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1. INTRODUCTION

The average rate at which a machine can supply its processor core with instruc-
tions is an important component of program performance. The importance of this
component will continue to grow as processor clock speeds increase faster than mem-
ory cycle times and as architects improve the ability of processor cores to exploit
instruction-level parallelism. For example, on-chip growth in the number of parallel
functional units will not improve overall processor performance if the memory is
unable to supply instructions at a correspondingly higher rate. While the use of
multilevel caches and other architectural improvements in the processor and mem-
ory subsystem work toward meeting instruction fetch requirements, research over
the past 10 years in code-placement techniques has shown that compile-time reor-
ganization of the program text segment can also contribute toward this goal. This
article presents and evaluates a family of profile-driven, code-placement techniques
that achieve noticeable improvements in the performance of modern instruction
memory hierarchies.

The memory hierarchy works best if the requested instructions are most often
found in the primary (first level or L1) instruction cache, if misses in the primary
instruction cache are most often satisfied by the second-level cache (if any), and so
on. Similarly, we can maximize program performance by minimizing the number
of pages required during any interval in the program execution and over the entire
program execution. The compile-time placement of program code blocks within an
executable determines the cache mapping of its instructions and influences the size
of its working set, and therefore this placement has a substantial impact on the
performance of the instruction memory.

Because the layout of instructions affects program performance, code-placement
techniques are also an extremely important tool in the evaluation of compile-time
optimizations. In particular, the number of instruction cache conflict misses in-
curred during a program run are completely determined by the placement of the
program’s code. Compiler optimizations therefore that change the size or relative
placement of the generated code often (unintentionally) change the number of in-
struction cache conflicts. Even small changes in the cache mapping of a program
can have surprisingly large effects on the number of conflict misses during execu-
tion. The performance impact of these unintended changes can obscure or cancel
out the intended performance improvement of an optimization. By applying a code-
placement technique that reduces cache conflict misses, we can avoid unpredictable
variations in conflict misses and more accurately evaluate an optimization.

Code placement was an active field of research from the mid-1960s to the mid-
1970s, when there was much interest in improving the working set size of program
code to reduce paging [Cytron and Loewner 1986; Ferrari 1974; 1975; Hatfield and
Gerald 1971; Ryder 1974]. More recently, the introduction of instruction caches
into microprocessors in the late 1980s led to renewed interest in code placement,
this time with the goal of more efficiently using the instruction cache. These later
techniques [Bershad et al. 1994; Hashemi et al. 1997; McFarling 1989; Pettis and
Hansen 1990; Torellas et al. 1995] use heuristics and profile information to reduce
the number of conflict misses in the primary instruction cache by reordering the
program code, and most of this work uses cache parameters (such as cache size and
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line size) as well as procedure sizes to accurately model the cache mapping of the
code.

The best of these published techniques use some simple profile information to
direct the code placement. Interestingly, all of the profile-driven techniques use
essentially the same kind of profile information: the profiles summarize how often
each program code block transferred control to each other code block. For example,
Hatfield and Gerald [1971] describe a technique for working-set optimization that
uses a matrix C of profile information, where C[i, j] is a count of the transfers
from code sector i to code sector j. Pettis and Hansen [1990] (and all subsequent
modifications of their procedure-placement technique by other authors) use profile
data in the form of a weighted call graph (WCG). In a WCG, there is a node for
each program procedure. An undirected edge connects two nodes P and Q if P
calls Q or Q calls P . Each edge eP,Q is annotated with a value that equals number
of procedure calls that occurred between P and Q.

Though the previously published techniques for code placement work well, we
can do better. The key to doing better is to use profile information that better
summarizes the important temporal characteristics of the program execution. Fig-
ure 1 illustrates this point. It contains a simple program in which the conditional
cond is taken 50% of the time. Figure 1(b) presents the corresponding WCG.1

This WCG is independent of the actual branch trace that occurred during program
execution. If the branch trace interleaved calls to procedures X and Y (call trace
1), the code layout in Figure 1(c) yields the lowest miss rate. If the branch trace
phased the calls so that all calls to procedure X occurred before any calls to Y (call
trace 2), the code layout in Figure 1(d) yields the lowest miss rate.

In this article, we define a type of profile, called temporal-ordering information,
that is essential to predicting cache conflict misses, and we introduce a practical
profiling technique that can extract this information during program execution. We
also present a technique for optimizing the placement of a program’s procedures
based on this temporal-ordering information.

Though we focus on the placement of procedures, our approach is general enough
to be applied at any granularity of code block.2 Many previously published tech-
niques place procedures, but there are also techniques working at a lower level (e.g.,
basic blocks) or higher level (e.g., object files). A smaller granularity has the po-
tential for better results, but placing code blocks that are smaller than procedures
involves more intrusive code transformation and requires more compiler support.
Procedure placement has the advantage that it can be implemented by the linker
or other postcompilation tools, and that it is orthogonal to other techniques to
arrange code within procedures.

Our procedure-placement technique improves the instruction cache mapping to
reduce the number of instruction cache misses in one or multiple levels of instruction
cache. In addition, our approach considers the effect of the code placement on
other levels of the memory hierarchy in order to optimize the spatial locality of the
program’s code, given the constraints of the cache mapping. The overall effect of

1We use WCGs in all of our following examples. We could have equally well used the profile
matrix of Hatfield and Gerald [1971], since it also suffers from the same shortcoming.
2We use the term code block to refer to pieces of the program code at the chosen level of granularity.
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Proc M()

loop 20 times

loop 4 times

if (cond)

call X;

else

call Y;

endloop

call Z;

endloop

endproc
Call Trace #2: M((X)4Z)10((Y)4Z)10

(a) Example program.
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(b) The WCG and
two possible call traces.
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(c) Layout produced by PH
given the WCG in (b).
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(d) An alternative layout
that works better for Trace #2.

Fig. 1. Example of a program with multiple possible temporal orderings. Assume that the
condition cond is true 50% of the time. The same WCG is obtained regardless of the temporal
ordering of the calls to procedures X and Y , as represented by the call traces 1 and 2. Parts 1(c)
and 1(d) present two different cache layouts. Call trace 1 incurs fewer conflicts (39) for the layout
in part 1(c) than the layout in part 1(d) (79). Call trace 2, however, incurs fewer conflicts (0
vs. 19) for the layout in part 1(d). For these calculations, we have assumed that each procedure
occupies a single cache line, and that the target instruction cache is direct mapped and three lines
large. Existing approaches would use the WCG to produce the layout in part 1(c). Our technique
gathers profile information differentiating call trace 1 from call trace 2 and uses this information
to produce the best layout for each execution.

these optimizations is to allow the memory system to provide instructions to the
processor more efficiently. As a result, the processor spends less time waiting for
instructions to be fetched, and it can thus execute the program faster.

We begin in Section 2 with a brief examination of how code placement impacts
the performance of a memory system, and in particular, what aspects of the dy-
namic behavior of a program cause cache conflict misses. We use this discussion
to justify the content of our temporal profiles. We continue in Section 3 with an
overview of our methodology for the performance evaluation experiments in the fol-
lowing sections. In Section 4, we introduce the basic aspects of our code-placement
algorithm by restricting our analysis to a single level of cache, and we present our
method of capturing temporal-ordering information. We present some experimental
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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results comparing the performance of our algorithm to our implementation of the
procedure-placement algorithm by Pettis and Hansen [1990]. Section 5 shows how
to extend our algorithm to perform code placement in multilevel cache hierarchies.
The distribution of procedures across virtual-memory pages determines the size of
the instruction working set of the application. Changes in the working set size can
affect the performance of the program by changing the number of translation looka-
side buffer (TLB) misses and the number of pages fetched from disk. We address
this aspect of code placement in Section 6 by extending the code-placement tech-
nique in Section 5 so that it additionally optimizes for the instruction working set
size. Section 7 reviews some related work, and Section 8 presents our conclusions.

2. FUNDAMENTALS OF CODE PLACEMENT

This section is intended to provide a basis for the detailed discussion of our work
in Sections 4, 5, and 6. We review aspects of memory systems that are relevant to
code placement, and show how instruction addresses influence the cache and paging
behavior of a program. Finally, we introduce our methodology for evaluating and
comparing code-placement techniques.

2.1 Code-Placement Effects on Instruction Caches

The following summary of basic cache operation is a brief reminder of the connection
between instruction addresses and the instruction cache. It will allow the reader
to understand how code placement changes instruction cache conflicts, and which
aspects of the temporal behavior of a program are of interest to a code-placement
algorithm. For a comprehensive treatment of cache techniques, see Smith [1982].

2.1.1 Basic Cache Operation. Consider a memory system consisting of only an
instruction cache and the main memory. The cache consists of an array of cache lines
of equal size, which store instructions that have previously been fetched from main
memory. As an example, the on-chip instruction cache of the DEC Alpha 21064
chip consists of 256 lines of 32 bytes each. Each cache line stores the contents
of an aligned block of memory from the next level of the memory hierarchy. A
memory block is “aligned” in the sense that its starting address is a multiple of
the cache line size. When the processor fetches an instruction at a given address,
it will try to fetch it from the cache, if it is present there, and otherwise fetch it
from main memory. The processor computes the memory address of the aligned
memory block containing the requested instruction. Then it checks if one of the
cache lines currently contains the memory block with this address. If this is the
case, the instruction is retrieved from the cache line that contains it. Otherwise,
the processor fetches the entire memory block into a cache line, and thus replaces
the previous contents of that cache line.

2.1.2 Mapping Memory Addresses to Cache Addresses. The discussion in the
previous subsection leaves open the question of which cache lines can be used to
store a memory block of a particular address. Under a fully associative scheme, any
cache line can be used to store any memory block. Since this requires an expensive
search through all cache lines for every instruction fetch, fully associative caches are
used only when the number of cache lines is small, such as in translation lookaside
buffers (TLBs). Set-associative schemes are less costly in terms of time and space,
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but more restrictive in the possible placement of a memory block. In an N -way
associative cache, for each memory block address, there is a set of N cache lines
where it may be stored. When N equals 1, the cache is direct mapped. In this
simple caching scheme, each memory block can be stored in only one cache line.

A direct-mapped cache is commonly used in microprocessors with a very high
clock speed, since its lookup process is faster than that of a set-associative cache [Hill
1988]. In this article, we focus mostly on direct-mapped caches, though our tech-
niques apply to set-associative caches. Direct-mapped caches suffer more from con-
flict misses than set-associative caches, because the latter can avoid some conflict
misses by offering several alternative cache locations for each memory block. There-
fore, our techniques will produce larger improvements for direct-mapped caches.
For some programs, a set-associative cache with the typical set size of 2 or 4 will
be sufficient to avoid many conflict misses, and therefore there will not be much
of a difference between our code-placement technique and simpler methods. But
for programs whose temporal behavior and memory layout is such that even a
set-associative cache suffers from many conflict misses on some cache lines, our
technique will generally be better able to avoid this behavior.

In a direct-mapped cache, the relationship between the memory address and the
cache line number is simply

cache line = (memory address/line size) mod num cache lines (1)

Therefore, any two code fragments whose addresses differ by a multiple of the cache
size are mapped to the same cache line, and they cannot both be present in a direct-
mapped cache simultaneously. This situation is called a cache mapping conflict. If
both fragments are needed at the same time (e.g., referenced inside the same inner
loop), the program will suffer from repeated misses on that cache line, even if there
are other available cache lines that are not used at that moment. Such a cache miss
that is caused by the restrictive cache mapping is known as a conflict miss.

2.1.3 Identifying a Metric Related to Conflict Misses. By moving pieces of the
code within the executable, we can change which pieces experience cache mapping
conflicts. The task of a procedure-placement technique is to find a placement
of a program’s procedures that avoids frequently occurring conflict misses. To
perform this task, procedure-placement algorithms rely on some sort of metric that
(hopefully) indicates how many conflict misses would result from a particular cache
mapping.

Using the following equation, we can calculate exactly how many conflict misses
will result from a particular cache mapping. Given a cache line n of a direct-
mapped cache, a set S of program code blocks mapping to n, and an execution
trace of program code blocks,

conflict misses(n) =

(
occ(S)− |S| −

∑
b∈S

reuse(b, S)

)
(2)

where occ(S) is the number of occurrences of the blocks in S in the execution trace.
We define reuse(b, S) below.

Equation (2) works as follows. Clearly, the number of conflict misses must be less
than the number of references to the code blocks in S. This number is too large for
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two reasons. First, the initial reference to a code block is defined to be a cold start
miss [Hatfield and Gerald 1971], and thus we subtract the size of S.3 Second, we
do not incur a cache miss if a reference is to a code block in the cache at the point
of the reference. We refer to this as a reuse reference. For a direct-mapped cache,
a reuse reference occurs if (1) there was an earlier reference to the same code block
and (2) none of the code blocks referenced since then has replaced the contents
of the cache line containing that code block. The term reuse(b, S) represents the
number of reuse references for b in the execution trace when it is mapped to the
same cache line as the other blocks in S.

Looking at this another way, we notice that a conflict miss for a code block b
occurs whenever two successive references to b are separated by a reference to at
least one other code block c that maps to the same cache line as b. Therefore, we
are not interested in the entire trace of code blocks, but simply in a measure of the
interleaving of the code blocks. For example, two code blocks whose execution is not
interleaved could occupy the same cache line without penalty. Thus, the frequency
of interleaving is a crucial piece of information about the temporal behavior of the
program needed for procedure placement. In Section 4, we describe our method of
extracting this information from an execution trace and show that it is superior to
the metric used by approaches employing a WCG.

2.2 Code-Placement Effects on Other Levels of the Memory Hierarchy

In addition to the instruction caches, code placement also affects the (code) working
set of the program. We use Denning’s [1970] definition of a program’s working set:

W (k, h) = {j : page j is referenced among rk−h−1 . . . rk}where (h ≥ 1) (3)

At the kth reference rk, the working set W (k, h) is the “contents” of a “window”
of size h looking backward at the trace of instruction references from reference rk.

Under code placement, the trace of instructions remains the same; what changes
is the set of pages in which the instructions are stored. Depending on how code
blocks are distributed across pages, the same set of instructions may require a
different number of pages to be referenced in order to access the instructions. Thus,
it is the spatial locality at the page granularity level with which we are concerned.

For the purpose of evaluating a code-placement technique, one important metric
is the average working set size over the program’s execution. But it is not obvious
which value should be used for h, the window size. For very large values, the
working set becomes identical to the total number of pages touched. This number
is relevant because this is the number of pages that will be paged in during the
program’s execution.

However, the working set size for smaller values of h also has an impact on
performance. If the working set size, in pages, for a particular value of h is greater
than the number of TLB entries, then we expect the program to suffer many TLB
misses for each interval of h references. If a code placement somehow destroys
spatial locality and drives the working set size above the number of TLB entries,
we expect that the program’s performance will be decreased due to an increase in
TLB misses.

3To be precise, we want to subtract the size of the set of referenced members of S.
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Table I. Summary of Our Benchmark Programs. The size of the executed code is from the
testing data input. All sizes are given in kilobytes.

Static Size of
Name Description text size executed code

gcc GNU C compiler, -O2 (Spec95) 1432 556
go Go strategy game (Spec95) 384 282
ghostscript Postscript interpreter 528 161
latex LaTeX typesetting application 312 134
perl Perl language interpreter (Spec95) 352 73
porky SUIF compiler code transformation pass 1984 369
vortex Object-oriented database (Spec95) 664 284

3. EXPERIMENTAL METHODOLOGY

To evaluate the success of a procedure-placement technique, we first run a bench-
mark program on a training data set to collect the profile information required
by the technique. We then apply the procedure-placement technique to the bench-
mark program, producing new memory addresses for all instructions of the program.
Next, we simulate the execution of the program on a testing data set (different from
the training data set). We use a trace-driven memory system simulator that mea-
sures the behavior of the program in the various levels of the memory hierarchy.
These measurements include all the aspects of the program behavior that are af-
fected by code placement, allowing us to accurately evaluate the total effect of the
placement.

In particular, we make measurements of the following components of overall
program performance:

(1) the number of L1 instruction cache misses;
(2) the number of L2 instruction cache misses;
(3) the code working set sizes measured for intervals of several lengths.

The working set sizes capture both the impact on TLB misses (for short and
medium-length intervals) and the amount of memory occupied by the code (for
long intervals). We believe that these components are sufficient because there are
no other sources of memory system penalties. It is possible that the delay for read-
ing pages from a disk varies depending on the disk layout, but we consider this to
be a file system issue and thus beyond the scope of this research.

We perform our experiments on programs compiled for a workstation based on a
Alpha 21164 processor running Digital Unix 4.0. We use Digital’s Atom tool [Sri-
vastava and Eustace 1994] to generate the traces needed for profiling and simulation
of the memory system. We have verified the correctness of our procedure-placement
techniques by implementing them in the Machine-SUIF compiler back end [Smith
1996].

Table I lists the benchmarks we use for our experiments in Sections 4, 5, and
6. We choose these benchmarks because they exhibit interesting (i.e., nontrivial)
instruction memory behavior. If the size of the code touched by a benchmark does
not exceed the cache size, then any sensible code-placement technique will be able
to avoid all conflict misses. Table II describes the training and testing traces we
use.
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Table II. Traces for Training and Testing. The “length” of a trace is measured in dynamic
instructions. The “avg. miss rate” is the average miss rate for a 4KB direct-mapped instruction
cache with a line size of 32 bytes, averaged over 20 random procedure orderings.

Training Testing
avg.

Benchmark miss
name description length name description length rate

gcc g28 Spec 95 go 241 M regcomp Spec95 perl 307 M 7.2 %
source code source code

go 915 9 handicap, 379 M 1511 level 15, 609 M 5.8 %
level 4, 11x11 board
15x15 board

ghostscript a94 3-page 93 M m97 11-page 156 M 6.2 %
paper paper

latex aprl 14-page 153 M gr 12-page 158 M 6.1 %
paper paper

perl foo strings, 398 M scrabbl Spec95 363 M 8.2 %
patterns, input,
arithmetic shortened

porky g28 Spec95 go 869 M regcomp Spec95 perl 965 M 7.2 %
source code source code

vortex train Spec95 265 M test Spec95 test- 516 M 9.0 %
training ing input,
input shortened

3.1 An Effective Approach Based on the WCG

To help evaluate the effectiveness of our approach, we also implemented the WCG-
based procedure placement-technique by Pettis and Hansen [1990]. While these
authors also describe techniques for basic-block placement and branch alignment
in their paper, we implemented only their procedure-ordering algorithm. We refer
to our implementation of their algorithm as PH. Their procedure placement tech-
nique is considered the “reference standard” in this area of research because of its
effectiveness and simplicity.

Though we only compare our approach to PH in this article, Gloy et al. [1997]
have previously shown that our procedure-placement algorithm for a single-level
instruction cache (described in Section 4) is superior to the algorithm proposed
by Hashemi et al. [1997]. Hashemi et al. describe a WCG-based approach that
is claimed to be one of the best of the recently published procedure placement
techniques. Unlike Pettis and Hansen’s approach, their approach uses information
about the cache configuration and procedure sizes during placement, and it allows
gaps between procedure placements in an attempt to reduce conflict misses. Gloy
et al. shows that our approach is better at reducing the L1 cache miss rate than
Hashemi et al.’s approach simply because our approach uses more detailed profile
information. Both approaches precisely model the cache during placement and
allow gaps between procedures. Since Hashemi et al. do not describe how one
would extend their technique to optimize the performance of a multilevel cache
hierarchy or to reduce a program’s working set size, we do not include the approach
by Hashemi et al. in our evaluations.

The rest of this subsection describes our implementation of Pettis and Hansen’s
procedure-placement algorithm. As we explain in the following sections, our new
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algorithm retains much of the structure and many of the important heuristics found
in the Pettis and Hansen approach, and thus it is helpful to review their algorithm
here.

The PH algorithm is based on a simple heuristic: if two procedures are placed
adjacent in memory (or close to each other), they are less likely to incur conflict
misses, unless the sum of their sizes is greater than the cache size. It is a greedy
algorithm that iterates over the edges of the WCG in order of decreasing weight.
For each edge, it tries to place the procedures of the edge as close to each other
as possible so as to reduce the probability of conflict. Each step is subject to the
constraints imposed by the placement decisions of earlier steps; the algorithm does
not backtrack or change earlier placement decisions.

PH uses the WCG both to select the next procedure to place and to determine
where to place that procedure in relationship to the already placed procedures. The
algorithm begins by making a copy of this initial graph; we refer to this copy as the
working graph. PH searches this working graph for the edge with the largest weight.
Call this edge eu,v. Once this edge is found, the algorithm merges the two nodes u
and v into a single node u′ in the working graph (more details in a moment). The
remaining edges from the original nodes u and v to other nodes become edges of
the new node u′. To maintain the invariant of a single edge between any pair of
nodes, PH combines each pair of edges eu,r and ev,r into a single edge eu′,r with
weight W (eu,r)+W (ev,r). The algorithm then repeats the process, again searching
for the edge with the largest weight in the working graph, until all edges have been
removed from the working graph. Each step reduces the number of nodes by one,
and the algorithm terminates if there is a single node left or if there are no more
edges left.

PH attempts to reduce the chance of a conflict miss between procedures by
placing procedures connected by a heavy weight edge in close proximity in the
address space. The procedures within a node are organized as a linear list called
a chain. When PH merges two nodes, their chains can be combined into a single
chain in four ways. Let A and B represent the chains, and AR and BR the reverse
of each chain. The four possibilities are AB, ABR, ARB, and ARBR. We want to
choose one of these based on the “closest-is-best” heuristic. The paper by Pettis
and Hansen [1990] does not specify this aspect in detail, but we believe that the
following algorithm reflects their intentions. Our implementation of PH queries the
original graph to determine the edge e with the largest weight between a procedure
p in the first chain and a procedure q in the second chain and chooses the merged
chain that minimizes the distance (in bytes) between p and q. Figure 2 shows each
step of the PH algorithm for simple example WCG.

3.2 Using Randomization to Compare Placement Techniques

We normally expect code optimizations to behave similarly to a continuous func-
tion: small changes in the behavior of the optimization cause small changes in the
performance of the resulting executable. With code-placement optimizations, this
is often not the case: small changes in the layout of a program can cause dramatic
changes in the cache miss rate.

As an example, we simulated the instruction cache behavior of the SPECint95
perl program for two slightly different layouts. The first layout is the output of our
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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A B

C D

5

20

10

E
30

15 10

EA B

C D

5

20

10

25

CEA B

D

5

20
10

CEA BD
15

AECDB

(a) Combine E and A; merge edges
(E,C) and (A,C) into (EA,C).

(b) Combine EA and C; place C next
to E because the original edge

(E,C) is more important than (A,C).

(c) Combine B and D; merge edges
(B,CEA) and (D,CEA).

(d) Combine CEA and BD; place C next
to D because (C,D) is the most important

original edge between the nodes.

(e) The result is the procedure order AECDB.

Fig. 2. This example shows how the PH algorithm processes a WCG to produce a procedure
ordering. The original WCG is shown in part 2(a). The edge with the heaviest weight at each
step is shown in bold.

own code layout algorithm, and the second layout is identical to the first except
that each procedure is padded by an additional 32 bytes (one cache line) of empty
space at its end. The instruction cache miss rate changed from 3.8% for the first
layout to 5.4% for the second layout; this is a remarkable change for such a trivial
difference between the layouts. In fact, it is possible to introduce a large number
of misses by moving one code block by only a single cache line.

The relationship between code placement and working set size is usually not as
chaotic. But when a small increase in the working set size pushes it beyond the
number of TLB entries, it can cause a large increase in TLB misses. This is because
a working set that is smaller than the number of TLB entries causes very few TLB
misses, but a working set that is larger than the number of TLB entries suffers from
thrashing.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.



988 · Nikolas Gloy and Michael D. Smith

For greedy code-layout algorithms, we have the additional problem that different
layouts, in fact substantially different layouts, often result from small changes in
the input profile data. At each step, the PH algorithm greedily chooses (as does
our own algorithm) the highest-weight edge in the working graph. If there are
two edges, say with weight 1,000,000 and 1,000,001, the (barely) larger edge will
always be chosen first, even though such a small difference is unlikely to represent
a statistically significant basis for preferring one edge over the other. Worse, ties
resulting from identical edge weights are decided arbitrarily. Decisions between two
equally good alternatives, which must be made one way or the other, affect not only
the current step of the algorithm, but all future steps.

As a result, we find it difficult to draw conclusions about the relative performance
of different code-layout algorithms from a small number of program traces. Ideally,
we would like to have a large enough set of different inputs for each benchmark to
get an accurate impression of the distribution of results. Unfortunately, this is very
hard to do in practice, since common benchmark suites are typically distributed
with only a few input sets for each benchmark application.

To overcome this obstacle, we use a randomization technique proposed by Black-
well [1998]. We simulate the effect of many slightly different application input sets
by first running an application with a single input, and then applying random per-
turbations to the resulting profile data to produce a large set of slightly different
profiles.

For the algorithms in our comparison, we perturb a weighted graph by multiply-
ing each edge weight by a value close to one. Specifically, the initial weight w is
replaced by the perturbed weight w according to the equation

w = w × exp(sX) (4)

where X is a random variable, normally distributed with mean 0 and variance 1,
and s is a scaling factor, which determines the magnitude of the random perturba-
tions. Using multiplicative rather than additive noise is attractive for two reasons.
First, additive noise can cause weights to become negative, for which there is no
obvious interpretation. Second, the method is inherently self-scaling in the sense
that reasonable values for s are independent of the initial edge weights.

Large values of s will cause the layout to be effectively random, as the perturbed
graphs will bear little relationship to the profile data. Small values of s will cause
only statistically insignificant differences in edge weights, and we can then observe
the range of results produced by these small changes. We use s = 0.1 in our
experiments. Blackwell [1998] shows that for several code-placement algorithms,
values of s as low as 0.01 elicit most of the range of performance variation from the
system, while values of s as high as 2.0 do not degrade the average performance
very much.

4. PROCEDURE PLACEMENT USING TEMPORAL-ORDERING DATA

In this section, we present the basics of our code-placement algorithm. We focus
the discussion on minimizing the cache conflicts in a single level of instruction
cache. Section 4.1 introduces our profiling method that captures information on the
temporal ordering of a program’s execution. We organize this profile information
as a Temporal Relationship Graph (TRG).
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Section 4.2 describes our procedure-placement algorithm, which we refer to as
Temporal Profile Conflict Modeling (TPCM) because it is based on temporal profile
data and accurately models cache mapping conflicts. It uses a TRG to find a cache-
relative alignment for each procedure that minimizes cache conflicts. Then, it
outputs a procedure ordering that may include gaps between procedures to achieve
the desired cache-relative alignment for each procedure. This ordering can be used
by a linker or other code reordering tool to produce an executable with the correct
procedure addresses.

Section 4.3 presents cache simulation results that show the improvement in miss
rates that our TPCM algorithm achieves over the PH algorithm. Section 4.4 dis-
cusses the application of TPCM to set-associative caches. Section 4.5 shows that a
TRG yields a stronger linear relationship between conflict-metric values and cache
miss rates than does a WCG. Finally, Section 4.6 briefly investigates the interplay
between procedure splitting and placement.

4.1 Temporal-Ordering Information

Our procedure-placement algorithm uses a TRG to make decisions about which
mapping conflicts should be avoided and which mapping conflicts can be allowed.
In the following paragraphs, we define a TRG for any code-block granularity. We
use a broad definition for two reasons.

First, our placement algorithm will use two kinds of TRGs: one for procedures;
and one for procedure chunks, which are fixed-size pieces of procedures. A procedure
is divided into chunks by starting at the beginning of the procedure, adding basic
blocks to the current chunk in order of increasing addresses, and starting a new
chunk whenever the size of the current chunk exceeds the fixed chunk size.

Second, we would ideally like to gather temporal-ordering information for code
blocks that are a cache line in size. Under this granularity, there is an exact match
between the temporal relationship (as defined below) of two code blocks and the
number of conflict misses caused by them. Since a procedure may occupy many
cache lines and not all of these cache lines may be executed on any particular invo-
cation, the temporal-ordering information gathered at the granularity of procedures
may not provide an exact count of the number of conflict misses. However, for prac-
tical purposes, a TRG for procedures, computed as if the procedure bodies were
uniformly executed, still captures the essential information necessary for procedure
placement. A TRG of procedure chunks simply gives us more precise information
about conflict misses, since the procedure chunks are closer to idealized code blocks
than procedures.

Given a trace of code block references, for any two code blocks P and Q, let
R(P,Q) be the number of times that two successive occurrences of P are interleaved
with at least one reference to Q, or vice versa. We say that R(P,Q) is the temporal
relationship of P and Q because it measures the degree to which references to P
and Q are temporally interleaved in the trace. We define the TRG for the trace to
be a weighted graph, with a node for each code block, where the edge between P
and Q has weight R(P,Q).

Recall from Section 2 that a conflict miss for a code block P occurs whenever
two nearest references to P are separated by a reference to another code block Q
which maps to the same cache line(s) as P . This is the source of our definition of
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Fig. 3. Comparing the WCG with the TRGs obtained from the interleaved and phased call traces
in Figure 1. For call trace 1, the execution of X and Y is interleaved, and corresponding TRG
has an edge between X and Y . For call trace 2, the execution is phased (no interleaving), and
the corresponding TRG does not have an edge between X and Y . Remember that the TRGs are
built from execution traces where a reference to procedure P appears both when P is called and
when control returns to P .

R(P,Q). When the code blocks are all exactly the size of a cache line, then R(P,Q)
gives the exact number of conflict misses for P if Q is the only mapping conflict.
As mentioned earlier, when code blocks are entire procedures, we may not get an
exact count of conflict misses, since a procedure may occupy many cache lines and
the set of these cache lines touched may vary between invocations. But R(P,Q)
still measures the degree to which execution of P and Q is interleaved, which we
show in Section 4.5 is well correlated with the number of conflict misses P and Q
will suffer if they have a mapping conflict. Not only is R(P,Q) a better predictor
of conflict misses than the number of calls between P and Q (which is the WCG
edge weight), but the TRG is also more general than a WCG because it can contain
edges connecting any pair of code blocks for which there is some interleaving during
the program execution.

Figure 3 compares the WCG for the program in Figure 1 with the TRGs cor-
responding to the interleaved and phased call traces. These TRGs capture the
differences in the temporal ordering. In particular, the edge between procedures X
and Y expresses the degree to which their execution is interleaved.
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Q := emtpy;

QS := 0; // total size of elements in Q

for each reference R in trace

if R in Q

k := position of R in Q;

for i := k-1 downto 0

weight(Q[i],R) += 1;

QS -= sizeof(Q[k]);

delete Q[k];

endif

add R to front of Q;

QS += sizeof(R);

// last(Q) gives the oldest entry in Q

while QS-sizeof(last(Q)) >= 2*cache_size

QS -= sizeof(last(Q));

delete last(Q);

endwhile

endfor

Fig. 4. Pseudocode for the trace of processing algorithm. The TRG is constructed by incrementally
computing the edge weights stored as weight(x, y).

4.1.1 Trace-Processing Algorithm for Building a TRG. Given a trace of refer-
ences to code blocks, the following algorithm processes the trace one reference at a
time to build the corresponding TRG. Notice that if the code blocks are procedures,
the trace contains a reference to a procedure P both when P is called and when
control returns to P .

We maintain an ordered set Q of recently referenced code block identifiers (e.g.,
procedure names). At each step, the code blocks appear in Q in the same order as
their most recent occurrences in the trace. Let Q[i] be the ith entry of Q, such that
Q[0] is the most recent entry. To process the next reference to code block b in the
trace, we search Q for an occurrence of b. If Q does not contain b, we simply add b
to the front of Q and move on to the next reference in the trace. If Q does contain
b, say in position k, then we know that Q[k− 1], . . . , Q[0] are code blocks that were
referenced between the most recent previous reference to b and the current reference
to b. Therefore, for any code block c in that range, we increment the weight of the
TRG edge between b and c.

For each block b, Q has to store only the most recent occurrence of b (and thus
the index k in the previous paragraph is unique). This is sufficient because, after a
reference to b, it will be present in the cache, regardless of earlier references to it.

Furthermore, we can drop the oldest entry b in Q whenever the sum of the sizes
of the code blocks in Q exceeds a certain limit. If a sufficiently large amount of
(unique) code has been executed since the last reference to b, then b will most likely
have been evicted from the cache. This eviction is due to the limited capacity of
the cache, and not due to an avoidable conflict with a particular other code block.
If T is the set of code block identifiers reached since the last reference to b and if
S(T ) is the sum of the sizes of the code blocks referenced in T , exactly how big
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Fig. 5. The TRG build process using the phased trace (call trace #2) as an example. The
processing of Q in (a) causes the edge weight W (eM,X) to be incremented because X occurs
between M and its previous occurrence in Q. The processing of Q in (b) does not add any new
edges to the TRG because there is no previous occurrence of Z. The node Z and the edge eM,Z
are added during the processing of Q in (c). The processing of Q in (d) would increment eM,X
and add eX,Z . The configuration of Q assumes that the total size of X, M , and Z is less than
twice the size of the target instruction cache.

S(T ) needs to grow before b is evicted depends on the cache mapping of the code.
Assuming that the code placement minimizes mapping conflicts between members
of T , they will be mapped to mostly nonoverlapping addresses, and their cache
footprint will be nearly equal to S(T ). Therefore, b becomes irrelevant when S(T )
is greater than the cache size. Empirically, we have found that a bound on Q of
twice the cache size works quite well; the extra factor of 2 is a safeguard against
discarding potentially valuable information.

The pseudocode in Figure 4 summarizes the trace-processing algorithm. Figure 5
shows several steps in the processing of our example phased trace.

4.1.2 Practicality Issues. As stated before, this algorithm can be applied to
code blocks of any granularity. For the algorithm in the next section, we apply
it to procedures to obtain a procedure TRG, and we simultaneously apply it to
generate a chunk TRG, for the reasons stated earlier. For maximum accuracy, the
chunk size could be set to the cache line size (32 bytes in our experiments). The
smaller the chunks, the greater the number of nodes and edges in the chunk TRG.
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We found that the achievable cache miss rate varies only slightly between different
chunk sizes, and there is no benefit to using chunks smaller than 256 bytes for
our benchmarks. Therefore we use this value as a trade-off between accuracy and
efficiency.

To reduce overhead even further, we follow the suggestion of Hashemi et al. [1997]
to select a set of popular procedures and focus only on these during the trace
processing. In our experiments, we select the procedures accounting cumulatively
for 99% of the total dynamic procedure calls. Thus, we avoid inflating the size of
our data structures with information about infrequently executed procedures.

4.2 Procedure-Placement Algorithm

The structure of our algorithm is a greedy graph-merging process very similar
to the PH algorithm. This is not a coincidence, since we intended to keep our
algorithm as similar to PH as possible. That way, the difference in results can
be more easily traced to the benefits of our more-detailed profile information and
our more-informed cache-relative alignment. Thus, the outer loop of our algorithm
repeatedly chooses the largest-weight edge in a procedure graph and combines the
adjacent nodes. As in PH, once a set of procedures has been merged into a single
node, their relative positions are fixed.

Instead of the simple “closest-is-best” heuristic of PH, our algorithm determines
the exact cache mapping of the procedures within a node. In particular, for each
cache line, we calculate which procedure chunks4 are mapped to that cache line.
We use these data to find the best cache-relative alignment for combining two
nodes. Up to this point, each procedure is placed by determining its cache-relative
alignment, i.e., by fixing its starting address modulo the cache size. In this phase,
we are concerned only with the cache mapping, and therefore only this part of a
procedure’s address is relevant. Thus there is no linear ordering of procedures; this
leaves us the most freedom for avoiding mapping conflicts. However, eventually
we will have to find complete addresses for the procedures, either to produce an
optimized executable or for the purpose of a complete memory system simulation.

In the following sections, we present the details of these aspects of our algorithm,
as well as a complexity analysis.

4.2.1 Order of Procedure Processing. Our placement algorithm uses a working
graph derived from the procedure TRG. The working graph structure and edge
weights are copied from the procedure TRG. Each node of the working graph rep-
resents a list of pairs (p, o), where p is a procedure identifier and o is a relative
offset expressed in cache lines. The list in each node initially contains a single pair
whose procedure identifier comes from the corresponding procedure TRG node and
whose offset is 0.

We repeatedly find the heaviest edge eP,Q in the working graph and combine
the two nodes P and Q that are connected by this edge. At this point, we align
nodes P and Q relative to each other by choosing the relative offset (in cache lines)

4Even though the calculation is based upon procedure chunks, our algorithm does not split any
procedures during the placement process. Recall that we use a TRG of procedure chunks simply
because it provides us with more precise information. We briefly address the effect of procedure
splitting in Section 4.6.
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Fig. 6. An example of a node containing four procedures. Assume that each procedure is the
same size as a cache line. For a three-line cache, we show all three possible cache mappings that
correspond to these offsets. The mapping conflicts are identical for all cases, and thus we can
choose any of these mappings when we combine this node with another node.

between P and Q that causes the least number of estimated conflicts. We explain
the details of choosing the best alignment in the next section. From this point on,
the relative positions of all the procedures in the combined node PQ remain fixed.

As in the PH algorithm, we update the working graph to adjust for the merging
of P and Q into PQ. We replace any pair of edges eP,R and eQ,R to a common
node R by a single edge ePQ,R and add the individual weights so that W (ePQ,R) =
W (eP,R)+W (eQ,R). We replace any single edge eP,S or eQ,S with ePQ,S and finally
delete the edge eP,Q. We continue merging nodes in this fashion until there are no
more edges left.

Like the PH algorithm, our algorithm is “greedy” in the sense that, at each step,
it aligns procedures to achieve the best placement given the information available
at that point. It does not backtrack, i.e., a placement decision cannot be changed
once it has been made. Our algorithm processes the procedures in decreasing order
of importance. This makes it more likely that the most important conflicts can be
avoided, since there are fewer placement constraints when fewer procedures have
been aligned. Since the computational complexity of finding a globally optimal
solution is exponential in the number of procedures placed, researchers in procedure
placement typically employ some kind of greedy approach.

4.2.2 Procedure Alignment. As the merging process adds procedures to a node,
it generates a cache-relative offset for each procedure in this node. These offsets
define a cache-relative alignment for the merged procedures that is fixed for the
rest of the placement process. The node as a whole however is not bound to any
specific cache line or memory address. As Figure 6 shows, we can shift the node
as a whole by any number of cache lines without changing the mapping conflicts
within the node.

Given two nodes P and Q that we want to combine into a single node, we can
choose a displacement d to shift Q before combining it with P . We want to choose
this displacement to minimize the estimated number of cache conflicts. As we have
seen, this merging process will not change the mapping conflicts within Q and
therefore preserves the effect of all previous decisions we have made to produce
Q. The problem of combining two nodes reduces to finding the best value for the
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displacement d, i.e., the value which results in the minimum number of expected
conflict misses.

For each value of d, we can easily compute the cache line location for all the
procedure chunks, since we know the cache size and the procedure offsets. Thus
for each cache line, we have a set CP of procedure chunks from P , and a set CQ of
procedure chunks from Q that map to that cache line. If we add up the chunk-TRG
edge weight W (ei,j) for each pair i ∈ CP , j ∈ CQ, this gives us the estimated cost
of the mapping conflicts for this cache line. This sum computed over all cache lines
is the estimated cost of combining P and Q using displacement d. We try out all
values d ∈ {0, . . . , cachelines− 1} and choose the value resulting in the minimum
estimated cost.

There may be several displacements with the same minimum cost. As an added
heuristic, we choose the displacement that results in the maximum number of empty
cache lines and thus has the maximum amount of overlap between nodes. For
identical cost, a placement with more overlap is better because it leaves more cache
lines unoccupied (or lightly occupied) for future placement decisions.

Figure 7 shows the three steps that the algorithm performs on the TRG for the
phased call trace from our earlier example in Figure 1. We can see that procedures
X and Y end up on the same cache line, because there is no TRG edge between
them and because the “maximum overlap” heuristic chooses this placement. This
is desirable because it saves an empty cache line so that procedure Z can be placed
in a conflict-free position.

4.2.3 Generating a Complete Layout from Procedure Alignments. When there
are no more edges left in the graph, each procedure has been assigned a starting
cache line. This is an address, expressed in cache lines, modulo the cache size. This
means that the memory address of each procedure is only partially specified. Thus,
we have to find a memory layout for the program that results in each procedure’s
starting address mapping to the correct cache line.

As long as we are concerned only with the first-level cache behavior of the pro-
gram, we could arrange the procedures in any order and achieve the correct cache
mapping simply by leaving an appropriate amount of empty space before each pro-
cedure. Suppose the first free cache line following the previous procedure is LE,
and suppose that our algorithm has determined that the current procedure should
start at cache line LS; then we need to leave a gap of LG cache lines, where

LG =
{
LS − LE if (LE ≤ LS)
LS − LE + cachelines otherwise. (5)

To ensure that the next procedure starts at a cache line boundary, we may have
to insert a small additional gap. If the size of the previous procedure is S bytes
and the cache line size is CLS bytes, then the required gap (in bytes) is

G′ =
{
CLS − (S mod CLS) if (S mod CLS 6= 0)
0 otherwise. (6)

Clearly, the total amount of gap depends on the order in which we arrange the
procedures. If we are only interested in the first-level cache, then this aspect is
not relevant. If we are concerned about the total size of the resulting executable,
then we can try to find an ordering of the procedures that minimizes the total gap
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Fig. 7. Procedure alignment steps applied to the TRG for the phased call trace in Figure 1. On
the left, we show the current state of the working graph; the heaviest edge in this graph decides
which nodes are merged next. The procedure alignment requires computing cost estimates for
all possible displacements (d). We choose the displacement which gives the minimum cost and
maximum overlap. The combined node for this displacement is shown on the right.

amount. We can also fill gaps with unpopular procedures that have been excluded
from the alignment process.

While the total gap amount has no impact on first-level cache misses, it does
have an effect on higher levels of the memory hierarchy. In Section 6, where we
include these aspects in our evaluation, we shall return to this topic.

4.2.4 Simplification of the Graph-Merging Process. When we look at the sizes
of the two nodes being merged at each step, we notice that, in almost all cases, one
of the nodes consists of a single procedure. Table III shows the distribution of node
sizes. Based on this observation, we find that we can simplify our implementation
slightly by explicitly restricting it to handling only the case of adding a single
procedure to a node of multiple procedures. Instead of searching for the edge of
maximal weight between any nodes in the working graph, we search the edges only
from the multiprocedure node to individual procedures. We verified empirically
that this does not change our results. In Section 6, we use this simplification to
simultaneously optimize for cache alignment and spatial locality. It is an open
research problem to explain why the merging process proceeds in this fashion.
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Table III. Distribution of Node Sizes (in procedures) During the
Graph-Merging Process. In almost all cases, we merge a large
node with a small node consisting of a single procedure.

Size of the smaller node in procedures
Benchmark

1 2 3 4 5..9 10..15 >15

gcc 321 12 2 0 0 1 0
go 207 8 5 0 0 0 0
ghostscript 273 2 3 0 0 1 0
latex 128 2 3 4 0 1 0
perl 57 0 0 0 0 1 0
porky 343 1 0 0 0 0 0
vortex 190 0 0 0 0 0 0

4.2.5 Complexity Analysis. To analyze the complexity of our algorithm, Fig-
ure 8 provides a pseudocode summary of the descriptions in the previous sections,
including the simplification introduced in Section 4.2.4. Let P be the number of
popular procedures, and let C be the number of cache lines. The algorithm con-
tains many nested loops; we will first explain their purpose and then estimate their
iteration counts to arrive at a bound on the total number of steps.

The function PlaceProcedures begins by finding the edge of maximum weight
in the working graph G, chooses one of its nodes as the compound node, and
then processes G in loop (2). This loop iterates at most P times, because each
iteration merges a procedure into the compound node, and this loop must terminate
when all procedures have been merged (or when there are no more edges left).
To find the best displacement for combining the two nodes, we call the function
FindBestDisplacement. Inside this function, loop (4) iterates over all C possible
displacements. For each value of d, loop (7) in function ComputeCost calculates the
cost estimate over C cache lines.

For each cache line k, let Rk be the number of procedure chunks from node
N1 (i.e., the compound node) on that cache line, and let Sk be the corresponding
number from node NX (i.e., the single-procedure node). We add up Rk ·Sk weights
for the total cost estimate for cache line k. The largest value that Rk can have is
achieved at the very end, when all procedures have been placed. At this point, all
procedure chunks are distributed over C cache lines. Let SC be the chunk size in
cache lines, and let SP be the average procedure size in cache lines. There are
approximately P · SPSC chunks, and each of them occupies SC cache lines; hence on
the average, each cache line is occupied by

(
P · SPSC · SC

)
÷ C = P ·SP

C chunks, and
hence we use this value to approximate Rk. Similarly, we use SP

C to approximate
Sk . Since the average procedure size SP is generally less than the cache size C,
we estimate Sk to be O(1).

Thus, loop (7) takes at most

C−1∑
k=0

Rk · Sk ≤ C ·
P · SP
C

= P · SP

steps. Loop (4) iterates C times and hence takes O(P · SP · C) steps. Since
loop (6) in function BuildChunkSetArray requires about SP steps and since loop
(5) performs at most P iterations, loop (5) takes O(P · SP ) steps. Thus each
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function PlaceProcedures(procedureTRG PTRG)

derive working graph G from PTRG;

(1) find e(N1,N2) := maximum weight edge in G;

(2) while G has edges

(3) find e(N1,NX) := maximum weight edge in G adjacent to N1;

d := FindBestDisplacement(N1,NX);

insert the single procedure p in NX into N1 with offset d;

update G to reflect merging of NX into N1;

endwhile

LayoutProcedures(N1);

function FindBestDisplacement(node N1, node NX)

chunks1 := BuildChunkSetArray(C, N1);

chunks2 := BuildChunkSetArray(C, NX);

best_d := 0; best_cost := INFINITY;

(4) foreach d in [0..C-1]

cost := ComputeCost(C, d, chunks1, chunks2);

if (cost < best_cost) then

best_cost := cost; best_d := d;

endfor

return best_d;

function BuildChunkSetArray(int cachesize, node N)

// builds an array of sets of chunks from N, one set for each cache line

foreach i in [0..cachesize-1]

chunks[i] := {};

(5) foreach (proc,offs) in N

(6) foreach j in [0..Size(proc)-1]

proc_chunk := j / chunk_size_in_cache_lines;

chunk_offs := (j + offs) MOD cachesize;

chunks[chunk_offs] := chunks[chunk_offs] UNION {proc_chunk};

endfor

return chunks;

function ComputeCost(int cachesize, int d, chunkSetArray a1, chunkSetArray a2)

cost := 0;

(7) foreach k in [0..cachesize-1]

foreach ch1 in a1[k]

foreach ch2 in a2[(k+d) MOD cachesize]

cost += weight from e(ch1,ch2) in CTRG;

return cost;

function LayoutProcedures(node N)

(8) while N not empty

(9) find first (proc,offs) pair p in N that minimizes LG;

set starting address of p.proc;

remove p from N;

endwhile

Fig. 8. Pseudocode for our code-placement algorithm. PTRG and CTRG represent the procedure
and chunk TRGs respectively. The function Size returns the size of its argument in cache lines.
The function PlaceProcedures assumes that the PTRG is connected; if not, one would just make
several calls to PlaceProcedures, one for each connected component.
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call of FindBestDisplacement takes O(P · SP · C) + O(P · SP ) = O(P · SP · C)
steps. Finding the maximum edge in statement (3) takes O(P ) steps in the worst
case, since any one node in the graph can have at most P edges. We thus multiply
O(P ·SP ·C) by the P iterations of the outermost loop (2) to arrive at a complexity
of O(P 2 · SP · C).

The cost of statement (1), which finds the initial maximum edge, is at most
O(P 2), since there can be at most P 2 edges in the working graph. To complete the
placement process, we produce a procedure layout from the generated alignment
data as shown in function LayoutProcedures. This requires O(P 2) steps, since
loop (8) iterates O(P ) times and statement (9) requires at most O(P ) steps. Thus
the overall complexity for function PlaceProcedures is O(P 2 · SP · C).

4.3 Results

We evaluate our placement algorithm by comparing the instruction cache miss
rates it achieves to those obtained by the PH algorithm. Following the methodol-
ogy proposed by Blackwell [1998] as summarized in Section 3.2, we conduct many
randomized experiments for each benchmark and each placement. Each experiment
consists of generating a randomized perturbation of the TRG or WCG as appli-
cable, and simulating the instruction cache references for an 8KB direct-mapped
cache. Figures 9, 10, and 11 show the cumulative distribution of the resulting cache
miss rates.

As an example of how to read one of these graphs, consider the results for go
(Figure 9(b)) using PH. The lowest “+” with a miss rate of 4.0 has a vertical
axis value of (approximately) 0.45. This means that 45% (or 9) of the PH-based
placements done for go yielded a miss rate below 4.0 on the testing data set.

We see that our TPCM algorithm always gives better results than the PH algo-
rithm. The cumulative distribution shows this by placing the line formed by the
data points of TPCM clearly to the left of the line corresponding to the PH algo-
rithm, i.e., at lower miss rates. The slope of the line indicates the variation between
different code placements resulting from the randomized profile data. We see that
the PH data points show more variation. This is because the PH algorithm does
not have precise information on mapping conflicts and therefore sometimes causes
costly mapping conflicts to occur. The variation is particularly pronounced for the
perl benchmark; this is due to the fact that this benchmark has one procedure that
is very frequently executed and is larger than the cache size of 8KB. We recall
that the PH heuristic of adjacent placement becomes useless when the total of the
procedures involved is greater than the cache size.

The distribution of the miss rates of the randomized experiments shows that the
ranges of results produced by the different algorithms do not overlap. Thus it is
valid to summarize the miss rates by computing their average. In Figure 12, we show
the average miss rates (for the same 20 randomized experiments as in Figures 9–11)
for cache sizes of 4KB, 8KB, and 16KB. The graphs also show the average miss
rate for completely random procedure ordering. This number represents the miss
rate we can expect from the default procedure ordering produced by a compiler
that does not perform code placement.

For a 4KB cache, TPCM improves the miss rate by 6% to 29% over PH, with
a geometric mean of 13%. For an 8KB cache, TPCM improves the miss rate by
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(a) Results for gcc.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

"go.8k.tpcm"
"go.8k.ph"

(b) Results for go.
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(c) Results for ghostscript.

Fig. 9. Comparison of the TPCM and PH algorithms. We simulated an 8KB direct-mapped
instruction cache. For each algorithm, the graph shows the cumulative distribution of 20 random-
ized experiments; all experiments used a scaling factor s of 0.1. The cache miss rate (in percent)
is on the horizontal axis; the fraction of the cumulative distribution is shown on the vertical axis.
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(d) Results for latex.
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(e) Results for perl.
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(f) Results for porky.

Fig. 10. Comparison of the TPCM and PH algorithms (continued). We simulated an 8KB direct-
mapped instruction cache. For each algorithm, the graph shows the cumulative distribution of

20 randomized experiments; all experiments used a scaling factor s of 0.1. The cache miss rate
(in percent) is on the horizontal axis; the fraction of the cumulative distribution is shown on the
vertical axis.
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(g) Results for vortex.

Fig. 11. Comparison of the TPCM and PH algorithms (continued). We simulated an 8KB direct-
mapped instruction cache. For each algorithm, the graph shows the cumulative distribution of
20 randomized experiments; all experiments used a scaling factor s of 0.1. The cache miss rate
(in percent) is on the horizontal axis; the fraction of the cumulative distribution is shown on the
vertical axis.

12% to 44% over PH, with a geometric mean of 23%. For the 16KB cache, the
improvement ranges from 18% to 44%, with a geometric mean of 31%. In fact,
code placement using TPCM allows us to achieve the same average miss rate on an
8KB cache as we would get on a 16KB cache without any code placement.

The improvement of TPCM over PH is greater for larger caches, because there
are more opportunities for avoiding mapping conflicts. TPCM is better at taking
advantage of these opportunities. The benefit decreases for smaller caches, because
their behavior is dominated by capacity misses, which are not affected by code
placement. On the other hand, the miss rates in absolute terms get much smaller
for larger caches and thus have less impact on overall application performance.
However, the benchmarks used in this evaluation are relatively small compared to
applications such as database, CAD, or office productivity software.

4.4 Application to Set-Associative Caches

Our code-placement technique is based on the assumption that the instruction
cache is direct-mapped. This is reflected in the modeling of the cache mapping and
the calculation of the conflict estimates. However, the resulting code placement
still makes sense for associative caches. The code-placement algorithm attempts to
remove as many mapping conflicts as possible, and the associative cache has the
ability to remove some additional mapping conflicts.

If our algorithm is successful at removing all major mapping conflicts for a par-
ticular program, then each cache line contains at most one important code block,
and thus an N -line set in an N -way associative cache contains at most N important
code blocks. Thus, neither cache will experience a significant number of conflict
misses, and there is no benefit from the associative cache. If there is a large amount
of frequently executed code with a sufficiently high degree of interleaving in its ex-
ecution, then the code-placement algorithm will not be able to avoid all conflict
misses, and an associative cache can help. In the presence of unavoidable conflicts,
our algorithm is still able to see the relative costs of different placements. The re-
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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(a) Results for a 4KB cache.
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(c) Results for a 16KB cache.

Fig. 12. Average cache miss rates for direct-mapped caches of (a) 4KB, (b) 8KB, and (c) 16KB.
Each average is computed over 20 randomized experiments. The vertical axis shows the miss rates
in percent.
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Table IV. Average Miss Rates for Direct-Mapped and Set-
Associative Caches. All caches are 8KB in size; the associative
caches use the LRU replacement policy.

Direct- Associative
Benchmark Placement mapped two-way four-way

gcc TPCM 4.70 4.71
PH 5.40 4.92
Random 5.61 5.01 4.83

go TPCM 3.37 3.44
PH 3.98 3.63
Random 4.51 3.77 3.54

ghostscript TPCM 2.15 2.06
PH 2.87 2.27
Random 4.33 3.17 2.38

latex TPCM 1.88 1.72
PH 2.27 1.83
Random 3.21 2.28 1.72

perl TPCM 4.08 3.18
PH 5.17 3.41
Random 5.48 3.57 2.44

porky TPCM 2.15 2.04
PH 3.89 2.84
Random 4.67 3.32 2.50

vortex TPCM 3.78 3.90
PH 5.01 4.48
Random 6.57 5.15 4.46

sulting placements tend to distribute conflicts evenly across the cache, which makes
it more likely that an associative cache can avoid some of the conflicts.

A code-placement algorithm that is less effective than TPCM tends to leave more
mapping conflicts. If the remaining conflicts can be removed by the associative
cache, the less efficient placement algorithm combined with the associative cache
is just as effective as TPCM combined with the associative cache. In general, the
associative cache helps to reduce the difference between the TPCM placement and
the PH placement.

Table IV compares the average miss rates for these two placements for direct-
mapped and two-way associative caches. It also shows the average miss rates for
random procedure placement for direct-mapped, two-way, and four-way associative
caches. These results support our discussion in the previous paragraphs about
the interaction between code placement and cache associativity. In all cases, the
difference between the PH and TPCM placements is less pronounced for the two-
way associative cache than for the direct-mapped cache. For some benchmarks (gcc,
go, ghostscript, latex) there is very little difference between PH and TPCM for the
two-way associative cache. This indicates that the number of mapping conflicts left
by the PH placement is small enough so that the associative cache can remove most
of them. We also notice that, for these benchmarks, the TPCM placement shows
little difference between the direct-mapped and the two-way associative cache; this
means that this placement succeeds in avoiding almost all mapping conflicts.

For the perl benchmark, there is a significant difference between the direct-
mapped and two-way associative caches, for both placement algorithms. This
benchmark is particularly interesting because the four-way associative cache results
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.



Procedure Placement Using Temporal-Ordering Information · 1005

in a much lower miss rate for the random placement. This means that both the
PH and TPCM placements are unable to avoid some significant mapping conflicts,
while the greater associativity is much more helpful in avoiding these conflicts. We
believe that this is caused by this benchmark having some very large procedures
that are larger than the cache and are conflicting with themselves. Procedure place-
ment cannot avoid these conflicts, since it can only move procedures as a whole.
This analysis is supported by our results for hot-cold splitting in Section 4.6, where
we remove infrequently executed parts of procedures and compact the frequently
used code. This placement is particularly effective for the perl benchmark, because
a large part of its conflict misses are caused by a few large procedures.

Finally, the porky and vortex benchmarks have a sufficiently large amount of code
and interleaving of execution so that even with the two-way associative cache, the
TPCM placement is still significantly better than the PH placement.

In three cases (gcc, go, and vortex), we notice that the miss rates for the TPCM
placement are slightly higher for the two-way associative cache than for the direct-
mapped cache. This seems quite counterintuitive, but it can occur when the fixed
mapping of code blocks to cache lines is more effective than the LRU replacement
policy of the two-way associative cache.

4.5 Comparison of WCG and TRG

Given a program layout and a cache configuration, we can identify all the mapping
conflicts for each cache line. We can then use either a TRG or a WCG to assign
a predicted cost to each pair of code blocks that exhibit a mapping conflict. The
sum of all these costs should be a predictor of cache misses.

To show that a TRG is a more accurate predictor, we perform the following
experiment. We run our procedure-placement algorithm (from Section 4.2) and
then generate 90 different procedure placements by starting with the output of the
algorithm and moving between 5 and 70 procedures to a random cache line. For each
randomized procedure placement, we compute the total conflict cost as described
above, using both a WCG and a TRG. We also simulate the cache behavior using
the procedure placement to obtain the actual instruction cache miss rate. When we
plot the resulting data points as an X-Y plot, better correlation between predicted
and actual miss rates causes the data points to be closer to a diagonal line. Note
that we do not expect the predicted cost to match the actual number of cache
misses; it is sufficient for it to be approximately linear in the actual miss rate.
Figure 13 shows these graphs for the latex benchmark, and they confirm that the
TRG-based conflict estimate is a more accurate predictor of actual cache misses.
The other benchmarks yield similar graphs.

4.6 Impact of Procedure Splitting

While our work focuses on techniques that involve the placement of entire pro-
cedures, there are other code-placement techniques that are orthogonal to this
approach and can improve the benefits of whole-procedure code placement. These
techniques involve rearranging the code inside procedures, with the goal of allowing
the instruction fetch unit to work more efficiently.

One simple and effective example is hot-cold splitting [Cohn and Lowney 1996;
Pettis and Hansen 1990], also known as “fluff removal.” The “cold” part (or “fluff”)
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Fig. 13. Estimated cost vs. actual cache miss rate for the latex benchmark. Each point in each
graph corresponds to one of 90 randomized procedure placements. The vertical axis shows the
estimated conflict cost, which is computed by adding up edge weights for conflicting procedures.
The horizontal axis shows the actual instruction cache miss rate for the same trace that was used
to generate the profile data, for an 8KB direct-mapped cache. In the graph for the TRG, the
points are a better approximation to a straight line; hence the TRG-based cost estimate is a more
accurate predictor of actual conflicts.

of a procedure consists of those basic blocks whose execution frequency is below
some threshold, based on profile data. Hot-cold splitting moves the cold parts of
a procedure out of line and thus compacts the hot parts of the procedure. The
benefit is the increased density of executed code, which improves cache line and
page utilization. One possibility is to move the cold parts to the end of the proce-
dure. It is even better, if slightly harder to implement, to place the cold parts from
all procedures in some contiguous area of the executable. This reduces the effec-
tive footprint of the procedures, which makes it easier for a procedure-placement
algorithm to avoid conflicts.

To evaluate the impact of hot-cold splitting on the effectiveness of procedure
placement, we conducted the following experiment. We modified our code place-
ment and memory system simulation to remove from each procedure all basic blocks
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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Table V. L1 Cache Miss Rates for Procedure Placement with and without Hot-Cold Splitting.
To avoid problems with profile-time fluff code vs. run-time fluff code, we used the same trace for
profiling and cache simulation. Therefore, the improvement of hot-cold splitting may be optimistic.

PH TPCM
Benchmark without with change without with change

gcc 5.4% 4.6% 15% 4.7% 3.9% 18%
go 1.9% 1.8% 2% 1.5% 1.4% 3%
ghostscript 2.3% 1.4% 38% 1.5% 1.1% 26%
latex 2.2% 1.9% 16% 1.7% 1.2% 27%
perl 4.7% 1.4% 70% 2.9% 0.4% 86%
porky 4.3% 4.0% 7% 2.3% 2.0% 13%
vortex 4.9% 3.3% 32% 3.7% 2.3% 38%

that are not touched during the testing trace. This reduces the procedure sizes and
changes the way procedures are divided into chunks. We can then generate a new
TRG and compute a procedure placement for the compacted procedures. The
memory system simulator that we use to compute the instruction cache miss rates
also takes into account the removal of fluff code. These modifications allow us to
evaluate the effect of hot-cold splitting with a procedure-placement algorithm. We
conducted this experiment with both the PH and TPCM algorithms. As the results
in Table V show, both placement techniques benefit from hot-cold splitting approx-
imately to the same degree. The considerable improvement achieved by this simple
technique shows that it is definitely worthwhile to combine hot-cold splitting with
procedure-placement techniques.

5. PROCEDURE PLACEMENT FOR MULTILEVEL CACHES

In the previous section, we presented a code-placement technique that optimizes
cache-mapping conflicts in a single instruction cache. It achieves a substantial
improvement in miss rates over the PH algorithm. But most of today’s high-
performance computer systems use multiple levels of cache in their memory hierar-
chy. The reason for the growing number of cache levels is the same as the reason
for the existence of a memory hierarchy: ideally we would like to have a very large
memory with a very fast access speed. However, memory implementations that are
fast enough for the processor are very expensive and cannot be made very large.
To bridge the gap between the processor speed and the speed of a large memory,
we need some intermediate levels at various points in the trade-off between access
speed, size, and cost.

Clearly we would like to achieve a code placement that makes all levels of cache
work efficiently. A shortcoming of the placement technique we described in the
previous section is that by targeting only at a single level of cache, we have left the
other-level cache mappings to chance. Thus, there is an opportunity for improving
this aspect of the code placement. In this section, we show how to extend our
TPCM algorithm to simultaneously optimize code placement in multiple levels of
the cache hierarchy. Our results show that we can reduce cache misses in all cache
levels while retaining virtually all of the first-level cache performance.

5.1 Impact of L1 Placement on the L2 Cache

Since the PH algorithm does not involve the cache size in its calculations, the layout
it produces is suitable for any cache size. Thus, in a multi-level cache, all caches will
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simultaneously benefit from the PH placement. This is not the case for our TPCM
placement technique, or for any other code-placement technique that models the
cache mapping for a particular cache size.

In TPCM, we constrain the procedure addresses modulo the L1 cache size. The
remaining part of each procedure’s address is determined by the linear ordering of
the procedures and the necessary gaps between them. The linear ordering is not
designed to avoid L2 mapping conflicts, and thus it is left to chance which conflicts
occur. We still manage to avoid some L2 conflicts, because we “pack” the popular
procedures into a contiguous sequence, whereas a completely random procedure
placement spreads them across the entire text segment. For example, if the total
length of this sequence is twice the L2 cache size, then each popular procedure can
suffer a mapping conflict with at most one other popular procedure. Our results
in Section 5.3 confirm this analysis. The L2 cache miss rates of our single-cache
TPCM placement are better than those for random procedure ordering, but worse
than those for the PH technique.

5.2 Improved Algorithm for Multilevel Caches

A natural approach to extending the scope of our code placement to multilevel
caches is to model the mapping conflicts in all caches and to find a placement that
simultaneously optimizes the estimated costs in all caches. In our discussion, we
focus on two levels of cache, but the technique is completely general and can be
extended to a cache hierarchy of more than two levels in a straightforward fashion.

If we are modeling mapping conflicts in both the L1 and L2 cache, the cost
metric we want to minimize now has two components: the cost of L1 and L2
mapping conflicts. When we align a new procedure, we choose an L1 displacement
and an L2 displacement that align the new procedure relative to the procedures
that have already been placed. Let C1 and C2, respectively, be the size of the
L1 and L2 caches, in cache lines.5 As Figure 14 shows, any L2 displacement dL2

corresponds to a unique L1 displacement dL1 = dL2 mod C1. Conversely, any L1
displacement dL1 corresponds to several L2 displacements dL2 = dL1 + k · C1, for
k = 0, . . . , (C2/C1)− 1.

5.2.1 Finding a Good Choice. In general, it is not always possible to achieve
a simultaneous minimum for the two components. Because of the smaller size of
the L1 cache, L1 conflicts are much more frequent, and harder to avoid, than L2
conflicts. Therefore, we should give priority to the L1 cache and first choose the
L1 displacement that minimizes the estimated cost of L1 conflicts, using the same
search algorithm described in Section 4.2. Any displacement dL2 = dL1 + k · C1 is
equivalent to dL1 as far as the L1 cache mapping is concerned. We compute the
L2 costs for each displacement dL1, dL1 +C1, dL1 +2C1, . . . , dL1 +((C2/C1)− 1)C1

and choose the displacement with the minimum cost.
To allow ourselves more freedom in choosing the L2 displacement, we select all

L1 displacements that have a cost that is close, but not necessarily identical, to
the minimum-cost L1 displacement. An L1 displacement is included if it is less

5Our algorithm assumes that the cache line size is constant across all levels of the memory hierar-
chy. Further research is required to understand how to handle a hierarchy with multiple different
line sizes.
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Fig. 14. Mapping of L1 and L2 cache line addresses. To provide a simple example, this figure
shows an L1 cache of 4 lines and an L2 cache of 8 lines. An L2 cache line address of 5 corresponds
to the unique L1 cache line address 1. But an L1 cache line address of 1 can result from an L2
cache line address of either 1 or 5. This means that when we choose an L1 displacement first, we
are still left with a choice of several L2 displacements.

than or equal to (1 + α) · costmin, where α is a small number, typically less than
0.1. We then try all equivalent L2 displacements (as defined above) for each of
these L1 displacements. We found that this results in better L2 miss rates without
noticeably affecting L1 miss rates. In Section 5.3, we show experimental results
for a value of α = 0.05 and compare this to using only a single minimum-cost L1
displacement. The former technique works significantly better, but we found that
the results are not particularly sensitive to the exact value of α. When we increased
α beyond 0.1, we noticed a gradual increase in L1 miss rates without a noticeable
reduction in L2 miss rates.

5.2.2 Using the Correct TRG. It is important to remember that our trace-
processing algorithm that generates the TRG is given the cache size as a parameter
and ignores any interaction between references that are separated by other refer-
ences touching more than two cache sizes worth of code. If we use a TRG that was
generated for a small L1 cache to place procedures in a large L2 cache, the follow-
ing may happen. There are some procedures whose execution is interleaved to a
considerable degree, but they are separated by enough code so that they are never
present in the L1 cache at the same time. The TRG does not contain any edges
connecting these procedures, and therefore the code-placement algorithm mistak-
enly assumes that there is no cost associated with overlapping these procedures in
the L2 cache. Thus, we can compute only meaningful L2 costs using a TRG which
was generated for the L2 cache size. Since the L2-based TRG contains a superset
of the information in the L1-based TRG, one might initially think that we could
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Fig. 15. L2 cache miss rates (in percent) for a 64KB L2 cache and an 8KB L1 cache. The miss
rate shown on the vertical axis is the ratio of L2 misses to total instruction references.

use this same TRG for computing both L1 and L2 costs. In our experiments, we
found that we get slightly better results for the L1 cache if we use the L1-based
TRG for the L1 code placement, and the L2-based TRG for the L2 code placement.
Thus more information is not necessarily better. The longer-term L2-based TRG
can sometimes distort the trade-off between different placements based on a conflict
which cannot be avoided (due to capacity concerns) in the smaller L1 cache.

5.3 Results

We evaluate our combined L1 and L2 placement algorithm (TPCM-2) by comparing
it to the PH algorithm as well as a random procedure ordering. Additionally, we also
show the L2 cache miss rates resulting from our L1-only placement from Section 4
(TPCM-1). Figure 15 shows the average L2 cache miss rates for each placement
and for each benchmark. It is not necessary to show the L1 miss rates because they
are the same as in Section 4.3. For the PH and random placements, there is only a
single code placement regardless of the number of cache levels. For our combined
L1 and L2 placement, the L1 cache miss rates remain unchanged by the extensions
described in this section.

As expected, our L1-only placement performs worse than the PH placement, be-
cause it leaves L2 mapping conflicts to chance. But our combined L1/L2 placement
achieves significantly better L2 (and L1) miss rates than the PH placement.

In the previous section, we claimed that we can improve the procedure placement
by searching among L2 alignments corresponding to any L1 alignment within 5%
of the minimum-cost L1 alignment. Table VI presents the results for our two-level
placement approach with and without this improvement. The data support the
claims in the previous section.

The numbers we present are L2 miss rates calculated as the ratio of L2 misses to
total instruction references. An alternative would be to use the ratio of L2 misses
to L2 references. But this calculation may be misleading because L2 references
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Table VI. L2 Cache Miss Rates (in percent) for a 64KB L2 Cache and an 8KB L1 Cache under
Two Variants of TPCM-2. The miss rates shown are the ratio of L2 misses to total instruction
references. The “choose best” scheme is a version of TPCM-2 where the algorithm only chooses
among L2 displacements corresponding to a single minimal-cost L1 displacement. The “choose
any within 5% of best” scheme is a version of TPCM-2 where the algorithm chooses among the
L2 displacements corresponding to any L1 displacement that is within 5% of the minimal-cost L1
displacement.

ghost-
Placement gcc go view latex perl porky vortex G. mean

choose best 0.63 1.00 0.18 0.12 0.20 0.28 0.37 0.31

choose any
within 5% 0.57 0.94 0.12 0.10 0.18 0.24 0.35 0.26
of best

are equal to L1 misses, and hence a smaller number of L1 misses would cause the
same absolute number of L2 misses look like a worse L2 miss ratio. While the L2
miss rates in our results are small numbers around 1%, they are still important to
program performance because the penalty for an L2 cache miss is usually many
tens of cycles. For example, on the Digital Alphaserver 4100 5/400 using an Alpha
21164 processor at 400MHz, the penalty of an L1 cache miss is 5 to 9 cycles [Kawaf
et al. 1996], but the penalty of an L2 cache miss is more than 45 cycles [Cvetanovic
and Donaldson 1996].

6. OPTIMIZING FOR SPATIAL LOCALITY

In the previous two sections, we focused on the cache lines occupied by a program’s
procedures, and we assumed that any placement of the procedures in a sequence
(including gaps between procedures where necessary) that achieves the determined
cache mapping was equally desirable. However, the procedure sequence affects the
spatial locality of instruction memory references in a way that impacts the perfor-
mance of a paged virtual memory system. Depending on the procedure sequence,
the number of distinct pages occupied by a set of procedures may vary considerably.

One way of quantifying this effect is by measuring the working set size of the
program, i.e., the average number of pages touched during an interval of a certain
length. We recall from Section 2.2 that during intervals for which the working set
size is less than the size of the TLB, the entire working set of the program can
be accessed without TLB misses. Therefore, if our code placement increases the
working set size of the program, it will increase the number of TLB misses and
incur a run-time penalty. A special case of the working set size is the total number
of pages touched over the execution of the program. If this number is increased, the
program will have to page in more pages and will attempt to occupy more physical
memory.

Because of these effects, a code-placement technique that encompasses all relevant
levels of the memory hierarchy has to optimize a program’s working set size as
well as its cache-mapping conflicts. In this section, we show how to integrate
the placement algorithm of the previous sections with a placement algorithm that
optimizes for spatial locality, and hence the working set size.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.



1012 · Nikolas Gloy and Michael D. Smith

6.1 Combining Optimizations for Spatial Locality and Cache Mapping

The “closest-is-best” heuristic used by the Pettis and Hansen algorithm [1990] is
not only useful for avoiding cache-mapping conflicts, but is also intuitively appeal-
ing for placing related procedures on the same page. Suppose we have a model
of the temporal relationship between procedures (such as a TRG). If we place
the most strongly related procedures as close to each other as possible, we ex-
pect that this tends to minimize the number of pages occupied by a set of related
procedures. This is also the basic approach of Hatfield and Gerald [1971] and
Ferrari [1975] (see Section 7.5 for a discussion of this work). Thus we find that
the simple procedure-placement technique proposed by Pettis and Hansen [1990]
simultaneously addresses the cache mapping and the spatial locality.

Our procedure-placement algorithm from Sections 4 and 5 specifies the cache-line
index bits for each procedure address, but leaves the rest of the address unspecified.
One possibility is to use a PH-like algorithm to compute a procedure sequence,
which is a layout of procedures in which the starting address of the first is set
arbitrarily to zero. This sequence contains the gaps necessary to achieve the cache
alignment determined earlier. We have found that this simple approach requires a
large amount of gap space between procedures, and hence results in an inefficient
packing of procedures into pages. The problem is a lack of integration between
the cache-alignment phase and procedure-sequencing phase. The cache-alignment
phase overly constrains the sequencing phase, without any knowledge of how its
decisions will affect the ability of the later sequencing phase to pack procedures
into pages efficiently.

An obvious solution is to integrate the two processes so that we simultaneously
find a good cache mapping (cache alignment) and a good sequence (procedure se-
quencing).

6.1.1 Constructing a Completely Specified Program Layout. We describe an al-
gorithm that gradually constructs a program layout that not only specifies the
cache-relative alignment for each procedure, but also explicitly places the proce-
dures in a sequence chosen to optimize spatial locality.

Recall from Sections 4 and 5 that we are inserting individual procedures into a
growing set of procedures. For any procedure in this set, the cache-relative align-
ment decision has already been made and remains fixed from that point on. We
keep this approach, but in addition to deciding on the cache-relative alignment of
procedures, we also decide where to insert the procedure into a procedure sequence.
This sequence may contain gaps as necessary to achieve the desired cache align-
ment. We may insert procedures into gaps left by earlier placement decisions if
this is desirable based on the cache mapping and spatial locality. When we insert
a procedure into the sequence, we completely fix its address relative to all other
procedures in the sequence.

6.1.2 Metric for Spatial Locality. To make placement decisions that optimize for
spatial locality, we introduce the following metric. Let P1, . . . , Pk be the procedure
sequence P , and let dj be the displacement from the start of the first procedure
P1 to the start of Pj . Let WTRG(X,Y ) be the weight of the TRG edge between
procedures X and Y . The metric for inserting a new procedure Q into sequence P
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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at displacement c is

M(P , Q, c) =
k∑
j=1

(|c− dj | ·WTRG(Pj , Q)) (7)

A placement that minimizes this metric tends to place strongly related proce-
dures as close to each other as possible to minimize the distance |c − dj |. Since
strongly related procedures appear together in many working sets, placing them
close together in a small set of pages means that these working sets occupy fewer
pages, compared to a placement where strongly related procedures are placed far
apart and hence scattered across many pages.

6.1.3 Extending Our Placement Algorithm to Optimize Spatial Locality. Assume
that we have already processed k procedures, resulting in a partial program layout
that places these procedures in a sequence P . As described in Section 4, we choose
the next procedure to process by finding the maximum-weight edge in the working
graph from the combined node of k procedures to a procedure outside this node.
Let Q be the next procedure, and let C1 and C2, respectively, be the number of
cache lines in the L1 and L2 caches.

First, we compute the L1 cache conflict estimates between Q and already placed
procedures for all displacements of Q between 0 and C1 − 1. We consider the set
D1 of all displacements with a L1 cache cost estimate within 5% of the minimum
value, as discussed in Section 5.2.1.

For each displacement d1 ∈ D1, any displacement d2 = d1 + i ·C1, where 0 ≤ i <
C2/C1, results in the same L1 cache mapping. We compute the L2 cache conflict
estimates for all d2 derived in this fashion and select the set D2 containing those
displacements with a L2 cache cost estimate within 5% of the minimum value.

For any d2 ∈ D2, any displacement d = d2 + j · C2 results in the same L1 and
L2 cache mappings. For each such value of d that does not place Q more than C2

cache lines outside of the sequence of previously placed procedures and does not
cause overlap with a previously placed procedure, we compute the spatial locality
metric M(P , Q, d). We choose the value of d that minimizes this metric.

The 5% bound used in generating D1 and D2 allows the algorithm to try several
placements with conflict cost estimates near the minimum. If we consider only the
single best cache-relative alignment, we may arbitrarily reject placements whose
cache cost estimate is only slightly above the minimum. By choosing among several
good L1 and L2 cache-relative displacements, we improve our chances of finding a
placement with good spatial locality. If we increase the bound substantially beyond
5%, we run the risk of accepting placements that have a noticeably poor cache
mapping.

6.1.4 Complexity Analysis. Figure 16 shows the pseudocode for the functions
FindBestDisplacement and LayoutProcedures that replace the corresponding
functions in Figure 8. These functions together with the other functions from
Figure 8 comprise the placement algorithm that we refer to as TPCM-2S.

Let P be the number of procedures. Computing the spatial locality metric at
statement (4) takes at most O(P ) steps. The loop (3) iterates O(P ) times, because
the size of the procedure sequence in N1 is unlikely to exceed P · C2, and the
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function FindBestDisplacement(node N1, node NX)

// build chunk set arrays for each node and cache combination

chunks_L1_N1 := BuildChunkSetArray(C1, N1);

chunks_L1_NX := BuildChunkSetArray(C1, NX);

chunks_L2_N1 := BuildChunkSetArray(C2, N1);

chunks_L2_NX := BuildChunkSetArray(C2, NX);

// calculate L1 placement costs

best_L1_cost := INFINITY;

foreach d1 in [0..C1-1]

cost_L1[d1] :=

ComputeCost(C1, d1, chunks_L1_N1, chunks_L1_NX);

if (cost_L1[d1] < best_L1_cost) then

best_L1_cost := cost_L1[d1];

endfor

// consider only the top 5% of the L1 displacements

best_d = 0; best_metric := INFINITY;

(1) foreach d1 in [0 .. C1-1]

if (cost_L1[d1]/best_L1_cost <= 1.05) then

// calculate L2 placement costs for this L1 displacement

best_L2_cost := INFINITY;

foreach i := 0 .. (C2/C1)-1

d2 := d1 + i*C1;

cost_L2[d2] :=

ComputeCost(C2, d2, chunks_L2_N1, chunks_L2_NX);

if (cost_L2[d2] < best_L2_cost) then

best_L2_cost := cost_L2[d2];

endfor

// now consider only those within 5% of best_L2_cost

(2) foreach i := 0 .. (C2/C1)-1

d2 := d1 + i*C1;

if (cost_L2[d2]/best_L2_cost <= 1.05) then

j := 0;

(3) do

d := d2 + j*C2;

(4) m := LocalityMetric(N1, NX, d);

if (m < best_metric) then

best_metric := m; best_d := d;

j := j+1;

while (d < max displacement in N1)

endif

endfor

endif

endfor

return best_d;

function LayoutProcedures(node N)

// empty

Fig. 16. Functions that replace like-named functions in Figure 8 to form algorithm TPCM-2S.
Since FindBestDisplacement calculates displacements for procedure sequences, LayoutProcedures
is unnecessary, and hence empty.
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average procedure size is unlikely to exceed C2. The number of displacements
whose costs are within 5% of the minimum tends to grow very slowly with cache
size, and therefore the impact of loops (1) and (2) on the computational complexity
is insignificant. From Section 4.2.5, we recall that computing the conflict costs for
the L1 placement requires O(P · SP · C1) steps. To this, we add O(P 2) for the
cost of statement (4) inside the loop (3). This results in O(P 2 + P · SP · C1) for
each call to the function FindBestDisplacement. Thus, the overall complexity
for placing all P procedures is O(P 3 + P 2 · SP · C1), which is larger than the
complexity of the algorithm in Section 4.2.5. This is not surprising. TPCM-2S
considers several layouts for each procedure within FindBestDisplacement, while
TPCM and TPCM-2 perform layout and placement separately. TPCM-2S thus
incurs an extra factor of P .

6.1.5 Restricting the Number of Cache-Aligned Procedures. In our experiments,
we found that it is not possible to achieve a satisfactory working set size if we insist
on cache-aligning all executed procedures. The cache alignment imposes enough of
a restriction on procedure placement that we end up with too much gap space that
cannot be filled. Fortunately, the order in which our algorithm processes procedures
was chosen such that the most important procedures—those responsible for most
cache misses—are placed first. Toward the end of the execution of the algorithm,
we are placing procedures that have very little impact on the cache miss rate, and
thus there is little benefit to finding an optimal cache mapping for them. Figure 17
shows how the sum of the TRG edge weights between processed procedures grows
with the number of processed procedures. When we choose the top 50% to 60% of
the executed procedures, we see that the TRG edge weights between them account
for over 90% of total TRG edge weights, and therefore the cache placement of the
remaining procedures has little influence on the total miss rate.

However, the total amount of gap space keeps growing as we add more cache-
aligned procedures. In fact, by the time we have processed between 40% and
60% of the executed procedures, we reach a state where the gap space between
the procedures is sufficient to accommodate all the remaining procedures. This
suggests that we should limit the number of cache-aligned procedures so that we
get most of the benefit of cache alignment, but avoid the penalty of too much gap
space.

We modify our algorithm as follows. First, perform cache alignment and proce-
dure sequencing until the number of procedures placed reaches a certain percentage
of the popular procedures. This results in a procedure sequence with a significant
amount of gap space. Then, place the remaining procedures solely based on spatial
locality. This allows us to fill the gaps in the procedure sequence and thus achieve
good overall spatial locality. In this second phase, we insert a procedure into the
sequence by trying all displacements that place it directly adjacent to some pro-
cedure already in the sequence, and choose the displacement that minimizes our
spatial locality metric.

The percentage of cache-aligned procedures is a parameter that represents a
trade-off between cache miss rate and working set size. From our measurements
above, we would expect that values between 50% and 60% should work well. As
we shall see in the next section, this is the case, and for values in this range, we
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Fig. 17. Cumulative distribution of the sum of the TRG edge weights between processed proce-
dures, for all seven benchmarks. The fraction of processed procedures is shown on the horizontal
axis, and the ratio of the sum of the TRG edge weights for the processed procedures to the sum
for all procedures is shown on the vertical axis.

can achieve very good performance for both the cache miss rate and the working
set size.

6.2 Results

Tables VII and VIII shows the average working set sizes for three different interval
lengths, with the percentage of cache-aligned procedures in the range between 40%
and 90%. For most benchmarks, the L1 and L2 miss rates increase slightly as we
decrease this percentage. For some benchmarks (gcc and porky), one of the two
miss rates increases more strongly as we decrease the percentage. From Figure 17,
we can see that this is the case because these benchmarks have a larger number of
procedures with significant TRG edge weights. But for all benchmarks, choosing
a percentage between 50% and 60% allows our placement algorithm to achieve
working set sizes that are nearly identical to those of the PH placement, while still
obtaining significantly better L1 and L2 miss rates.

The percentage of cache-aligned procedures is a parameter that allows us a trade-
off between improved cache miss rates and smaller working sets. The correct choice
of this parameter may depend on the relative run-time penalties for cache misses
and TLB misses, as well as the relationship between TLB size and working set size.

In Figures 18–20, we compare our code placement (TPCM-2S) to the PH place-
ment by showing the size of each individual working set over the entire trace. This
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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Table VII. Average Working Set Sizes and Cache Miss Rates for Different Placements. Where a
percentage value is shown in the “placement” column, this refers to the version of our placement
algorithm described in this section (TPCM-2S), which places the given percentage of the proce-
dures based on the cache mapping. The placement of the remaining procedures is determined
only by interprocedural spatial locality. The interval lengths (100K, 1M, 10M) are expressed in
basic blocks, and each value in the table is the average of 10 randomized experiments.

Avg. working set size Cache miss rate
Benchmark Placement in 4KB pages in percent

100K 1M 10M L2 L1

gcc PH 65.9 130.7 248.9 0.98 5.40
40% 65.5 128.0 249.9 0.78 4.98
50% 65.7 127.6 249.8 0.71 4.90

55% 65.5 128.3 250.7 0.65 4.86
60% 65.1 127.2 249.9 0.67 4.87
70% 67.2 128.9 249.8 0.62 4.82
80% 66.9 128.3 250.8 0.61 4.73
90% 68.2 130.6 253.0 0.57 4.72

go PH 64.8 76.7 82.3 1.14 3.98
40% 64.6 76.4 82.8 1.09 3.52
50% 68.5 78.0 83.4 1.04 3.46
55% 69.1 79.3 84.8 1.02 3.46
60% 71.5 81.2 86.4 1.03 3.44
70% 75.2 85.9 91.2 0.98 3.42
80% 76.9 89.2 95.2 0.94 3.42
90% 84.4 98.8 104.8 0.94 3.38

ghostscript PH 31.8 50.6 61.1 0.17 2.87
40% 32.3 51.0 61.5 0.17 2.21
50% 33.5 51.2 61.8 0.16 2.14

55% 34.0 51.9 61.8 0.17 2.15
60% 34.7 52.4 62.3 0.14 2.14
70% 37.2 55.3 63.9 0.13 2.13
80% 39.1 58.2 67.2 0.13 2.09
90% 40.3 60.2 69.5 0.12 2.11

latex PH 30.0 41.7 54.3 0.16 2.27
40% 29.8 42.2 54.9 0.10 1.90
50% 33.1 44.5 55.3 0.11 1.89
55% 33.6 45.5 56.5 0.11 1.87
60% 36.9 48.1 58.2 0.11 1.86
70% 39.0 52.1 61.8 0.11 1.84
80% 41.9 57.0 67.8 0.11 1.82
90% 42.4 58.7 70.7 0.10 1.83

perl PH 22.3 23.9 33.1 0.42 5.17

40% 21.9 23.5 32.5 0.18 4.10
50% 22.3 23.9 32.8 0.18 4.04
55% 22.5 24.2 33.5 0.15 4.03

60% 22.7 24.3 33.6 0.17 4.01
70% 24.0 25.6 34.7 0.24 4.02
80% 23.6 25.1 34.0 0.23 4.09
90% 24.1 25.7 35.0 0.18 4.07

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.



1018 · Nikolas Gloy and Michael D. Smith

Table VIII. Average Working Set Sizes and Cache Miss Rates for Different Placements (contin-
ued). Where a percentage value is shown in the “placement” column, this refers to the version of
our placement algorithm described in this section (TPCM-2S), which places the given percentage
of the procedures based on the cache mapping. The placement of the remaining procedures is
determined only by interprocedural spatial locality. The interval lengths (100K, 1M, 10M) are
expressed in basic blocks, and each value in the table is the average of 10 randomized experiments.

Avg. working set size Cache miss rate
Benchmark Placement in 4KB pages in percent

100K 1M 10M L2 L1

porky PH 45.8 71.8 106.1 0.35 3.89
40% 42.7 68.7 104.4 0.34 2.88
50% 42.4 68.9 105.3 0.30 2.62
55% 42.0 67.7 103.7 0.30 2.55
60% 41.6 67.6 104.5 0.28 2.47
70% 41.7 67.5 104.0 0.25 2.32

80% 42.0 67.7 104.2 0.25 2.16
90% 41.7 67.4 103.5 0.22 2.10

vortex PH 38.0 47.3 70.9 0.55 5.01
40% 37.3 46.7 70.7 0.42 4.17
50% 37.8 47.0 70.8 0.39 4.06
55% 38.5 47.8 70.9 0.39 3.97
60% 39.3 48.5 71.8 0.39 3.93
70% 41.6 50.0 73.0 0.36 3.87
80% 43.6 51.8 74.6 0.36 3.87
90% 44.0 52.4 75.6 0.35 3.82

allows us to confirm that the relationship between the average working set size for
the two placement algorithms is paralleled by the relationship between the sizes of
each individual working set. Therefore, it is valid to compare the two placement
algorithms based on the average working set size. We show the graphs for only
three of our seven benchmarks (go, ghostscript, and vortex), since the behavior of
the other benchmarks is similar.

In Figure 21, we show the same type of graph for three different code place-
ments: random procedure ordering, our cache-alignment algorithm from Section 5
(TPCM-2), and the algorithm presented in this section (TPCM-2S). The TPCM
placements are better than the random procedure ordering because they place all
the executed procedures together, while the random ordering mixes executed and
unexecuted procedures. TPCM-2S outperforms TPCM-2 because TPCM-2 leaves
more to chance what procedures are placed together on the same page.

6.3 Summary

We have successfully integrated a simple heuristic for optimizing interprocedural
spatial locality into our cache-alignment algorithm. This allows us to achieve al-
most the same working set size as the PH placement. The PH placement is a simple
instance of a general technique for optimizing working set sizes [Ferrari 1975; Hat-
field and Gerald 1971], and thus we believe that reaching this level of performance
is satisfactory. At the same time, we are able to retain most of the advantage of
our optimization of cache misses.
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Fig. 18. Working set sizes for go at each interval in the testing trace. The vertical axis shows
the working set size in 4KB pages, and the horizontal axis represents the intervals. The two data
series shown in each graph correspond to the PH placement and the placement described in this
section (TPCM-2S).

7. RELATED WORK

The initial motivation for this work came from a review of existing code-placement
techniques aimed at reducing instruction cache conflicts. We found that all of
the work of which we were aware was based on profile data that lacked temporal
information. We summarize some of this work in Section 7.1.

We also provide a brief overview of some relevant work on intraprocedural code
placement, dynamic code-placement schemes, methods for summarizing temporal
information, and code placement aimed at working set reduction.

While our work focuses entirely on instruction memory references, we are aware
that data memory references are also an important source of cache conflicts. Thus,
it is also worthwhile to optimize the cache placement of data [Calder et al. 1998;
Carr et al. 1994]. In fact, the recent work by Calder et al. [1998] applies the ideas
in this article to the problem of data placement.
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Fig. 19. Working set sizes for ghostscript at each interval in the testing trace. The vertical axis
shows the working set size in 4KB pages, and the horizontal axis represents the intervals. The two
data series shown in each graph correspond to the PH placement and the placement described in
this section (TPCM-2S).

7.1 Similar Code-Placement Techniques

Some of the earliest work in this area was done by Hwu and Chang [1989], Mc-
Farling [1989], and Pettis and Hansen [1990]. Hwu and Chang use a WCG and
a proximity heuristic to address the problem of basic-block placement. Their ap-
proach is unique in that they also perform function inline expansion during code
placement to overcome the artificial barriers imposed by procedure call boundaries.

McFarling [1989] uses an interesting program representation (a DAG of pro-
cedures, loops, and conditionals) to drive his code-placement algorithm, but the
profile information is still summarized in such a way that the temporal interleaving
of blocks in the trace is lost. In fact, McFarling explicitly states that, because he
is unable to collect temporal interleaving information, his algorithm assumes and
optimizes for a worst-case interleaving of blocks. Finally, his algorithm is unique
in its ability to determine which portions of the text segment should be excluded
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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Fig. 20. Working set sizes for vortex at each interval in the testing trace. The vertical axis shows
the working set size in 4KB pages, and the horizontal axis represents the intervals. The two data
series shown in each graph correspond to the PH placement and the placement described in this
section (TPCM-2S).

from the instruction cache. The paper focuses only on a single instruction cache
and thus ignores the other levels of the memory hierarchy. The rather complicated
placement algorithm, which attempts to fold a tree structure of related code into
the cache, may be difficult to adapt to multilevel caches.

Hashemi et al. [1997] try to improve the Pettis and Hansen algorithm by comput-
ing which cache lines are occupied by which procedures. Their goal is to use a more
precise placement heuristic than the simple “closest-is-best” heuristic. However,
they still use a simple WCG for profile information. Although this technique opti-
mizes only a single instruction cache, it might be possible to extend it to address
multiple levels of cache, because it has precise information on the cache mapping of
the code. However, this technique ignores the issues of spatial locality and working
set size.

Torellas et al. [1995] propose a code-placement technique for kernel-intensive ap-
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Fig. 21. Working set sizes for three different code placements: random procedure ordering, our
cache-only placement (TPCM-2), and the placement algorithm presented in this section (TPCM-
2S). Each point shows the working set size in 4KB pages for one interval of 1M basic blocks. The
intervals are shown along the horizontal axis, and the working set sizes are shown on the vertical
axis. This data is for the vortex benchmark and the “training” trace.

plications. Their algorithm considers the cache address mapping when performing
code placement. They define an array of logical caches, equal in size and address
alignment to the hardware cache. Code placed within a single logical cache is guar-
anteed never to conflict with any other code in that logical cache. Though there
is a subarea of all logical caches that is reserved for the most frequently executed
basic blocks, there is no general mechanism for calculating the placement costs
across different logical caches. Their code placement is guided by execution counts
of edges between basic blocks, and therefore does not capture temporal ordering in-
formation. There is no mention of multilevel caches and working set size, although
the concept of logical caches could be extended to apply to multilevel caches. But
this technique puts additional constraints on the code placement and may therefore
make it more difficult to simultaneously optimize the working set size.

Soon after we published our initial work [Gloy et al. 1997] on procedure placement
using temporal-ordering information, Kalamatianos and Kaeli [1998] published a
similar approach. They define a structure called a Conflict Miss Graph (CMG)
that is nearly identical in construction and contents to our TRG. They present a
placement algorithm that is an extension of the work by Hashemi et al. [1997],
extended to use the CMG. As one would expect, the differences between their
algorithm and the one presented in Section 4 are small. Their work, however,
optimizes for only the primary instruction cache.
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7.2 Intraprocedural Code Placement

As we mentioned earlier, there are other inter-procedural techniques for code place-
ment whose benefits are orthogonal to those gained through procedure placement.
Section 4.6 looked at hot-cold splitting [Cohn and Lowney 1996; Pettis and Hansen
1990]. In their paper, Cohn and Lowney [1996] address not only the cache effect
of hot-cold splitting but also the other optimizations it enables. Removing the
cold code from the path makes it possible to optimize the hot code by removing
partially dead code, eliminating unnecessary preserved registers and stack adjusts,
and performing register lifetime splitting and copy propagation.

A similar technique is branch alignment [Calder and Grunwald 1994; Young et al.
1997]. It reorders basic blocks within each procedure to minimize branch penalties,
which generally means minimizing the number of taken branches during execu-
tion. As a secondary effect, it improves the efficiency of a sequential instruction
prefetching scheme, which further reduces instruction cache misses.

7.3 Dynamic Schemes

Dynamic schemes monitor the behavior of the system and perform optimizations
at run time based on this behavior. Thus, they avoid the problems of profile-
based optimizations: profiling is rarely undertaken (often because of apathy); and
a program’s behavior during profiling may differ from the actual run-time behavior
(because of differences in the data sets).

Chen and Leupen [1997] present a technique for just-in-time code layout. Un-
der this scheme, procedures are loaded into the text segment at run time in the
order in which they are invoked. Their experiments show that the resulting pro-
cedure placement is at least as effective as the placement technique by Pettis and
Hansen [1990].

Bershad et al. [1994] introduce a hardware device called the Cache Miss Lookaside
(CML) buffer that records and summarizes a history of cache misses. They describe
how one could modify the operating system’s virtual memory system to use the
CML data to detect conflicts caused by the page mapping and remove conflicts
by dynamically remapping pages whenever large numbers of conflict misses are
detected. Their experiments show that a CML buffer enables a large direct-mapped
cache to perform nearly as well as a two-way set-associative cache of equivalent size
and speed.

Prefetching schemes take a different approach to avoiding cache misses. Whereas
the methods described change the addresses of code to remove conflicts, prefetching
schemes leave the cache mapping of the code unchanged. They avoid the run-time
penalty of conflicts by transferring code into the cache from the next level of the
memory hierarchy before it is needed. Conflicting parts of the code still evict each
other from the cache, but this does not force the processor to wait for the cache.
Prefetching schemes have the advantage that they can also reduce compulsory and
capacity misses, whereas code-placement schemes are limited to reducing conflict
misses.

The simplest prefetching scheme is next-N-line prefetching [Smith 1982]. Under
this scheme, the cache would prefetch the next N sequential lines after the line
currently being executed. To cover branch targets that do not fall within these
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N prefetched cache lines, wrong-path prefetching [Pierce and Mudge 1996] always
prefetches the target address of control transfer instructions (with static addresses)
in addition to the next N sequential lines. As an alternative to using the static
branch address, target-line prefetching [Smith and Hsu 1992] uses a dynamically
updated prediction table. For each cache line, this table provides the address of
the successor line that occurred most recently. Markov prefetching [Joseph and
Grunwald 1997] uses a dynamic prediction table to store the addresses of several
of the next likely cache misses based on a recent miss address. When a cache
miss occurs, the cache lines predicted to suffer misses can be prefetched. Finally,
cooperative prefetching [Luk and Mowry 1998] combines the best of the hardware-
and compiler-based approaches.

7.4 Temporal Profile Information

While there are some interesting approaches to summarizing temporal profile in-
formation [Ammons et al. 1997; Ball and Larus 1996; Young and Smith 1998],
it appears that none of them are applicable to our kind of code placement. The
history mechanism we use to analyze the temporal behavior of an execution trace
is similar to the problem of profiling paths in a procedure call graph. Ammons
et al. [1997] describe a way of implementing efficient path profiling. However, the
data structure generated by this technique cannot be used in the place of our TRG,
because it does not capture any interleaving information.

Quong [1994] describes an alternative way of summarizing temporal profile in-
formation. It is particularly interesting because this method has the opposite goal
of our TRG: it removes the influence of code placement on the cache miss rate. It
achieves this by assuming a stochastical model of the cache behavior and deriving a
formula for the expected number of cache misses over all possible address mappings.
For each code block, the expected number of cache misses for the entire trace can
be computed based on the size of the gaps between successive references to the code
block. The frequency count for the gap sizes can be recorded in a compact form by
quantizing the gap sizes. The benefit of this scheme is that it provides an estimate
of the cache miss rate for a program independent of its layout.

Phalke and Gopinath [1995] examine the temporal locality of memory references.
They define the inter-reference gap (IRG) for an address in a trace as the time
interval between successive references to that same address. The IRG stream for
an address in a trace is the sequence of successive IRG values for that address, and
each IRG stream is modeled using an order k Markov chain. They successfully
apply this technique to page replacement policies and trace compaction.

7.5 Working Set Optimization

Hatfield and Gerald [1971] describe a method for reducing the working set for both
data and instruction references. They divide the address space into relocatable
sectors (which are smaller than pages) and define a nearness matrix C such that
C[i, j] is a count of control transfers or data references from sector i to sector j. The
matrix is divided into square regions corresponding to pages. All entries in regions
along the diagonal indicate references within the same page, and entries in regions
near the diagonal indicate references to nearby pages. Reordering sectors corre-
sponds to moving rows and columns in the matrix. The authors describe a method
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of reordering sectors that maximizes the entries near the diagonal and achieves an
improvement in spatial locality. (Ferrari [1975] discusses the working set problem
in a similar but more abstract way by defining it in terms of a restructuring graph
and a clustering algorithm.) Hatfield and Gerald report a reduction in working set
size of about 25% when they apply this technique in a compiler.

We note the similarity between the nearness matrix and the WCG, as well as the
analogy between reordering sectors to increase near-diagonal entries and the PH
algorithm to achieve closeness between procedures connected by important WCG
edges. It is for this reason that we used the working set sizes obtained by the PH
algorithm as our baseline in Section 6.

8. CONCLUSIONS

We have presented a procedure-placement technique that advances the state of
the art in two major ways. First, our technique for capturing temporal-ordering
information provides substantially better information on the temporal behavior of
a program than previous profiling techniques. Second, our procedure-placement
algorithm addresses all relevant levels of the memory hierarchy.

To the best of our knowledge, all previously published code-placement techniques
use profile data that do not capture any temporal information beyond counts of
procedure calls. We analyzed which aspects of the flow of execution of a program
affect the number of cache conflict misses and showed that the interleaving of the
execution of different parts of the program is crucial to estimating cache conflict
misses. We therefore developed a profiling technique that extracts precisely this
information, in a form that is concise enough to be practical for code-placement
optimizations.

By combining the temporal-ordering information with precise control over cache-
mapping conflicts, we achieve a significant improvement in single-level instruction
cache conflicts. But our analysis of second-level cache conflicts and working set
sizes shows that it is not sufficient to focus only on this single level of the memory
hierarchy. The placement decisions that are intended to improve this aspect of
instruction fetch performance can actually incur penalties in the other levels of the
memory hierarchy.

We showed that our placement algorithm can easily be extended to simultane-
ously optimize procedure placement in multilevel caches. We demonstrated this for
a two-level cache, but the technique is equally applicable to caches with more than
two levels.

Finally, we were able to integrate the cache conflict optimization with another
code-placement technique that optimizes the working set size. While these two
optimizations may not be able to achieve peak performance simultaneously, we
were able to find a trade-off between them that achieves a good compromise.

As applications keep growing in size and as the impact of memory system effi-
ciency on program performance increases, code placement will continue to become
more important. This view is also supported by the increasing number of worksta-
tion vendors who are developing and shipping code-placement optimization tools.
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