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Abstract

Clustering problems are well-studied in a variety of fields such as data science, operations
research, and computer science. Such problems include variants of centre location problems,
k-median, and k-means to name a few. In some cases, not all data points need to be clustered;
some may be discarded for various reasons. For instance, some points may arise from noise in
a data set or one might be willing to discard a certain fraction of the points to avoid incurring
unnecessary overhead in the cost of a clustering solution.

We study clustering problems with outliers. More specifically, we look at uncapacitated
facility location (UFL), k-median, and k-means. In these problems, we are given a set X
of data points in a metric space δ(., .), a set C of possible centres (each maybe with an opening
cost), maybe an integer parameter k, plus an additional parameter z as the number of outliers.
In uncapacitated facility location with outliers, we have to open some centres, discard up
to z points of X and assign every other point to the nearest open centre, minimizing the total
assignment cost plus centre opening costs. In k-median and k-means, we have to open up to k
centres but there are no opening costs. In k-means, the cost of assigning j to i is δ2(j, i). We
present several results. Our main focus is on cases where δ is a doubling metric (this includes
fixed dimensional Euclidean metrics as a special case) or is the shortest path metrics of graphs
from a minor-closed family of graphs. For uniform-cost UFL with outliers on such metrics
we show that a multiswap simple local search heuristic yields a PTAS. With a bit more work,
we extend this to bicriteria approximations for the k-median and k-means problems in the
same metrics where, for any constant ε > 0, we can find a solution using (1 + ε)k centres whose
cost is at most a (1 + ε)-factor of the optimum and uses at most z outliers. Our algorithms are
all based on natural multiswap local search heuristics. We also show that natural local search
heuristics that do not violate the number of clusters and outliers for k-median (or k-means)
will have unbounded gap even in Euclidean metrics.

Furthermore, we show how our analysis can be extended to general metrics for k-means with
outliers to obtain a (25 + ε, 1 + ε) bicriteria: an algorithm that uses at most (1 + ε)k clusters
and whose cost is at most 25 + ε of optimum and uses no more than z outliers.

∗This research was undertaken, in part, thanks to funding from the Canada Research Chairs program and an
NSERC Discovery Grant.
†Supported by NSERC.
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1 Introduction

Clustering is a fundamental problem in the field of data analysis with a long history and a wide
range of applications in very different areas, including data mining [9], image processing [40], biology
[27], and database systems [17]. Clustering is the task of partitioning a given set of data points
into clusters based on a specified similarity measure between the data points such that the points
within the same cluster are more similar to each other than those in different clusters.

In a typical clustering problem, we are given a set of n data points in a metric space, and
an integer k which specifies the desired number of clusters. We wish to find a set of k points to
act as centres and then assign each point to its nearest centre, thereby forming k clusters. The
quality of the clustering solution can be measured by using different objectives. For example,
in the k-means clustering (which is the most widely used clustering model), the goal (objective
function) is to minimize the sum of squared distances of each data point to its centre, while in
k-median, the goal is to minimize the sum of distances of each data point to its centre. The
uncapacitated facility location problem is the same as k-median except that instead of a
cardinality constraint bounding the number of centres, there is an additional cost for each centre
included in the solution. Minimizing these objective functions exactly is NP-hard [2, 16, 21, 28, 37,
41], so there has been substantial work on obtaining provable upper bounds (approximability) and
lower bounds (inapproximability) for these objectives; see [1, 10, 21, 28, 33, 34] for the currently
best bounds. Although inapproximability results [21, 28, 33] prevent getting polynomial time
approximation schemes (PTASs) for these problems in general metrics, PTASs are known for these
problems in fixed dimensional Euclidean metrics [4, 14, 19]. Indeed, PTASs for k-median and
uncapacitated facility location in fixed dimension Euclidean space [4] have been known for
almost two decades, but getting a PTAS for k-means in fixed dimension Euclidean space had been
an open problem until recent results of [14, 19].

In spite of the fact that these popular (centre based) clustering models are reasonably good
for noise-free data sets, their objective functions (specially the k-means objective function) are
extremely sensitive to the existence of points far from cluster centres. Therefore, a small number
of very distant data points, called outliers, –if not discarded– can dramatically affect the clustering
cost and also the quality of the final clustering solution. Dealing with such outliers is indeed the
main focus of this paper. Clustering with outliers has a natural motivation in many applications
of clustering and centre location problems. For example, consider (nongovernmental) companies
that provide nationwide services (e.g., mobile phone companies, chain stores). They alway have to
disregard some percentage of the remote population in order to be able to provide a competitive
service to the majority of the population.

We restrict our attention to the outlier version of the three well studied clustering problems:
k-means with outliers (k-means-out), k-median with outliers (k-median-out), and uncapaci-
tated facility location with outliers (UFL-out). Formally, in these problems, we are given
a set X of n data points in a metric space, a set C of possible centres, and the number of desired
outliers z. Both k-means-out and k-median-out aim at finding k centres C = {c1, . . . , ck} ⊆ C
and a set of (up to) z points Z to act as outliers. The objective is to minimize the clustering
cost. In k-means-out, this is the sum of squared distances of each data point in X \ Z to its
nearest centre, i.e.,

∑
x∈X\Z δ(x,C)2, while in k-median-out this is just the sum of distances, i.e.,∑

x∈X\Z δ(x,C), where δ(x,C) indicates the distance of point x to its nearest centre in C. UFL-
out is the same as k-median-out except that instead of a cardinality constraint, we are given
opening cost fc for each centre c ∈ C. The problem hence consists of finding centres (facilities) C
and z outliers Z that minimizes

∑
x∈X\Z δ(x,C) +

∑
c∈C fc. We present PTASs for these problems

on doubling metrics i.e. metrics with fixed doubling dimensions (which include fixed dimension
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Euclidean metrics as special case) and shortest path metrics of minor closed graphs (which includes
planar graphs as special case)1. Recall that a metric (V, δ) has doubling dimension d if each ball
of radius 2r can be covered with 2d balls of radius r in V . We call it a doubling metric if d can be
regarded as a constant; Euclidean metrics of constant (Euclidean) dimension are doubling metrics.

Despite a very large amount of work on the clustering problems, there has been only little work
on their outlier versions. To the best of our knowledge, the clustering problem with outliers was
introduced by Charikar et al. [11]. They devised a factor 3-approximation for UFL-out, and also
a bicriteria 4(1 + 1

ε )-approximation algorithm for k-median-out that drops z(1 + ε) outliers. They
obtained these results via some modifications of the Jain-Vazirani algorithm [29]. The first true
approximation algorithm for k-median-out was given by Chen [13] who obtained this by combining
very carefully the Jain-Vazirani algorithm and local search; the approximation factor is not specified
but seams to be a very large constant. Very recently, the first bicriteria approximation algorithm
for k-means-out is obtained by Gupta et al. [23]. They devised a bicriteria 274-approximation
algorithm for k-means-out that drops O(kz log(n∆)) outliers, where ∆ denotes the maximum
distance between data points. This is obtained by a simple local search heuristic for the problem.

1.1 Related work

k-means is one of the most widely studied problems in the Computer Science literature. The
problem is usually considered on d-dimensional Euclidean space Rd, where the objective becomes
minimizing the variance of the data points with respect to the centres they are assigned to. The most
commonly used algorithm for k-means is a simple heuristic known as Lloyd’s algorithm (commonly
referred to as the k-means algorithm) [36]. Although this algorithm works well in practice, it is
known that the the cost of the solutions computed by this algorithm can be arbitrarily large
compared to the optimum solution [30]. Under some additional assumptions about the initially
chosen centres, however, Arthur and Vassilvitskii [5] show that the approximation ratio of Lloyd’s
algorithm is O(log k). Later, Ostrovsky et al. [39] show that the approximation ratio is bounded by
a constant if the input points obey some special properties. Under no such assumptions, Kanungo
et al. [30] proved that a simple local search heuristic (that swaps only a constant number of centres
in each iteration) yields an (9 + ε)-approximation algorithm for Euclidean k-means. Recently,
Ahmadian et al. [1] improved the approximation ratio to 6.357 + ε by primal-dual algorithms.
For general metrics, Gupta and Tangwongsan [22] proved that the local search algorithm is a
(25 + ε)-approximation. This was also recently improved to 9 + ε via primal-dual algorithms [1].

In order to obtain algorithms with arbitrary small approximation ratios for Euclidean k-means,
many researchers restrict their focus on cases when k or d is constant. For the case when both k
and d are constant, Inaba et al. [26] showed that k-means can be solved in polynomial time. For
fixed k (but arbitrary d), several PTASs have been proposed, each with some improvement over
past results in terms of running time; e.g., see [15, 18, 24, 25, 31, 32]. Despite a large number of
PTASs for k-means with fixed k, obtaining a PTAS for k-means in fixed dimensional Euclidean
space had been an open problem for a along time. Bandyapadhyay and Varadarajan [8] presented
a bicriteria PTAS for the problem that finds a (1 + ε)-approximation solution which might use up
to (1 + ε)k clusters. The first true PTAS for the problem was recently obtained by [14, 19] via local
search. The authors show that their analysis also works for metrics with fixed doubling dimension
[19], and the shortest path metrics of minor closed graphs [14].

There are several constant factor approximation algorithms for k-median in general metrics.
The simple local search (identical with the one for k-means) is known to give a 3 + ε approxima-

1For brevity, we will call such graphs minor closed, understanding this means they belong to a fixed family of
graphs that closed under minors.
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tion by Arya et al. [6, 7]. The current best approximation uses different techniques and has an
approximation ratio of 2.675 + ε [35, 10]. For Euclidean metrics, this was recently improved to
2.633 + ε via primal-dual algorithms [1]. Arora et al. [4], based on Arora’s quadtree dissection [3],
gave the first PTAS for k-median in fixed dimensional Euclidean metrics. We note [4] also gives
a PTAS for UFL-out and k-median-out in constant-dimensional Euclidean metrics, our results
for Euclidean metrics in particular are therefore most meaningful for k-means-out. The recent
PTASs (based on local search) for k-median by [14, 19] work also for doubling metrics [19] and
also for minor-closed metrics [14]. No PTAS or bicriteria PTAS was known for such metrics for
even uniform-cost UFL with outliers (Uniform-UFL-out) or k-median-out.

Currently, the best approximation for uncapacitated facility location in general metrics
is a 1.488-approximation [34]. As with k-median, PTASs are known for uncapacitated facility
location in fixed dimensional Euclidean metrics [4], metrics with fixed doubling dimension [19],
and for the shortest path metrics of minor closed graphs [14]; however the results by [14] only work
for uncapacitated facility location with uniform opening cost.

1.2 Our results

We present a general method for converting local search analysis for clustering problems without
outliers to problems with outliers. Roughly speaking, we preprocess and then aggregate test swaps
used in the analysis of such problems in order to incorporate outliers. We demonstrate this by
applying our ideas to Uniform-UFL-out, k-median-out, and k-means-out.

Most of our results are for metrics of fixed doubling dimensions as well as shortest path metrics
of minor-closed graphs. First, we show that on such metrics a simple multi-swap local search
heuristic yields a PTAS for Uniform-UFL-out.

Theorem 1 A ρ = ρ(ε, d)-swap local search algorithm yields a PTAS for Uniform-UFL-out for
doubling metrics and minor-closed graphs. Here, d is either the doubling constant of the metric or
a constant that depends on a minor that is exclude from the minor-closed family.

We then extend this result to k-median and k-means with outliers (k-median-out and k-
means-out) and obtain bicriteria PTASs for them. More specifically:

Theorem 2 A ρ = ρ(ε, d)-swap local search algorithm yields a bicriteria PTAS for k-median-out
and k-means-out on doubling metrics and minor-closed graphs; i.e. finds a solutions of cost at
most (1 + ε) · OPT with at most (1 + ε)k clusters that uses at most z outliers where OPT is the
cost of optimum k-clustering with z outliers.

In fact, in minor-closed metrics a true local optimum in the local search algorithm would find a
solution using (1 + ε)k clusters with cost at most OPT in both k-median-out and k-means-out,
but a (1 + ε)-factor must be lost due to a standard procedure to ensure the local search algorithm
terminates in polynomial time.

We show how these results can be extended to the setting where the metric is the `qq-norm, i.e.
cost of connecting two points i, j is δq(i, j) (e.g. k-median-out is when q = 1, k-means-out is
when q = 2). Finally, we show that in general metrics we still recover a bicriteria constant-factor
approximation for k-median-out and k-means-out. While not our main result, it gives much
more reasonable constants under bicriteria approximations for these problems.

Theorem 3 A 1/εO(1)-swap local search algorithm finds a solution using (1 + ε)k clusters and has
cost at most (3 + ε) ·OPT for k-median-out or cost at most (25 + ε) ·OPT for k-means-out.
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It should be noted that a true constant-factor approximation for k-median-out is given by Chen
[12], though the constant seems to be very large. More interestingly, even a constant-factor bicriteria
for k-means-out that uses (1+ε)k clusters and discards the correct number of outliers has not been
observed before (recall that the bicriteria algorithm of [11] for k-median-out has ratio O(1/ε) for
k-median using at most (1 + ε)z outliers). It is not clear that Chen’s algorithm can be extended to
give a true constant-factor approximation for k-median-out; one technical challenge is that part
of the algorithm reassigns points multiple times over a series of O(log n) iterations. So it is not
clear that the algorithm in [12] extends to k-means.

To complement these results we show that for UFL-out (i.e. non-uniform opening costs) any
multi-swap local search has unbounded gap. Also, for k-median-out and k-means-out we show
that without violating the number of clusters or outliers, any multi-swap local search will have
unbounded gap even on Euclidean metrics.

Theorem 4 Multi-swap local search has unbounded gap for UFL-out and for k-median-out and
k-means-out on Euclidean metrics.

Outline of the paper: We start with preliminaries and notation. Then in Section 2, we prove
Theorem 1. In Section 3 we prove Theorem 2 for the case of k-median on doubling metrics and then
in 4 we show how to extend these theorems to `qq-norm distances as well as minor-closed families
of graphs. Theorem 3 is proven in Section 5. Finally, the proof of Theorem 4 comes in Section 6.

1.3 Preliminaries and Notation

In Uniform-UFL-out we are given a set of X points, a set C of centres and z for the number of
outliers. Our goal is to select a set C ⊂ C to open and a set Z ⊂ X to discard and assign each
j ∈ X−Z to the nearest centre in C to minimize

∑
x∈X\Z δ(x,C)+|C|, where δ(x,C) is the distance

of x to nearest c ∈ C. In k-median-out and (discrete) k-means-out, along with X , C, and z, we
have an integer k as the number of clusters. We like to find k centres C = {c1, . . . , ck} ⊆ C and a
set of (up to) z points Z to act as outliers. In k-median-out, we like to minimize

∑
x∈X\Z δ(x,C)

and in k-means-out, we want to minimize
∑

x∈X\Z δ(x,C)2.

For all these three problems, if we have the `qq-norm then we like to minimize
∑

x∈X\Z δ
q(x,C).

We should note that in classical k-means (in Rd), one is not given a candidate set of potential
centres, but they can be chosen anywhere. However, by using the classical result of [38], at a loss
of (1 + ε) factor we can assume we have a set C of “candidate” centres from which the centres can
be chosen (i.e. reduce to the discrete case considered here). This set can be computed in time
O(nε−d log(1/ε)) and |C| = O(nε−d log(1/ε)).

2 Uniform-Cost UFL with Outliers in Doubling Metrics

We start with presenting an approximation scheme for Uniform-UFL-out in doubling metrics
(Theorem 1). Recall there is already a PTAS for UFL-out in constant-dimensional Euclidean
metrics using dynamic programming for uncapacitated facility location through quadtree
decompositions [4]. However, our approach generalizes to many settings where quadtree decompo-
sitions are not known to succeed such as when the assignment cost between a point j and a centre
i is δ(j, i)q for constant 1 < q < ∞ including k-means distances (q = 2) and also to shortest-
path metrics of edge-weighted minor-closed graphs. Furthermore, our technique here extends to
k-means-out (as seen in the next section). Still, we will initially present our approximation scheme
in this simpler setting to lay the groundwork and introduce the main ideas.
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Algorithm 1 uniform-cost UFL ρ′-Swap Local Search

Let S be an arbitrary non-empty subset of C
while ∃ sets P ⊆ C − S, Q ⊆ S with |P |, |Q| ≤ ρ′ s.t. cost((S −Q) ∪ P ) < cost(S) do
S ← (S −Q) ∪ P

return S

Recall that we are given a set X of points and a set C of possible centres in a metric space with
doubling dimension d and a number z bounding the number of admissible outliers. As the opening
costs are uniform, we may scale all distances and opening costs so the opening cost of a centre is
1. For any ∅ ( S ⊆ C, order the points j ∈ X as jS1 , j

S
2 , . . . , j

S
n in nondecreasing order of distance

δ(jSi ,S). The cost of S is then cost(S) :=
∑n−z

`=1 δ(j
S
` ,S) + |S|. That is, after discarding the z

points that are furthest from S the others are assigned to the nearest centre in S: we pay this total
assignment cost for all points that are not outliers and also the total centre opening cost |S|. The
goal is to find ∅ ( S ⊆ C minimizing cost(S).

Let ε > 0 be a constant. Let ρ′ := ρ′(ε, d) be some constant we will specify later. We consider
a natural multiswap heuristic for Uniform-UFL-out, described in Algorithm 1.

Each iteration can be executed in time |X | · |C|O(ρ′). It is not clear that the number of iterations
is bounded by a polynomial. However, the standard trick from [6, 30] works in our setting. That is,
in the loop condition we instead perform the swap only if cost((S −Q)∪P ) ≤ (1 + ε/|C|) · cost(S).
This ensures the running time is polynomial in the input size as every |C|/ε iterations the cost
decreases by a constant factor.

Our analysis of the local optimum follows the standard template of using test swaps to generate
inequalities to bound cost(S). The total number of swaps we use to generate the final bound is at
most |C|, so (as in [6, 30]) the approximation guarantee of a local optimum will only be degraded
by an additional (1 + ε)-factor. For the sake of simplicity in our presentation we will bound the
cost of a local optimum solution returned by Algorithm 1.

2.1 Notation and Supporting Results from Previous Work

We use many results from [19], so we use the same notation. In this section, these results are
recalled and a quick overview of the analysis of the multiswap local search heuristic for uniform-
cost UFL is provided; this is simply Algorithm 1 where the cost function is defined appropriately
for uniform-cost UFL. Recall that in uncapacitated facility location, each centre i ∈ C
has an opening cost fi ≥ 0. Also let cost(S) =

∑
j∈X δ(j,S) +

∑
i∈S fi. In uniform-cost UFL all

opening costs are uniform.
Let S be a local optimum solution returned by Algorithm 1 and O be a global optimum solution.

As it is standard in local search algorithms for uncapacitated clustering problems, we may assume
S ∩ O = ∅. This can be assumed by duplicating each i ∈ C, asserting S uses only the original
centres and O uses only the copies. It is easy to see S would still be a local optimum solution. Let
σ : X → S be the point assignment in the local optimum and σ∗ : X → O be the point assignment
in the global optimum. For j ∈ X , let cj = δ(j,S) and c∗j = δ(j,O) (remember there are no outliers
in this review of [19]).

For each i ∈ S ∪ O, let Di be the distance from i to the nearest centre of the other type. That
is, for i ∈ S let Di = δ(i,O) and for i∗ ∈ O let Di∗ = δ(i∗,S). Note for every j ∈ X and every
i′ ∈ {σ(j), σ∗(j)} that

Di′ ≤ δ(σ(j), σ∗(j)) ≤ c∗j + cj . (1)
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A special pairing T ⊆ S × O was identified in [19] (i.e. each i ∈ S ∪ O appears at most once
among pairs in T ) with the following special property.

Lemma 1 (Lemma 3 in [19], paraphrased) For any A ⊆ S ∪ O such that A contains at least
one centre from every pair in T , δ(i, A) ≤ 5 ·Di for every i ∈ S ∪ O.

Next, a net is cast around each i ∈ S. The idea is that any swap that has i ∈ S being closed
would have something open near every i∗ ∈ O that itself is close to i. More precisely, [19] identifies
a set N ⊆ S ∪ O with the following properties. For each i ∈ S and i∗ ∈ O with δ(i, i∗) ≤ Di/ε
and Di∗ ≥ ε ·Di there is some pair (i, i′) ∈ N with δ(i′, i∗) ≤ ε ·Di∗ . The set N contains further
properties to enable Theorem 5 (below), but these are sufficient for our discussion.

The last major step in [19] before the final analysis was to provide a structure theorem showing
S ∪ O can be partitioned into test swaps that mostly allow the redirections discussed above.

Theorem 5 (Theorem 4 in [19], slightly adjusted) For any ε > 0, there is a constant ρ :=
ρ(ε, d) and a randomized algorithm that samples a partitioning π of O ∪ S such that:

• For each part P ∈ π, |P ∩ O|, |P ∩ S| ≤ ρ.

• For each part P ∈ π, S4P includes at least one centre from every pair in T .

• For each (i∗, i) ∈ N , Pr[i, i∗ lie in different parts of π] ≤ ε.

There is only a slight difference between this statement and the original statement in [19]. Namely,
the first condition of Theorem 4 in [19] also asserted |P ∩ O| = |P ∩ S|. As noted at the end of
[19], this part can be dropped by skipping one final step of the proof that “balanced” parts of the
partition that were constructed (also see [20] for further details).

The analysis in [19] used Theorem 5 to show cost(S) ≤ (1+O(ε)) ·OPT generated an inequality
by swapping each part P ∈ π. Roughly speaking, for each j ∈ X with probability at least 1 − ε
(over the random construction of π), the swap that closes σ(j) will open something very close to
σ(j) or very close to σ∗(j). With the remaining probability, we can at least move j a distance of
at most O(c∗j + cj). Finally, if j was never moved to something that was close to σ∗(j) this way
then we ensure we move j from σ(j) to σ∗(j) when σ∗(j) is swapped in.

In our analysis for clustering with outliers, our reassignments for points that are not outliers in
either the local or global optimum are motivated by this approach. Details will appear below in
our analysis of Algorithm 1.

2.2 Analysis for Uniform-Cost UFL with Outliers: An Outline

Now let S be a locally optimum solution for Algorithm 1, let X a be the points in X that are
assigned to S and X o be the points in X that are outliers when opening S. Similarly, let O be a
globally optimum solution, let X a∗ be the points in X that are assigned to O and X o∗ be the points
in X that are outliers when opening O. Note |X o| = |X o∗ | = z.

Let σ : X → S ∪ {⊥} assign j ∈ X a to the nearest centre in S and j ∈ X o to ⊥. Similarly, let
σ∗ : X → O∪{⊥} map each j ∈ X a∗ to the nearest centre in O and each j ∈ X o∗ to ⊥. For j ∈ X ,
we let cj = 0 if j ∈ X o and, otherwise, let cj = δ(j,S) = δ(j, σ(j)). Similarly, let c∗j = 0 if j ∈ X o∗
and, otherwise, let c∗j = δ(j,O) = δ(j, σ(j)).

Our starting point is the partitioning scheme described in Theorem 5. The new issue to be
handled is in reassigning the outliers when a part is swapped. That is, for any j ∈ X o∗ any swap
that has σ(j) swapped out cannot, in general, be reassigned anywhere cheaply.

6



Really the only thing we can do to upper bound the assignment cost change for j is to make it
an outlier. We can try assigning each j ∈ X o to σ∗(j) if it is opened, thereby allowing one j ∈ X o∗
with σ(j) being swapped out to become an outlier. However there may not be enough j′ ∈ X o that
have σ∗(j) opened after the swap. That is, we might not remove enough outliers from the solution
S to be able to let all such j become outliers.

Our approach is to further combine parts P of the partition π and perform the swaps simul-
taneously for many of these parts. Two of these parts in a larger grouping will not actually be
swapped out: their centres in O will be opened to free up more spaces for outliers yet their centres
in S will not be swapped out. Doing this carefully, we ensure that the total number of j ∈ X o∗
that have σ(j) being closed is at most the total number of j ∈ X o that have σ∗(j) being opened.

These larger groups that are obtained by combing parts of π are not disjoint. However, the
overlap of centres between larger groups will be negligible compared to |S|+ |O|.

2.3 Grouping the Parts

We will assume X o∩X o∗ = ∅. This is without loss of generality as S would still be a local optimum
in the instance with X o ∩ X o∗ removed and z adjusted. Recall we are also assuming S ∩ O = ∅.

For each part P of π, let ∆P := |{j ∈ X o : σ∗(j) ∈ P}| − |{j ∈ X o∗ : σ(j) ∈ P}|. This is the
difference between the number of outliers we can reclaim by moving them to σ∗(j) (if it is open
after swapping P ) and the number of outliers j that we must create because σ(j) was closed when
swapping P .

Consider the following refinements of π: π+ = {P ∈ π : ∆P > 0}, π− = {P ∈ π : ∆P < 0} and
π0 = {P ∈ π : ∆P = 0}. Intuitively, nothing more needs to be done to prepare parts P ∈ π0 for
swapping as this would create as many outliers as it would reclaim in our analysis framework. We
work toward handling π+ and π−.

Next we construct a bijection κ : X o → X o∗ . We will ensure when σ(j) is swapped out for some
j ∈ X o∗ that σ∗(κ−1(j)) will be swapped in. So there is space to make j an outlier in the analysis.
There are some cases in our analysis where we never swap out σ(j) for some j ∈ X o∗ , but we will
still ensure σ∗(κ−1(j)) is swapped in at some point so we can still make j an outlier while removing
κ−1(j) as an outlier to get the negative dependence on cj in the final inequality.

To start defining κ, for each P ∈ π we pair up points in {j ∈ X o∗ : σ(j) ∈ P} and {j ∈ X o :
σ∗(j) ∈ P} arbitrarily until one of these two groups is exhausted. These pairs define some mapping
of κ. The number of unpaired points in {j ∈ X o∗ : σ(j) ∈ P} is exactly −∆P if ∆P < 0 and the
number of unpaired points in {j ∈ X o : σ∗(j) ∈ P} is exactly ∆P .

Having done this for each P , we begin pairing unpaired points in X o ∪ X o∗ between parts.
Arbitrarily order π+ as P+

1 , P
+
2 , . . . , P

+
m and π− as P−1 , P

−
2 , . . . , P

−
` . We will complete the pairing

κ and also construct edges in a bipartite graph H with π+ on one side and π− on the other side
using Algorithm 2. To avoid confusion with edges in the distance metric, we call the edges of H
between π+ and π− superedges.

In Algorithm 2, we say a part P ∈ π+ ∪ π− has an unpaired point j ∈ X o∗ ∪ X o and that j
is an unpaired point of P if, currently, κ has not paired j and σ(j) ∈ P or σ∗(j) ∈ P (whatever
is relevant). The resulting graph over π+, π− is depicted in Figure 1, along with other features
described below.

We now group some superedges together. Let α = 4ρ/ε denote the group size. We will assume
|P| > α, as otherwise |π+ ∪ π−| ≤ 2α and we could simply merge all parts in π+ ∪ π− into a single
part P ′ with ∆P ′ = 0 with |P ′ ∩ S|, |P ′ ∩O| ≤ 2αρ. The final local search algorithm will use swap
sizes greater than 2αρ and the analysis showing cost(S) ≤ (1 + O(ε)) · cost(O) would then follow
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Algorithm 2 Pairing Unpaired Outliers

P ← ∅ . A set of superedges between π+ and π−.
a← 1, b← 1
while there are unpaired points do

Arbitrarily pair up (via κ) unpaired points between P+
a and P−b until no longer possible.

P ← P ∪ {(P+
a , P

−
b )}.

if P+
a has no unpaired point then
a← a+ 1

if P−b has no unpaired point then
b← b+ 1

return S

P+
1 P+

2 P+
m

P�
1 P�

2 P�
`

Figure 1: The bipartite graph with sides π+, π− and edges P. The edges are ordered left-to-right
in order of their creation time, so e0 is the leftmost edge. A grouping with group size α = 6 is
depicted. The edges in E1 and E3 are bold. Note the last group has more than α edges. The parts
that are split by some group are shaded. While not depicted, a part could be split by many groups
(if it has very high degree in the bipartite graph).

almost exactly as we show2.
Order edges e0, e1, . . . , e|P|−1 of P according to when they were formed. For each integer s ≥ 0

let Es = {ei : α · s ≤ i < α · (s + 1)}. Let s′ be the largest index with Es′+1 6= ∅ (which exists by
the assumption |P| > α). Merge the last two groups by replacing Es′ with Es′ ∪ Es′+1. Finally,
for each 0 ≤ s ≤ s′ let Gs ⊆ S ∪ O consist of all centres i ∈ S ∪ O belonging to a part P that
is an endpoint of some superedge in Es. The grouping is G = {Gs : 0 ≤ s ≤ s′}. The groups of
superedges Es are depicted in Figure 1. Note each part P ∈ π+ ∪ π− is contained in at least one
group of G because ∆P 6= 0 (so a superedge edge in P was created with P as an endpoint). The
following lemma is easy (see Appendix A).

Lemma 2 For each Gs ∈ G, α− 1 ≤ |Gs| ≤ 8ρα.

Note: In fact, it is not hard to see that H is a forest where each component of it is a caterpillar
(a tree in which every vertex is either a leaf node or is adjacent to a “stalk” node; stalk nodes form
a path). The parts P that are split between different groups Gs are the high degree nodes in H
and these parts belong to the “stalk” of H.

2One very minor modification is that the presented proof of Lemma 5 in the final analysis ultimately uses |P| ≥ α.
It still holds otherwise in a trivial way as there would be no overlap between groups.
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Definition 1 For each group Gs ∈ G, say a part P ∈ π is split by Gs if P ⊆ Gs and NP(P ) 6⊆ Es,
where NP(P ) are those parts that have a superedge to P .

We simply say P is split if the group Gs is clear from the context. The following lemma is easy
(see Appendix A for proof).

Lemma 3 For each Gs ∈ G, there are at most two parts P split by Gs.

2.4 Analyzing Algorithm 1

Now suppose we run Algorithm 1 using ρ′ = 4αρ. For each P ∈ π0, extend G to include a “simple”
group Gs = P for each P ∈ π0 where s is the next unused index. Any P ∈ π0 is not split by any
group. Each P ∈ π is then contained in at least one group of G and |Gs ∩S|, |Gs ∩O| ≤ ρ′ for each
Gs ∈ G by Lemma 2.

We are now ready to describe the swaps used in our analysis of Algorithm 1. Simply, for Gs ∈ G
let Ss be the centres in Gs ∩ S that are not in a part P that is split and let Os simply be Gs ∩ O.
We consider the swap S → (S − Ss) ∪ Os.

To analyze these swaps, we further classify each j ∈ X a ∩ X a∗ in one of four ways. This is the
same classification from [19]. Label j according to the first property that it satisfies below.

• lucky: both σ(j) and σ∗(j) in the same part P of π.

• long: δ(σ(j), σ∗(j)) > Dσ(j)/ε.

• good: either Dσ∗(j) ≤ εDσ(j) or there is some i′ ∈ O with δ(σ∗(j), i′) ≤ ε · Dσ∗(j) and
(σ(j), i′) ∈ N where both σ(j) and i′ lie in the same part.

• bad: j is not lucky, long, or good. Note, by Theorem 5, that Pr[j is bad] ≤ ε over the
random construction of π.

Finally, as a technicality for each j ∈ X a ∩ X a∗ where σ∗(j) lies in a part that is split by some
group and j is either lucky or long, let s(j) be any index such that group Gs(j) ∈ G contains the
part with σ∗(j). The idea is that we will reassign j to σ∗(j) only when group Gs(j) is processed.

Similarly, for any j ∈ X o, let s(j) be any index such that σ∗(j), σ(κ(j)) ∈ Gs(j). The following
lemma shows this is always possible.

Lemma 4 For each j ∈ X o there is at least one group Gs ∈ G where σ∗(j), σ(κ(j)) ∈ Gs.

Proof. If σ∗(j) and σ(κ(j)) lie in the same part P , this holds because each part is a subset of
some group. Otherwise, j is paired with κ(j) at some point in Algorithm 2 and an edge (P+

a , P
−
b )

is added to P where σ∗(j) ∈ P+
a , σ(κ(j)) ∈ P−b . The centres in both endpoints of this super edge

were added to some group Gs.
We now place a bound on the cost change in each swap. Recall |Gs ∩S|, |Gs ∩O| ≤ ρ′ and S is

a local optimum, so
0 ≤ cost((S4Ss) ∪ Os)− cost(S).

We describe a feasible reassignment of points to upper bound the cost change. This may cause
some points in X a becoming outliers and other points in X o now being assigned. We take care to
ensure the number of points that are outliers in our reassignment is exactly z, as required.

Consider the following instructions describing one possible way to reassign a point j ∈ X when
processing Gs. This may not describe an optimal reassignment, but it places an upper bound on
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the cost change. First we describe which points should be moved to σ∗(j) if it becomes open. Note
that the points in X o ∪X o∗ are paired via κ (and X o ∩X o∗ = ∅). Below we specify what to do for
each point j ∈ X o and κ(j) together.

• If j ∈ X o and s = s(j), then make κ(j) an outlier and connect j to σ∗(j), which is now open.
The total assignment cost change for j and κ(j) is c∗j − cκ(j).

Note that so far this reassignment still uses z outliers because each new outlier j′ has its paired
point κ−1(j′) that used to be an outlier become connected. The rest of the analysis will not create
any more outliers. The rest of the cases are for when j ∈ X a ∩ X a∗ .

• If j is lucky or long and s = s(j), reassign j from σ(j) to σ∗(j). The assignment cost change
for j is c∗j − cj .

• If j is long, move j to the open centre that is nearest to σ(j). By Lemma 1 and because j is
long, the assignment cost increase for j can be bounded as follows:

5 ·Dσ(j) ≤ 5ε · δ(σ(j), σ∗(j)) ≤ 5ε · (c∗j + cj).

• If j is good and Dσ∗(j) ≤ ε ·Dσ(j), move j to the open centre that is nearest to σ∗(j). By (1)
in Section 2.1 and Lemma 1, the assignment cost increase for j can be bounded as follows:

c∗j + 5 ·Dσ∗(j) − cj ≤ c∗j + 5ε ·Dσ(j) − cj ≤ c∗j + 5ε · (c∗j + cj)− cj = (1 + 5ε) · c∗j − (1− 5ε) · cj .

• If j is good but Dσ∗(j) > ε · Dσ(j), then let i′ be such that σ(j), i′ both lie in Gs and
δ(σ∗(j), i′) ≤ ε ·Dσ∗(j). Reassigning j from to i′ bounds its assignment cost change by

c∗j + δ(σ∗(j), i′)− cj ≤ c∗j + ε ·Dσ∗(j) − cj ≤ (1 + ε) · c∗j − (1− ε) · cj .

• Finally, if j is bad then simply reassign j to the open centre that is nearest to σ(j). By (1)
and Lemma 1, the assignment cost for j increases by at most 5 ·Dσ(j) ≤ 5 · (c∗j + cj).

This looks large, but its overall contribution to the final analysis will be scaled by an ε-factor
because a point is bad only with probability at most ε over the random sampling of π.

Note this accounts for all points j where σ(j) is closed. Every other point j may stay assigned
to σ(j) to bound its assignment cost change by 0.

For j ∈ X , let ∆j denote the total reassignment cost change over all swaps when moving j
as described above. This should not be confused with the previously-used notation ∆P for a part
P ∈ π. We bound ∆j on a case-by-case basis below.

• If j ∈ X o then the only time j is moved is for the swap involving Gs(j). So ∆j = c∗j .

• If j ∈ X o∗ then the only time j is moved is for the swap involving Gs(κ−1(j)). So ∆j = −cj .

• If j is lucky then it is only moved when Gs(j) is processed so ∆j = c∗j − cj .

• If j is long then it is moved to σ∗(j) when Gs(j) is processed and it is moved near σ(j) when
σ(j) is closed, so ∆j ≤ c∗j − cj + 5ε · (c∗j + cj) = (1 + 5ε) · c∗j − (1− 5ε) · cj .

• If j is good then it is only moved when σ(j) is closed so ∆j ≤ (1 + 5ε) · c∗j − (1− 5ε) · cj .
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• If j is bad then it is only moved when σ(j) is closed so ∆j ≤ 5 · (c∗j + cj).

To handle the centre opening cost change, we use the following fact.

Lemma 5
∑

Gs∈G |Os| − |Ss| ≤ (1 + 2ε) · |O| − (1− 2ε) · |S|

Proof. For each Gs ∈ G, let Ps be the union of all parts used to form Gs that are not split by Gs.
Let P s = Gs − Ps, these are centres in Gs that lie in a part split by Gs.

Now, |P s| ≤ 2ρ because at most two parts are split by Gs by Lemma 3. On the other hand, by
Lemmas 2 and 3 there are at least α − 3 parts that were used to form Gs that were not split by
Gs. As each part contains at least one centre, then |Ps| ≥ α− 3. Thus, for small enough ε we have

|P s| ≤ 2ρ ≤ ε · (α− 3) ≤ ε|Ps|.

Note
∑

Gs∈G |Ps| ≤ |S| + |O| because no centre appears in more than one set of the form Ps.

Also note |Os| ≤ |Ps ∩ O|+ |P s| and |Ss| ≥ |Gs ∩ S| − |P s|,∑
Gs∈G

|Os| − |Ss| ≤
∑
Gs∈G

|Ps ∩ O| − |Gs ∩ S|+ 2ε|Ps| ≤ |O| − |S|+ 2ε · (|O|+ |S|).

Putting this all together,

0 ≤
∑
Gs∈G

cost((S − Ss) ∪ Os)− cost(S)

≤
∑
j∈X

∆j +
∑
Gs∈G

|Os| − |Ss|

≤
∑

j ∈ X a ∩ X a∗
j is not bad

[
(1 + 5ε) · c∗j − (1− 5ε)cj

]
+
∑
j bad

5(c∗j + cj)+

∑
j∈X o

c∗j −
∑
j∈X o∗

cj + (1 + 2ε) · |O| − (1− 2ε) · |S|.

This holds for any π supported by the partitioning scheme described in Theorem 5. Taking
expectations over the random choice of π and recalling Pr[jis bad] ≤ ε for any j ∈ X a ∩ X a∗ ,

0 ≤
∑
j∈X

[
(1 + 10ε) · c∗j − (1− 10ε) · cj

]
+ (1 + 2ε) · |O| − (1− 2ε) · |S|.

Rearranging and relaxing slightly further shows

(1− 10ε) · cost(S) ≤ (1 + 10ε) · cost(O).

Ultimately, cost(S) ≤ (1 + 30ε) ·OPT.

3 k-Median and k-Means with Outliers

In this section we show how the results of the previous section can be extended to get a bicrite-
ria approximation scheme for k-median-out and k-means-out with outliers in doubling metrics
(Theorem 2). For ease of exposition we present the result for k-median-out. More specifically,
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Algorithm 3 k-median ρ′-Swap Local Search

Let S be an arbitrary set of (1 + ε)k centres from C
while ∃ sets P ⊆ C − S, Q ⊆ S with |P |, |Q| ≤ ρ′ s.t. cost((S − Q) ∪ P ) < cost(S) and
|(S −Q) ∪ P | ≤ (1 + ε)k do
S ← (S −Q) ∪ P

return S

given a set X of points, set C of possible centers, positive integers k as the number of clusters and z
as the number of outliers for k-median, we show that a ρ′-swap local search (for some ρ′ = ρ(ε, d)
to be specified) returns a solution of cost at most (1 + ε)OPT using at most (1 + ε)k centres (clus-
ters) and has at most z outliers. Note that a local optimum S satisfies |S| = (1 + ε) · k unless
cost(S) = 0 already, in which case our analysis is already done. Extension of the result ot k-means
or in general to a clustering where the distance metric is the `qq-norm is fairly easy and is discussed
in the next section where we also show how we can prove the same result for shortest path metric
of minor-closed families of graphs.

The proof uses ideas from both [19] for the PTAS for k-means as well as the results of the
previous section for Uniform-UFL-out. Let S be a local optimum solution returned by Algorithm
3 that uses at most (1 + ε)k clusters and has at most z outliers and let O be a global optimum
solution to k-median-out with k clusters and z outliers. Again, we use σ : X → S ∪ {⊥} and
σ∗ : X → O ∪ {⊥} as the assignment of points to cluster centres, where σ(j) = ⊥ (or σ∗(j) = ⊥)
indicates an outlier. For j ∈ X we use cj = δ(j,S) and c∗j = δ(j,O). The special pairing T ⊆ S×O
and Lemma 1 as well as the notion of nets N ⊆ S∪O are still used in our setting. A key component
of our proof is the following slightly modified version of Theorem 4 in [19]:

Theorem 6 For any ε > 0, there is a constant ρ = ρ(ε, d) and a randomized algorithm that samples
a partitioning π of S ∪ O such that:

• For each part P ∈ π, |P ∩ O| < |P ∩ S| ≤ ρ

• For each part P ∈ π, S∆P contains at least one centre from every pair in T

• For each (i∗, i) ∈ N , Pr[i, i∗ lie in different parts of π] ≤ ε.

The only difference of this version and the one in [19] is that in Theorem 4 in [19], for the first
condition we have |P ∩ O| = |P ∩ S| ≤ ρ. The theorem was proved by showing a randomized
partitioning that satisfies conditions 2 and 3. To satisfy the 1st condition |P ∩ O| = |P ∩ S| ≤ ρ
a balancing step was performed at the end of the proof that would merge several (but constant)
number of parts to get parts with equal number of centres from S and O satisfying the two other
conditions. Here, since |S| = (1 + ε)k and |O| = k, we can modify the balancing step to make
sure that each part has at least one more centre from S than from O. We present a proof of this
theorem for the sake of completeness in Appendix B.

We define X a,X o,X a∗ , and X o∗ as in the previoius section for Uniform-UFL-out. Note that
|X o| = |X o∗ | = z. As before, we assume X o ∩ X o∗ = ∅ and S ∩ O = ∅. Let π be a partitioning as
in Theorem 6. Recall that for each P ∈ π, ∆P := |{j ∈ X o : σ∗(j) ∈ P}| − |{j ∈ X o∗ : σ(j) ∈ P}|;
we define π+, π−, π0 to be the parts with positive, negative, and zero ∆P values. We define the
bijection κ : X o → X o∗ as before: for each P ∈ π, we pair up points (via κ) in {j ∈ X o∗ : σ(j) ∈ P}
and {j ∈ X o : σ∗(j)} ∈ P arbitrarily. Then (after this is done for each P ) we begin pairing unpaired
points in X o ∪ X o∗ between groups using Algorithm 2. The only slight change w.r.t. the previous
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section is in the grouping the super-edges of the bipartite graph defined over π+ ∪ π−: we use
parameter α = 2ρ+ 3 instead. Lemmas 2 and 3 still hold.

Suppose we run Algorithm 3 with ρ′ = αρ. As in the case of Uniform-UFL-out, we add each
P ∈ π0 as a separate group to G and so each P ∈ π is now contained in at least one group Gs ∈ G
and |Gs∩S|, |Gs∩O| ≤ ρ′. For the points j ∈ X a∩X a∗ (i.e. those that are not outliner in neither S
nor O) the analysis is pretty much the same as the PTAS for standard k-means (without outliers)
in [19]. We need extra care to handle the points j that are outliers in one of S or O (recall that
X o ∩ X o∗ = ∅.

As in the analysis of Uniform-UFL-out, for Gs ∈ G, let Ss be the centers in Gs ∩ S that
are not in a part P that is split, and Os = Gs ∩ O; consider the test swap that replaces S with
(S − Ss) ∪Os. To see this is a valid swap considered by our algorithm, note that the size of a test
swap is at most ρ′. Furthremore, there are at least α − 3 unsplit parts P and at most two split
parts in each Gs, and each unsplit part has at least one more centre from S than O (condition 1 of
Theorem 6); therefore, there are at least α− 3 more centres that are swapped out in Ss and these
can account for the at most 2ρ centres of S ∪ O in the split parts that are not swapped out (note
that α− 3 = 2ρ). Thus, the total number of centres of S and O after the test swap is still at most
(1 + ε)k and k, respectively.

We classify each j ∈ X a ∩ X a∗ to lucky, long, good, and bad in the same way as in the case
of Uniform-UFL-out. Furthermore, s(j) is defined in the same manner: for each j ∈ X a ∩ X a∗
where σ∗(j) lies a part that is split by some group and j is either lucky or long, let s(j) be any
index such that group Gs(j) ∈ G contains the part with σ∗(j). Similarly, for any j ∈ X o let s(j) be

any index such that σ∗(j), σ(κ(j)) ∈ Gs(j) (note that since X o ∩ X o∗ = ∅, if j ∈ X o then j ∈ X a∗).
Lemma 4 still holds. For each Gs ∈ G, since |Gs ∩ S|, |Gs ∩ O| ≤ ρ′ and S is a local optimum, any
test swap based on a group Gs is not improving, hence 0 ≤ cost((S4Ss) ∪ Os)− cost(S).

For each test swap Gs, we describe how we could re-assign the each point j for which σ(j)
becomes closed or and bound the cost of each re-assignment depending on the type of j. This
case analysis is essentially the same as the one we had for Uniform-UFL-out so it is deferred to
Appendix C. Note that the points in X o ∪ X o∗ are paired via κ.

4 Extensions

4.1 Extension to `qq-Norms

In this section we show how the results for Uniform-UFL-out and k-median-out can be extended
to the setting where distances are `qq-norm for any q ≥ 1. For example, if we have `22-norm distances
instead of `11 we get k-means (instead of k-median). Let us consider modifying the analysis of
k-median-out to the `qq-norm distances. In this setting for any local and global solutions S and O,
let δj = δ(j, σ(j)) and δ∗j = δ(j, σ∗(j)); then cj = δqj and c∗j = δ∗qj . It is easy to see that throughout

the analysis of Uniform-UFL-out and k-median-out, for the cases that j ∈ X a ∩ X a∗ is lucky,
long, or good (but not bad) when we consider a test swap for a group P we can bound the distance
from j to some point in S4P by first moving it to either σ(j) or σ∗(j) and then moving it a
distance of O(ε) · (δj + δ∗j ) to reach an open centre. Considering that we reassigned j from σ(j),
the reassignment cost will be at most

(δj +O(ε) · (δj + δ∗j ))
q − cj = O(2qε) · (cj + c∗j )

or
(δ∗j +O(ε) · (δj + δ∗j ))

q − cj = (1 +O(2qε)) · c∗j − (1−O(2qε)) · cj .
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For the case that j is bad, the reassignment cost can be bounded by O(2q(cj + c∗j )) but since
the probability of being bad is still bounded by ε, the bound in Equation (3) can be re-written as:

0 ≤
∑

j ∈ X a ∩ X a∗
j is not bad

[
(1 +O(2qε)) · c∗j − (1−O(2qε))cj

]
+
∑
j bad

O(2q(c∗j + cj)) +
∑
j∈X o

c∗j −
∑
j∈X o∗

cj , (2)

which would imply

0 ≤
∑
j∈X

[
(1 +O(2qε)) · c∗j − (1−O(2qε)) · cj

]
,

and cost(S) ≤ (1 + O(2qε)) · OPT. It is enought to choose ε sufficiently small compared to q to
obtain a (1 + ε′)-approximation. Similar argument show that for the case of Uniform-UFL-out
with `qq-norm distances, we can get a PTAS.

4.2 Minor-Closed Families of Graphs

We consider the problem k-median-out in families of graphs that exclude a fixed minor H. Recall
that a family of graphs is closed under minors if and only if all graphs in that family exclude some
fixed minor.

Let G = (V,E) be an edge-weighted graph excluding H as a minor where X , C ⊆ V and let δ
denote the shortest-path metric of G. We will argue Algorithm 3 for some appropriate constant
ρ′ := ρ′(ε,H) returns a set S ⊆ C with |S| = (1 + ε) · k where cost(S) ≤ (1 + ε) · OPT . This can
be readily adapted to k-means-out using ideas from Section 4.1. We focus on k-median-out for
simplicity. This will also complete the proof of Theorem 2 for minor-closed metrics. The proof of
Theorem 1 for minor-closed metrics is proven similarly and is slightly simpler.

We use the same notation as our analysis for k-median-out in doubling metrics. Namely,
S ⊆ C is a local optimum solution, O ⊆ C is a global optimum solution, χa are the points assigned
in the local optimum solution, χo are the outliers in the local optimum solution, etc. We assume
S ∩ O = ∅ (one can “duplicate” a vertex by adding a copy with a 0-cost edge to the original and
preserve the property of excluding H as a minor) and χo ∩ χo∗ = ∅.

A key difference is that we do not start with a perfect partitioning of S ∪ O, as we did with
doubling metrics. Rather, we start with the r-divisions described in [14] which provides “regions”
which consist of subsets of S∪O with limited overlap. We present a brief summary, without proof, of
their partitioning scheme and how it is used to analyze the multiswap heuristic for uncapacitated
facility location. Note that their setting is slightly different in that they show local search
provides a true PTAS for k-median and k-means, whereas we are demonstrating a bicriteria
PTAS for k-median-out and k-means-out. It is much easier to describe a PTAS using their
framework if (1 + ε) · k centres are opened in the algorithm. Also, as the locality gap examples in
the next section show, Algorithm 3 may not be a good approximation when using solutions S of
size exactly k.

First, the nodes in V are partitioned according to their nearest centre in S ∪ O, breaking ties
in a consistent manner. Each part (i.e. Voronoi cell) is then a connected component so each can
be contracted to get a graph G′ with vertices S ∪O. Note G′ also excludes H as a minor. Then for
r = dH/ε

2 where dH is a constant depending only on H, they consider an r-division of G′. Namely,
they consider “regions” R1, . . . , Rm ⊆ S ∪ O with the following properties (Definition III.1.1 in
[14]) First, define the boundary ∂(Ra) for each region to be all centres i ∈ Ra incident to an edge
(i, i′) of G′ with i′ 6∈ Ra.
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• Each edge of G′ has both endpoints in exactly one region.

• There are at most cH/r · (|S|+ |O|) regions where cH is a constant depending only on H.

• Each region has at most r vertices.

• ∑m
a=1 |∂(Ra)| ≤ ε · (|S|+ |O|).

In general, the regions are not vertex-disjoint.
For each region Ra, the test swap S → S − ((Ra − ∂(Ra)) ∩ S) ∪ (Ra ∩ O) is considered. Each

j with σ(j) ∈ Ra − ∂(Ra) is moved in one of two ways:

• If σ∗(j) ∈ Ra, move j to σ∗(j) for a cost change of c∗j − cj .

• Otherwise, if point j is in the Voronoi cell for some i ∈ Ra then δ(j, ∂(Ra)) ≤ c∗j because the
shortest path from j to σ∗(j) must include a vertex v in the Voronoi cell of some i ∈ ∂(Ra).
By definition of the Voronoi partitioning, i is closer to v than σ∗(j). So the cost change for
j is at most c∗j − cj again.

• Finally, if point j does not lie in the Voronoi cell for any i ∈ Ra∪∂(Ra) then δ(j, ∂(Ra)) ≤ cj
because the shortest path from j to σ(j) again crosses the boundary of Ra. So the cost change
for j is at most 0.

Lastly, for each j ∈ X if no bound of the form c∗j − cj is generated for j according to the above
rules, then j should move from σ(j) to σ∗(j) in some swap that opens σ∗(j).

We use this approach as our starting point for k-median-out. Let ε′ > 0 be a constant such
that we run Algorithm 3 using (1 + ε′) · k centres in S. We will fix the constant ρ′ dictating the
size of the neighbourhood to be searched momentarily.

Form the same graph G′ obtained by contracting the Voronoi diagram of G′, let R1, . . . , Rm be
the subsets with the same properties as listed above for ε := ε′/10. The following can be proven in
a similar manner to Theorem 6. Its proof is deferred to Appendix D.

Lemma 6 We can find regions R′1, . . . , R
′
` such that the following hold.

• Each edge lies in exactly one region.

• |R′a| ≤ O(r) for each 1 ≤ a ≤ `.

• |(R′a − ∂(R′a)) ∩ S| > |R′a ∩ O|.

The rest of the proof proceeds as with our analysis of k-median-out in doubling metrics. For
each j ∈ X o let τ(j) be any index such that σ∗(j) ∈ R′a and for each j ∈ X o∗ let τ∗(j) be any index
such that σ(j) ∈ Ra. For each R′b, define the imbalance of outliers ∆b to be |{j ∈ X o : τ(j) =

b}| − |{j ∈ X o∗ : τ∗(j) = b}|. Note
∑`

b=1 ∆b = 0.
Everything now proceeds as before so we only briefly summarize: we find groups Gs each

consisting of Θ(r2/ε′) regions of the form R′b along with similar a similar bijection κ : X o → X o∗
such that for each j ∈ X o we have R′τ(j) and R′τ∗(κ(j)) appearing in a common group. Finally,
at most two regions are split by this grouping. At this point, we determine that swaps of size
ρ′ = O(r3/ε′) = O(d3

H/ε
′7) in Algorithm 3 suffice for the analysis.

For each group Gs, consider the test swap that opens all global optimum centres lying in some
region R′a used to form Gs and closes all local optimum centres in Gs that are neither in the
boundary ∂(R′a) of any region forming Gs or in a split region. Outliers are reassigned exactly
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as with k-median-out, and points in X a ∩ X a∗ are moved as they would be in the analysis for
uncapacitated facility location described above.

For each j ∈ X a ∩X a∗ , the analysis above shows the total cost change for j can be bounded by
c∗j − cj . Similarly, for each j ∈ X o we bound the total cost change of both j and κ(j) together by
c∗j − cκ(j). So in fact cost(S) ≤ cost(O).

5 General Metrics

Here we prove Theorem 3. That is, we show how to apply our framework for k-median-out and
k-means-out to the local search analysis in [22] for k-median and k-means in general metrics
where no assumptions are made about the distance function δ apart from the metric properties.
The algorithm and the redirections of the clients are the same with both k-median-out and k-
means-out. We describe the analysis and summarize the different bounds at the end to handle
outliers.

Let ε > 0 be a constant and suppose Algorithm 3 is run using solutions S with |S| ≤ (1 + ε) · k
and neighbourhood size ρ′ for some large constant ρ′ > 0 to be determined. We use the same
notation as before and, as always, assume S ∩ O = ∅ and X o ∩ X o∗ = ∅.

Let φ : O → S map each i∗ ∈ O to its nearest centre in S. Using a trivial adaptation of
Algorithm 1 in [22] (the only difference being we have |S| = (1 + ε) · k rather than |S| = k), we find
blocks B1, . . . , Bm ⊆ S ∪ O with the following properties.

• The blocks are disjoint and each i∗ ∈ O lies in some block.

• For each block Ba, |Ba ∩ S| = |Ba ∩ O|.

• For each block Ba, there is exactly one i ∈ Ba ∩ S with φ−1(i) 6= ∅. For this i we have
Ba ∩ O = φ−1(i).

Call a block small if |Ba∩S| ≤ 2/ε, otherwise it is large. Note there are at most ε
2 ·k large blocks.

On the other hand, there are ε · k centres in S that do not appear in any block. Assign one such
unused centre to each large block, note these centres i satisfy φ−1(i) = ∅ and there are still at least
ε
2 · k centres in S not appearing in any block.

Now we create parts Ps. For each large block Ba, consider any paring between Ba ∩ O and
{i ∈ Ba ∩ S : φ−1(i) = ∅}. Each pair forms a part on its own. Finally, each small block is a part
on its own. This is illustrated in Figure 2.

O

S

Figure 2: Depiction of the formation of the parts Ps where the arrows between them indicate the
mapping φ. The white nodes are in the initial blocks and the blocks are separated by white dashed
lines. The first and third block are large, so another centre (black) not yet in any block is added
to them. The grey rectangles are the parts that are formed from the blocks.
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Note each part Ps satisfies |Ps ∩ S| = |Ps ∩ O| ≤ 2/ε. Then perform the following procedure:
while there are at least two parts with size at most 2/ε, merge them into a larger part. If there is
one remaining part with size at most 2/ε, then merge it with any part created so far. Now all parts
have size between 2/ε and 6/ε, call these groups P ′1, . . . , P

′
`. Note ` ≤ ε

2 · k because the sets P ′a ∩O
partition O. To each part, add one more i ∈ S which does not yet appear in a part. Summarizing,
the parts P ′1, . . . , P

′
` have the following properties.

• Each i∗ ∈ O appears in precisely one part. Each i ∈ S appears in at most one part.

• |P ′a ∩ O| < |P ′a ∩ S| ≤ 6
ε + 1 ≤ 7

ε .

Construct a pairing κ : X o → X o∗ almost as before. First, pair up outliers within a group
arbitrarily. Then arbitrarily pair up unpaired j ∈ X o with points j′ ∈ X o∗ such that σ(j) does not
appear in any part P ′a. Finally, pair up the remaining unpaired outliers using Algorithm 2 applied
to these parts. Form groups Gs with these parts in the same way as before. Again, note some i ∈ S
do not appear in any group, this is not important. What is important is that each i∗ ∈ O appears
in some group.

The swaps used in the analysis are of the following form. For each group Gs we swap in all
global optimum centres appearing in Gs and swap out all local optimum centres appearing in Gs
that are not in a part split by Gs. As each group is the union of Θ(1/ε) parts, the number of centres
swapped is O(ε−2). This determines ρ′ := O(ε−2) in Algorithm 3 for the case of general metrics.

The clients are reassigned as follows. Note by construction that if j ∈ X o∗ has σ(j) in a part
that is not split then σ∗(κ−1(j)) lies in the same group as σ(j). Say that this is the group when
κ−1(j) should be connected. Otherwise, pick any group containing σ∗(κ−1(j)) and say this is when
κ−1(j) should be connected.

For each group Gs,

• For each j ∈ X o, if j should be connected in this group then connect j to σ∗(j) and make
κ(j) an outlier for a cost change of c∗j − cκ(j).

• For any j ∈ X a ∩ X a∗ where σ(j) is closed, move j as follows:

– If σ∗(j) is now open, move j to σ∗(j) for a cost change bound of c∗j − cj .
– Otherwise, move j to φ(σ∗(j)) which is guaranteed to be open by how we constructed

the parts. The cost change here is summarized below for the different cases of k-median
and k-means.

Finally, for any j ∈ X a ∩X a∗ that has not had its c∗j − cj bound generated yet, move j to σ∗(j) in
any one swap where σ∗(j) is opened to get a bound of c∗j − cj on its movement cost.

The analysis of the cost changes follows directly from the analysis in [22], so we simply sum-
marize.

• For k-median-out, cost(S) ≤ (3 +O(ε)) ·OPT .

• For k-means-out, cost(S) ≤ (25 +O(ε)) ·OPT .

• For k-clustering with `qq-norms of the distances, cost(S) ≤ ((3 +O(ε)) · q)q.

These are slightly different than the values reported in [22] because they are considering the `q
norm whereas we are considering `qq. This concludes the proof of Theorem 3.
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6 The Locality Gap

In this section, we show that the natural local search heuristic has unbounded gap for UFL-out
(with non-uniform opening costs). We also show that local search multiswaps that do not violate
the number of clusters and outliers can have arbitrarily large locality gap for k-median-out and
k-means, even in the Euclidean metrics. Locality gap here refers to the ratio of any local optimum
solution produced by the local search heuristics to the global optimum solution.

6.1 UFL-out with Non-uniform Opening Costs

First, we consider a multi-swap local search heuristic for the UFL-out problem with non-uniform
centre opening costs. We show this for any local search that does ρ-swaps and does not discard
more than z points as outliers, where ρ is a constant and z is part of the input has unbounded
ratio. Assume the set of X ∪ C is partitioned into disjoint sets A, B1, B2, . . . , Bz, where:

• The points in different sets are at a large distance from one another.

• A has one centre i with the cost of ρ and z points which are colocated at i.

• For each of ` = 1, 2, . . . , z, the set B` has one centre i` with the cost of 1 and one point
located at i`.

The set of centres S = {i1, i2, . . . , iz} is a local optimum for the ρ-swap local search heuristic;
any ρ-swap between B`’s will not reduce the cost, and any ρ-swaps that opens i will incur an
opening cost of ρ which is already as expensive as the potential savings from closing ρ of the B`’s.
Note that the z points of A are discarded as outliers in S. It is straightforward to verify that the
global optimum in this case is O = {i}, which discards the points in B1, . . . , Bz’s as outliers. The

locality gap for this instance is cost(S)/cost(O) =
z

ρ
, which can be arbitrarily large for any fixed ρ.

Note this can also be viewed as a planar metric, showing local search has an unbounded locality
gap for UFL-out in planar graphs.

6.2 k-median-out and k-means-out

Chen presents in [12] a bad gap example for local search for k-median-out in general metrics.
The example shows an unbounded locality gap for the multiswap local search heuristic that does
not violate the number of clusters and outliers. We adapt this example to Euclidean metrics. The
same example shows standard multiswap local search for k-means-out has an unbounded locality
gap.

Consider an input in which n � z � k > 1. The set of points X is partitioned into disjoint
sets B, C1, C2, . . . , Ck−1, D1, D2, . . . , Dk−2, and E:

• The distance between every pair of points from different sets is large.

• B has n− 2z colocated points.

• For each i = 1, 2, . . . , k−1, Ci has one point in the centre and u−1 points evenly distributed
on the perimeter of a circle with radius β from the centre.

• For each j = 1, 2, . . . , k − 2, Dj has u− 1 colocated points.

• E has one point at the centre and u+ k− 3 points evenly distributed on the perimeter of the
circle with radius γ,
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Figure 3: The locality gap counter example for k-median in Euclidean metrics.

where u = z/(k − 1), and β and γ are chosen such that γ < (u − 1)β < 2γ (see Figure 3). Let
f(.) denote the centre point of a set (in the case of colocated sets, any point from the set). Then,
the set S = {f(B), f(D1), f(D2), . . . , f(Dk−2), f(E)} is a local optimum for the ρ-swap local
search if ρ < k − 1 with cost (u + k − 3)γ. The reason is that since the distance between the
sets is large, we would incur a large cost by closing f(B) or f(E). Therefore, we need to close
some points in the sets D1, . . . , Dk−2, and open some points in C1, . . . , Ck−1 to ensure we do not
violate the number of outliers. Since z � k, we can assume u > k − 1. We can show via some
straightforward algebra that if we close ρ points from Dj ’s, then we need to open points from
exactly ρ different Ci’s to keep the number of outliers below z. Since the points on the perimeter
are distributed evenly, we incur the minimum cost by opening f(Ci)’s. So, we only need to show
that swapping at most ρ points from f(Dj)’s with ρ points in f(Ci)’s does not reduce the cost.
Assume w.l.o.g. that we swap f(D1), f(D2), . . . , f(Dρ) with f(C1), f(C2), . . . , f(Cρ). The new
cost is ρ(u− 1)β+ (u+ k− ρ− 3)γ. Notice that cost(S) = (u+ k− 3)γ. Therefore, the cost has, in
fact, increased as a result of the ρ-swap since (u− 1)β > γ. Now, we can show the following claim
for k-median-out:

Claim 1 The ρ-swap local search heuristic that generates no more than k clusters and discards at
most z outliers has an unbounded locality gap in Euclidean metrics, if ρ < k − 1.

Consider the solution O = {f(B), f(C1), f(C2), . . . , f(Ck−1)} which costs (k − 1)(u − 1)β.
This is indeed the global optimum for the given instance. The locality gap then would be

(u− k + 3)γ

(k − 1)(u− 1)β
>
u− k + 2

2(k − 1)
,

since (u− 1)β < 2γ. This ratio can be arbitrarily large as z (and consequently u) grows.
A slight modification of this example to planar metrics also shows local search has an unbounded

locality gap for k-median-out and k-means-out in planar graphs. In particular, the sets of
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collocated points can be viewed as stars with 0-cost edges and the sets E and all Ci can be viewed
as stars where the leaves are in X and have distance γ or β (respectively) to the middle of the star,
which lies in C.
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A Missing proofs for Section 2

Proof of Lemma 2. The upper bound is simply because the number of parts used to form Gs
is at most 2|Es| ≤ 4α and each part has at most 2ρ centres. For the lower bound, we argue the
graph (π+ ∪ π−,P) is acyclic. If so, then (Gs, Es) is also acyclic and the result follows because any
acyclic graph (V,E) has |V | ≥ |E| − 1 (and also the fact that |P | ≥ 1 for any part).

To show (π+ ∪ π−,P) is acyclic, we first remove all nodes (and incident edges) with degree 1.
Call this graph H. After this, the maximum degree of a vertex/part in H is at least 2. To see
this, note for any P ∈ π+ ∪ π−, the incident edges are indexed consecutively by how the algorithm
constructed super edges. If ei, ei+1, . . . , ej denotes these super edges incident to P , then, again by
how the algorithm constructed super edges, for any i < c < j that the other endpoint of ec only
appeared in one iteration so the corresponding part has degree 1.

Finally, consider any simple path in H with at least 4 vertices starting in π+ and ending in π−.
Let P+

a1 , P
−
b1
, P+

a2 , P
−
b2
, . . . , P+

ac , P
−
bc

be, in order, the parts visited by the path. Then both the ai and
bi sequences are strictly increasing, or strictly decreasing. As c ≥ 2 (because there are at least 4
vertices on the path) then either i) a1 < ac and b1 < bc or ii) a1 > ac and b1 > bc. Suppose, without
loss of generality, it is the former case. There is no edge of the form (P+

a1 , P
−
bc

) in P because the

only other edge (P+
a , P

−
bc

) incident to P−bc besides (P+
ac , P

−
bc

) has a > ac.
Ultimately, this shows there is no cycle in H. As H is obtained by removing only the degree-1

vertices of (π+ ∪ π−,P), then this graph is also acyclic.
Proof of Lemma 3. Say Es = {ei, ei+1, . . . , ej}. First consider some index i < c < j where ec has
a split endpoint P . Then some edge ec′ incident to P is not in Es so either c′ < i or c′ > j. Suppose
c′ < i, the other case c′ > j is similar. By construction, all edges in NP(P ) for any P ∈ π+ ∪ π−
appear consecutively. As c′ < i < c and ec′ , ec ∈ NP(P ), then ei ∈ NP(P ). Thus, the only split
parts are endpoints of either ei or ej .

We claim that if both endpoints of ei are split, then ei and ej share an endpoint and the other
endpoint of ej is not split. Say ei−1 = (P+

ai−1
, P−bi−1

). Then either P+
ai−1

6= P+
ai or P−bi−1

6= P−bi .

Suppose it is the former case, the latter again being similar. So if P+
ai is split it must be ej+1 has

P+
ai as an endpoint. Therefore, ei and ej share P+

ai as an endpoint. Further, since ej+1 has P+
ai as

an endpoint then NP(P−bj ) = {ej} so P−bj , the other endpoint of ej , has degree 1 so is not split.
Similarly, if both endpoints of ej are split then one is in common with ei and the other endpoint

of ei is not split. Overall we see Gs splits at most two vertices.

B Proof of Theorem 6

Here we show how we can modify proof of Theorem 4 in [19] to prove Theorem 6. The proof of
Theorem 4 in [19] starts by showing the existence of a randomized partitioning scheme of S ∪ O
where each part has size at most (d/ε)Θ(d/ε) satisfying the 2nd and 3rd condition. We can ensure
that each part has size at least 1/ε by merging small parts if needed. That part of the proof remains
unchanged. Let us call the parts generated so far P1, . . . , P`. Then we have to show how we can
combine constant number of parts to satisfy condition 1 for some ρ = ρ(ε, d). Since we have (1+ε)k
centres in S and k centres in O we can simply add one “dummy” optimum centre to each part Pi
so that each part has now one dummy centre, noting that ` < εk (because each part has size at
least 1/ε). We then perform the balancing step of proof of Theorem 4 in [19] to obtain parts of
size ρ = (d/ε)Θ(d/ε) with each part having the same number of centres from S and O satisfying
conditions 2 and 3. Removing the “dummy” centres, we satisfy condition 1 of Theorem 6.
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C Reassigning Points for the k-median-out Analysis

Below we specify what to do for each point j ∈ X o and κ(j) together.

• If j ∈ X o and s = s(j), then by Lemma 4 σ∗(j) ∈ Gs and it is open, we assign j to σ∗(j) and
make κ(j) an outlier. The total assignment cost change for j and κ(j) will be c∗j − cκ(j).

The subsequent cases are when j ∈ X a ∩ X a∗ .

• If j is lucky and s = s(j) then we reassign j from σ(j) to σ∗(j). The total reassignment cost
change is c∗j − cj .

• If j is long then we assign j to the nearest open center to σ(j). Again using Lemma 1 and
since j is long, the total cost change of the reassignment is at most:

5 ·Dσ(j) ≤ 5ε · δ(σ(j), σ∗(j)) ≤ 5ε · (c∗j + cj).

• If j is good and Dσ∗(j) ≤ ε ·Dσ(j), we assign j to the open centre that is nearest to σ∗(j). By
(1) in Section 2.1 and Lemma 1, the assignment cost change for j is at most:

c∗j + 5 ·Dσ∗(j) − cj ≤ c∗j + 5ε ·Dσ(j) − cj
≤ c∗j + 5ε · (c∗j + cj)− cj
≤ (1 + 5ε) · c∗j − (1− 5ε) · cj .

• If j is good but Dσ∗(j) > ε · Dσ(j), then let i′ be such that σ(j), i′ both lie in Gs and
δ(σ∗(j), i′) ≤ ε ·Dσ∗(j). Reassigning j from σ(j) to i′ bounds its assignment cost change by

c∗j + δ(σ∗(j), i′)− cj ≤ c∗j + ε ·Dσ∗(j) − cj ≤ (1 + ε) · c∗j − (1− ε) · cj .

• Finally, if j is bad then simply reassign j to the open centre that is nearest to σ(j). By (1)
and Lemma 1, the total reassignment cost change for j is at most:

5 ·Dσ(j) ≤ 5 · (c∗j + cj).

For every point j for which σ(j) is still open we keep it assigned to σ(j). Considering all cases,
if ∆j denotes the net cost change for re-assignment of j ∈ X , then:

• If j ∈ X o then the only time j is moved is for the swap involving Gs(j) and ∆j = c∗j .

• If j ∈ X o∗ then the only time j is moved is for the swap involving Gs(κ−1(j)). So ∆j = −cj .

• If j is lucky then it is only moved when Gs(j) is processed so ∆j = c∗j − cj .

• If j is long then it is moved to σ∗(j) when Gs(j) is processed and it is moved near σ(j) when
σ(j) is closed, so

∆j ≤ c∗j − cj + 5ε · (c∗j + cj) = (1 + 5ε) · c∗j − (1− 5ε) · cj .

• If j is good then it is only moved when σ(j) is closed so ∆j ≤ (1 + 5ε) · c∗j − (1− 5ε) · cj .
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• If j is bad then it is only moved when σ(j) is closed so ∆j ≤ 5 · (c∗j + cj).

Considering all Gs ∈ G (and considering all test-swaps):

0 ≤
∑
Gs∈G

cost((S − Ss) ∪ Os)− cost(S)

≤
∑
j∈X

∆j

≤
∑

j ∈ X a ∩ X a∗
j is not bad

[
(1 + 5ε) · c∗j − (1− 5ε)cj

]
+
∑
j bad

5(c∗j + cj) +
∑
j∈X o

c∗j −
∑
j∈X o∗

cj . (3)

Using the fact that the probability of a point j being bad is at most ε we get:

0 ≤
∑
j∈X

[
(1 + 10ε) · c∗j − (1− 10ε) · cj

]
.

Rearranging and relaxing slightly further shows the same bound cost(S) ≤ (1 + 30ε) ·OPT.

D Proof of Lemma 6

This is similar to the proof in Appendix B. The main difference in this setting is that the sets Ra
are not necessarily disjoint but are only guaranteed have limited overlap.

First, note

m∑
a=1

|(Ra − ∂(Ra) ∩ S| − |Ra ∩ O| ≥ [|S| − ε · (|S|+ |O|)]− [|O|+ ε · (|S|+O|)]

= |S| − |O| − 2ε · (|S|+ |O|)
= ε′ · k − 2ε · (2 + ε′) · k

≥ ε′

2
· k (4)

because
∑m

a=1 |∂(Ra)| ≤ ε · |S ∪ O|.
Now add “dummy” optimum centres to each region to form regions Ra satisfying

∑m
a=1 |Ra ∩

O|− |(Ra− ∂(Ra)∩S| = 0 where the boundary ∂(Ra) is the boundary of the non-dummy vertices.
The number to be added overall is at bounded as follows,

m∑
a=1

|(Ra − ∂(Ra) ∩ S| − |Ra ∩ O| ≤ |S| − |O| − ε · (|S|+O|)

≤ ε′k − 2εk

=
4ε′

5
· k.

Now, as |Ra| ≤ r for each a then there are at least 2k/r regions, so we may add at most 4ε
5 /

2
r =

O(dH/ε) centres per region to achieve this. That is, |Ra| ≤ |Ra|+O(dH/ε) = O(r).
On the other hand, we can guarantee each Ra has at least one dummy centre. this is because

there are at least ε′

2 · k dummy centres to add and the number of regions is at most cH/r · 3k =
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3cH
dH

ε2 · k = 300cH
dH

ε′2 · k. For small enough ε′, the number of centres to add is at least the number
of regions.

Finally, using Theorem 4 in [19], we can partition {R1, . . . , Ra} into parts R∞, . . . ,R` where
each part Rb consists of O(r2) regions and

∑
Ra∈Rb

|(Ra − ∂(Ra) ∩ S| − |Ra ∩ O| = 0. For each

1 ≤ b ≤ `, let R′b = ∪Ra∈Rb
Ra (discarding the dummies). Note N(R′b) ⊆ ∪Ra∈Rb

N(Ra). So
|R′b ∩ O| < |(R′b −N(R′b)) ∩ S|, as required.
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