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ABSTRACT 
This paper introduces a random number generator (RNG) based 
on the avalanche noise of two diodes. A true random number 
generator (TRNG) generates true random numbers with the use of 
the electronic noise produced by two avalanche diodes. The 
amplified outputs of the diodes are sampled and digitized. The 
difference between the two concurrently sampled and digitized 
outputs is calculated and used to select a seed and to drive a 
pseudo-random number generator (PRNG). The PRNG is an 
xorshift generator that generates 1024 bits in each cycle. Every 
sequence of 1024 bits is moderately modified and output. The 
TRNG delivers the next seed and the next cycle begins. The 
statistical behavior of the generator is analyzed and presented. 

CCS Concepts 
• Security and privacy→Cryptography 
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1. INTRODUCTION 
Random numbers are necessary for a variety of purposes such as 
generating data encryption keys, numerical simulation of physical 
phenomena in scientific and engineering fields, and analysis of 
physical experiments. The applications of random numbers vary 
over a wide range of scientific and technical fields to politics and 
games. They are fundamental to almost all secure computer 
systems. 

Random numbers have been important for the humans since the 
first dice were carved out of bone over 5000 years ago. They have 
been used in diplomatic and military communication for 
encrypting the secret messages for thousands of years. Today with 
technological progress, the need for high quality random numbers 
is more than ever. In a network of computers and devices, every 
single encrypted connection consumes random numbers, and with 
a constantly growing demand for connectivity and an increased 
focus on privacy over the connections, the number of encrypted 

connections is only going to increase [1]. 

Randomness could be defined if something is algorithmically 
incompressible or irreducible. More precisely, a member of a set 
of objects is random if it has the highest possible complexity 
within the set [2]. In other words, random numbers are a sequence 
of numbers within an interval with an unpredictable progress. The 
sequence of random numbers must feature the following 
characteristics [3]:  

•Uniform distribution of the numbers in the given interval 
•Statistical independency of each number from the previous 

numbers  
•Unpredictability of the future numbers  

The uniformity of a sequence of bits could be examined with 
some well-defined tests. On the other hand, there is no such test to 
prove the statistical independency. Rather, a number of tests could 
be applied to show if there is some dependencies between the bits. 
If none of a number of tests could prove dependency between the 
bits of a sequence, the bits could be considered as independent for 
a defined level of confidence [3].   

Unpredictability is a direct consequence of statistical 
independency. It cannot be proved directly. With true random 
sequences, each number is statistically independent of other 
numbers in the sequence and therefore unpredictable. Pseudo-
random numbers, which are based on an algorithm, are 
deterministic and not statistically independent, even if the 
dependency cannot be proved. It means they are not 
unpredictable. 

Additionally, high quality random numbers must have a high bit 
rate for todays’ applications. They must also be independent of 
environmental parameters. These are the weaknesses of true 
random numbers generated based on physical sources. However, 
high quality and high speed are often inversely proportional to 
each other: excellent random number generators are often slow, 
where as poor random number generators are typically fast.  

Despite their weaknesses, using true random numbers is 
indispensable as they provide the highest immunity of encrypted 
data to cryptanalytic attacks [4]. Computers are incapable of 
producing true random numbers as they are based on 
mathematical principles. To get true random numbers it is 
necessary to use a physical random phenomenon, such as thermal 
noise, atmospheric  noise, avalanche noise or emission timing of 
radioactive decay. Using these phenomena as a source for an 
RNG is normally complex and inconvenient. Because of the 
complexity of design and inconvenience, the pseudo random 
number generators based on deterministic algorithms are often 
used instead. 
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Very fast PRNGs with excellent statistical behaviors could be 
implemented easily. Nevertheless, as their output is predictable, 
they are unusable for some applications such as cryptography. For 
cryptography, the science of making and breaking secret codes, 
robust random numbers are essential.   

There have been many proposals and ideas to overcome the 
weakness of the PRNGs. One idea is to use an unpredictable 
physical random phenomenon as an entropy source and apply it to 
a PRNG. One popular solution is to implement a PRNG (like a 
linear-feedback shift register (LFSR)) and use a TRNG which 
generates a pool of true random numbers and apply the numbers 
in this pool as a seed (an initial state) [5].  

This paper is organized as follows: Section II deals with the 
related work. Section III explains the center idea and the concept. 
(Figure 1) Section IV explains the system design and discusses the 
output signal. (Figure 2-3) Section IV presents and discusses the 
experimental results of the proposed random number generator. 
Section VI presents the conclusion and further works. 

2. RELATED WORK 
For generating fast and high quality random numbers there have 
been many proposals. Most of them use a physical source of 
entropy and apply it to an algorithm to improve the statistical 
behavior and to increase bit rate. The random number generator 
implemented in [6] uses the non-uniform quantization of the 
samples of avalanche diode noise. A PRNG is also implemented. 
The bit sequence generated by TRNG is xor-ed to the pseudo 
random sequence. The generator could get a bit rate up to 320 
Mbit/s. This work [7] implements a true random number generator 
based on radioactive decay. A Geiger-Müller tube detects the 
decay events of a Thorium dioxide sample. They are transformed 
into a random bit stream on a Raspberry Pi single-board 
computer. The efficiency of the generator is 100%. On average, 
the system produces a random bit every 90 ms. It corresponds to a 
bit rate of about 11 Hz, which is very low. It can be used as a seed 
generator. In [8], an improved true random number generator 
(TRNG) is proposed, which comprises a low-bias hardware 
random number generator (HRNG) and a scrambler based on 
LFSR. The HRNG reduces both DC offset from the noise sources 
and offset voltage from the comparator to generate low-bias bit 
stream. The LFSR-based scrambler further reduces the bias to 
zero.  

3. CENTER IDEA AND CONCEPT 
Noise, a small fluctuation in current or in voltage is generated  in  
all  semiconductor  devices. The  intensity  of  these  fluctuations  
depends  on  the device  type,  its  manufacturing  process,  and  
operating conditions [9].  

Avalanche noise is a form of noise produced by Zener or 
avalanche breakdown in a pn junction. In avalanche breakdown, 
holes and electrons in the depletion region of a reverse-biased pn 
junction acquire sufficient energy to create hole-electron pairs by 
colliding with silicon atoms. This noise is much higher than the 
other noises, because a single carrier can start an avalanching 
process that results in the production of a current burst containing 
many carriers moving together. These collisions are purely 
random and produce random current pulses but much more 
intense than other noises [10] [11].  

The avalanche noise is associated with the current flow. The 
higher the external current, the more noise generated. The total 
current is the sum of the random chain reactions. If there is an 

avalanche breakthrough, avalanche noise dominates strongly other 
noises in a diode. Diodes when biased into the avalanche 
breakdown region produce significant amounts of excess noise 
with good stability, high bandwidth, and good statistical 
properties. The spectral density of avalanche noise depends on the 
actual voltage across the diode. It can be assumed that each 
electron that flows as having a multiplication factor, M. It can be 
written like that: 

𝑀 =
1

1 − |
𝑉𝐷
𝑉𝐵
|
α 

In this equation α is an exponent that varies between 3 and 6 
depending on the semiconductor characteristics, 𝑉𝐵  is the diode 
breakdown voltage and 𝑉𝐷 is the actual voltage across the diode  
[12]. To achieve higher M, the diode voltage  𝑉𝐷 must be as high 
as possible and nearly equal to 𝑉𝐵, and thus the diode must be in 
the avalanche breakdown region. In this area, the denominator of 
the formula will be almost zero and M will be a very large 
number. 

This characteristic is used for generating the true random 
numbers. To achieve this, a circuit is needed to sample the 
produced noise. The sampled values must be amplified and 
converted from analog to digital. In order to avoid correlation 
between the samples, it is important to maintain a low bit rate. By 
using the xorshift algorithm in between each sampled pair, the 
final bit rate is increased while still avoiding the correlation 
problem. 

4. SYSTEM DESIGN 
The RNG proposed in this paper implements a TRNG based on 
avalanche noise of two diodes and a PRNG based on the xorshift 
algorithm [13]. A 2-channel, 8-bit A/D samples the amplified 
avalanche noise of two TVS diodes, and saves them in a file. The 
difference between two concurrently sampled outputs is used to 
select an initial state (seed) for an xorshift generator and to drive 
it. 

The xorshift generator generates 32 32-bit numbers in each cycle. 
A matrix of 32x32 bits is constructed and moderately modified 
before output. The next cycle begins and the A/D delivers the next 
8-bit number.  

 
Figure 1. Block diagram of the RNG. 

4.1 True Random Number Generator – 
Circuit Design 
The avalanche effect of two TVS diodes has been used as an 
entropy source. They are on separate and isolated printed circuit 
boards. Both diodes concerned are P6SMB10. They generate 
high-amplitude noise, which is sampled after a two-stage 
amplification. Both transistors are BFR92A. In order to eliminate 
the influence of the environmental noise, the difference between 
the outputs of two circuits is used as the entropy source. 



Figure 2 shows the electrical circuit diagram of a true random 
number generator, and Figure 3 shows the printed circuit board of 
a true random number generator. 

 
Figure 2. Circuit diagram of a  true random generator. 

 

 
Figure 3. Printed circuit board of a true random number 

generator. 
 
The sampled values are in the range of -2 to 2 volt. Figure 4 
shows the sampled values for a time period of 10 µsec. 

 

 
Figure 4. Sampled values Channel 1 and 2 for a period of 10 

µsec. 
 
Figure 5a and Figure 5b show the amplified output of one diode in 
both time and frequency domains. Figure 5c shows recorded 
histograms of the captured data between -1.5 and 1.5 volt. As can 
be seen, it resembles a Gaussian distribution. After sampling the 
amplified outputs of the diodes, the two-channel 8-bit A/D 
converts the sampled values to digital and saves them as 8-bit 
numbers in a common file.  

Finally, the difference of two simultaneously sampled outputs is 
calculated and saved. Figure 5d shows the distribution of 106 8-bit 
numbers between 0 and 255. Several tests confirmed the Gaussian 
distribution of these numbers. 

Every bit of the captured 8-bit numbers contains randomness or 
entropy, which could be used in different ways. One possibility is 
to use the most significant bit (MSB) which represents the zero 
crossing or sign changing of the number. This bit shows excellent 
statistical behavior and passes every statistical test. Nevertheless, 
it is not a good choice as the avalanche noise generated by diodes 
is not very fast and it should not be sampled by a sampling 
frequency higher than 1 MHz. Several diodes have been tested. 
They showed very same behavior. By using a sampling frequency 
higher than 1 MHz, there would be many zeros or ones in a row 
which means a dependency or a correlation between the 
neighboring numbers. This would make the sampled numbers 
unusable as an entropy source. As the frequency of 1MHz or the 

bit rate of 8 Mbit/s is not enough for todays’ applications a 
transformation is needed. 

 

 
d 

Figure 5. (a) Output of the TRNG in time domain, (b) in 
frequency domain (c) Probability density distribution and (d) 

histogram of the TRNG. 

4.2 Pseudo Random Number Generator 
Xorshift generators are fast, high quality pseudo-random number 
generators, which have been proposed by George Marsaglia [13]. 
Actually, they are a good choice for non-cryptographic 
applications as they are fast and easy to implement, have long 
periods and pass strict statistical tests. Nevertheless, they are not a 
good choice for cryptographic applications because they are based 
on  mathematical or logical algorithms and their courses could be 
predicted if their parameters and the initial state (seed) of the 
generator are known. 

An xorshift random number generator (xorshift RNG) produces a 
sequence of 232−1 integers x, or a sequence of 264−1 pairs x,y, or a 
sequence of 296−1 triples x,y,z, etc., by means of repeated use of a 
simple computer construction: exclusive-or (xor) a computer word 
with a shifted version of itself [13]. For 32-bit numbers Marsaglia 
proposes 81 triples of parameters (a, b, c) and 8 lines of C code in 
his paper. Any choice of the 81 a,b,c triples for 32-bit sequences, 
and any one of the eight lines of C code, will provide, for 32-bit 
words, an xorshift RNG with period 232−1, for a total of 8×81 = 
648 choices. He proposes a total of 2200 choices for the 
parameters a, b and c for 64-bit sequences. 

4.2.1 32-bit xorshift generator 
In the following sections, the two PRNG are described. The 
implementation of a 32-bit xorshift generator which is used to 
produce pseudo-random numbers is presented in this section. In 
the following section, the 64-bit generator is detailed. The initial 
state (seed) used by the xorshift generator is an 8-bit number 
supplied by A/D. A total of 88 static seeds are stored in a look-up 
table (LUT). 87 of them are for the 8-bit numbers with an 



occurrence probability higher than 0.001. The last static seed is 
stored for all of the other numbers with a very small probability of 
occurrence. After generating 32 numbers, the generator stores the 
last number to use it the following time if the A/D converter 
delivers the same 8-bit number, and a cycle ends. The new cycle 
starts and the A/D converter supplies the next seed. 

 
Figure 6. Flowchart of the generation of 32 32-bit numbers 

during a cycle. 
 
The frequency of the A/D converter is 1 MHz. The xorshift 
generator is implemented in C. With a proper hardware the bit rate 
of final bit sequence will be: 
1 MHz x 32 number x 32 bits/number= 1.024 Gbit/s 
Several blocks of pseudo numbers have been generated and 
statistically tested for different sets of parameters, different lines 
of codes and different seeds. All of them pass almost every 
random test, except the Binary Matrix Rank Test of the NIST Test 
Suite. The program is written in C. For the final tests the 
following lines of codes are used: 

x32 = seed; period = 32; 
        for(int i=0; i < period; i++){ 
            x32 ^= x32 << 5; 
            x32 ^= x32 >> 27; 
            x32 ^= x32 << 25; 
            *(x+k) = x32; 
            ++k; 
        } 
    k=0; *(seeds+no) = *(x+31); 
 

The purpose of the rank test is to check for linear dependence 
among fixed length substrings of the original sequence [14]. This 
test divides the binary sequence in 32x32-disjoint blocks. As we 
have chosen a 32-bit xorshift generator, in every row of every 
32x32-matrix, the binary sequence of one pseudo-random number 
will appear. The rank of each matrix is then calculated. A 
common approach to finding the rank of a matrix is to reduce it to 
a simpler form by using Gaussian elimination (also known as row 
reduction).  The rank of a matrix is the number of rows or 
columns with at least one nonzero element after row reduction 
[15]. If the rank of a matrix is smaller than a defined value, the 
test will fail. This is to be expected since every row of the 
matrices will be generated using the last row and the linear 
operation xor. Marsaglia too mentions this weakness in his paper. 
To address this weakness, non-linearity needs to be built into the 
matrices. The following section describes this process. 

4.2.1.1 Swapping the first row with the main 
diagonal 
A non-linear transformation is needed to change the ranks of the 
matrices. In order to avoid changing the results of the other tests, 

the elements of each matrix are only moderately moved. This 
process can be seen in Figure 7. The first row and the main 
diagonal of every matrix are swapped. The other elements of the 
matrices keep their positions. As the number of ones and zeros 
remains unchanged, the results of the frequency test of both 
matrices, on which many other tests are based remain the same. 
The other tests show very similar results. 

 
Figure 7. Swapping the first row with the main diagonal. 

 
After a matrix is completed, the binary sequence is output and the 
program is given the following seed by the A/D to build a new 
matrix. Obviously, the new order of the bits will change the 
results of the statistical tests. Nevertheless, these changes are 
insignificant. 

4.2.2 64-bit xorshift generator 
The implementation of the 64-bit xorshift generator is presented 
here. A total of 2200 choices for the parameters have been 
proposed by Marsaglia.  Several values for the parameters a, b and 
c have been tested. All runs resulted in consistent behavior. All 
the NIST Test Suite tests were successfully completed. While at 
first glance, everything seems fine, a closer look reveals that using 
long streams of bits in every cycle decreases the real-randomness 
and increases the pseudo-randomness. By using just 16 numbers, 
this situation is avoided and in addition, the same bit rate of 1.024 
Gbit/s is maintained.  

1 MHz x 16 number x 64 bits/number= 1.024 Gbit/s 
The following set of parameters have been used to generate 
random numbers and to evaluate the generator:  
 
x64 ^= x64 << 21; x64 ^= x64 >> 13; x64 ^= x64 << 52; 

 

5. EXPERIMENTAL RESULTS 
Randomness is a probabilistic property; that is, the properties of a 
random sequence can be characterized and described in terms of 
probability. For probability analysis of the generated numbers the 
NIST Test Suite has been used. The NIST Test Suite is a 
statistical package consisting of 15 tests that were developed to 
test the randomness of (arbitrarily long) binary sequences 
produced by either hardware- or software-based cryptographic 
random or pseudo-random number generators [14]. 

In this Test Suite every statistical test is formulated to test a 
specific null hypothesis (H0). The null hypothesis under test is 
that the sequence being tested is random. Associated with the null 
hypothesis there is also an alternative hypothesis (Ha) which 
allege that the sequence is not random. It is necessary to choose a 
relevant randomness statistic to accept or to reject the null 
hypothesis. Under an assumption of randomness, such a statistic 
has a distribution of possible values. A theoretical reference 
distribution of this statistic under the null hypothesis and a critical 
value is determined by mathematical methods. Every test 
calculates a test statistic value and compares it to the critical 
value. If the test statistic value exceeds the critical value the null 
hypothesis will be rejected. Otherwise, it will be accepted. There 



could be two types of errors. Type I error describes, that the bit 
sequence is random but the null hypothesis has rejected it. The 
probability of this error is called the level of significance (α). It is 
an important parameter for these tests. Type II error describes that 
although the bit sequence is non-random the null hypothesis is 
accepted. The probability of the type II error is normally 
presented by β. Every test calculates a p-value which is a strength 
of the evidence against the null hypothesis. If the calculated p-
value is higher than or equal to α (the level of significance) the 
null hypothesis is accepted and the test passes. Otherwise, the null 
hypothesis is rejected and test fails. An α of 0.01 indicates that 
one would expect one sequence in 100 sequences to be rejected.  

The first test is the Frequency or Monobit Test. It counts the 
numbers of ones and zeros in a bit sequence. If they are 
approximately the same, the test passes. With the selected 
parameters, this test will fail if there are more than 501300 or less 
than 498700 ones or zeros in a sequence of 106 bits. All 
subsequent tests depend on the passing of this test. The Block 
Frequency Test determines the proportion of ones and zeros in a 
block with the length of M. The Run Test counts the number of 
ones with at least one zero before and at least one zero after it. 
The Longest Run Test counts the number of ones with at least one 
zero before and at least one zero after it in a block of length M. 
The Rank Test checks for linear dependency among fixed length 
substrings of the original sequence. The FFT Test checks if there 
is a periodicity in the sequence. The focus of the Overlapping 
Template Matching test and the Non-Overlapping Template Test 
is the number of occurrences of pre-specified target strings. 

All tests have been carried out for 100 sequences of 106 bits, a 
significance level of α = 0.01, block length of Frequency Test M = 
128, of Non-Overlapping Template Test M = 9, of Overlapping 
Template Test M = 9, of Approximate Entropy Test M = 10, of 
Serial Test M = 16 and of Linear Complexity Test M = 500. 

5.1 32-bit generator 
100 sequences of 106 bits are captured before and after the 
swapping procedure and tested with the  NIST Test Suite. 

5.1.1 Results before the swapping procedure 
Figure 8 shows the results of one of the statistical tests applied to 
the random numbers generated before the swapping procedure. 
Only the Rank Test fails. This demonstrates the vulnerability of 
the random numbers since with enough time and effort, the 32-bit 
numbers in a 32-block could be cracked. 

 

 
Figure 8. Results of the statistical tests 32-bit RNG before the 

swapping procedure. 
5.1.2 Results after the swapping procedure 
In this section, the random numbers which were reordered with 
the swapping procedure are tested with the NIST Test Suite. An 
excerpt of the results is listed in Figure 9. As we see, all statistical 

tests have been passed successfully. The final p-values are high 
and the calculated p-values for every test C1 to C10 are almost 
uniformly distributed between 0 and 1. This confirms the 
robustness and the stability of the generator.  

The swapping procedure changes just the order of the bits in every 
1032 sequence of bits. Reordering of the bits should not change 
the results of the frequency test. This can be seen in the results 
presented in Figures 8 and 9. Nevertheless, very small changes are 
possible, as every 106 of bits includes 976 blocks of 1024 bit 
sequences. It remains 576 bits. The order of these 576 bits could 
change the results of the frequency test. This situation is not 
represented in the results of these tests, but rather can be seen in 
Section 5.2.  

The remaining tests analyze the order rather than the number of 
the bits in a given block. As such, the changes in the results of 
these tests are more obvious. Some of them are improved and 
some not. All of them remain within the acceptable range which 
itself is very limited.  

 
Figure 9. Results of the statistical Tests 32-bit RNG after the 

swapping procedure. 

5.2 64-bit generator 
100 sequences of 106 bits are captured and thoroughly tested with 
the NIST Test Suite.  

5.2.1 Results before the swapping procedure 
Figure 10 shows the results of one of the statistical tests applied to 
the generated numbers with the parameters a=21, b=13, c=52. 
The results show that all the tests are passed successfully. The 
same results have been achieved with various values for the 
parameters a, b and c. This generator looks to be stable and 
secure. However, every block of 1024 bits is based on the 
deterministic xorshift algorithm. This is a vulnerability which can 
not be proven mathematically. 

 
Figure 10. Results of the statistical tests 64-bit RNG before the 

swapping procedure. 



5.2.2 Results after the swapping procedure 
To counter the weakness of the 64-bit generator, the first row and 
the main diagonal of every 32x32 matrix are swapped. The results 
are shown in Figure 11.  

 
Figure 11. Results of the statistical tests 64-bit RNG after the 

swapping procedure. 
A closer look shows that the results have changed slightly as a 
result of the reordering of the bits.  In addition, a small change in 
the Frequency test can also be seen. After the swapping procedure 
the p-value of one 106 bit sequence is moved from C8 to C9. 
Although it means a better p-value for the sequence, this 
decreases the uniformity of the values in C1 to C10, and 
consequently decreases the final p-value from 0.897763 to 
0.834308. This is the result of the 576 remaining bits in every 106 
bit sequence. 

The results confirm the stability and the robustness of the 
generator. The non-linearity of the procedure of re-ordering the 
bits which is presented in this work improves robustness by 
making the random numbers difficult to crack. This makes the 
need for an increased amount of memory which the process 
requires worthwhile.  

5.3 Bit rate of the RNG 
The combination of the presented TRNG and the PRNG generate 
high quality random numbers with a bit rate of 1.024 Gbit/s. It is 
possible to increase the bit rate by generating more numbers in a 
sequence or by using a 96- or higher-bit xorshift generator. 

5.4 Temperature Dependency 
As the temperature rises, the leakage current rises too and the 
noise decreases accordingly. Light can also release free electrons, 
called photo-current, in the depletion region of the diode so that 
the noise level decreases. Thus, the noise in an avalanche 
breakdown is maximal at low temperatures and a dark ambient 
[16]. In order to verify the temperature dependency of the 
generated random numbers, several tests have been carried out 
under varying temperatures. Although the amplitude of the 
amplifier is shifted or changed as temperature increases, the 
experimental results stay the same. This means that increasing the 
temperature from 20 ºC to about 50 ºC has no significant impact 
on the generator. 

6. CONCLUSION 
The random number generator based on avalanche noise and the 
xorshift algorithm, which is proposed in this paper, satisfies the 
NIST Test Suite. Due to the partial physical nature of the 
generator, the numbers generated cannot be predicted. This makes 
the generator suitable for numerous applications including 
cryptography. The TRNG generates 8-bit numbers with a 

frequency of 1 MHz. The xorshift generator generates a sequence 
of 1024 bits between two samplings. The bit rate of the generator 
is 1Gbit/sec. It could be increased by using a 64, 96 or 128-bit 
xorshift generator and by generating more numbers in every cycle. 
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