
Towards a Framework for the Analysis of Multi-Product Lines in
the Automotive Domain

Shaukat Ali
Simula Research Laboratory

Oslo, Norway
shaukat@simula.no

Paolo Arcaini
National Institute of Informatics

Tokyo, Japan
arcaini@nii.ac.jp

Ichiro Hasuo
National Institute of Informatics

Tokyo, Japan
i.hasuo@acm.org

Fuyuki Ishikawa
National Institute of Informatics

Tokyo, Japan
f-ishikawa@nii.ac.jp

Nian-Ze Lee
National Taiwan University

Taipei, Taiwan
nianzelee@gmail.com

ABSTRACT
Safety analyses in the automotive domain (in particular automated
driving) present unprecedented challenges due to its complexity
and tight integration with the physical environment. Given the
diversity in the types of cars, potentially unlimited number of pos-
sible environmental and driving conditions, it is crucial to devise
a systematic way of managing variability in hazards, driving and
environmental conditions in individual cars, families of cars, and
families of families of cars to facilitate analyses efficiently. To this
end, we present our ongoing work in a research project that focuses
on devising a model-based reasoning framework for systematically
managing hazards in the automotive domain and supporting safety
analyses (e.g., falsification).

CCS CONCEPTS
• Computing methodologies → Model verification and vali-
dation; • Software and its engineering → Software product
lines;

KEYWORDS
Product Lines, Simulink, Falsification, Automotive domain, Hazard
analysis

ACM Reference Format:
Shaukat Ali, Paolo Arcaini, Ichiro Hasuo, Fuyuki Ishikawa, and Nian-Ze
Lee. 2019. Towards a Framework for the Analysis of Multi-Product Lines
in the Automotive Domain. In 13th International Workshop on Variability
Modelling of Software-Intensive Systems (VAMOS ’19), February 6–8, 2019,
Leuven, Belgium. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3302333.3302345

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VAMOS ’19, February 6–8, 2019, Leuven, Belgium
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6648-9/19/02. . . $15.00
https://doi.org/10.1145/3302333.3302345

1 INTRODUCTION
In the automotive domain, cars, families of cars, and even families
of families of cars, share common features, hazards, environmen-
tal conditions, and driving conditions. Thus, there is a need of a
systematic way to manage commonalities and variability to sup-
port safety analyses (e.g., falsification) systematically not only for
one car but also for families of cars, and families of families of
cars efficiently. This becomes even more important in the field of
automated driving.

Themain application domain of the ERATOMMSDproject [12] is
the automotive one. To this end, we have established a collaboration
with an industrial partner in the automotive domain about safety,
and a collaboration with a group inWaterloo working on automated
driving1. Discussing with our industrial partner and the Waterloo
group, we realized that the systems we have to consider are Product
Lines (PL), as they are affected by different sources of variability.

In the context of automated driving, the Waterloo group identi-
fied different kinds of variability that are relevant for the domain (8
documents in [9]), for example, related to the road type (e.g., local
road or freeway), road surface (e.g., bituminous surface or Portland
cement concrete surface), and the environment (e.g., Beaufort scale
of wind condition) [9]. Moreover, based on discussions with both
partners, we found two other sources of variability:

• variability in the functionality of families of cars, e.g., the
type of braking system varies in different car models;

• variability in the built-in safety features in families of cars,
e.g., a feature to automatically control a car on a slope may
exist or not in a car model.

Therefore, we have to deal with a multi-product line (multi-
PL) [13] where variability occurs in individual cars, families of
cars, relationships across families, environmental conditions, and
driving conditions. Note that, on purpose, we model the environ-
ment as part of the multi-PL, as this facilitates the design of the
analysis techniques we propose.

When considering safety in the automotive domain, current ver-
ification strategies usually consider one product (car) at a time in a
given environmental condition (e.g., on a given road with a given
weather condition).2 However, this way of analysis does not allow
to easily understand whether a feature is particularly relevant (ei-
ther positively or negatively) for a safety concern. Having such
1https://www.autonomoose.net/
2In a Simulink model, this means that all parameters’ values are fixed.

https://doi.org/10.1145/3302333.3302345
https://doi.org/10.1145/3302333.3302345
https://doi.org/10.1145/3302333.3302345
https://www.autonomoose.net/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3302333.3302345&domain=pdf&date_stamp=2019-02-06

VAMOS ’19, February 6–8, 2019, Leuven, Belgium S. Ali et al.

kind of knowledge would be extremely important for designers
who could estimate which is the impact of a particular feature on
the overall safety. Indeed, cars from the same family or across dif-
ferent families share commonalities that can help manage safety
hazards systematically. For example, a hazard may be less probable
(under certain environmental conditions) for a set of cars sharing
functional and specialized features with the same configurations.
Consider, for example, the Emergency Brake Assist (EBA) feature.
If the designers observe that, whenever EBA is present, the proba-
bility of accidents is significantly reduced, they can estimate the
importance of the feature.

Therefore, our position is that considering the variability for
various safety analyses may have some advantages [19]. First of
all, it would permit to better understand whether in the multi-PL
some feature is more/less important for the safety property under
consideration. Moreover, it could also permit to achieve a better
scalability, as commonalities in the different products could be
exploited in the safety analysis.

A common means for reasoning about the safety of hybrid sys-
tems (typical of the automotive domain) is by using Simulink3 mod-
els4. As their formal verification is not feasible, current research
focuses on falsification [15, 22]; given a modelM and a specifica-
tion φ (a signal temporal logic (STL) formula), falsification tries to
find an input signal u making the formula false, i.e., M(u) ̸|= φ.

Verification ofmulti-PLs have been studied in the context of delta-
programming and feature-based programming [7, 20]. However, to
the best of our knowledge, the analysis (by falsification) of multi-
PLs of hybrid models has not been considered so far.

In this paper, we describe our long-term project to raise the
verification/validation of hybrid models at the level of multi-PL. In
particular, we devise three research directions:

(1) falsification of the entire multi-PL. The challenge here is
to search a falsifying input in the whole search space of
the multi-PL. Indeed, it could be that a safety property is
guaranteed by a given product of the multi-PL (e.g., a car
model A having a safety feature S), but it is easily falsified
in another product (e.g., another model B without S).

(2) even if the model under consideration does not falsify a given
safety property, this does not mean that it can be considered
completely safe. In falsification, the notion of robustness says
how close we are to falsify the property when executing a
given input u, i.e., the higher the robustness, the safer is the
system in this simulation. Therefore, we consider robustness
as a proxy of safety guarantee. Knowing which features
are crucial in obtaining high/low robustness is extremely
important, as this can be used to support design/business
decisions (i.e., whether to invest or not on a safety feature
that is costly but that provides good guarantees in terms of
safety). We plan to build an approach based on robustness
evaluation that is able to assign “safety scores” to features.

(3) On the top of the results of the previous phase, we also plan
to devise a querying framework in which the designer can
pose “safety questions”, as, for example, “which is (are) the
most important feature(s) for guaranteeing safety?”.

3Simulink™ is a registered trademark of the MathWorks Inc.
4As a matter of fact, Simulink is one of the formalisms used in the “Applied Verification
for Continuous and Hybrid Systems” competition [11].

(a) Black box view (b) Excerpt of detailed view

Figure 1: Abstract Fuel Control System (taken from [14])

Figure 2: Overview of the Framework

The paper is structured as follows. Sect. 2 introduces the running
example we use in the paper. Sect. 3 presents the proposed approach,
Sect. 4 discusses some related work, and Sect. 5 concludes the paper
identifying the main research challenges.

2 RUNNING EXAMPLE
To illustrate our research plan, we use the Abstract Fuel Control
System model proposed in [14] as falsification benchmark. Since
the model is publicly available, it is suitable for demonstration
purposes, differently from the models of our industrial partner.
Moreover, although the model only represents a part of the car, it
still contains some variability that allows to explain our ideas.

The model is shown in Fig. 1. As shown in the black-box view
in Fig. 1a, the model takes as input signals the pedal angle and
engine speed, that range in intervals [0,61.2) and [900,1000]. The
model outputs the signal air-fuel ratio (AF), which influences fuel
efficiency and car performance. The value is expected to be close
to a reference value AFref (this is the safety property we check).

The model contains some parameters (in orange in the detailed
view in Fig. 1b). For example, the A/F sensor tolerance and the MAF
sensor tolerance specify the precision of the sensors’ measurements,
while another parameter specifies the atmospheric pressure. Assign-
ing values to all these parameters means selecting one particular
product (i.e., one particular model of AFC system) and testing it in
a particular environmental condition.

3 PROPOSED FRAMEWORK
Our proposed framework has two main components (see Fig. 2),
i.e.,Models and Analyzers. We aim to develop a set of multi-product
line models (see Sect. 3.1) through the Product Line (PL) Syn-
thesis process. The process is semi-automatic: it mines variabil-
ities/commonalities in hazards and their relationships with features

Towards a Framework for the Analysis of Multi-PLs in the Automotive Domain VAMOS ’19, February 6–8, 2019, Leuven, Belgium

Figure 3: Feature models

of cars, system control, and context (e.g., environment), using infor-
mation retrieval from textual requirements, manuals, logs, incident
reports of hazards (images, audios, or videos). The process also im-
proves the models with the tacit knowledge of automotive domain
experts. The developed models will be a set of feature models (see
Fig. 2 and Sect. 3.1). These feature models will have relationships
among them (shown as non-structural links in Fig. 2) and with
underlying Simulink models (shown as structural links in Fig. 2)
used for safety analyses.

As said in Sect. 3.2, analyzers take as input the feature models and
perform different types of analyses: we want to perform falsification
at the level of multi-PL, derive “safety scores” for features, and use
these scores for reasoning about the multi-PL safety.

3.1 Modeling Solution
We propose to use feature models as modeling solution as abstrac-
tion layer on top of the Simulink models (Fig. 1). However, other
notations for modeling variability will be used, if required. To ex-
plain our ideas, we use the example of multi-PL shown in Fig. 3.

One key problem is how to build the initial feature models (PL
Models in Figs. 2 and 3). Based on our understanding of the current
practice, we found that variability is present in various documents
such as in car specifications and requirements. Therefore, we plan
to devise a technique to (semi)-automatically extract features and
constraints from car specifications, hazard requirements, etc. We
conducted a preliminary experiment by manually inspecting the
specifications of a family of cars available online. We observed that
it is possible to build the model starting from these documents. A
similar experiment on a document describing hazards in the auto-
motive domain [10] showed that, also in this context, it is possible to
represent variability. Regarding the context, variability is described
in the documents produced by theWaterloo group about automated
driving [9]. We plan to apply standard techniques from information
retrieval (e.g., thesauri) to give a standard representation of input
documents (specifications, requirements) and then extract feature
models from these. To build feature models, some techniques are

already available (e.g., [4]), but require an even more structured
form for the input documents.

There are four feature models (see Figs. 2 and 3): Hazard_FM,
Context_FM, System_FM, and Control_FM. Features in these fea-
ture models may have non-structural links between them (shown as
dashed arrows in Figs. 2 and 3). These links are the logical connec-
tions between features that are relevant for hazards being analyzed
and may be known or unknown at the time of analysis. If the non-
structural links are known, they may have been identified based
on specifications, based on the available data (e.g., operational data,
testing data), or specified by a stakeholder (e.g., developer). How-
ever, in this work we assume that these non-structural links are
not known, and one of the aims of the analyses described in the
next section is indeed to discover them.

Instead, the structural links (shown as concrete arrows in Fig. 2
and 3) connect features from all the feature models, except Haz-
ard_FM, with the configuration parameters (representing variabil-
ity) in the underlying Simulink model. Modeling variability in
Simulink models is studied in the literature (e.g., in [21]) and also
implemented in tools, e.g., pure::variants. From our industrial part-
ner, we already have some Simulink models that have parameters
that can be seen as configurations points (as the sensors’ tolerance
and the atmospheric pressure in the running case study). Therefore,
among the different ways that can be used to model variability
in Simulink models [21], we now consider data variability that
comes from the values assigned to constant blocks (orange squares
in Fig. 1) and gain blocks (orange triangles in Fig. 1); however, also
other means for expressing variability [21], as model variant blocks
or variant subsystems, will be considered if needed.

Hazard_FM captures variability in hazards and their relation-
ships. An example of such a feature model is shown in Fig. 3 (a).
This feature model captures two hazards, i.e., hazards related to
UnintendedActions and EngineFailure. The UnintendedActions haz-
ard is due to unintended acceleration, deceleration, start, or stop
of the car shown as four concrete features in Fig. 3 (a). Note that
EngineFailure has some non-structural links with the other feature
models that, however, we do not know in advance and we want to
discover with the analysis described in Sect. 3.2.2.

Context_FM captures features of the context of car, including
the environment. Note that we extend the classical definition of
feature [6] also to the environment (instead of considering it part
of the input space). We claim that this can help in devising and rea-
soning about different testing/simulation conditions; the multi-PL,
therefore, represents both the product line of cars and the variabil-
ity of the environment. An example of this feature model is shown
in Fig. 3 (d). The context of a car includes RoadUser, RoadStructure,
Animal, and Environmental Conditions (EnvConditions). The exam-
ple is created based on the detailed documentation available at [9].
The pressure feature is connected through a structural link with the
atmospheric pressure parameter of the Simulink model (for the sake
of space, we only report the Simulink constant block in orange).

System_FM captures variability in features of families of cars.
Fig. 3 (b) shows an example of such a feature model that shows that,
for instance, Engine is a mandatory feature of a car. The engine
further has the FuelControl feature that consists of two sensors (i.e.,
AFsensor and MAFSensor), and one actuator (i.e., FuelInjectionAc-
tuator). Some features can have attributes, e.g., both sensors have

VAMOS ’19, February 6–8, 2019, Leuven, Belgium S. Ali et al.

attribute ErrorFactor representing the error in sensor measurements.
The EngineFailure from Hazard_FM is linked (with non-structural
links) to the AFsensor and MAFSensor features signifying that en-
gine failure hazard is related to the accuracy of the sensors (also
these links will be discovered with the proposed analyses tech-
niques). These two same features are connected through structural
links with two parameters of the Simulink model (two gain blocks).

Control_FM captures variability in system control by a driver to
control a car (e.g., acceleration, torque). Fig. 3 (c) shows an example
of Control_FM that captures various control features (classified into
Longitudinal and Lateral). Note that this example is created based
on the documentation provided in [9].

There are two keys problems in establishing structural and non-
structural links. The structural links (black full arrows in Figs. 2
and 3) can be established based on the available specifications, or
with the help of developers. Another problem is how to extract the
non-structural links between the Hazard_FM and the Control_FM,
Context_FM, and System_FM (black dashed arrows in Figs. 2 and
3) describing how a given hazard is affected by the features of
the context, the system, and the control. Our proposal is to assign
safety scores to features by performing different simulations and
recording their robustness, as explained in Sect. 3.2.2.

3.2 Applications
The aim of our project is to exploit variability modeling for safety
analyses. Exploiting the multi-PL models defined in Sect. 3.1, we
plan to perform falsification in different ways. In Sect. 3.2.1, we
explain how we plan to extend the falsification problem from a
single product to the whole multi-PL. Sect. 3.2.2, instead, describes
our proposal of understating the influence of each feature on the
safety and building the non-structural links of Figs. 2 and 3. Finally,
Sect. 3.2.3 illustrates the querying framework we devised for rea-
soning on the safety of the multi-PL. In the following, we assume
that one particular hazard h of Hazard_FM has been selected and
that all the described analyses techniques are performed for h.

3.2.1 Falsification of the multi-PL. The first aim of our project will
be to extend the classical falsification problem for one given prod-
uct to the falsification of a product family. The idea is that some
products are safer than others and some environmental conditions
can be causing (or favouring) effects for the hazard under consider-
ation. Therefore, it could be that some products are more difficult
to falsify than others. For example, if a car model A contains the
ABS feature and a model B does not, it can be easier to find an input
falsifying a safety property related to aquaplaning in B rather than
in A; and, of course, to falsify the safety property, the road must
be wet. Note that, in general, understanding which combination of
features is more likely to be falsified is not easy.

As already said in Sect. 3.1, such variability is encoded as con-
stant values for the parameters of the Simulink model. A naïve
solution could be to turn these parameters in inputs and perform
the falsification over the whole solution space. However, this ap-
proach would not scale. Our position is that describing and fixing
the variability before falsification has some advantages:

• it permits to impose constraints among the parameters, so
that invalid products are not experimented. For example, in

Table 1: Robustness values

Product Robu. Time (s)

p1 = {Pressure=1, Sports, MAFSensor=1%, AFsensor=1%} 0.37 171
p2 = {Pressure=1, Utility, MAFSensor=3%, AFsensor=3%} -0.002 46

Figure 4: Output signals of p1 and p2 (the snapshot shows the
falsified part of p2 signal)

our running example, the better sensors with high precision
are only available on sport cars;

• it allows to discretize the input space of the variable param-
eters, thus achieving scalability;

• it permits to reason on commonalities and differences among
the products and so to drive the search in a smart way.

Example. Let’s consider the running example AFC. We want to
falsify the STL property □[10,30]

|AF−AFref |
AFref < 0.05 (with AFref =

14.7) stating that the A/F ratio must remain close (±5%) to the refer-
ence AFref in the time interval [10, 30]. Table 1 shows two products,
the robustness values we obtained by running the falsification tool
Breach5 with the default limit of 100 simulations, and the execution
time. Product p1 represents the AFC of a sport car having precise
sensors with 1% of error tolerance. Product p2, instead, represents
the AFC of an utility car whose sensors are less precise (3% of error
tolerance). In both cases, the environmental setting is the same,
i.e., pressure is 1 bar.6 Fig. 4 reports the output signals of the two
experiments. The figure also reports (as red lines) the boundaries in
which the property is satisfied and the reference value. We observe
that having good sensors increases the safety, as we have not been
able to falsify the STL property for p1 (we reached a minimum value
of robustness of 0.37 in 171 seconds). On the other hand, with less
precise sensors, the AFC is less safe, as demonstrated by the fact
that the property has been falsified for p2 (in 46 secs, we found a
robustness value of -0.002).

3.2.2 Understanding Feature Influence on Hazards. The approach
in Sect. 3.2.1 tries to efficiently find a falsifying input over the whole
solution space. Although this is extremely important for understand-
ing whether a safety problem is present in the system, it does not
completely allow to understand which feature is more important
5https://github.com/decyphir/breach
6For conciseness, we do not report other features constituting the product but that do
not affect the Simulink model.

https://github.com/decyphir/breach

Towards a Framework for the Analysis of Multi-PLs in the Automotive Domain VAMOS ’19, February 6–8, 2019, Leuven, Belgium

for guaranteeing safety. Even if the safety property is not falsified,
the system can not be considered completely safe, as there could
be some system configuration that is close to falsify the property;
therefore, robustness can be considered as a proxy for measuring
the confidence on the safety of a given system configuration.

Knowing the relation between the presence/absence of a given
feature and the obtained robustness, can be helpful for taking design
or business decisions; e.g., the company can decide to invest on a
given car feature because it gives a big return in terms of safety.

To discover these relationships, we plan to apply search-based
techniques for finding different system configurations and mea-
suring their robustness. The search could be guided by different
coverage criteria of the variability space, but also coverage criteria
on the output, as in [18]. At the end of the search, we should have
a representative set of system configurations from which to extract
“safety scores” for the features. To extract these scores, different sta-
tistical approaches (e.g., regression analysis) will be experimented.

Note that, as outcome of this phase, we will be able to establish
the non-structural links in Figs. 2 and 3 that show how the features
in the different featuremodels are relatedw.r.t. a given hazard. In the
running example, for instance, we could discover that there are non-
structural links between the EngineFailure feature in Hazard_FM
and the AFSensor and MAFSensor features in System_FM.

Existing approaches.Note that there already exist some approach-
es that could be used for our aims, as the sensitivity analysis in
Matlab, or the search on the parameters of Breach. However, such
approaches suffer from two drawbacks. First, they do not scale with
big systems having a lot of parameters. Second, they do not have a
way for describing constraints among the parameters and so they
may execute also invalid configurations (e.g., low quality sensors on
sport cars) that need to be discarded at the end. As already observed
in Sect. 3.2.1, reasoning at the level of multi-PL allows to reason on
the commonalities and differences of the different products, and so
it possibly allows to select a subset of meaningful products.

3.2.3 Querying. We here aim at building a query framework to be
used for reasoninig on the multi-PL. The underlying knowledge
will come from the results of the approach presented in Sect. 3.2.2.

We aim at answering the following types of questions:
• Which cars are more exposed to a given hazard?
• Which hazards is a given car more exposed to?
• Which environmental conditions make crashes more likely?

In this phase, we also plan to build a model that would allow
the stakeholders to reason on the economic impact of each feature.
Assigning to each feature an economic cost and a “safety score”, we
can calculate the return on investment. For example, we could dis-
cover that the high quality sensor of our running example, although
very costly, provides high guarantees in terms of safety.

4 RELATEDWORK
The literature on multi-product lines is vast and it also comprises
different similar notions. For example, recently the notion of multi-
SPL has been used to model and reason on the full sets of packages
of the Gentoo Linux distribution [17]. We refer the reader to [13]
for a survey of the area. We here mainly relate our approach to
alternative approaches for validation in the automotive domain,
and with verification approaches for SPLs.

Testing Advanced Driver Assistance Systems (ADASs).Works on
testing ADASs are related to us, e.g., by Abdessalem et al. [1–3]. The
first two works [1, 2] focus on finding the most critical scenarios
and regions for testing ADASs and consider environment attributes
such as road conditions and weather conditions. Another work [3]
focuses on finding feature interactions that can lead to failures in
autonomous cars. These works focus on testing one product at a
time.With our framework, instead, we aim to exploit commonalities
across families of products to support safety analyses not only for
one car but families of cars.

Variability in Matlab/Simulink. Variability in Simulink has been
studied in the literature (e.g., in [21]). Such variability modeling
is also supported by tools, e.g., pure::variants. Kolassa et al. [16]
compared two variability concepts implemented inMatlab/Simulink
with a controlled experiment with developers at Volkswagen AG.
The results found that both compared approaches were feasible
options for the developers. With our modeling solution, we aim to
provide an abstraction layer on top of the variability in Simulink
models to manage the system complexity. Moreover, with such
abstraction layer, we aim to provide support for various analyses
on multi-product lines at a higher level of abstraction, and a user
does not need to go into detailed Simulink models for their analyses.

Verification of SPLs. Different approaches have been proposed
for the verification of SPLs, but not related to hybrid models and
falsification. The approach in [7] tries to reduce the effort of verifi-
cation of Java SPLs described using Delta-oriented programming.
Specifications are written in the Java Modeling Language (JML) and
verified with the KeY theorem prover. The approach considers spec-
ifications using the delta language and shows how proof-slicing and
similarity-guided proof can be used to facilitate the verification. Dif-
ferently from [7], our approach does not consider different specifi-
cations for different products, as the considered safety specification
must hold for all the products. The approach in [20] verifies JML
specifications of a Java SPL (specified in feature-oriented program-
ming). The approach consists in transforming the Java program in
a metaproduct describing the behavior of all the products and in a
metaspecification describing the expected behavior of all products.
The verification performed with the KeY theorem prover has shown
to be much more efficient than the verification done at the product
level. Our aim is similar, as we want to exploit variability descrip-
tion to achieve scalability in falsification. Other approaches, instead,
perform classical model checking on the SPL model, by building
comprehensive models of the whole SPL, as in [8] where featured
transition systems are used. Beohar and Mousavi [5] propose an
approach for testing SPLs using input-output featured transition
system (IOFTS), an extension of featured transition systems that
distinguish between input and output actions. The approach is sim-
ilar to ours in using a behavioral model for describing the behavior
of the SPL. However, we mainly focus on verification (through
falsification), while they apply conformance testing based on the
IOCO-theory.

5 CONCLUDING REMARKS
This paper describes our research plan to build a framework for
reasoning about hazards in the automotive domain by considering

VAMOS ’19, February 6–8, 2019, Leuven, Belgium S. Ali et al.

the variability that arises from different sources. We identify the
following as the major research challenges of our project.

Modeling. Our framework assumes that the variability in the en-
vironment, in the car, and in the car control are modeled in terms of
feature models. However, these feature models must be built start-
ing from requirements documents, car specifications, documents
about hazards, that are written in natural language and do not
have a defined structured. To semi-automatically derive the feature
models (or at least some preliminary versions) from this plethora
of documents, we plan to investigate informational retrieval (IR)
techniques and collaborate with IR experts.

Structural linking. One challenge is how to establish the struc-
tural links (see Fig. 2) between features in the Control_FM, Con-
text_FM, and System_FM feature models and underlying config-
uration parameters in the Simulink model. This linking could be
partially discovered automatically (e.g., with name matching). In
some cases, it would also require the domain knowledge of the
designers who know what a parameter corresponds to. We need to
devise new methods to help developers establishing such links.

Search. Both the falsification over the multi-PL (see Sect. 3.2.1)
and the computation of the safety scores (see Sect. 3.2.2) require
search over the products input space, select some of them to simu-
late, and record their robustness values. Selecting the minimum set
of meaningful products will make the approach scalable and still
efficient. To this aim, search-based approaches will be pursued, not
only considering input coverage, but also output coverage [18].

Analysis. The approach in Sect. 3.2.2 aims at extracting “safety
scores” from the set of generated input sequences and correspond-
ing outputs. To this aim, we plan to exploit statistical (e.g., regres-
sion analysis) and machine learning approaches (e.g., classification
methods). However, we need to investigate more around this area.

Results presentation. The results about the relation between fea-
tures and hazard will have to be communicated to the stakehold-
ers (e.g., our industrial partner) who can use them to take de-
sign/business decisions. At this stage, we devised the notion of
safety scores and non-structural links between feature models;
however, the informativeness of these artifacts will be studied and
possibly more advanced ways of showing the results will be pursed.

Our research plan focuses on functional testing, as we aim to
assess the safety of the car model w.r.t. hazards. However, we can
also consider non-functional requirements, and adapt the devised
framework for non-functional analysis. The multi-PL component
will be similar, but the simulation model should be different. For
example, instead of a Simulink model, we could have a queuing
network describing the service response time of the system.

ACKNOWLEDGMENTS
S. Ali is supported by the Research Council of Norway (RCN) under
MBT4CPS project (grant no. 240013/O70). The other authors are
supported by ERATOHASUOMetamathematics for SystemsDesign
Project (No. JPMJER1603), JST. We thank our industrial partner
Mazda and Prof. Czarnecki for the fruitful discussions.

REFERENCES
[1] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. Testing advanced driver

assistance systems using multi-objective search and neural networks. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering, ASE 2016, pages 63–74, New York, NY, USA, 2016. ACM.
[2] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. Testing vision-based

control systems using learnable evolutionary algorithms. In Proceedings of the
40th International Conference on Software Engineering, ICSE ’18, pages 1016–1026,
New York, NY, USA, 2018. ACM.

[3] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter. Testing
autonomous cars for feature interaction failures using many-objective search. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, pages 143–154, New York, NY, USA, 2018. ACM.

[4] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet, and
P. Lahire. On extracting feature models from product descriptions. In Proceedings
of the Sixth International Workshop on Variability Modeling of Software-Intensive
Systems, VaMoS ’12, pages 45–54, New York, NY, USA, 2012. ACM.

[5] H. Beohar and M. R. Mousavi. Input-output conformance testing for soft-
ware product lines. Journal of Logical and Algebraic Methods in Programming,
85(6):1131–1153, 2016. NWPT 2013.

[6] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker, M. Chechik,
and K. Czarnecki. What is a feature?: A qualitative study of features in industrial
software product lines. In Proceedings of the 19th International Conference on
Software Product Line, SPLC ’15, pages 16–25, New York, NY, USA, 2015. ACM.

[7] D. Bruns, V. Klebanov, and I. Schaefer. Verification of software product lines
with delta-oriented slicing. In Proceedings of the 2010 International Conference on
Formal Verification of Object-oriented Software, FoVeOOS’10, pages 61–75, Berlin,
Heidelberg, 2011. Springer-Verlag.

[8] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
checking lots of systems: Efficient verification of temporal properties in software
product lines. In Proc. of the 32Nd ACM/IEEE International Conference on Software
Engineering - Vol. 1, ICSE ’10, pages 335–344, New York, NY, USA, 2010. ACM.

[9] K. Czarnecki. WISE drive: Requirements analysis framework for
automated driving systems. Technical report, Waterloo Intelligent
Systems Engineering Lab (WISE), University of Waterloo, 07 2018.
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/
wise-drive-requirements-analysis-framework-automated-driving.

[10] S. Dobi, M. Gleirscher, M. Spichkova, and P. Struss. Model-based hazard and
impact analysis. CoRR, abs/1512.02759, 2015.

[11] A. Dokhanchi, S. Yaghoubi, B. Hoxha, G. Fainekos, G. Ernst, Z. Zhang, P. Arcaini,
I. Hasuo, and S. Sedwards. ARCH-COMP18 category report: Results on the
falsification benchmarks. In G. Frehse, editor,ARCH18. 5th InternationalWorkshop
on Applied Verification of Continuous and Hybrid Systems, volume 54 of EPiC Series
in Computing, pages 104–109. EasyChair, 2018.

[12] I. Hasuo. Metamathematics for systems design. New Generation Computing,
35(3):271–305, Jul 2017.

[13] G. Holl, P. Grünbacher, and R. Rabiser. A systematic review and an expert
survey on capabilities supporting multi product lines. Information and Software
Technology, 54(8):828 – 852, 2012. Special Issue: Voice of the Editorial Board.

[14] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts. Powertrain control
verification benchmark. In Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, HSCC ’14, pages 253–262, New York,
NY, USA, 2014. ACM.

[15] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts. Simulation-based ap-
proaches for verification of embedded control systems: An overview of traditional
and advancedmodeling, testing, and verification techniques. IEEE Control Systems
Magazine, 36(6):45–64, Dec 2016.

[16] C. Kolassa, H. Rendel, and B. Rumpe. Evaluation of variability concepts for
simulink in the automotive domain. In 2015 48th Hawaii International Conference
on System Sciences, pages 5373–5382, Jan 2015.

[17] M. Lienhardt, F. Damiani, S. Donetti, and L. Paolini. Multi software product
lines in the wild. In Proceedings of the 12th International Workshop on Variability
Modelling of Software-Intensive Systems, VAMOS 2018, pages 89–96, New York,
NY, USA, 2018. ACM.

[18] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann. Automated test suite
generation for time-continuous Simulink models. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 595–606, New
York, NY, USA, 2016. ACM.

[19] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification and
survey of analysis strategies for software product lines. ACM Comput. Surv.,
47(1):6:1–6:45, June 2014.

[20] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel. Family-based deductive verifica-
tion of software product lines. In Proceedings of the 11th International Conference
on Generative Programming and Component Engineering, GPCE ’12, pages 11–20,
New York, NY, USA, 2012. ACM.

[21] J. Weiland and P. Manhart. A classification of modeling variability in Simulink.
In Proc. of the Eighth International Workshop on Variability Modelling of Software-
Intensive Systems, VaMoS ’14, pages 7:1–7:8, New York, NY, USA, 2013. ACM.

[22] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo. Two-layered falsification
of hybrid systems guided by monte carlo tree search. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(11):2894–2905, Nov
2018.

https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/wise-drive-requirements-analysis-framework-automated-driving
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/wise-drive-requirements-analysis-framework-automated-driving

	Abstract
	1 Introduction
	2 Running example
	3 Proposed framework
	3.1 Modeling Solution
	3.2 Applications

	4 Related work
	5 Concluding remarks
	Acknowledgments
	References

