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ABSTRACT

Anomaly detection is a challenging problem in intelligent
video surveillance. Most existing methods are computation-
consuming, which cannot satisfy the real-time requirement.
In this paper, we propose a real-time anomaly detection
framework with low computational complexity and high effi-
ciency. A new feature, named Histogram of Magnitude Opti-
cal Flow (HMOF), is proposed to capture the motion of video
patches. Compared with existing feature descriptors, HMOF
is more sensitive to motion magnitude and more efficient to
distinguish anomaly information. The HMOF features are
computed for foreground patches, and are reconstructed by
the auto-encoder for better clustering. Then, we use Gaussian
Mixture Model (GMM) Classifiers to distinguish anomalies
from normal activities in videos. Experimental results show
that our framework outperforms state-of-the-art methods, and
can reliably detect anomalies in real-time.

Index Terms— Anomaly detection, HMOF, auto-encoder,
real-time

1. INTRODUCTION

Anomaly detection and localization in intelligent video
surveillance is a significant task due to the growing needs
of public security. In real life, the definition of abnormalities
in the video is varied. For example, a runner is seen as normal
on the track and field, while it will be regarded as abnormal
in the square. Therefore, it is difficult for us to use the same
standard to measure all the scenes. A video event is usually
considered as an anomaly if it is not very likely to occur in
the video [1]. Thus we need the normal monitor video of
the scene to establish a normal model, which identifies the
anomaly in the detection.

In recent studies, the sparse representations of events [2]
in videos have been widely explored. The proposed models
in [2, 3] achieve favorable performance in global abnormal
events (GAE), however they often fail in the local abnormal
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events (LAE). In order to solve this problem, some methods
have proposed trajectory-based anomaly detection methods,
such as particle trajectories [4], tracking trajectories [5] and
so on. Such methods tend to behave very well in simple sparse
scenes, but their performance in complex scenes is severely
degraded. Some methods take account into the energy dis-
tribution characteristics of the crowd. When anomaly exists,
some energy can be mutated, such as pedestrian loss model
[6]. Some methods divide frames of video into numbers of
patches, and then can detect anomalies in LAE by analyzing
the patches [7, 8]. In addition, some methods utilize features
based on the optical flow, such as Histograms of Oriented Op-
tical Flow (HOF) [9] and Multi-scale Histogram of Optical
Flow (MHOF) [1]. These algorithms are time-consuming and
can hardly meet the real-time requirements.

Sabokrou et al [10] use two feature descriptors to extract
global and local features. Roberto et al [11] extract the HOF
features of the foreground area to build a dictionary to detect
anomalies. These algorithms can meet the real-time require-
ments with high detection speeds. However, compared with
state-of-the-art methods, there are still some gaps in detection
performance.

In this paper, we propose a new feature called Histogram
of Magnitude Optical Flow (HMOF), which is more efficient
to describe motion information. We use the foreground ex-
traction algorithm to extract the video foreground patches, so
that only the foreground patches will be processed, which is
more efficient. Next, the features are fed into the auto-encoder
network to be reconstructed and then classified by the Gaus-
sian Mixture Model (GMM) Classifiers. Thus we can distin-
guish the abnormal patches.

The main contributions of our work are as follows: (1)
We present a new feature named HMOF for anomaly detec-
tion. Compared with existing feature descriptors, HMOF is
more sensitive to motion magnitude and more efficient to dis-
tinguish anomaly information; (2) We propose an algorithm
framework for local anomaly detection, which can be applied
in real scenes. Because our algorithm outperforms state-of-
the-art methods, and can be done in real-time.

The rest of the paper is organized as follows. The pro-
posed method is introduced in Section 2. Section 3 presents
the experimental results, comparisons and analysis on UMN
and UCSD datasets. Finally, Section 4 concludes the work.
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Fig. 1. Framework of our proposed method. (a) Input frames. (b) Extracted foreground. (c) Foreground patches. (d) HMOF
features. (e) Auto-Encoder. (f) GMM Classifier. (g) Detected anomalies.

2. THE PROPOSED METHOD

In this section, we illustrate the proposed algorithm in de-
tail. Firstly, we obtain foregrounds patches with KNN mat-
ting. Secondly, HMOF features are extracted on foreground
patches. Base on the features, we use the auto-encoder net-
work to get the deep features, which will be fed into the GMM
Classifiers. The Framework of our method is shown in Fig.1.

2.1. Foreground detection

We split each frame into a number of non-overlapping
patches. In order to reduce the number of processing patches,
we use foreground detection algorithm to extract foreground
area. As a matter of fact, background patches are eliminated,
which can speeds up the test phase.

The problem of foreground segmentation is treated as
matting, and the matting model is expressed as follows:

I = aF + (1 - a)B (1)

where I, F, B is color, foreground color and background color
of a pixel in image respectively, a is a parameter of segmen-
tation to indicate the former background weight. Here we
use the well-known KNN matting algorithm [12] to extract
the foreground. The extracted foreground is shown in Fig.1
(b). Then we calculate the foreground value of each patch
by adding the intensity of every pixel. If the value exceeds a
threshold, we regard it as a foreground patch. The extracted
foreground patches are shown in Fig.1 (c).

2.2. HMOF

Optical flow is good for describing the motion, and HOF is
widely used as a motion descriptor. To extract HOF features,
the amplitude weighting statistics of the optical flow is cal-
culated in different directions of the optical flow, and the his-
togram of the optical flow direction information is obtained.
However, the HOF features mainly consider the information
of the optical flow direction, with less consideration of the

optical flow amplitude information. MHOF [1] is based on
the HOF, taking account into the optical flow amplitude in-
formation, by setting the relevant threshold information for
different amplitude range of different optical flow to carry out
statistics.

While MHOF uses the amplitude characteristics of the op-
tical flow, it still mainly considers the direction of the optical
flow information, which means that MHOF is less sensitive
to the motion magnitude. Furthermore, the amplitude thresh-
old is usually an experience parameter. Generally, abnormal
behaviors are more sensitive to the amplitude characteristics
rather than directional characteristics of the optical flow, such
as running, bicycles, cars, skate, etc. The speed of these be-
haviors are faster than the speed of normal behaviors. To
some extent, the directional characteristics of the optical flow
is a kind of interference. To reach a better performance, we
propose a new motion feature called HMOF based on the am-
plitude characteristics of the optical flow, which can detect
abnormal objects effectively.

The procedure of HMOF feature extraction is shown in
Fig.2. Firstly, we need to calculate the threshold δ of HMOF.
We sort the amplitudes of optical flow in normal patches of
the whole training set in ascending order. Since there in-
evitably exists some noise when calculating optical flow, we
discard the top 5% of the optical flow and set δ as the maxi-
mum amplitude of the remaining optical flow. Then we divide
the amplitude of the optical flow into n bins. The range of i-
th bin is [(i-1)/n×δ, i/n×δ). In order to accommodate all the
optical flow during the test phase, the range of the last bin is
set to [(n-1)/n×δ, +∞). After that, we use the normalized
histogram to keep the scale invariance of the HMOF feature.

Fig.3 shows the feature maps of HOF, MHOF and HMOF,
from left to right respectively. Among them, the pedestrian
and the tree are normal, and the bicycle and the car are re-
garded as abnormal. It can be seen that the HMOF is more
prominent than the HOF and MHOF, and the characteristic
distribution is more obvious. The feature distribution of the
normal region is more biased towards the low amplitude side,
while the abnormal area characteristic distribution is more
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Fig. 2. The process of extracting HMOF features. (a) Videos
of the training set. (b) Optical flow of the training set. (c) An
area to be detected. (d) HMOF of the area.

biased towards the high side, which is conducive to distin-
guish between abnormalities. Subsequent experiments show
that HMOF features perform better than the HOF and MHOF
features.

2.3. Auto-encoder

Auto-encoder, consisting of encoder and decoder, is widely
used in computer vision area such as video tracking and
anomaly detection. Encoder aims to project the input data
into the feature space which is constructed by the hidden
units, then the input is reconstructed by the decoder. Auto-
encoder is usually trained by minimizing the reconstruction
error between the input and output. For supervised machine
learning, the hidden layer of auto-encoders can be used for
feature transformation.

In our case, the space expanded by the hidden units is
called the feature space H. In the training phase, we use
HMOF features of the training set to train the parameters of
the auto-encoder. In the testing phase, we project the HMOF
features of input data into feature space H. It can be seen that
the features distribution of the normal and abnormal samples
are quite different in the feature space H, which can be easily
distinguished by the subsequent classifier.

  (b) HOF   (c) MHOF  (d) HMOF   (a) Area

person

bicycle

car

tree

Fig. 3. the feature maps of HOF, MHOF and HMOF

2.4. Anomaly Classifier

The GMM is a weighed sum of multivariate Gaussian proba-
bility densities given by:

P (x|Θ) =

K∑
k=1

λkN (x|µk,Σk) (2)

where Θ = {λ1, · · · , λK ,µ1, · · · ,µK ,Σ1, · · · ,Σk} is the
parameter of GMM. K denote the number of Gaussian com-
ponents and λk is the weight of the k-th Gaussian model. µk

and Σk are the mean and covariance matrix respectively. N (·)
denotes the multivariate Gaussian distribution. The parame-
ters can be estimated by using the maximum-likelihood (ML)
estimation. With the GMM method, we can adaptively ad-
just the decision surface for classification, which can better
distinguish anomalies from normal activities in videos.

At first we use all features of the training set to train the
GMM Classifiers, then the trained classifier is used to test the
features of the testing set. Each feature will get a score after
passing the classifier. If it is below a threshold α, it will be
judged as an abnormal:

Patch(x) =

{
Normal score(x) > α
Abnormal otherwise

(3)

where x is the feature fed into the classifiers, and score(·) is
the score given by the GMM Classifiers.

In some surveillance scenes, a target may be the forma-
tion of several patches due to the limitation of patch-based
method. Thus in order to enhance the robustness, we judge a
frame as abnormal if the number of abnormal patches exceeds
a threshold β. If the number of abnormal patches is below the
β, these patches are more likely to be misjudged and we will
drop them out from the abnormal candidates:

Frame(i) =

{
Normal sum(p) < β
Abnormal otherwise

(4)

where p are the abnormal patches, sum(·) is the number of
the abnormal patches in the i-th frame.

3. EXPERIMENTS

We use two measures to evaluate the results: the frame-level
and the pix-level. For the frame-level, if one pixel is detected
as an anomaly, the whole frame is considered as an anomaly.
For the pixel-level, a frame is deemed to be correctly classi-
fied if at least 40% of the pixels are correctly classified [13].
We test our algorithm on two datasets: the UMN dataset for
GAE detection and the UCSD dataset for LAE detection. The
details are shown below.

3.1. Detection of GAE on UMN dataset

The UMN dataset has three different scenes with a resolution
of 320 × 240. In each scene, a group of people are walking



Table 3: Details of running-time (second/frame) on UCSD Ped2
Time (spf) Foreground Optical Flow HMOF Auto-Encoder GMM Total
Ours method 0.011 0.025 0.004 0.006 0.002 0.048

Table 1: Comparison of AUC on the UMN dataset
Scene SR[1] Zh[14] MIP[15] Scan[16] Ours
1 99.5% 99.3% 99.6% 99.1% 99.8%
2 97.5% 96.9% 94.4% 95.1% 98.6%
3 96.4% 98.8% 90.8% 99% 99.2%

Fig. 4. Examples of anomaly detection on UMN (top row)
and UCSD Ped2 (bottom row)

in an area, and suddenly all people run away, which is consid-
ered to be abnormal. This dataset has no pixel-level ground
truth, so we use Area Under the Curve (AUC) of the frame-
level to evaluate our method.

We set the patch at a size of 20 × 20, and the amplitude
of the optical flow is divided into 8 bins. The threshold δ of
HMOF is calculated as 1.04 and the β used to adjudge ab-
normal frame is set to 3. Some image results are shown in
Fig.4. We compare our method with SR [1], Zh [14], MIP
[15], Scan [16]. Results are shown in Table 2, which demon-
strate that our method outperforms state-of-the-art methods.

3.2. Detection of LAE on UCSD Ped2 dataset

The UCSD Ped2 dataset has 16 training and 12 testing video
clips, and the number of frames of each clip varies. The
videos consist of walking pedestrians paralleling to the cam-
era plane, which are recorded with a static camera at 10 fps.

We set the patch at a size of 20 × 20, and the amplitude
of the optical flow is divided into 8 bins. The threshold δ of
HMOF is calculated as 2.4 and the β is set to 3. Some image
results are shown in Fig.4. Our algorithm can detect bikers,
cars, skaters, etc. Fig.5 shows the frame-level and pixel-level
Receiver Operating Characteristic (ROC) of the UCSD Ped2.
Equal Error Rate (EER) for the frame-level and the pixel-level
comparisons is shown in Table 2. From Table 2, we can see
that if the HMOF features are replaced by HOF or MHOF in
the proposed method, the performance is much worse, which
indicates the effectiveness of the HMOF features. We can also

Fig. 5. ROC comparison with state-of-the-art methods. Left:
Frame-level. Right: Pixel-level

Table 2: EER for frame-level (FL) and pixel-level (PL) com-
parisons on UCSD Ped2; we only list first author in this table)

Method FL PL Method FL PL

MDT [13] 24% 54% Saligrama [7] 18% -
Reddy [8] 21% 31% Ying Zhang [17] 22% 33%
Dan [9] 20% 42% Sabokrou [10] 19% 24%
Rosh [18] 17% 30% DeepCascade [19] 8.2% 19%
Li [3] 18.5% 29.9% Tan Xiao [20] 10% 17%
IBC [21] 13% 26% Ours-MHOF 15.5% 23.9%
Ours-HOF 16.4% 22.8% Ours 7.2% 14.8%

see from Table 2, compared with other state-of-the-art meth-
ods, the proposed algorithm achieves the best performance,
with the frame-level EER decreased from 8.2% to 7.2%, and
the pixel-level EER decreased from 17% to 14.8%.

3.3. Running-Time Analysis

The experiments are conducted on a regular PC with Intel-i7-
7700 CPU (3.6 GHz) and 8 GB RAM, and the running-time of
processing a single frame of UCSD Ped2 is provided in Table
3. Our method is computational efficient with the total time
for detecting an anomaly in a frame being 0.048sec, which
indicates that our method can be proceed in real-time.

4. CONCLUSION

In this paper, we present an anomaly detection method. A
new feature named HMOF is proposed. Compared with other
feature descriptors, HMOF is more sensitive to motion mag-
nitude, and efficient to represent anomaly information. In
our method, HMOF is computed for each foreground area,
and is reconstructed by the auto-encoder. Then we use GMM
Classifiers to distinguish anomalies from normal activities in
videos. Experimental results show that our algorithm out-
performs state-of-the-art methods, and can reliably detect



anomalies in real-time. Therefore, it can be widely used in
real-time surveillance applications.
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