c) to learn meaningful feature representations. However, evaluating
mutual information I(c;G(z, c)) needs to directly estimate the posterior probability p(c|x), which is
intractable. InfoGAN, thus, takes a variational approach which replaces a target value I(c;G(z, c))
by maximizing a lower bound.

Both CGAN and InfoGAN learn conditional probability p(x|c) given a certain condition vector
c; however, they are dissimilar regarding how they handle condition vector c. In CGAN, additional
information c is assumed to be semantically known (such as class labels), so we have to provide c
to the generator and the discriminator during the training phase. On the other hand, c is assumed
to be unknown in InfoGAN, so we take c by sampling from prior distribution p(c) and control the
generating process based on I(c;G(z, c)). As a result, the automatically inferred c in InfoGAN has
much more freedom to capture certain features of real data than c in CGAN, which is restricted
to known information.

Semi-supervised InfoGAN (ss-InfoGAN) [116] takes advantage of both supervised and unsuper-
vised methods. It introduces some label information in a semi-supervised manner by decomposing
latent code c in to two parts, c = css

⋃̇
cus. Similar to InfoGAN, ss-InfoGAN attempts to learn the

semantic representations from the unlabeled data by maximizing the mutual information between
the generated data and the unsupervised latent code cus. In addition, the semi-supervised latent
code css is trained to contain features that we want by using labeled data. For InfoGAN, we cannot
predict which feature will be learned from the training, while ss-InfoGAN uses labeled data to con-
trol the learned feature by maximizing two mutual informations; one between css and the labeled
real data to guide css to encode label information y, and the other between the generated data
and css. By combining the supervised and unsupervised methods, ss-InfoGAN learns the latent
code representation more easily with a small subset of labeled data than the fully unsupervised
methods of InfoGAN.

3.1.3 Examples

Decomposing the latent space into meaningful attributes within the GAN framework has been
exploited for various tasks. StackGAN [142] was proposed for text to image generation that syn-
thesizes corresponding images given text descriptions as shown in Figure 9. StackGAN synthesizes
images conditioned on text descriptions in a two-stage process: a low-level feature generation
(stage 1), and painting details from a given generated image at stage 1 (stage 2). The genera-
tors of each stage are trained adversarially given text embedding information ϕt from the text t.
Notably, rather than directly concatenating ϕt to z as CGAN does, StackGAN proposes a condi-
tional augmentation technique which samples conditioned text latent vectors c from the Gaussian
distribution N (µ(ϕt),

∑
(ϕt)). By sampling the text embedding vector c from N (µ(ϕt),

∑
(ϕt)),

this technique attempts to augment more training pairs given limited amount of image-text paired
data.

Semantically decomposing GAN (SD-GAN) [23] tries to generate a face having different poses
by directly decomposing z into identity and pose parts of a face image and then sampling each latent
variable separately from the independent latent distributions. Meanwhile, we do not need to restrict
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Figure 10: Illustrations of (a) ALI [26], BiGAN [24], and (b) AGE [123].

the attributes of an image to facial characteristics. Attributes can be not only characteristics of
a face but also scenery features such as the weather. Karacan et al. [55] synthesized outdoor
images having specific scenery attributes using the CGAN framework, and they also concatenated
an attribute latent vector to z for the generator.

3.2 With an Autoencoder
In this section, we explore efforts combining an autoencoder structure into the GAN framework.

An autoencoder structure consists of two parts: an encoder which compresses data x into latent
variable z: and a decoder, which reconstructs encoded data into the original data x. This structure
is suitable for stabilizing GAN because it learns the posterior distribution p(z|x) to reconstruct
data x, which reduces mode collapse caused by the lack of GAN’s inference ability to map data x
to z. An autoencoder can also help manipulations at the abstract level become possible by learning
a latent representation of a complex, high-dimensional data space with an encoder X → Z where
X and Z denote the data space and the latent space. Learning a latent representation may make
it easier to perform complex modifications in the data space through interpolation or conditional
concatenation in the latent space. We demonstrate how GAN variants learn in the latent space
in Section 3.2.1 and extend our discussion to proposed ideas which combine a VAE framework,
another generative model with an autoencoder, with GAN in Section 3.2.2.

3.2.1 Learning the Latent Space

Adversarially learned inference (ALI) [26] and bidirectional GAN (BiGAN) [24] learn latent
representations within the GAN framework combined with an encoder. As seen in Figure 10a,
they learn the joint probability distribution of data x and latent z while GAN learns only the data
distribution directly. The discriminator receives samples from the joint space of the data x and
the latent variable z and discriminates joint pairs (G(z), z) and (x,E(x)) where G and E represent
a decoder and an encoder, respectively. By training an encoder and a decoder together, they can
learn an inference X → Z while still being able to generate sharp, high-quality samples.

Ulyanov et al. [123] proposed a slightly peculiar method in which adversarial learning is run
between the generator G and the encoder E instead of the discriminator. They showed that
adversarial learning in the latent space using the generator and the encoder theoretically results
in the perfect generator. Upon their theorems, the generator minimizes the divergence between
E(G(z)) and a prior z in the latent space while the encoder maximizes the divergence. By doing
so, they implemented adversarial learning together with tractable inference and disentangled latent
space without additional computational cost.

In addition, they added reconstruction loss terms in each space to guarantee each component
to be reciprocal. These loss terms can be interpreted as imposing each function to be a one to
one mapping function so as not to fall into mode collapse as similar to in MRGAN. Recall that a
geometric regularizing term of MRGAN [13] also aims to incorporate a supervised training signal
which guides the reconstruction process to the correct location. Figure 10b shows an outline of
Ulyanov et al. [123] where R in the red rectangle denotes the reconstruction loss term between the
original and reconstructed samples.
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3.2.2 Variational Autoencoder

Variational Autoencoder (VAE) [22] is a popular generative model using an autoencoder frame-
work. Assuming some unobserved latent variable z affects a real sample x in an unknown manner,
VAE essentially finds the maximum of the marginal likelihood pθ(x) for the model parameter θ.
VAE addresses the intractability of pθ(x) by introducing a variational lower bound, learning the
mapping of X → Z with an encoder and Z → X with a decoder. Specifically, VAE assumes a
prior knowledge p(z) and approximated posterior probability modeled by Qφ(z|x) to be a stan-
dard normal distribution and a normal distribution with diagonal covariance, respectively for the
tractability. More explicitly, VAE learns to maximize pθ(x) where a variational lower bound of the
marginal log-likelihood log pθ(x) can be derived as follows:

log pθ(x) =

∫
z

Qφ(z|x) log pθ(x)dz =

∫
z

Qφ(z|x) log

(
pθ(x, z)

pθ(z|x)

Qφ(z|x)

Qφ(z|x)

)
dz (36)

=

∫
z

Qφ(z|x)

(
log

(
Qφ(z|x)

pθ(z|x)

)
+ log

(
pθ(x, z)

Qφ(z|x)

))
dz (37)

= KL(Qφ(z|x)||pθ(z|x)) + EQφ(z|x)

[
log

pθ(x, z)

Qφ(z|x)

]
(38)

AsKL(Qφ(z|x)||pθ(z|X)) is always nonnegative, a variational lower bound L(θ, φ;x) of Equation 42
can be derived as follows:

log pθ(x) ≥ EQφ(z|x)[log pθ(x, z)− logQφ(z|x)] (39)

= EQφ(z|x)[log pθ(z)− log pθ(x|z)− logQφ(z|x)] (40)

= −KL(Qφ(z|x)||pθ(z)) + EQφ(z|x)[log pθ(x|z)] (41)

= L(θ, φ;x) (42)

where pθ(x|z) is a decoder that generates sample x given the latent z and Qφ(z|x) is an encoder
that generates the latent code z given sample x.

Maximizing L(θ, φ;x) increases the marginal likelihood pθ(x). The first term can be interpreted
as leading an encoder Qφ(z|x) to be close to a prior probability pθ(z). It can be calculated ana-
lytically because Qφ(z|x) and the prior probability are assumed to follow a Gaussian distribution.
The second term can be estimated from the sample using a reparameterization method. To sum
up, VAE learns by tuning the parameter of the encoder and the decoder to maximize the lower
bound L(θ, φ;x).

3.2.2.1 Hybrid with GAN

Recently, several approaches to incorporate each advantage of VAE and GAN have been pro-
posed. Although VAE generates blurry images, VAE suffers less from the mode collapse problem
because an autoencoder encourages all real samples to be reconstructed. However, GAN generates
sharper images than VAE and does not need further constraints on the model while GAN suffers
from mode collapse as mentioned in Section 2.4. In this section, we address two studies which
attempt to combine VAE and GAN into one framework.

VAEGAN [64] combined VAE with GAN by assigning GAN’s generator to a decoder. Its
objective function combined VAE’s objective function with an adversarial loss term to produce
sharp images while maintaining encoding ability for the latent space. Notably, it replaced the
reconstruction of x in Equation 42 with the intermediate features of the discriminator to capture
more perceptual similarity of real samples. Figure 11a shows an outline of VAEGAN where the
discriminator D takes one real sample and two fake samples where one is sampled from an encoded
latent space (zV AE) and the other from a prior distribution (z).

Variational approaches for autoencoding GAN (α-GAN) [102] proposes adopting discrimina-
tors for the variational inference and transforms Equation 41 into a more GAN-like formulation.
The most negative aspect of VAE is that we have to constrain a distribution form of Qφ(z|x) to
analytically calculate L(θ, φ;x). α-GAN treats the variational posteriori distribution implicitly by
using the density ratio technique which can be derived as follows:

KL(Qφ(z|x)||pθ(z)) = EQφ(z|x)

[
Qφ(z|x)

pθ(z)

]
≈ EQφ(z|x)

[
Cφ(z)

1− Cφ(z)

]
(43)
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Figure 11: Illustrations of (a) VAEGAN [64] and (b) α-GAN [102].

where Cφ(z) =
Qφ(z|x)

Qφ(z|x)+pθ(z) which is an optimal solution of the discriminator for a fixed generator
in standard GAN [36]. α-GAN estimates the KLD term using a learned discriminator from the
encoder Qφ(z|x) and the prior distribution pθ(z) in the latent space. A KLD regularization term
of a variational distribution, thus, no longer needs to be calculated analytically.

α-GAN also modifies a reconstruction term in Equation 42 by adopting two techniques. One
is using another discriminator which distinguishes real and synthetic samples, and the other adds
a normal l1 pixelwise reconstruction loss term in the data space. Specifically, α-GAN changes a
variational lower bound L(θ, φ;x) into a more GAN-like formulation by introducing two discrimi-
nators using a density ratio estimation and reconstruction loss to prevent a mode collapse problem.
Figure 11b shows an outline of α-GAN where DL is the discriminator of the latent space, and DD

represents the discriminator which acts on the data space and R is the reconstruction loss term.

3.2.3 Examples

Antipov et al. [3] proposed an encoder-decoder combined method for the face aging of a person.
It produces facial aging of the target image under the given age vector y while maintaining the
identity of the target image. The encoder takes a role to output a latent vector z which represents a
personal identity to be preserved. However, practically, this CGAN-based approach has a problem
in that the generator tends to ignore the latent variable z, concerning only conditional information
y.

There are some approaches to training z in an unsupervised manner with an auto encoder.
Mainly, semi latent GAN (SL-GAN) [138] proposed a method for changing a facial image from
high-level semantic facial attributes (i.e., male/female, skin/hair color), by decomposing the latent
space from an encoder into annotated attributes (ground-truth attribute of an image) and data-
driven attributes (as c of InfoGAN). Similarly to InfoGAN, SL-GAN tries to maximize the mutual
information between the data-driven attribute and the generated image while using unsupervised
training for the data-driven attributes.

In addition to that, disentangled representation GAN (DR-GAN) [121] addresses pose-invariant
face recognition, which is a difficult problem because of the drastic changes of an image for each
different pose, adopting an encoder-decoder structure for the generator. As the purpose of DR-
GAN is to generate a face of the same identity given a target pose, it has to learn the identity
feature to be invariant regardless of a facial pose. To achieve this, DR-GAN designs an encoder of
the generator to represent an identity feature, while a decoder of the generator produces an image
under the pose representing vectors and the encoded identity.

4 Applications Using GANs

As discussed in earlier sections, GAN is a very powerful generative model in that it can generate
real-like samples with an arbitrary latent vector z. We do not need to know an explicit real
data distribution nor assume further mathematical conditions. These advantages lead GAN to
be applied in various academic and engineering fields. In this section, we discuss applications of
GANs in several domains.
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Figure 12: Paired image translation results proposed by pix2pix [52]: converting Cityscapes labels
into real photo compared to ground truth. Images from pix2pix [52].

4.1 Image

4.1.1 Image translation

Image translation involves translating images in one domain X to images in another domain
Y . Mainly, translated images have the dominant characteristic of domain Y maintaining their
attributes in the original images. Image translation can be categorized into supervised and unsu-
pervised techniques such as the classical machine learning.

4.1.1.1 Paired two domain data

Image translation with paired images can be regarded as supervised image translation in that
an input image x ∈ X to be translated always has the target image y ∈ Y where X and Y are two
distinctive domains. Pix2pix [52] suggests an image translation method with paired images using
a CGAN framework in which a generator produces a corresponding target image conditioned on
an input image as seen in Figure 12. In contrast, Perceptual Adversarial Networks (PAN) [127]
add the perceptual loss between a paired data (x, y) to the generative adversarial loss to transform
input image x into ground-truth image y. Instead of using the pixelwise loss to push the generated
image toward the target image, it uses hidden layer discrepancies of the discriminator between an
input image x and ground truth image y. It tries to transform x to y to be perceptually similar
by minimizing perceptual information discrepancies from the discriminator.

4.1.1.2 Unpaired two domain data

Image translation in an unsupervised manner learns a mapping between two domains given
unpaired data from two domains. CycleGAN [145] and discover cross-domain relations with GAN
(DiscoGAN) [57] aim to conduct unpaired image-to-image translations using a cyclic consistent
loss term in addition to an adversarial loss term. With a sole translator G: X → Y , GAN may
learn meaningless translation or mode collapse, resulting in an undesired translation. To reduce
the space of mapping of the generator, they adopt another inverse translator T : Y → X and
introduce the cyclic consistency loss which encourages T (G(x)) ≈ x and G(T (y)) ≈ y so that each
translation finds a plausible mapping between the two domains as mentioned in Section 2.1.3.1.
Their methods can be interpreted in a similar manner described in Section 3.2.1 in that they add
a supervised signal for reconstruction.

Attribute guided image translation was also considered to transfer the visual characteristic of
an image. Conditional CycleGAN [75] utilizes CGAN with a cyclic consistency framework. Kim
et al. [58] attempted to transfer visual attributes. In addition to the cyclic consistency of an image,
they also added an attribute consistency loss which forces the transferred image to have a target
attribute of the reference image.

4.1.2 Super resolution

Acquiring super resolution images from low resolution images has the fundamental problem
that the recovered high-resolution image misses high-level texture details during the upscaling of
the image. Ledig et al. [65] adopted a perceptual similarity loss in addition to an adversarial loss,
instead of pixelwise mean-squared error loss. It focuses on feature differences from the intermediate
layer of the discriminator, not pixelwise because optimizing pixel-wise mean squared error induces
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the pixelwise average of a plausible solution, leading to perceptually poor smoothed details and it
is not robust to drastic pixel value changes.

4.1.3 Object detection

Detecting small objects in an image typically suffers from low-resolution of an object, and
thus, it is necessary to train models with images of various scales similar to You Look Only Once
(YOLO) [101] and Single Shot Detection (SSD) [96] methods. Notably, Li et al. [69] tries to
transform a small object with low resolution into a super resolved large object to make the object
more discriminative. They utilized a GAN framework except decomposed the discriminator into
two branches, namely, an adversarial branch and a perceptual branch. The generator produces a
real-like large-scale object by the typical adversarial branch while the perceptual branch guarantees
that the generated large-scale object is useful for the detection.

Ehsani et al. [28] proposed another framework to detect objects occluded by other objects in an
image. It uses a segmentor, a generator, and a discriminator to extract the entire occluded-object
mask and to paint it as a real-like image. The segmentor takes an image and a visible region mask
of an occluded object and produces a mask of the entire occluded object. The generator and the
discriminator are trained adversarially to produce an object image in which the invisible regions
of the object are reconstructed.

4.1.4 Object transfiguration

Object transfiguration is a conditional image generation that replaces an object in an image
with a particular condition while the background does not change. Zhou et al. [144] adopted an
encoder-decoder structure to transplant an object, where the encoder decomposes an image into
the background feature and the object feature, and the decoder reconstructs the image from the
background feature and the object feature we want to transfigure. Importantly, to disentangle
the encoded feature space, two separated training sets are required where one is the set of images
having the object and the other is the set of images not having the object.

In addition, the GAN can be applied to an image blending task which implants an object
into another image’s background and makes the composited copy-paste images look more realistic.
Gaussian-Poisson GAN (GP-GAN) [132] suggests a high-resolution image blending framework
using GAN and a classic image blending gradient-based approach [31]. It decomposes images
into low-resolution but well-blended images using a GAN and detailed textures and edges using
a gradient constraint. Then, GP-GAN attempts to combine the information by optimizing a
Gaussian-Poisson equation [95] to generate high-resolution well-blended images while maintaining
captured high-resolution details.

4.1.5 Joint image generation

The GAN can be utilized to generate multiple domain images at once. Coupled GAN [74]
suggests a method of generating multidomain images jointly by weight sharing techniques among
GAN pairs. It first adopts GAN pairs to match the number of domains we want to produce.
Then, it shares the weights of some layers of each GAN pair that represents high-level semantics.
Therefore, it attempts to learn joint distributions of a multidomain from samples drawn from a
marginal domain distribution. It should be noted that because it aims to generate multidomain
images which share high-level abstract representations, images from each domain have to be very
similar in a broad view.

4.1.6 Video generation

In this paragraph, we discuss GANs generating video. Generally, the video is composed of
relatively stationary background scenery and dynamic object motions. Video GAN (VGAN) [125]
considers a two-stream generator. A moving foreground generator using 3D CNN predicts plausible
future frames while a static background generator using 2D CNN makes the background stationary.
Pose-GAN [126] takes a VAE and GAN combining approach. It uses a VAE approach to estimate
future object movements conditioned on a current object pose and hidden representations of past
poses. With a rendered future pose video and clip image, it uses a GAN framework to generate
future frames using a 3D CNN. Recently, motion and content GAN (MoCoGAN) [122] proposed
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Figure 13: Polyphonic music sequences generated from SeqGAN [66].

to decompose the content part and motion part of the latent space, especially modeling the motion
part with RNN to capture the time dependency.

4.2 Sequential Data Generation
GAN variants that generate discrete values mostly borrow a policy gradient algorithm of RL,

to circumvent direct back-propagation of discrete values. To output discrete values, the generator,
as a function, needs to map the latent variable into the domain where elements are not continu-
ous. However, if we do the back-propagation as another continuous value generating process, the
generator is steadily guided to generate real-like data by the discriminator, rather than suddenly
jumping to the target discrete values. Thus, such a slight change of the generator cannot easily
look for a limited real discrete data domain [141].

In addition, when generating a sequence such as music or language, we need to evaluate a
partially generated sequence step-by-step, measuring the performance of the generator. However,
the conventional GAN framework can only evaluate whole generated sequences unless there is a
discriminator for each time-step. This, too, can be solved by the policy gradient algorithm, in that
RL naturally addresses the sequential decision process of the agent.

4.2.1 Music

When we want to generate music, we need to generate the note and a tone of the music step-
by-step, and these elements are not continuous values. A simple and direct approach is continuous
RNN-GAN (C-RNN-GAN) [83], where it models both the generator and discriminator as an RNN
with long-short term memory (LSTM) [46], directly extracting whole sequences of music. However,
as mentioned above, we can only evaluate whole sequences, and not a partially generated sequence.
Furthermore, its results are not highly satisfactory since it does not consider the discrete property
of the music elements.

In contrast, sequence GAN (SeqGAN) [141], object reinforced GAN (ORGAN) [41], and Lee
et al. [66] employed a policy gradient algorithm, and not generating whole sequences at once. The
result of SeqGAN is shown in Figure 13. They treat a generator’s output as a policy of an agent and
take the discriminator’s output as a reward. Selecting a reward with the discriminator is a natural
choice as the generator acts to obtain a large output (reward) from the discriminator, similar to
the agent learning to acquire a large reward in reinforcement learning. In addition, ORGAN is
slightly different from SeqGAN, adding a hard-coded objective to the reward function to achieve
the specified goal.

4.2.2 Language and speech

RankGAN [73] suggests language (sentence) generation methods and a ranker instead of a con-
ventional discriminator. In natural language processing, the expression power of natural language
needs to be considered in addition to its authenticity. Thus, RankGAN adopts a relative ranking
concept between generated sentences and reference sentences which are human-written. The gen-
erator tries its generated language sample to be ranked high, while the ranker evaluates the rank
score of the human-written sentences higher than the machine-written sentences. As the generator
outputs discrete symbols, it similarly adopts a policy gradient algorithm similar to SeqGAN and
ORGAN. In RankGAN, the generator can be interpreted as a policy predicting next step symbol
and the rank score can be thought of as a value function given a past generated sequence.

Variational autoencoding Wasserstein GAN (VAW-GAN) [48] is a voice conversion system
combining GAN and VAE frameworks. The encoder infers a phonetic content z of the source
voice, and the decoder synthesizes the converted target voice given a target speaker’s information
y, similar to conditional VAE [135]. As discussed in Section 3.2.2, VAE suffers from generating
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Figure 14: An illustration of Triple-GAN [67].

sharp results due to the oversimplified assumption of the Gaussian distribution. To address this
issue, VAW-GAN incorporates WGAN [5] similarly to VAEGAN [64]. By assigning the decoder to
the generator, it aims to reconstruct the target voice given the speaker representation.

4.3 Semi-Supervised Learning
Semi-supervised learning is a learning method that improves the classification performance by

using unlabeled data in a situation where there are both labeled and unlabeled data. In the big
data era, there exists a common situation where the size of the data is too large to label all the
data, or the cost of labeling is expensive. Thus, it is often necessary to train the model with a
dataset in which only a small portion of the total data has labels.

4.3.1 Semi-supervised learning with a discriminator

The GAN-based semi-supervised learning method [104] demonstrates how unlabeled and gen-
erated data are available on the GAN framework. The generated data is allocated to a K+ 1 class
beyond 1 . . .K class for the labeled data. For labeled real data, the discriminator classifies their
correct label (1 to K). For unlabeled real data and generated data, they are trained with a GAN
minimax game. Their training objective can be expressed as follows:

L = Ls + Lus (44)
Ls = −Ex,y∼pdata(x,y)[log pθ(y|x, y < K + 1)] (45)

Lus = −Ex∼pdata(x)[1− log pθ(y = K + 1|x)] + Ex∼G[log pθ(y = K + 1|x)] (46)

where Ls and Lus stand for the loss functions of the labeled data and the unlabeled data, respec-
tively. It is noted that because only generated data is classified as the K + 1 class, we could think
of Lus as a GAN standard minimax game. The unlabeled data and the generated data serve to
inform the model of the space where the real data resides. In other words, the unsupervised cost
serves to guide the location of the optimum of the supervised cost of the real labeled data.

Categorical GAN (CatGAN) [115] proposes an algorithm for the robust classification for which
the generator regularizes the classifier. The discriminator has no classification head for distinguish-
ing real and fake and is trained with three requirements: a small conditional entropy of H(y|x) to
make the correct class assignment for the real data, a large conditional entropy of H(y|G(z)) to
make the class assignment for the generated data diverse and a large entropy ofH(y) to make a uni-
form marginal distribution with an assumption of a uniform prior p(y) over classes where x, y and
G(z) are real data, labels, and generated data respectively. The generator, meanwhile, is trained
with two requirements: a small conditional entropy of H(y|G(z)) to make the class assignment for
the generated data certain and a large entropy of H(y) to generate equally distributed samples
over classes. The unlabeled data and the generated data help the classification by balancing classes
through the adversarial act of the generator, so it helps semi-supervised learning.

4.3.2 Semi-supervised learning with an auxiliary classifier

The above GAN variants in semi-supervised learning have two problems: the first one is that
the discriminator has two incompatible convergence points, one for discriminating real and fake
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data and the other for predicting the class label; and the second problem is that the generator
cannot generate data in a specific class. Triple-GAN [67] addresses the two problems by a three-
player formulation: a generator G, a discriminator D and a classifier C. The model is illustrated
in Figure 14 where (Xg, Yg) ∼ pg(X,Y ), (Xl, Yl) ∼ p(X,Y ), and (Xc, Yc) ∼ pc(X,Y ) refer to the
generated data, the labeled data, and the unlabeled data with a predicted label, and CE is the
cross entropy loss. To summarize, Triple-GAN adopts an auxiliary classifier which classifies real
labeled data and label-conditioned generated data, relieving the discriminator of classifying the
labeled data. In addition, Triple-GAN generates data conditioned on Yg, which means that it can
generate label-specific data.

4.4 Domain Adaptation
Domain adaptation is a type of transfer learning which tries to adapt data from one domain

(i.e., the source domain) into another domain (i.e., the target domain), while the classification task
performance is preserved in the target domain [93]. Formally, the unsupervised domain adaptation
solves the following problem: with input data x and its label y, let a source domain distribution
DS(x, y) and a target domain distribution DT (x, y) be defined over X × Y where X and Y are
sets of a data space and a label space respectively. Given labeled source domain data (xs, ys)
∈ DS(x, y) and unlabeled target domain data xt ∈ DT (x) (the marginal distribution of DT (x, y)),
the unsupervised domain adaptation aims to learn a function h : X → Y which classifies well in
the target domain without the label information of target domain data xt.

4.4.1 Domain adaptation by feature space alignment via GAN

The main difficulty in domain adaptation is the difference between the source distribution and
the target distribution, called domain shift. This domain shift allows the classifier trained with
only the source data to fail in the target domain. One of the methods to address the domain
shift is to project each domain data into the common feature space where the distributions of the
projected data are similar. There have been a few studies to achieve the common feature space
via GAN for the domain adaptation task.

Domain adversarial neural network (DANN) [2] first used GAN to obtain domain invariant
features by making them indistinguishable as to whether it comes from the source domain or
the target domain while still discriminative for the classifying task. There are two components
sharing a feature extractor. One is a classifier which classifies the labels of the data. The other is a
domain discriminator which discern where the data comes from. The feature generator acts like the
generator in GAN producing source-like features from the target domain. To sum up, DANN takes
CNN classification networks in addition to the GAN framework to classify data from the target
domain without label information by learning the domain invariant features. Figure 15 shows the
overall outline of DANN, ARDA and unsupervised pixel-level domain adaptation where IS , IT , and
If stands for the source domain image, target domain image, and fake image, respectively. FS and
FT means the extracted source features, and the target features, respectively. It should be noted
that Ys, which is the label information of Is, is fed into the classifier, training the classifier with
the cross entropy loss.

Although DANN may achieve domain invariant marginal feature distributions, if the label of
the source feature and that of the target feature do not contain a mismatch, the learned classifier
should not work well in the target domain. Cycle-consistent adversarial domain adaptation (Cy-
CADA) [47], thus, adds a cycle consistency [57, 145] to preserve the content of the data which is
the crucial characteristic in determining the label while inheriting the most of the architecture of
DANN.

4.4.2 Examples

Bousmalis et al. [12] used the domain adaptation via GAN for the grasping task. They used
simulation data as the source domain data and ran the learned model in the real environment.
Their method is slightly different than DANN in that it only adapts source images to be seen as
if they were drawn from the target domain while DANN tries to obtain features similarly from
both domains. It can be understood that the feature space of [12] is the target domain space
and the feature generator in the target domain is the identity function. In addition, they added
a content similarity loss defined as the pixelwise mean-squared error between the source image
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Figure 15: Illustrations of (a) DANN [2] and (b) unsupervised pixel-level domain adaptation [12].

Figure 16: The source images and transferred images by five models proposed by Yoo et al.
[140]. The leftmost images are source images made by a simulator, and figures of 2-6 columns are
transferred images by five different models. Images from Yoo et al. [140].

and the adapted image to preserve the content of the source image. By doing so, they achieved
better performance than the supervised method in the grasping task. It should also be noted that
the method of [12] can check whether the domain adaptation process is working well during the
training phase because the transformed data is visible, while [2, 108] cannot visually check the
domain adaptation process because the common representation space cannot be easily visualized.

Yoo et al. [140] achieved autonomous navigation without any real labeled data using domain
adaptation. As in [12], they also exploited the simulation data as the source data and showed
autonomous navigation in a real outdoor environment. They used cycle consistency to preserve
the content and style loss term motivated by the style transfer task [32] to reduce the domain
shift dramatically for the outdoor environment as seen in Figure 16. By doing so, they showed the
applicability of the simulation via domain adaptation into the autonomous navigation tasks where
collecting labels for various environments is difficult and expensive.

4.5 Other Tasks
Several variants of GAN have also been developed in other academic or practical fields other

than the machine learning fields.

4.5.1 Medical Image Segmentation

Xue et al. [134] proposed a segmentor-critic structure to segment a medical image. A segmentor
generates a predicted segmented image, and a critic maximizes the hierarchical feature differences
between the ground-truth and the generated segmentation. This structure leads a segmentor to
learn the features of the ground-truth segmentation adversarially similar to the GAN approach.
There are also other medical image segmentation algorithms such as the deep image-to-image
network (DI2IN) [136] and structure correcting adversarial network (SCAN) [16]. DI2IN conducts
liver segmentation of 3D CT images through adversarial learning. SCAN tries to segment the
lung and the heart from chest X-ray images through an adversarial approach with a ground-truth
segmentation mask.

4.5.2 Steganography

It is also feasible to use GAN for steganography. Steganography is a technique that conceals
secret messages in non-secret containers such as an image. A steganalyzer determines if a container
contains a secret message or not. Some studies such as Volkhonskiy et al. [124], and Shi et al. [109]
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Table 5: Comparison of GAN variants from some aspects.

Generator Discriminator Additional loss
& Constraint

WGAN-GP ReLU MLP ReLU MLP gradient penalty
BEGAN Discriminator decoder Autoencoder (ELU CNN) equilibrium measure
ACGAN Transposed ReLU CNN LeakyReLU CNN classification loss
SeqGAN LSTM ReLU CNN policy gradient
DANN ReLU CNN ReLU MLP classification loss,

gradient reversal layer

propose a steganography model with three components: a generator producing real-looking images
that are used as containers and two discriminators, one of which classifies whether an image is real
or fake, and the other determines whether an image contains a secret message.

4.5.3 Continual Learning

Deep generative replay [110] extends a GAN framework to continual learning. Continual learn-
ing solves multiple tasks and accumulates new knowledge continually. Continual learning in deep
neural networks suffers from catastrophic forgetting which refers to forgetting a previously learned
task while learning a new task. Inspired by the brain mechanism, catastrophic forgetting is ad-
dressed with a GAN framework called deep generative replay. Deep generative replay trains a
scholar model in each task where a scholar model is composed of a generator. The generator
produces samples of an old task, and the solver gives a target answer to an old task’s sample. By
sequentially training scholar models with old task values generated by old scholars, it attempts to
overcome catastrophic forgetting while learning new tasks.

5 Discussion

We have discussed how GAN and its variants work and how they are applied to various appli-
cations. Table 5 compares some famous variants of GAN with respect to model architectures and
additional constraints. As we have viewed GAN from a microscopic perspective until now, we are
going to discuss the macroscopic view of GAN in this section.

5.1 Evaluation
Measuring the performance of GAN is related to capturing the diversity and quality of generated

data. As explained in Section 1, the generative models mostly model the likelihood and learn by
maximizing it. Thus, it is natural to evaluate the generator using log likelihood. However, GAN
generates real-like data without estimating likelihood directly, so evaluation with the likelihood is
not quite proper. The most widely accepted evaluation metric for GAN is an Inception score. The
Inception score was proposed by Salimans et al. [104], and the Inception score is defined as follows:

exp(Ex∼pg(x)[KL(p(y|x)||p(y))]) (47)

As seen in Equation 47, it computes the average KLD between the conditional label distribution
p(y|x) and the marginal distribution of the generated data’s label p(y) with a pretrained classifier
such as VGG [112] and ImageNet data [63]. Since the KLD term between p(y|x) and p(y) in the
exponent function is equivalent to their mutual information I(y;x) = H(y)−H(y|x) [7], the high
entropy of p(y|x) and low entropy of p(y) leads to a high Inception score. The entropy of p(y|x)
measures how the generated data are sharp and clear to be well-classified. The other term H(y)
represents whether the generated data are diverse with respect to the generated class. In this way,
the Inception score is believed to measure the diversity and visual quality of the generated data.

However, the Inception score has a limitation in that it is unable to resist the mode collapse
problem. Even though the trained generator produces only one plausible data for each class, p(y|x)
can have low entropy leading to a high Inception score. To address this issue, AC-GAN [90] adopts
multi-scale structural similarity (MS-SSIM) [129], which evaluates perceptual image similarity, and
thus identifies a mode collapse more reliably. In addition, MRGAN [13] proposed a MODE score
based on the Inception score and Danihelka et al. [17] suggested an independent Wasserstein critic
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which is trained independently for the validation dataset to measure overfitting and mode collapse.
Moreover, various object functions such as MMD, total variance and Wasserstein distance can be
used as the approximated distance between pg(x) and pdata(x). Theoretically, all metrics should
produce the same result under the assumption of the full capacity of the model and an infinite
number of training samples. However, Theis et al. [119] showed that minimizing MMD, JSD or
KLD results in different optimal points, even for the mixture of Gaussian distributions as a real
data distribution, and the convergence in one type of distance does not guarantee the convergence
for another type of distance because their object functions do not share a unique global optima.

The method for measuring the performance of GAN is still a disputable subject. Since GAN is
naturally unsupervised learning, we cannot measure the accuracy or error rate as in the supervised
learning approaches. Evaluation metrics or different distances discussed in the above paragraph
still do not measures the performance of GAN exactly, and there are many cases in which images
that do not look natural have a high score [7]. Thus, there is room to improve the evaluation for
GAN.

5.2 Discrete Structured Data
Unlike other generative models such as VAE, GAN has an issue handling the discrete data such

as text sequences or discretized images. Since discrete data is non-differentiable, gradient descent
update via back-propagation cannot directly be applied for a discrete output. The content of this
section may overlap with Section 4.2, but we will shortly cover this issues in the discussion because
it is one of the troublesome issue in GAN.

To address this issue, some methods adopt a policy gradient algorithm [118] in reinforcement
learning (RL) in which the objective is to maximize the total rewards. By rolling out whole
sequences, this method circumvents direct back-propagation for a discrete output. Intuitively, the
generator which generates fake data maximizing the discriminator’s output can be thought of as
a policy agent in RL which is a probability distribution to take action maximizing a reward in a
given state.

Maximum-likelihood augmented discrete GAN (MLADGAN) [14] and boundary-seeking GAN
(BSGAN) [44] both take a policy gradient algorithm to generate discrete structured data. They
both treat the generator as a policy which outputs a probability for a discrete output. Importantly,
they estimate the true distribution as p̃data(x) = 1

Z pg(x) D(x)
1−D(x) where Z is a normalization factor.

p̃data(x) is motivated from pdata(x) = D∗(x)
1−D∗(x)pg(x) where D∗ is the optimal discriminator, and

MLADGAN and BSGAN interpret p̃data(x) as a reward for a discrete output x. Because larger
D(x) means greater p̃data(x), taking the p̃data(x) value as a reward brings about the same conse-
quence as when D(x) is taken as a reward. They showed some successful performance, but the
learning process is highly unstable due to MCMC sampling in the training phase.

Adversarially regularized autoencoders (ARAE) [59] address this issue by combining a discrete
autoencoder which encodes a discrete input into the continuous code c. ARAE also adopts WGAN
[5] acting on the latent space where encoded code lies. To avoid direct access to the discrete
structure, the generator produces fake code c̃ from the sampled latent z, and the critic evaluates
such fake code c̃ and real code c. By jointly training an autoencoder with WGAN on the code
space, it avoids back-propagation on the discrete space while learning latent representations of
discrete structured data.

5.3 Relationship to Reinforcement Learning
Reinforcement learning (RL) is a type of learning theory that focuses on teaching an agent to

choose the best action given a current state. A policy π(a|s), which is a probability for choosing
an action a at state s, is learned via an on-policy or off-policy algorithm. RL has a very similar
concept to GAN in the aspect of a policy gradient where it is very important to estimate the value
function correctly given state s and action a.

The policy gradient algorithm [118] presented an unbiased estimation of a policy gradient under
the correct action-state value Q(s, a). Because Q(s, a) is the discounted total reward from state
s and action a, Q(s, a) must be estimated via an estimator called a critic. A wide variety of
policy gradients such as the deep deterministic policy gradient (DDPG) [71], trust region policy
optimization (TRPO) [107], and Q-prop [40] can be thought of as estimating Q(s, a) which has low
bias and low variance, to correctly estimate the policy gradient. In that regard, they are similar to a
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GAN framework in that GAN’s discriminator estimates the distance between two distributions and
the approximated distance needs to be highly unbiased to make pg(x) closely approximate pdata(x).
Pfau and Vinyals [97] detailed the connection between GAN and the actor-critic methods.

Inverse reinforcement learning (IRL) [1] is similar to reinforcement learning in that its objective
is to find the optimal policy. However, in the IRL framework, the experts’ demonstrations are
provided instead of a reward. It finds the appropriate reward function that makes the given
demonstration as optimal as possible and then produces the optimal policy for the identified
reward function. There are many variants in IRL. Maximal entropy IRL [146] is one which finds
the policy distribution that satisfies the constraints so that the feature expectations of the policy
distribution and the given demonstration are the same. To solve such an ill-posed problem, maximal
entropy IRL finds the policy distribution with the largest entropy according to the maximal entropy
principle [53]. Intuitively, the maximal entropy IRL finds the policy distribution which maximizes
the likelihood of a demonstration and its entropy. Its constraint and convexity induce the dual
minimax problem. The dual variable can be seen as a reward. The minimax formulation and
the fact that it finds the policy which has the largest likelihood of demonstrations gives it a deep
connection with the GAN framework. The primal variable is a policy distribution in IRL whereas
it can be considered as a data distribution from the generator in GAN. The dual variable is a
reward/cost in IRL while it can be seen as the discriminator in GAN.

Finn et al. [30], Yoo et al. [139], and Ho and Ermon [45] showed a mathematical connection
between IRL and GAN. Ho and Ermon [45] converted IRL to the original GAN by constraining
the space of dual variables and Yoo et al. [139] showed the relationship between EBGAN [143] and
IRL using approximate inference.

5.4 Pros and Cons of GAN

5.4.1 Pros

As briefly mentioned in Section 1, the major advantage of GAN is that GAN does not need
to define the shape of the probability distribution of the generator model. Thus, GAN naturally
avoids concerning tractable density forms which need to represent complex and high-dimensional
distributions. Compared to other models using explicitly defined probability density [22, 91, 92,
105], GAN has following advantages:

• GAN can parallelize the sampling of the generated data. In the case of PixelCNN [105],
PixelRNN [92] and WaveNet [91], their speed of generation is very slow due to their au-
toregressive fashion, wherein pg(x) is decomposed into a product of conditional distributions
given previously generated values:

pg(x) =

d∏
i=1

pg(xi|x1, . . . xi−1) (48)

where x is the d-dimensional vector. For example, in image generation, autoregressive models
generate an image pixel by pixel where the probability distribution of future pixel cannot be
inherently computed until the value of the previous pixel is computed. Thus, the generation
process is naturally slow, which becomes more severe for high-dimensional data generation
such as speech synthesis [91].

On the other hand, the generator of GAN is a simple feed-forward network mapping from Z
to X . The generator produces data all at once, not pixel by pixel as autoregressive models.
Therefore, GAN can generate samples in parallel, which results in a considerable speed up
for sampling, and this property gives more opportunity for GAN to be used in various real
applications.

• GAN does not need to approximate a likelihood by introducing a lower bound, as in VAE.
As we mentioned in Section 3.2.2, VAE tries to maximize a likelihood by introducing a varia-
tional lower bound. The strategy of VAE is to maximize a tractable variational lower bound,
guaranteeing it to be at least as high as the lower bound, even when the likelihood is in-
tractable. However, VAE still needs assumptions on a prior and posterior distributions, which
do not guarantee the tight bound of Equation 42. This strong assumption on distributions
makes the approximation to the maximum likelihood biased.
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In contrast, GAN does not approximate the likelihood and does not need any probability
distribution assumptions. Instead, GAN is designed to solve an adversarial game between
the generator and the discriminator, and a Nash equilibrium of the GAN game corresponds
to finding the real data distribution [35].

• GAN is empirically known to produce better and sharper result than other generative models,
especially VAE. In VAE, a distribution of pixel values in the reconstructed image is modeled
as a conditional Gaussian distribution. This causes the optimization of log pg(x|z) to be
equivalent to minimizing the Euclidean term of −‖x−Decoder(z)‖2, which can be interpreted
as a regression problem fitting the mean.

GAN is highly capable of capturing the high-frequency parts of an image. Since the generator
tries to fool the discriminator to recover the real data distribution, the generator evolves to
lead even the high-frequency parts to deceive the discriminator. In addition, some techniques
such as PatchGAN in Section 2.3.3 helps GAN produce and capture sharper results more
effectively.

5.4.2 Cons

GAN was developed to solve the minimax game between the generator and the discrimina-
tor. Though several studies discuss the convergence and the existence of the Nash equilibrium
of the GAN game, training of GAN is highly unstable and difficult to converge as mentioned in
Section 2.3.1 and 2.3.2. GAN solves the minimax game through the gradient descent method it-
eratively for the generator and the discriminator. In perspective of the cost function: V (G,D) in
Equation 1, a solution for the GAN game is the Nash equilibrium which is a point of parameters
where the discriminator’s cost and the generator’s cost is minimum with respect to their param-
eters. However, the decrease of the discriminator’s cost function can cause the increase of the
generator’s cost function and vice versa. Thus, a convergence of the GAN game may often fail and
is prone to be unstable.

Another important issue for GAN is the mode collapse problem. This problem is very detri-
mental for GAN that is applied in real applications since a mode collapse restricts GAN’s ability
of diversity. In Equation 1, the generator is only forced to deceive the discriminator, not for rep-
resenting multimodality of a real data distribution. A mode collapse thus can happen even in a
simple experiment [13], and this discourages applying GAN due to the low diversity. As mentioned
in Section 2.4, various studies tried to address the mode collapse by using a new object function
[13, 61], or adding new components [13, 33]. However, for a highly complex and multimodal real
data distribution, the mode collapse still remains a problem GAN has to solve.

5.4.3 Future research areas

As GAN has been popular throughout deep learning, the limitations of GAN mentioned above
have recently been improved [11, 19, 82]. With the development of GAN, new tasks are steadily
conquered using GAN. For instance, CausalGAN [60] combines a causal implicit generative model
with the conditional GAN to replace conditioning by intervention, which enables the model to
generate data with the desired characteristic combinations that do not exist in the dataset. In
addition, new types of GANs have been proposed for new applications such as cipher cracking [34]
and object tracking [114]. When you design a GAN for a new task, you can first identify the nature
of the task and then use Tables 1, 2, and 5 to determine which model to use as a baseline. A new
loss function can be designed using the characteristics of the task. In the future, we anticipate
that the limitations of existing GANs will be solved in novel ways, and GAN will remain as an
important generative model by conquering areas that existing deep learning-based models cannot
effectively solve.

6 Conclusion

We discussed how various object functions and architectures affect the behavior of GAN and
the applications of GAN such as image translation, image attribute editing, domain adaptation,
and other fields. The GAN originated from the theoretical minimax game perspective. In addition
to the standard GAN [36], practical trials as well as mathematical approaches have been adopted,
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resulting in many variants of GAN. Furthermore, the relationship between GAN and other concepts
such as imitation learning, and other generative models has been discussed and combined in various
studies, resulting in rich theory and numerous application techniques. GAN has the potential to be
applied in many application domains including those we have discussed. Despite GAN’s significant
success, there remain unsolved problems in the theoretical aspects as to whether GAN actually
converges and whether it can perfectly overcome mode collapse, as Arora et al. [6], Grnarova et al.
[39], and Mescheder et al. [78] discussed. However, with the power of deep neural networks and
with the utility of learning a highly non-linear mapping from latent space into data space, there
remain enormous opportunities to develop GAN further and to apply GAN to various applications
and fields.
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