
A Random Number Generator Based on Electronic Noise
and the Xorshift Algorithm

Mandana Ewert
University of Applied Sciences

Grantham-Allee 20, 53757 Sankt, Augustin, Germany
Tel: +49 2241 865 286

mandana.ewert@h-brs.de

ABSTRACT
This paper introduces a random number generator (RNG) based
on the avalanche noise of two diodes. A true random number
generator (TRNG) generates true random numbers with the use of
the electronic noise produced by two avalanche diodes. The
amplified outputs of the diodes are sampled and digitized. The
difference between the two concurrently sampled and digitized
outputs is calculated and used to select a seed and to drive a
pseudo-random number generator (PRNG). The PRNG is an
xorshift generator that generates 1024 bits in each cycle. Every
sequence of 1024 bits is moderately modified and output. The
TRNG delivers the next seed and the next cycle begins. The
statistical behavior of the generator is analyzed and presented.

CCS Concepts
• Security and privacy→Cryptography

Keywords
Random number generator; true random number generator;
pseudo-random number generator; xorshift-generator

1. INTRODUCTION
Random numbers are necessary for a variety of purposes such as
generating data encryption keys, numerical simulation of physical
phenomena in scientific and engineering fields, and analysis of
physical experiments. The applications of random numbers vary
over a wide range of scientific and technical fields to politics and
games. They are fundamental to almost all secure computer
systems.

Random numbers have been important for the humans since the
first dice were carved out of bone over 5000 years ago. They have
been used in diplomatic and military communication for
encrypting the secret messages for thousands of years. Today with
technological progress, the need for high quality random numbers
is more than ever. In a network of computers and devices, every
single encrypted connection consumes random numbers, and with
a constantly growing demand for connectivity and an increased
focus on privacy over the connections, the number of encrypted

connections is only going to increase [1].

Randomness could be defined if something is algorithmically
incompressible or irreducible. More precisely, a member of a set
of objects is random if it has the highest possible complexity
within the set [2]. In other words, random numbers are a sequence
of numbers within an interval with an unpredictable progress. The
sequence of random numbers must feature the following
characteristics [3]:

•Uniform distribution of the numbers in the given interval
•Statistical independency of each number from the previous

numbers
•Unpredictability of the future numbers

The uniformity of a sequence of bits could be examined with
some well-defined tests. On the other hand, there is no such test to
prove the statistical independency. Rather, a number of tests could
be applied to show if there is some dependencies between the bits.
If none of a number of tests could prove dependency between the
bits of a sequence, the bits could be considered as independent for
a defined level of confidence [3].

Unpredictability is a direct consequence of statistical
independency. It cannot be proved directly. With true random
sequences, each number is statistically independent of other
numbers in the sequence and therefore unpredictable. Pseudo-
random numbers, which are based on an algorithm, are
deterministic and not statistically independent, even if the
dependency cannot be proved. It means they are not
unpredictable.

Additionally, high quality random numbers must have a high bit
rate for todays’ applications. They must also be independent of
environmental parameters. These are the weaknesses of true
random numbers generated based on physical sources. However,
high quality and high speed are often inversely proportional to
each other: excellent random number generators are often slow,
where as poor random number generators are typically fast.

Despite their weaknesses, using true random numbers is
indispensable as they provide the highest immunity of encrypted
data to cryptanalytic attacks [4]. Computers are incapable of
producing true random numbers as they are based on
mathematical principles. To get true random numbers it is
necessary to use a physical random phenomenon, such as thermal
noise, atmospheric noise, avalanche noise or emission timing of
radioactive decay. Using these phenomena as a source for an
RNG is normally complex and inconvenient. Because of the
complexity of design and inconvenience, the pseudo random
number generators based on deterministic algorithms are often
used instead.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICNCC 2018, December 14–16, 2018, Taipei City, Taiwan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6553-6/18/12…$15.00
https://doi.org/10.1145/3301326.3301359

mailto:mandana.ewert@h-brs.de

Very fast PRNGs with excellent statistical behaviors could be
implemented easily. Nevertheless, as their output is predictable,
they are unusable for some applications such as cryptography. For
cryptography, the science of making and breaking secret codes,
robust random numbers are essential.

There have been many proposals and ideas to overcome the
weakness of the PRNGs. One idea is to use an unpredictable
physical random phenomenon as an entropy source and apply it to
a PRNG. One popular solution is to implement a PRNG (like a
linear-feedback shift register (LFSR)) and use a TRNG which
generates a pool of true random numbers and apply the numbers
in this pool as a seed (an initial state) [5].

This paper is organized as follows: Section II deals with the
related work. Section III explains the center idea and the concept.
(Figure 1) Section IV explains the system design and discusses the
output signal. (Figure 2-3) Section IV presents and discusses the
experimental results of the proposed random number generator.
Section VI presents the conclusion and further works.

2. RELATED WORK
For generating fast and high quality random numbers there have
been many proposals. Most of them use a physical source of
entropy and apply it to an algorithm to improve the statistical
behavior and to increase bit rate. The random number generator
implemented in [6] uses the non-uniform quantization of the
samples of avalanche diode noise. A PRNG is also implemented.
The bit sequence generated by TRNG is xor-ed to the pseudo
random sequence. The generator could get a bit rate up to 320
Mbit/s. This work [7] implements a true random number generator
based on radioactive decay. A Geiger-Müller tube detects the
decay events of a Thorium dioxide sample. They are transformed
into a random bit stream on a Raspberry Pi single-board
computer. The efficiency of the generator is 100%. On average,
the system produces a random bit every 90 ms. It corresponds to a
bit rate of about 11 Hz, which is very low. It can be used as a seed
generator. In [8], an improved true random number generator
(TRNG) is proposed, which comprises a low-bias hardware
random number generator (HRNG) and a scrambler based on
LFSR. The HRNG reduces both DC offset from the noise sources
and offset voltage from the comparator to generate low-bias bit
stream. The LFSR-based scrambler further reduces the bias to
zero.

3. CENTER IDEA AND CONCEPT
Noise, a small fluctuation in current or in voltage is generated in
all semiconductor devices. The intensity of these fluctuations
depends on the device type, its manufacturing process, and
operating conditions [9].

Avalanche noise is a form of noise produced by Zener or
avalanche breakdown in a pn junction. In avalanche breakdown,
holes and electrons in the depletion region of a reverse-biased pn
junction acquire sufficient energy to create hole-electron pairs by
colliding with silicon atoms. This noise is much higher than the
other noises, because a single carrier can start an avalanching
process that results in the production of a current burst containing
many carriers moving together. These collisions are purely
random and produce random current pulses but much more
intense than other noises [10] [11].

The avalanche noise is associated with the current flow. The
higher the external current, the more noise generated. The total
current is the sum of the random chain reactions. If there is an

avalanche breakthrough, avalanche noise dominates strongly other
noises in a diode. Diodes when biased into the avalanche
breakdown region produce significant amounts of excess noise
with good stability, high bandwidth, and good statistical
properties. The spectral density of avalanche noise depends on the
actual voltage across the diode. It can be assumed that each
electron that flows as having a multiplication factor, M. It can be
written like that:

𝑀 =
1

1 − |
𝑉𝐷
𝑉𝐵
|
α

In this equation α is an exponent that varies between 3 and 6
depending on the semiconductor characteristics, 𝑉𝐵 is the diode
breakdown voltage and 𝑉𝐷 is the actual voltage across the diode
[12]. To achieve higher M, the diode voltage 𝑉𝐷 must be as high
as possible and nearly equal to 𝑉𝐵, and thus the diode must be in
the avalanche breakdown region. In this area, the denominator of
the formula will be almost zero and M will be a very large
number.

This characteristic is used for generating the true random
numbers. To achieve this, a circuit is needed to sample the
produced noise. The sampled values must be amplified and
converted from analog to digital. In order to avoid correlation
between the samples, it is important to maintain a low bit rate. By
using the xorshift algorithm in between each sampled pair, the
final bit rate is increased while still avoiding the correlation
problem.

4. SYSTEM DESIGN
The RNG proposed in this paper implements a TRNG based on
avalanche noise of two diodes and a PRNG based on the xorshift
algorithm [13]. A 2-channel, 8-bit A/D samples the amplified
avalanche noise of two TVS diodes, and saves them in a file. The
difference between two concurrently sampled outputs is used to
select an initial state (seed) for an xorshift generator and to drive
it.

The xorshift generator generates 32 32-bit numbers in each cycle.
A matrix of 32x32 bits is constructed and moderately modified
before output. The next cycle begins and the A/D delivers the next
8-bit number.

Figure 1. Block diagram of the RNG.

4.1 True Random Number Generator –
Circuit Design
The avalanche effect of two TVS diodes has been used as an
entropy source. They are on separate and isolated printed circuit
boards. Both diodes concerned are P6SMB10. They generate
high-amplitude noise, which is sampled after a two-stage
amplification. Both transistors are BFR92A. In order to eliminate
the influence of the environmental noise, the difference between
the outputs of two circuits is used as the entropy source.

Figure 2 shows the electrical circuit diagram of a true random
number generator, and Figure 3 shows the printed circuit board of
a true random number generator.

Figure 2. Circuit diagram of a true random generator.

Figure 3. Printed circuit board of a true random number

generator.

The sampled values are in the range of -2 to 2 volt. Figure 4
shows the sampled values for a time period of 10 µsec.

Figure 4. Sampled values Channel 1 and 2 for a period of 10

µsec.

Figure 5a and Figure 5b show the amplified output of one diode in
both time and frequency domains. Figure 5c shows recorded
histograms of the captured data between -1.5 and 1.5 volt. As can
be seen, it resembles a Gaussian distribution. After sampling the
amplified outputs of the diodes, the two-channel 8-bit A/D
converts the sampled values to digital and saves them as 8-bit
numbers in a common file.

Finally, the difference of two simultaneously sampled outputs is
calculated and saved. Figure 5d shows the distribution of 106 8-bit
numbers between 0 and 255. Several tests confirmed the Gaussian
distribution of these numbers.

Every bit of the captured 8-bit numbers contains randomness or
entropy, which could be used in different ways. One possibility is
to use the most significant bit (MSB) which represents the zero
crossing or sign changing of the number. This bit shows excellent
statistical behavior and passes every statistical test. Nevertheless,
it is not a good choice as the avalanche noise generated by diodes
is not very fast and it should not be sampled by a sampling
frequency higher than 1 MHz. Several diodes have been tested.
They showed very same behavior. By using a sampling frequency
higher than 1 MHz, there would be many zeros or ones in a row
which means a dependency or a correlation between the
neighboring numbers. This would make the sampled numbers
unusable as an entropy source. As the frequency of 1MHz or the

bit rate of 8 Mbit/s is not enough for todays’ applications a
transformation is needed.

d

Figure 5. (a) Output of the TRNG in time domain, (b) in
frequency domain (c) Probability density distribution and (d)

histogram of the TRNG.

4.2 Pseudo Random Number Generator
Xorshift generators are fast, high quality pseudo-random number
generators, which have been proposed by George Marsaglia [13].
Actually, they are a good choice for non-cryptographic
applications as they are fast and easy to implement, have long
periods and pass strict statistical tests. Nevertheless, they are not a
good choice for cryptographic applications because they are based
on mathematical or logical algorithms and their courses could be
predicted if their parameters and the initial state (seed) of the
generator are known.

An xorshift random number generator (xorshift RNG) produces a
sequence of 232−1 integers x, or a sequence of 264−1 pairs x,y, or a
sequence of 296−1 triples x,y,z, etc., by means of repeated use of a
simple computer construction: exclusive-or (xor) a computer word
with a shifted version of itself [13]. For 32-bit numbers Marsaglia
proposes 81 triples of parameters (a, b, c) and 8 lines of C code in
his paper. Any choice of the 81 a,b,c triples for 32-bit sequences,
and any one of the eight lines of C code, will provide, for 32-bit
words, an xorshift RNG with period 232−1, for a total of 8×81 =
648 choices. He proposes a total of 2200 choices for the
parameters a, b and c for 64-bit sequences.

4.2.1 32-bit xorshift generator
In the following sections, the two PRNG are described. The
implementation of a 32-bit xorshift generator which is used to
produce pseudo-random numbers is presented in this section. In
the following section, the 64-bit generator is detailed. The initial
state (seed) used by the xorshift generator is an 8-bit number
supplied by A/D. A total of 88 static seeds are stored in a look-up
table (LUT). 87 of them are for the 8-bit numbers with an

occurrence probability higher than 0.001. The last static seed is
stored for all of the other numbers with a very small probability of
occurrence. After generating 32 numbers, the generator stores the
last number to use it the following time if the A/D converter
delivers the same 8-bit number, and a cycle ends. The new cycle
starts and the A/D converter supplies the next seed.

Figure 6. Flowchart of the generation of 32 32-bit numbers

during a cycle.

The frequency of the A/D converter is 1 MHz. The xorshift
generator is implemented in C. With a proper hardware the bit rate
of final bit sequence will be:
1 MHz x 32 number x 32 bits/number= 1.024 Gbit/s
Several blocks of pseudo numbers have been generated and
statistically tested for different sets of parameters, different lines
of codes and different seeds. All of them pass almost every
random test, except the Binary Matrix Rank Test of the NIST Test
Suite. The program is written in C. For the final tests the
following lines of codes are used:

x32 = seed; period = 32;
 for(int i=0; i < period; i++){
 x32 ^= x32 << 5;
 x32 ^= x32 >> 27;
 x32 ^= x32 << 25;
 *(x+k) = x32;
 ++k;
 }
 k=0; *(seeds+no) = *(x+31);

The purpose of the rank test is to check for linear dependence
among fixed length substrings of the original sequence [14]. This
test divides the binary sequence in 32x32-disjoint blocks. As we
have chosen a 32-bit xorshift generator, in every row of every
32x32-matrix, the binary sequence of one pseudo-random number
will appear. The rank of each matrix is then calculated. A
common approach to finding the rank of a matrix is to reduce it to
a simpler form by using Gaussian elimination (also known as row
reduction). The rank of a matrix is the number of rows or
columns with at least one nonzero element after row reduction
[15]. If the rank of a matrix is smaller than a defined value, the
test will fail. This is to be expected since every row of the
matrices will be generated using the last row and the linear
operation xor. Marsaglia too mentions this weakness in his paper.
To address this weakness, non-linearity needs to be built into the
matrices. The following section describes this process.

4.2.1.1 Swapping the first row with the main
diagonal
A non-linear transformation is needed to change the ranks of the
matrices. In order to avoid changing the results of the other tests,

the elements of each matrix are only moderately moved. This
process can be seen in Figure 7. The first row and the main
diagonal of every matrix are swapped. The other elements of the
matrices keep their positions. As the number of ones and zeros
remains unchanged, the results of the frequency test of both
matrices, on which many other tests are based remain the same.
The other tests show very similar results.

Figure 7. Swapping the first row with the main diagonal.

After a matrix is completed, the binary sequence is output and the
program is given the following seed by the A/D to build a new
matrix. Obviously, the new order of the bits will change the
results of the statistical tests. Nevertheless, these changes are
insignificant.

4.2.2 64-bit xorshift generator
The implementation of the 64-bit xorshift generator is presented
here. A total of 2200 choices for the parameters have been
proposed by Marsaglia. Several values for the parameters a, b and
c have been tested. All runs resulted in consistent behavior. All
the NIST Test Suite tests were successfully completed. While at
first glance, everything seems fine, a closer look reveals that using
long streams of bits in every cycle decreases the real-randomness
and increases the pseudo-randomness. By using just 16 numbers,
this situation is avoided and in addition, the same bit rate of 1.024
Gbit/s is maintained.

1 MHz x 16 number x 64 bits/number= 1.024 Gbit/s
The following set of parameters have been used to generate
random numbers and to evaluate the generator:

x64 ^= x64 << 21; x64 ^= x64 >> 13; x64 ^= x64 << 52;

5. EXPERIMENTAL RESULTS
Randomness is a probabilistic property; that is, the properties of a
random sequence can be characterized and described in terms of
probability. For probability analysis of the generated numbers the
NIST Test Suite has been used. The NIST Test Suite is a
statistical package consisting of 15 tests that were developed to
test the randomness of (arbitrarily long) binary sequences
produced by either hardware- or software-based cryptographic
random or pseudo-random number generators [14].

In this Test Suite every statistical test is formulated to test a
specific null hypothesis (H0). The null hypothesis under test is
that the sequence being tested is random. Associated with the null
hypothesis there is also an alternative hypothesis (Ha) which
allege that the sequence is not random. It is necessary to choose a
relevant randomness statistic to accept or to reject the null
hypothesis. Under an assumption of randomness, such a statistic
has a distribution of possible values. A theoretical reference
distribution of this statistic under the null hypothesis and a critical
value is determined by mathematical methods. Every test
calculates a test statistic value and compares it to the critical
value. If the test statistic value exceeds the critical value the null
hypothesis will be rejected. Otherwise, it will be accepted. There

could be two types of errors. Type I error describes, that the bit
sequence is random but the null hypothesis has rejected it. The
probability of this error is called the level of significance (α). It is
an important parameter for these tests. Type II error describes that
although the bit sequence is non-random the null hypothesis is
accepted. The probability of the type II error is normally
presented by β. Every test calculates a p-value which is a strength
of the evidence against the null hypothesis. If the calculated p-
value is higher than or equal to α (the level of significance) the
null hypothesis is accepted and the test passes. Otherwise, the null
hypothesis is rejected and test fails. An α of 0.01 indicates that
one would expect one sequence in 100 sequences to be rejected.

The first test is the Frequency or Monobit Test. It counts the
numbers of ones and zeros in a bit sequence. If they are
approximately the same, the test passes. With the selected
parameters, this test will fail if there are more than 501300 or less
than 498700 ones or zeros in a sequence of 106 bits. All
subsequent tests depend on the passing of this test. The Block
Frequency Test determines the proportion of ones and zeros in a
block with the length of M. The Run Test counts the number of
ones with at least one zero before and at least one zero after it.
The Longest Run Test counts the number of ones with at least one
zero before and at least one zero after it in a block of length M.
The Rank Test checks for linear dependency among fixed length
substrings of the original sequence. The FFT Test checks if there
is a periodicity in the sequence. The focus of the Overlapping
Template Matching test and the Non-Overlapping Template Test
is the number of occurrences of pre-specified target strings.

All tests have been carried out for 100 sequences of 106 bits, a
significance level of α = 0.01, block length of Frequency Test M =
128, of Non-Overlapping Template Test M = 9, of Overlapping
Template Test M = 9, of Approximate Entropy Test M = 10, of
Serial Test M = 16 and of Linear Complexity Test M = 500.

5.1 32-bit generator
100 sequences of 106 bits are captured before and after the
swapping procedure and tested with the NIST Test Suite.

5.1.1 Results before the swapping procedure
Figure 8 shows the results of one of the statistical tests applied to
the random numbers generated before the swapping procedure.
Only the Rank Test fails. This demonstrates the vulnerability of
the random numbers since with enough time and effort, the 32-bit
numbers in a 32-block could be cracked.

Figure 8. Results of the statistical tests 32-bit RNG before the

swapping procedure.
5.1.2 Results after the swapping procedure
In this section, the random numbers which were reordered with
the swapping procedure are tested with the NIST Test Suite. An
excerpt of the results is listed in Figure 9. As we see, all statistical

tests have been passed successfully. The final p-values are high
and the calculated p-values for every test C1 to C10 are almost
uniformly distributed between 0 and 1. This confirms the
robustness and the stability of the generator.

The swapping procedure changes just the order of the bits in every
1032 sequence of bits. Reordering of the bits should not change
the results of the frequency test. This can be seen in the results
presented in Figures 8 and 9. Nevertheless, very small changes are
possible, as every 106 of bits includes 976 blocks of 1024 bit
sequences. It remains 576 bits. The order of these 576 bits could
change the results of the frequency test. This situation is not
represented in the results of these tests, but rather can be seen in
Section 5.2.

The remaining tests analyze the order rather than the number of
the bits in a given block. As such, the changes in the results of
these tests are more obvious. Some of them are improved and
some not. All of them remain within the acceptable range which
itself is very limited.

Figure 9. Results of the statistical Tests 32-bit RNG after the

swapping procedure.

5.2 64-bit generator
100 sequences of 106 bits are captured and thoroughly tested with
the NIST Test Suite.

5.2.1 Results before the swapping procedure
Figure 10 shows the results of one of the statistical tests applied to
the generated numbers with the parameters a=21, b=13, c=52.
The results show that all the tests are passed successfully. The
same results have been achieved with various values for the
parameters a, b and c. This generator looks to be stable and
secure. However, every block of 1024 bits is based on the
deterministic xorshift algorithm. This is a vulnerability which can
not be proven mathematically.

Figure 10. Results of the statistical tests 64-bit RNG before the

swapping procedure.

5.2.2 Results after the swapping procedure
To counter the weakness of the 64-bit generator, the first row and
the main diagonal of every 32x32 matrix are swapped. The results
are shown in Figure 11.

Figure 11. Results of the statistical tests 64-bit RNG after the

swapping procedure.
A closer look shows that the results have changed slightly as a
result of the reordering of the bits. In addition, a small change in
the Frequency test can also be seen. After the swapping procedure
the p-value of one 106 bit sequence is moved from C8 to C9.
Although it means a better p-value for the sequence, this
decreases the uniformity of the values in C1 to C10, and
consequently decreases the final p-value from 0.897763 to
0.834308. This is the result of the 576 remaining bits in every 106
bit sequence.

The results confirm the stability and the robustness of the
generator. The non-linearity of the procedure of re-ordering the
bits which is presented in this work improves robustness by
making the random numbers difficult to crack. This makes the
need for an increased amount of memory which the process
requires worthwhile.

5.3 Bit rate of the RNG
The combination of the presented TRNG and the PRNG generate
high quality random numbers with a bit rate of 1.024 Gbit/s. It is
possible to increase the bit rate by generating more numbers in a
sequence or by using a 96- or higher-bit xorshift generator.

5.4 Temperature Dependency
As the temperature rises, the leakage current rises too and the
noise decreases accordingly. Light can also release free electrons,
called photo-current, in the depletion region of the diode so that
the noise level decreases. Thus, the noise in an avalanche
breakdown is maximal at low temperatures and a dark ambient
[16]. In order to verify the temperature dependency of the
generated random numbers, several tests have been carried out
under varying temperatures. Although the amplitude of the
amplifier is shifted or changed as temperature increases, the
experimental results stay the same. This means that increasing the
temperature from 20 ºC to about 50 ºC has no significant impact
on the generator.

6. CONCLUSION
The random number generator based on avalanche noise and the
xorshift algorithm, which is proposed in this paper, satisfies the
NIST Test Suite. Due to the partial physical nature of the
generator, the numbers generated cannot be predicted. This makes
the generator suitable for numerous applications including
cryptography. The TRNG generates 8-bit numbers with a

frequency of 1 MHz. The xorshift generator generates a sequence
of 1024 bits between two samplings. The bit rate of the generator
is 1Gbit/sec. It could be increased by using a 64, 96 or 128-bit
xorshift generator and by generating more numbers in every cycle.

7. REFERENCES
[1] [Online]. Available:

https://conferences.oreilly.com/oscon/oscon2013/public/sche
dule/detail/28777.

[2] G. J. Chaitin, Exploring RANDOMNESS, London: Springer,
2002.

[3] W. Stalling, Cryptography and Network Security, England:
Pearson, 2014.

[4] H. G. Katzgraber, “Cornell University Library,” 9-20 August
2010, Oldenburg, Germany. [Online]. Available:
https://arxiv.org/pdf/1005.4117.pdf..

[5] . M. (Intel), „Intel® Digital Random Number Generator
(DRNG) Software Implementation Guide,“ 15 May 2014.
[Online]. Available: https://software.intel.com/en-
us/articles/intel-digital-random-number-generator-drng-
software-implementation-guide. [Zugriff am 7 March 2017].

[6] P. M. Z. B. V. O. S. M. Miroslav Peric, „High speed random
number generator for section key generation in encryption
devices,“ 20 January 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6716186/. [Zugriff am
28 February 2017].

[7] M. S. J. F. I. H. Daniel Rüschen. [Online]. Available:
https://www.medit.hia.rwth-aachen.

[8] Y. L. C.-H. H. Wei Mao, „Zero-bias true random number
generator using LFSR-based scrambler,“ 05 2017. [Online].
Available: http://ieeexplore.ieee.org/document/8050474/.

[9] Konczakowska und B. M. Wilamowski, „Noise in
Semiconductor Devices,“ [Online]. Available:
http://www.eng.auburn.edu/%7Ewilambm/pap/2011/K10147
_C011.pdf. [Zugriff am 1 2 2017].

[10] P. R. Gray, Analysis and design of Analog Integrated
Circuits

[11] Texas Instrument, „ti,“ 2007. [Online]. Available:
http://www.ti.com/lit/an/slva043b/slva043b.pdf

[12] Tektronix, „Noise Figure - Overview of Noise Measurement
Methods,“ 2014. [Online]. Available:
https://de.tek.com/document/.../noise-figure-overview-noise-
measurement-methods

[13] G. Marsaglia, „ Xorshift RNGs,“ 2003. [Online]. Available:
https://www.jstatsoft.org/article/view/v008i14

[14] J. S. J. N. M. Andrew Rukhin,
„http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_so
ftware.html,“ April 2010. [Online]. [Zugriff am 23 February
2017].

[15] G. Bärwolff, Höhere Mathematik, Berlin: Spektrum, 2009.
[16] Vishay Semiconductor - Jochen Krieger, „The Noise of

Avalanche Breakdown Diodes - Vishay,“ 20 July 2017.
[Online]. Available:
https://www.vishay.com/docs/85966/thenoiseofavalanchebre
akdown.pdf.

http://www.ti.com/lit/an/slva043b/slva043b.pdf
https://de.tek.com/document/.../noise-figure-overview-noise-measurement-methods
https://de.tek.com/document/.../noise-figure-overview-noise-measurement-methods
https://www.jstatsoft.org/article/view/v008i14

