
Mu3D: A Causal Consistency Protocol
for a Collaborative VRML Editor

Ricardo Galli Yuhua Luo

University of Balearic Islands

Abstract

This paper describes the implementation of the Mu3D application
protocol and consistency control mechanisms to allow the
collaborative editing of CAD design. The collaborative editor
(M3D editor) developed by us is VRML compliant. The editor has
been used as a base for the European Esprit project No. 26287 -
M3D and the Spanish project TEL 96-0544/CODI for
Cooperative CAD applications.

In our system, only the changes to local databases are transmitted
to other collaborative session members. To assure database
consistency, the system provides consistency control over the
shared data space. A great effort has been paid also to provide a
high capability of cooperation and user interactivity while
narrowing networks bandwidth requirements.

CR Categor ies and Subject Descr iptors: I .3.2 [Computer
Graphics]: Graphic Systems - Distributed/network graphics. I .3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism
- Virtual Reality. J.6 [Computer Applications]: Computer Aided
Engineering - Computer-aided design (CAD). C.2.2 [Computer
Communication Networks]: Network Protocols. C.2.4
[Computer Communication Networks]: Distributed Systems -
Distributed applications.

Additional Keywords: distributed virtual environments,
multicasting, VRML, architecture, CAD.

Mathematics and Computer Science Department.
University of Balearic Islands.
Carr. de Valldemossa km 7.5, E-07071, Spain.
e-mail: galli r@m3d.uib.es / yuhua@m3d.uib.es

1 INTRODUCTION

The M3D system is a higher level CSCW system particularly for
architectural production [Luo99a, Luo99b]. The main component
of the M3D system is the collaborative VRML based editor, the
M3D Editor. Architectural designs are converted to VRML format
using our own developed or third parties tools [Gall97, Sall97],
[Cad1]. Its capabilit y of supporting the cooperative work not only
includes the distributed-collaborative visualisation, but also, and
more important, the on-line modification of CAD objects for an
architectural design team. A shared, VRML compatible1 database
is also developed for information storing and retrieval of the
whole architectural project.

The objective of the design and development of the M3D Editor
was twofold:

1. Provide a rich set of editing operations focused on architects
and engineers necessities.

2. Allow the system to work through low to medium bandwidth
networks. Our major target is to achieve good interactive
performance in ISDN connections because it is the standard
set-up for European architecture small and medium size
enterprises.

Although centralised system architecture is easier to implement
and to control database consistency, the second objective makes
us impossible to use this architecture. The architecture we
implement is fully distributed. The applications and data are
replicated among all sites participating in a collaborative session.

To send local changes to the other database instances we
developed an application communication protocol specially suited
for transmitting VRML node changes in small messages: the
Mu3D (Multi-user 3D) protocol.

In order to maintain the consistency of the database, we have to
assure that all messages are sent and delivered to the peer editors
in the right order. Because the editor uses a general platform for
collaborative work (JESP) [Alme95] that does not provide total
ordering message delivering, only source ordered delivery, we
have to implement policies and mechanisms to assure causal
ordering delivery (or synchronisation).

A very natural but naive idea would be a mechanism that requires
an ACK message for every update message. However, this will
lower the interactivity and increase the network traffic.

1 It allows to identify stored VRML files through a “unique” URL.

Permission to make digital or hard copies of part of all of this work
or personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.

VRML 2000, Monterey, CA USA
© ACM 2000 1-58113-211-5/00/02 � $5.00

53

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330160.330175&domain=pdf&date_stamp=2000-02-21

Instead, we decide to use the causal ordering. This will allow the
editor to update the local copy and allow the user to continue
interaction immediately. Special “barriers” are needed to assure
causal synchronisation. These barriers are short periods of time
that occurs when a user changes his/her “ interest” to another
object. During this short period, we force all the replicas to check
their local database and to accept or not the selection (through
ACKs messages, similar to a two-phase handshake).

We call this technique the “selection” policy [Luo98] (or better to
say “selection-and-go”). In order to allow an object to be
modified, the user has to select first the sub-tree defined beneath
such object. If the selection is ACKed by every site, the object is
“ locked” and can be just modified by the site maintaining the
locking. The object is released when the user de-selects the whole
sub-tree.

In the next sections, we shortly describe the architecture of the
M3D system and editor, and then we present the Mu3D protocol
and discuss how we assure database consistency. We also
demonstrate analytically that consistency is achieved. Finally we
present and discuss some ISDN traffic analysis result and
conclusions.

2 SYSTEM ARCHITECTURE

The M3D system is designed as a fully distributed, multi -user,
multi -layered system connected by the communication network.
From the user’s point of view, the M3D system is composed of a
set of different applications that are replicated in each workstation
on each site. Sets of such workstations are connected through high
to low band network to form the system. Figure 1 shows the
general configuration of the M3D system.

LAN
ISDN

INTERNET

LAN

Mobile users

Small offices
connected to

Internet

Offices with Point
to Point

connection

Large companies
with Database

servers

Figure 1: General Configuration of the M3D system

The M3D system follows the peer-to-peer network
communication model. The layers of the M3D system and its
corresponding layers to the OSI layers are shown in Figure 2. The
cooperative support layer is application and network independent.
The hosts participating in a session have the same set of resources
and replicas of the applications.

SM

GC

TCP/IP

PPP/ISDN

M3D Editor

SMI

SM

GC

M3D Editor

SMI

SM

GC

TCP/IP

M3D Editor

SMI

PPP/ISDN

Application

Presentation

Session

Transport

Network

Link

Physical
Ethernet

Mu3D

SM Protocol

GC Protocol

SM Protocol

GC Protocol

TCP/IP

Mu3D

Figure 2: The layered structure of the M3D system and the
corresponding OSI layers

Local Structure

There is an instance of the structure depicted in Figure 3 in each
site. Session control is achieved by a distributed protocol executed
among the SM entities. These entities have the same set of
capabiliti es. Some specific attributes may be given to just one of
the session managers in order to perform special tasks such as
permission functions given to the SM located in the conference
initiator site.

Group Communication
GC

NETWORK

M3D Editor

SMIUI
…

SAP

SAP

OPERATING SYSTEM

SAP

JESP

UISMI

Session Manager
SM

M3D Editor

Figure 3: Local structure of the Editor and JESP

Each distributed application makes use of a specific protocol to
exchange messages. Most of the messages contain user events
produced through one or more input devices available at the user
interface. These local events are encapsulated in messages and
sent to the other sites through a service request made to the SM
entity. The model in Figure 3 contains two I/O logical entities
located at the application layer environment. One of them is the
User Interface (UI), which encompasses all the devices that
collect local user events in the context of a particular application.
The Session Manager Interface (SMI) structures the
communication between the application and the SM layer.

2.1 The M3D Editor

The M3D Editor is a 3D distributed virtual environment (DVE)
editing tool that immerses several users in the same world space

54

(Figure 4). Collaborators may interactively add, modify, or delete
objects, change environmental attributes, and navigate in the
common environment. The system is oriented to real-time
WYSIWYG three-dimensional editing. It provides support for
virtual scene construction where 3D object models of different
formats and different standard commercial modelli ng packages
may be input to construct the 3D environment.

Figure 4: The M3D Editor (PC-Windows version).

The major entity in the editor is a VRML or OpenInventor 3D
scene. A scene is a generic 3D object hierarchy, populated with
typical OpenInventor [Wern94]/ VRML nodes [Ame96].

The editor is being developed using the TGS/OpenInventor toolkit
as the 3D-development library. It runs in two platforms SGI
(X11/Motif) and Windows machines.

2.1.1 Major Functions

The major function of the M3D Editor is the capability of editing
an architectural design. It should have two modes: on-line
cooperative editing mode and the off-line editing mode.

By using the M3D Editor, the chief architect can chair an on-line
cooperative working session to achieve the tasks defined in the
new business process, especially for integration and aggregation
of design work from different specialists. Working session may
also be held between the engineers and the internal architectural
design team. The major editing functions are divided in several
groups. They are operations and management for a scene and
objects, for scene environments, and viewing management, etc.

Object Management: This group of functions is applied to a
scene and objects (in VRML terms). A scene can be stored locally
or in an HTTP server. The editor provides a relatively rich set of
operations on the objects within a scene. New objects can be
added, modified and removed from the scene. Their visual
properties can be also defined and modified.

Light and Rendering Management: These groups are
manipulation of environment properties of the scene. These
properties are not part of the scene or objects. They will help to
perceive the design work better in the virtual 3D environment.

Text and Window Management: These groups of functions
provide viewing assistance to the user. Virtual camera

manipulation is within this group. When a window is created,
there is a virtual camera associated with it.

2.1.2 Interactive Response

Since interactive cooperative design of a 3D virtual world usually
involves a great amount of data to be manipulated and visualised,
to minimise the network traffic becomes vital. This affects the
feasibilit y of the whole M3D system of its multi -site cooperative
design capabilit y. Therefore, the interactive response time is a
crucial requirement that the M3D Editor must meet.

The shorter response time requires the transmission of small data
units to avoid long latency times. Another requirement to the
M3D Editor is to have a uniform way to control the consistency of
common designed data among the member hosts.

Our solution to meet this crucial requirement is two folds. On one
hand, it is to implement a totally replicated in-memory database in
each site. On the other hand, small size of messages will be sent
via the network to represent the user modification.

2.2 CSCW Platform: JESP

The editor group communications are based on a communication
and control platform for cooperative environments, the Joint
Editing Service Platform (JESP). JESP is a generic groupware
[Alme95] support platform. It was designed to provide two types
of service to cooperative applications: group communication and
session control. These are made available through a common
service interface, a Computer Supported Collaborative Work
system.

The group communication services hide the point-to-multipoint
configuration from the application. The platform’s session control
mechanism supports the application’s inclusion and control in
cooperative environments. It includes a session control module
(SM) and a group communication module (GC). The SM module
is responsible for the tasks required by a cooperative working
session such as service multiplexing, data consistency control,
member admission, dynamic groups (early leaving and late
admission), etc. The GC module provides the point to point or
point to multi -point communication. Both modules correspond to
the OSI session layer and partially to the transport layer.

3 REPLICATED DATABASE

A challenge in a multi -user 3D environment is to maintain
consistent state among a large number of workstations distributed
over a wide-area network [Awer97a, Awer97b]. Since three
dimensional rendering at interactive rates requires fast access to
the geometric database, the scene data are replicated on every site.
Each replica of the program has its own in-memory, local
database. The local database is a complex structure that stores all
the required information to display the 3D object in the screen and
to allow user interactions. Our database topology is a tree and is
closely related to the VRML file format.

55

Whenever any entity changes its state, an appropriate update must
be applied to every copy of the database in order to maintain
consistency.

3.1 The Mu3D Protocol

In order to send the modifications of the scene to the peer
application replicas during a running working session, an
application layer protocol, the Mu3D Application Layer Protocol,
has been designed. This protocol is an essential element to support
the full multi -user interactions in a shared VRML environment.
Inside the editor there is a sub-module in charge of the
communication with the lower layer within the 3D-design
application module called Session Manager Interface module. It
encapsulates the Mu3D protocol information into a lower layer
message. This message protocol, following the JESP
nomenclature [Alme95], is the SMI-to-SMI protocol. This SMI-
to-SMI protocol governs interaction within the common 3D
scenario and it is implemented through the exchange of protocol
data units (PDUs) among peers using well -known Services
Access Points provided by the JESP platform.

Local changes are sent to the other replicas encapsulated in small
“update” messages. These message formats are defined by the
peer-to-peer Mu3D protocol (see Table 1). By this design
strategy, each application replica on any workstation participating
in a cooperative design session is able to modify scene
parameters. From the point of view of the Editor, its
“cooperative” job involves two major tasks:

1. Create the event locally: This task is carried out by the user
interface to modify the scene nodes. Right after the local
modification has been finished, the SMI sub-module has to
encapsulate the new values into a Mu3D message and
transmit it to the JESP platform.

2. Recreate remote events: Once the local JESP replica receives
a message from its upper level, it sends it to the other remote
JESP replicas. Each of them creates an event
(TELE_EVENT) to the their local editor. After the message is
delivered to the application, it will i nterpret the message and
modify the referenced node parameters.

3.1.1 Structure of the Mu3D Data

The architectural design usually contains massive amount of data.
To reach the interactive cooperative modification of the design
work, we have to choose a workable strategy. The major strategy
to make all the operations with reasonable interactive response
time is to send as less data as possible via the network. By this
strategy, we decide only to send the modification data of specific
scene nodes and recreate the events locally. The Mu3D fields are
designed to allow the editor to specify the user events in small
messages. The current message size, counting JESP and TCP

headers varies between 150 and 220 bytes2. In our current test, we
send the new node values coded in plain text for debugging
purposes. This can be drastically reduced by sending binary data,
which was not implemented yet to avoid subtle endianess
problems among SGIs (big endian) and PC versions (lit tle
endian).

There are two main fields in the data unit: the EVENT (Mu3D
protocol command), and the EVENT DATA (arguments).

EVENT SCENE
ID

OBJECT
CLASS

OBJECT
PATH

DATA
LENGTH

OBJECT
DATA

EVENT
DATA

Figure 5: Structure of the Mu3D Data

There are currently nine types of events defined in the M3D
Editor. They are depicted in Table 1.

As shown in Table 1, some event types have been defined closely
related to VRML entities such as nodes and scene graph. A node
is the basic building block used to create 3D-scene database in
both formats. Each node holds a piece of information, such as a
surface material, shape description, geometric transformation,
light, or camera. All 3D shapes, attributes, cameras and light
sources present in a scene are represented as nodes.

An ordered collection of nodes is referred to as a scene graph. A
path of a node is a chain of the nodes starting from the root down
to a particular node. The indexing of nodes among its siblings
follows a left to right order with the left most as number 0. The
indexing of node uses the level of its depth in the graph from root
and all the indexes of the nodes on the path3. The ObjectClass are
class IDs in the VRML or OpenInventor scene graph. They are
LIGHT, TRANSFORM, TEXTURE, FILE, CAMERA, etc. The
ObjectPath is the string representation of an OpenInventor Path
object. It is used for locating a node in the scene graph to apply
certain action, for example, to delete an object from the scene.
The ObjectData is a buffer that can contain any kind of data
structure. The majority of the object data has been defined as
strings and may be a location of URL of the files that can be
included in a scene or the string representation of Node fields.

3.2 Database Consistency

When replicated data are updated, care must be taken to ensure
that the updates occur in same controlled order at all replicas.
Otherwise, local copies can become inconsistent. In an
environment where no global ordering is guaranteed (JESP
platform only assures source ordering), this may be done by

2 Early versions of the protocols had bigger message sizes but they were
reduced optimising the headers and path representation. The average size
in the current version is 130-150 bytes per application layer message.

3 Each replica of the application maintains the state of remote selections
(pointers to the actual object) to avoid inconsistencies that can appear
when a user deletes the sibling of an object selected by another user.

56

sending an update message and waiting for confirmation from
every remote site [Birm87]. This synchronisation scheme means
that the frequency of local updates is limited by the round trip
time through the slowest path. Round trip values in ISDN and
Internet may vary between 60 to 1000 milli seconds. Due to the
highly interactive nature of the editor, these times are
unacceptably high.

Event Object
Class

Object Data Action

ADD FILE Filename Insert a scene stored in a
file in the given path.

AVATAR Filename Insert an avatar in the
database.

URL Url Insert a VRML or
OpenInventor scene using
the HTTP protocol.

ANYTHING VRML class
name

Create and insert a new
node in the given scene
path.

REMOVE ANYTHING Remove the given node
from the database.

LIGHT VRML light
node

Remove a light from the
group of active lights.

MODIFY AVATAR Transform Modify the position of the
avatar.

NAME String Change the name of the
given node.

TRANSFORM Transform
values

Modify the transform of
the selected object.

MATERIAL Material values Modify material
properties.

LIGHT Light values Modify the parameters of
thye light.

CLIPBOAR
D

COPY Group node Copy the node into the
“ distributed” clipboard.

PASTE Group node Paste the copied node into
the scene.

SELECT GROUP Group node Mark the object (sub-tree)
as selected by the sender.

SELECT
ACK

USER Boolean A site acknowledges, in a
point to point connection,
the selection of the
“ requested” object. The
AKC may be negative to
indicate “ rejection” .

DESELECT GROUP Group node Release the sub-tree (the
user is known by the
JESP platform)

TELE INIT USER User ID To initialise an M3D
working session by a
session initiator and
inform all other
participants about its
presentation. We decide
to use an avatar to
represent each participant
visually in the scene.

TELE
NOTIFY

USER User ID The answer message from
a new participant. It has
the same data contents as
the user init event.

Table 1: Structure and events of the Mu3D message.

To ensure higher update rates our solution is to implement a
scheme similar to the causal broadcast primitive (CBCAST)
proposed by Birman and Joseph [Birm87] for supporting
distributed computations in fault-tolerant process groups. The
CBCAST primitive is used in the scheme to enforce a delivery
ordering with minimal synchronisation.

Before defining temporal and causal relationships of a message,
we introduce the flow concept. This concept was used in a very
similar fashion by Yavatkar and Lakshman in [Yava94].

3.2.1 Flows

We can think of our collaborative system as a multiple flows
“conversation” . If we analyse the messages from a user during a
short period, we will realise that they are updates to the same
object. This occurs because we force users to select an “object”4

before he is able to edit it . This policy is defined by the
“selection” policy (see following section). In other words, the
mechanism assures that the updates to branches of the scene tree
are mutually exclusive.

Our concept of flows is analogous to “criti cal regions” in mutual
exclusion algorithms. The important feature of these algorithms is
that if one process is executing in its criti cal section, no other
process is allowed to execute the same criti cal section. Similarly,
our definition of flows ensure that while an editor replica is
modifying a branch of the VRML scene tree, no other replica is
allowed to modify nodes in the same branch.

To ensure the mutual exclusion feature we force the editor to
acquire the “lock” by first sending the select Mu3D message and
wait until an “ACK” is received from every session member. This
procedure is, again, analogous to the entry section procedure in
mutual exclusion algorithms.

Definition 1: If a lock to an object X is acquired by user i

(UiLX ∈), we say that a new flow iXf , was established (Xf

for short) and FfX ∈ where F is the set of existing flows in a

running collaborative session.

A flow is actually defined by the existence of its corresponding
lock. Once a lock has been released, the flow is also relinquished.

When collaboration involves communicating via a single or
multiple flows, causal relationships among messages sent over the
flows must be maintained to preserve the context in which a
message is sent [Yava94].

Selection Policy

Our selection policy requires that the selection algorithm, which is
applied to all the participating applications, preserves sequential
ordering [Agra94, Atti94, Feke95, Lamp78, Yehu93]. Sequential
consistency requires that all the data operations appear to have
executed atomically, in some sequential order that is consistent
with the order seen at individual processes. In other words, the
same sequence can be repeated in a centralised shared-memory
system.

By the definition of the Mu3D protocol in the above section, local
copies will be updated by sending the changes encapsulated in
update data packets. To maintain the consistency we must avoid
possible conflicts that can appear when two or more users intend
to modify the same region of the scene. The major solution we
choose is to apply the locking policies and transaction-oriented
operations. These policies are based on techniques coming from

4 An object must be interpreted as the VRML sub-tree beneath a given
group node.

57

distributed processing and database areas [Atti94, Awer97,
Barr96, Feke95, Galli 97, Glen81, Lync87, and Lync97].

We define the following select policy:

1. We allow a user to modify only selected objects. The
selection of an object involves the “locking” of the VRML
sub-tree under the selected node. During the period the
object is selected, no other user can select such object
(Figure 7).

2. An object can be selected only if no other member have
previously selected any part of the object sub-tree. Once the
selection is accepted by all members (one select generates N-
1 ACK messages). If an ACK is not received in a given
period of time (2 seconds in our implementation) then an
error situation is assumed (disconnection or early leaving).
This error will be detected soon by JESP architecture and
communicated to the application.

Figure 7: Local (lower, red bounding-box) and remote (yellow)
selected objects

3.2.2 Temporal and Causal Relationships

Let F denote the set of flows in a collaborative session5 and let
M denote the set of messages sent over the constituent flows in
F .

Definition 2: We define � (precedes) to be a transitive relation
on F and)(Xfstart ,)(Xfend the starting and ending time of

flow Xf respectively, such that YX ff � if and only if

)()(yX fstartfend < .

Definition 2 (and 3) is similar to Lamport’s “happens-before”
condition [Lamp78].

Lemma 1: From the implementation of the selection policy and
Definition 2, it is easy to prove that if object 'X is a descendant
of X or 'XX = ('XX ⊆). If jXiX ff ,', , occur in the same

session, one of the following conditions holds:

1. jXiX ff ,',
�

5 Yavatkar call it “conversations” .

2. iXjX ff ,,'
� .

Definition 3: We define � (precedes) to be a transitive relation
on M , such that 21 mm � if and only if the following conditions

hold:

1. Both 1m and 2m are sent by the same sender.

2. Both 1m and 2m are sent over flows if and jf

(if , jf).

3. The message 1m is sent before 2m is sent.

Definition 3 defines a partial order among all messages sent by
the same sender, which is known as source ordering delivery in
the field of distributed computing. The source ordering is assured
by the JESP platform. The last can be demonstrated because JESP
uses connection oriented TCP channels, what are defined as a
“reliable FIFO channel,” which provides source ordered packet
delivery (see for example [Lync97]).

Lemma 2: We can demonstrate from previous definitions that, in
our implementation, messages that update the same object but
belong to different flows with a precedence relationship between
them, then the first messages was delivered before the second. If:

Xi fm ∈ , 'Xj fm ∈ and 'XX ff � , then im was delivered before

jm . It is simple to show that in order to “establish” the flow 'Xf ,

all sites received the release message for Xf before

“Acknowledging” the select message for the establishment of

'Xf
6.

Following Lamport’s definition of causali ty and sequential
consistency [Lamp78, Lamp79]:

The result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence
in the order specified by its program.

The previous definition defines the “sequential consistency” .
Informally speaking, a sequentially consistent memory [Feke95]
appears to its users as if it was centralised. In other words, it
requires that all the operations appear to be executed atomically,
in some sequential order that is consistent with the order seen at
individual processors (sites)7 [Atti94].

In a distributed system, where updates to replicated database are
sent using messages through some multicast channel, it is easy to
demonstrate that if the message delivery mechanism respects
“Lamport causali ty” and the sequential consistency is assured
[Feke95]. Causal ordering can be defined as:

6 It is worth to consider that all select, deselect and ACKs message belong
to a special flow.

7 This condition is similar to serializabil ity from database theory.

58

When a message is delivered, the recipient has already seen any
other message whose content could have been known to the
sender at the time of sending.

As described in [Birm87], consider a broadcast m made a site p

to update copies of a replicated variable x . Let this be followed

by a broadcast 'm to update copies of y . Although there is a

potential causal relation between m and 'm (because 'mm �),
there may be no real causal relation between them. In this case,
there would not be any reason to force the delivery of m before

'm .

Exploiting the flow concept, we define a causal dependency
relation → among messages in a session as:

Definition 4: 21 mm → if and only if at least one of the following

two conditions holds:

1. 21 mm � .

2. 2m is sent over some flow 'Xf by sender 1S after

receiving 1m over some flow Xf , with Xf , 'Xf F∈

and XX ⊆' .

3.2.3 Correctness of the Implementation

To demonstrate the correctness of our database consistency
mechanism, it suff ices to show that the following conditions hold:

Proof 1 (source ordering): If ji mm � then im is delivered to

their recipients before jm . This condition holds because

according to Definition 3, ji mm , were sent by the same site kS .

They are delivered in the right order because the JESP platform
defines a FIFO channel (TCP connection) between every editor
replica. FIFO channels deliver messages in the same order they
entered the channel.

Proof 2 (mutual exclusion): If ji mm , , with Xji fmm ∈, ,

FfX ∈ and is an active flow, then im and jm were sent by the

same site kS (mutual exclusion). This condition is assured by

Definition 2 and Lemma 1.

Proof 3 (causal synchronisation): If ji mm → , then im is

delivered to the recipients before jm . This is the most important

condition because it means we assure causal synchronisation, or
in other words, the updates of distributed variables are
“sequentially consistent” . It suff ices that one of the two conditions
of Definition 4 holds:

a) ji mm � : This condition is true because Proof 1.

b) 2m is sent over some flow 'Xf by sender 1S after receiving

1m over some flow Xf . If Xf is the same active flow

('XX ff =), both messages were sent by the same site 1S , by

Proof 1 and Proof 2, the condition holds. If 'XX ff ≠ then

according to Lemma 1, one of the following conditions is true;

'XX ff � or XX ff �' . Due to the mutual exclusion, if 1S sent

2m after receiving 1m , then 'XX ff � and by Lemma 2, this

condition holds.

3.2.4 Execution Examples

In this section, we present three executions that show how
inconsistencies can appear if the system does not ensure causal
synchronisation.

A conflict-free run of the system using the Mu3D protocol is
depicted in Figure 8. This is normally the case, where due to the
relatively low network roundtrip times are small compared to user
interaction intervals. In the example Site 1 modified and released
the lock before Site 2 sent a select message and started editing
without waiting for any synchronisation or acknowledgement
messages.

Site 1

Site 2

Site 3

s1,1 s1,2 s1,3

s2,1

r1,1 r1,2 r1,3 r2,1

User 1 selects
object X

User 1 de
selects object X

User 2 selects
object X

Object X can not be selected by
any user during this period

Select ACK

ModifySelect/deselect

Flow X

Figure 8: Normal execution with no conflict.

Site 1

Site 2

Site 3

s1,1 s1,2 s1,3

s2,1

r1,1 r1,2 r1,3r2,1

User 1 selects
object X

User 1 de
selects object X

User 2 selects
object X

User 2 see object
X as released

ERROR!!!

Modify

Select/deselect Flow X

Conflict

Figure 9: Execution with conflict and no causal synchronisation.

Although it seldom appears, a more realistic example is shown in
Figure 9. In this example, the system does not provide any causal
consistency mechanism. Site 2 received the deselect message
from Site 1 (3,1s) and immediately selected the same object

(message 1,2s) before Site 3 received the previous deselect

message from Site 1. This case may occur if packets travel
between sites through different paths, and their roundtrip times
vary noticeably. If Site 2 modifies its local copy before 3,1s

59

arrives to Site 3, the database becomes inconsistent. The last
occurs because there is no causal synchronisation.

Site 1

Site 2

Site 3

s1,1 s1,2 s1,3

s2,1

r1,1 r1,2 r1,3r2,1

User 2 stars
editing X

User 2 selects
object X

Select ACK

Modify

Select/deselect Flow X

Selection Flow

Figure 10: Mu3D causal synchronisation

The execution diagram depicted in Figure 10 shows the result of
applying causal synchronisation to the previous example. Site 3
does not send a negative AKC immediately, but waits for a short
time until 3,1s is received to send its ACK. Therefore, Site 2

cannot start any object editing until the ACK from Site 3 is
received. Formally, the flow 2,Xf is not established until 3Ack is

received at Site 2.

4 TRAFFIC ANALYSIS

We analyse in this section some network traffic results obtained in
international ISDN trials. Two M3D project partners sites were
involved: UIB (Spain) and ADETTI (Portugal). The traff ic was
measured in an Ethernet segment and they show the total traff ic,
including JESP, TCP/IP and Ethernet headers overhead and data
padding. During the trials, at least one machine has maintained a
constant ping every five seconds to keep the ISDN call alive.

Although the current implementation of the editor allows to
control exactly the required network bandwidth by a sub-sampling
technique ("streams")8, this feature was disabled for editing
operations.

Figure 11: Bandwidth control configuration

The goal of the trials was to confirm that even without any
bandwidth control, the system maximum required bandwidth for
one user does not exceed a single ISDN channel capacity. To

8 By "delaying during short periods the delivery of a message which is a
technique similar to buffering techniques in file system management.

avoid the generation of a message for every virtual camera
modification (one message per frame refresh when the user
navigates), camera changes messages were controlled by a
"stream" which limited the amount of messages per seconds. The
frequency was set to a maximum of 20 messages per second
(Figure 11).

Both sides navigating

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

13
:2

3:
51

13
:2

3:
55

13
:2

3:
59

13
:2

4:
03

13
:2

4:
07

13
:2

4:
11

13
:2

4:
15

13
:2

4:
19

13
:2

4:
23

13
:2

4:
27

13
:2

4:
31

13
:2

4:
35

13
:2

4:
39

13
:2

4:
43

13
:2

4:
47

13
:2

4:
51

13
:2

4:
55

13
:2

4:
59

13
:2

5:
03

13
:2

5:
07

13
:2

5:
11

13
:2

5:
15

13
:2

5:
19

13
:2

5:
23

13
:2

5:
27

13
:2

5:
31

13
:2

5:
35

Local time

b
p

s

UIB->ADETTI

ADETTI->UIB

Figure 12: Continuous navigation with the standard mouse.

Figure 12 and Figure 13 show that one (64 kbps) ISDN channel is
enough to carry the data traffic generated by two simultaneous
users performing continuous navigation with bandwidth control.
The corresponding bandwidth requirement does not exceed 45
kbps.

Navigating with 3D mouse

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

12
:5

9:
21

12
:5

9:
29

12
:5

9:
37

12
:5

9:
45

12
:5

9:
53

13
:0

0:
01

13
:0

0:
09

13
:0

0:
17

13
:0

0:
25

13
:0

0:
33

13
:0

0:
41

13
:0

0:
49

13
:0

0:
57

13
:0

1:
05

13
:0

1:
13

13
:0

1:
21

13
:0

1:
29

13
:0

1:
37

13
:0

1:
45

13
:0

1:
53

13
:0

2:
01

13
:0

2:
09

13
:0

2:
17

13
:0

2:
25

13
:0

2:
33

13
:0

2:
41

13
:0

2:
49

13
:0

2:
57

13
:0

3:
05

13
:0

3:
13

13
:0

3:
21

13
:0

3:
29

Local time

b
p

s

UIB->ADETTI

ADETTI->UIB

Both navigating UIB navigating

Figure 13: Navigation with Magellan 3D Mouse

There is a strong correlation between the data traff ic generated by
the single user and simultaneous users navigation scenarios. This
means that the application can cope very well with one rate-
controlled input message stream and one simultaneous rate-
controlled message output stream.

Object edition

0

10000

20000

30000

40000

50000

60000

70000

80000

13
:2

6:
19

13
:2

6:
21

13
:2

6:
23

13
:2

6:
25

13
:2

6:
27

13
:2

6:
29

13
:2

6:
31

13
:2

6:
33

13
:2

6:
35

13
:2

6:
37

13
:2

6:
39

13
:2

6:
41

13
:2

6:
43

13
:2

6:
45

13
:2

6:
47

13
:2

6:
49

13
:2

6:
51

13
:2

6:
53

13
:2

6:
55

13
:2

6:
57

13
:2

6:
59

13
:2

7:
01

13
:2

7:
03

13
:2

7:
05

13
:2

7:
07

13
:2

7:
09

13
:2

7:
11

13
:2

7:
13

13
:2

7:
15

13
:2

7:
17

13
:2

7:
19

13
:2

7:
21

13
:2

7:
23

13
:2

7:
25

Local time

b
p

s

UIB->ADETTI

ADETTI->UIB

Figure 14: Object editing in one side.

60

Figure 14 and Figure 15 show the traff ic pattern generated by
object editing with visual manipulators and the Magellan 3D
mouse respectively. The bandwidth control was also appliead for
3D mouse events due to the high rate of generated events
performed by the device (more than a thousand per second).

Object edition with 3D mouse

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

13
:0

5:
55

13
:0

5:
58

13
:0

6:
01

13
:0

6:
04

13
:0

6:
07

13
:0

6:
10

13
:0

6:
13

13
:0

6:
16

13
:0

6:
19

13
:0

6:
22

13
:0

6:
25

13
:0

6:
28

13
:0

6:
31

13
:0

6:
34

13
:0

6:
37

13
:0

6:
40

13
:0

6:
43

13
:0

6:
46

13
:0

6:
49

13
:0

6:
52

13
:0

6:
55

13
:0

6:
58

13
:0

7:
01

13
:0

7:
04

13
:0

7:
07

13
:0

7:
10

13
:0

7:
13

13
:0

7:
16

13
:0

7:
19

13
:0

7:
22

13
:0

7:
25

13
:0

7:
28

Local time

b
p

s

UIB->ADETTI

ADETTI->UIB

Rotation + Translation

Material edition

Figure 15: Transform and material editing traff ic.

The required bandwidth for virtual navigation and object editing
is approximately equal. Figure 15 shows a strange behaviour of
the material editor. The traffic has exceeded the capacity of one
ISDN channel (a second B-channel link was established
automatically). The cause of this behaviour is similar to the one
caused by the 3D-mouse device. The material editor module,
which runs as an independent thread, generates one event for
every insignificant colour change. The colour editing traff ic
pattern convinced us that the sub-sampling technique should be
also used for every editing operation that can produce events in
reaction to external input devices.

5 CONCLUSIONS

In this article, a protocol that collaborative editing of CAD design
was presented. The development of the system is a challenge
because no DVE system exists to our knowledge that allows full
user interaction editing and offering at the same time fine-grained
locking policies and bandwidth control techniques. The Mu3D
protocol has shown suitable for interactive editing due to its low
bandwidth requirements.

Although traff ic can be further reduced by introducing sub-
sampling “streams” in all user interaction, extensive tests of the
editor showed us that a collaborative, fully interactive 3D-
environment editing is achievable through both LAN and WAN
network technologies.

Some useful concepts, such as flows and causal relationships were
also defined. They served us to demonstrate analytically the
correctness of the implemented database consistency techniques.

Acknowledgements

The authors thank the M3D UIB team, the M3D Project partners
and Miguel Dias and Sérgio Alves for their collaboration, efforts
and new ideas.

6 REFERENCES

 [Agra94] D. Agrawal, J. L. Bruno, A. El Abbadi, V. Krishnaswamy.
“Relative serializability: An Approach for Relaxing the
Atomicity of Transactions.” PODS '94. Proceedings of the
Thirteenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of Database Systems, pages 139-149.

[Alme95] A. Almeida and C. A. Belo. “Support for Multimedia
Cooperative Sessions over Distributed Environments.” Proc.
Mediacomm’95, Society for Computer Simulation,
Southampton, April, 1995.

[Ames96] Ames A. L., Nadeau D. R., Moreland J. L. The VRML 2.0
Sourcebook. John Wiley, New York (1996).

[Atti94] Hagit Attiya, Jennifer L. Welch. “Sequential consistency
versus linearizability.” Transactions on Computer Systems Vol.
12, No. 2 (May 1994), Pages 91-122.

[Awer97] Baruch Awerbuch, Leonard J. Schulman. “The maintenance of
common data in a distributed system.” Journal of the ACM,
Vol. 44, No. 1 (Jan. 1997), Pages 86-103.

[Barr96] Barrus J. W., Waters R. C., Anderson D. B. “Locales and
Beacons: Eff icient and Precise Support for Large Multi-User
Virtual Environments.” Proceedings of the IEEE VRAIS’96
Conference, IEEE Computer Society Press, Los Alamitos, CA,
March 1996.

[Birm87] K. P. Birman and T. A. Joseph. “Reliable Communication in
the Presence of Failures.” ACM Transactions on Computer
Systems, Vol. 5, 1, February 1987, 47-76.

[Brol97a] Broll Wolfgang. “Distributed Virtual Reality for Everyone – a
Framework for Networked VR on the Internet” . Proceedings of
the IEEE Virtual Reality Annual International Symposium
1997 (VRAIS’97), IEEE Computer Society Press, 121-128.

[Brol97b] Broll Wolfgang. “Populating the Internet: Supporting Multiple
Users and Shared Applications with VRML.” Proceeding of
the VRML’97 Symposium, Monterey, CA, Feb 1997, ACM
SIGGRAPH, 87-94.

[Cad1] CAD Studio, “VRMLout for AutoCAD”,
http://www.cadstudio.cz/indexuk.html

[Coul94a] Coulouris, G. and Doll imore, J. “Requirements for security in
cooperative work: two case studies.” Technical Report 671,
Dept. of Computer Science, Queen Mary and Westfield
College, University of London.

 [Dewa94] Dewan, P., Choudhary, R. and Shen, H. “An Editing-Based
Characterization of the Design Space of Collaborative
Applications.” Journal of Organizational Computing, 1994,
Vol. 4, pp. 219--239.

[Feke95] Alan Fekete, Frans Kaashoek and Nancy Lynch.
“ Implementing Sequentially-Consistent Shared Objects Using
Group and Point-to-Point Communication.” In the 15th
International Conference on Distributed Computing Systems
(ICDCS95), p.p. 439-449, Vancouver, Canada, May/June 1995,

61

IEEE. Abstract/Paper. Also, Technical Report MIT/LCS/TR-
518, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, June 1995.

[Funk95] Thomas A. Funkhouser. “RING: A Client-Server System for
Multi-User Virtual Environments.” 1995 Symposium on
Interactive 3D Graphics, Monterey CA USA.

[Gall97] R. Gall i, P. Palmer, M. Mascaro, M. Dias, Y. Luo. “A
Cooperative 3D Design System.” Proceedings of CEIG97,
Barcelona, Spain, June, 1997.

[Glen81] Glenn Ricardt and Ashok K. Agrawala. “An optimal algorithm
for mutual exclusion in computer networks.” Communications
of the ACM, 24,(1):9-17, January 1981. Corr igendum in
Communications of the ACM, 24(9):578, September 1981.

[Hard96] J. Hard and J. Wernecke. The VRML 2.0 Handbook. Addison-
Wesley, 1996.

[Knis90] Knister, J. Michael; Prakash, Atul. "DistEdit: A distributed
Toolkit for Supporting Multiple Group Editors." CSCW ´90
Proceedings, ACM SIIGCHI & SIGOIS, L.A. Oct/90.

[Lamp78] L. Lamport. “Time, clocks, and the ordering of events in a
distributed system.” Communications of the ACM 21(7), July
1978, 538-565.

[Lamp79] L. Lamport. “How to make a multiprocessor that correctly
executes multiprocess programs.” IEEE Trans. Comput. C-28,
9 (Sept. 1979), 690-691.

[Luo98] Y. Luo, R. Gall i, M. Mascaro, P. Palmer, F. J. Riera, C. Ferrer,
S. F. Alves, Real Time Multi-User Interaction with 3D
Graphics via Communication Network, Proceedings of IEEE
1998 Conference on Information Visualization, July 1998,
London.

[Luo99a] Y. Luo, D. Sánchez, S. Alves, M. Dias, R. Marques, A.
Almeida, J. Silva, J. Manuel , , B. Tummers (EDC), Ed.
R.Gall i, “M3D technical specifications” , ESPRIT Project No.
26287 M3D, Deliverable 1.2, April1999.

[Luo99b] Yuhua Luo, Ricardo Gall i, Antonio Carlos Almeida, Miguel
Dias, A Prototype System for Cooperative Architecture Design,
Proceedings of IEEE 1999 International Conference on
Information Visualization, July 1999, London, pp. 582-588.

 [Lync87] Nancy A. Lynch and Mark Turtle. “Hierarchical correctness
proofs for distributed algorithms.” Master’s Thesis,
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, April 1987.
Technical Report MIT/LCS/TR-387. Abbreviated version in
Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing, p 137-151, Vancouver,
British Columbia, Canada, August 1987.

[Lync97] Nancy Lynch. Distributed Algorithms. Morgan Kaufman
Publishers, Inc. ISBN 1-55860-348-8. 1997.

[Sall97] José Miguel Salles Dias, Ricardo Gall i, António Carlos
Almeida, Carlos A. C. Belo, and José Manuel Rebordao.
“mWorld: A Multiuser 3D Virtual Environment.” IEEE

Computer Graphics and Applications, Vol. 17, No. 2,
March/April 1997.

[Wern94] J. Wernecke. The Inventor Mentor. Addison-Wesley Publishing
Company, 1994.

[Yava94] R. Yavatkar, K. Lakshman. “Communication support for
distributed collaborative applications.” Multimedia Systems
(1994) 2: 74-88.

62

