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ABSTRACT
Neural Networks (NN) have been proposed in the past as an ef-
fective means for both modeling and control of systems with very
complex dynamics. However, despite the extensive research, NN-
based controllers have not been adopted by the industry for safety
critical systems. The primary reason is that systems with learn-
ing based controllers are notoriously hard to test and verify. Even
harder is the analysis of such systems against system-level spec-
ifications. In this paper, we provide a gradient based method for
searching the input space of a closed-loop control system in order
to find adversarial samples against some system-level requirements.
Our experimental results show that combined with randomized
search, our method outperforms Simulated Annealing optimization.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Mathe-
matics of computing → Calculus; • Theory of computation
→ Semantics and reasoning; • Computer systems organization
→ Embedded and cyber-physical systems.
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1 INTRODUCTION
There is a long history of investigating the application of Neural
Networks (NN) in high assurance systems [19]. The advantages of
including a NN in the control loop can be substantial. For example,
a system may include components with complex dynamics that
cannot be modeled by first principles and need to be learned. Most
importantly, a high assurance system needs to be able to adapt in
catastrophic situations. NNs provide such an adaptation mechanism
with only limited assumptions on the structure of what is to be
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learned. However, even though there has been substantial progress
in the stability analysis and verification of such systems [17], the
problem of system level verification of transient system behaviors
still remains a major challenge.

In this paper, we report on progress on the automatic genera-
tion of adversarial test cases (falsification) for nonlinear control
systems with NN components in the loop. We assume that system
properties -that can be specified using different logics (e.g, [4, 16])-
are expressed in Signal Temporal Logic (STL) [4] and we develop a
framework that searches for adversarial tests through functional
gradient descent. In particular, we propose using a local optimal
control based search combined with a global optimizer since the
resulting optimization problem is non-convex.

We remark that our proposed approach neither requires analyti-
cal information about the system model nor the NN architecture.
However, our framework requires information readily available by
most model based development tools for control systems. Namely, it
requires linearizations of the closed loop system at given operating
points. The linearizations help us approximate the gradient descent
directions without the need for computing sensitivity matrices or
numerical approximations of the descent directions.

We assume that the NNs in the system include differentiable
activation functions. This is not a restrictive assumption since most
of the common approaches for training NNs are based on gradients
which require differentiability, so activation functions are usually
approximated to become smooth if they are not. For instance, Rec-
tified Linear Unit (ReLU) is the rectifier function f (x) =max(0, x)
whose corner is smoothed out as f̃ (x) = ln(1 + ex ).

Our approach can be used for systems that contain Recurrent
Neural Networks (RNN) which cannot be handled by the existing
testing and verification methods. Finally, we remark that our pro-
posed method could be extended to hybrid control systems with
NNs if results similar to [23, 25] are utilized.

Summary of contributions: We develop an adversarial test
generation (falsification) framework for control systems with RNN
in the loop based on optimal control theory. Unlike our previous
works [22, 24] in which the input signal is parameterized using finite
number of parameters, in this work the input is calculated using
an optimal-control approach which searches directly in the infinite
search space of the input functions. We experimentally demonstrate
that our framework vastly outperforms black-box system testing
methods. Namely, in our case study, the proposed framework always
returns falsifications when the black-box methods fail to do so.

2 RELATED WORK
First and foremost, we highlight that our work utilizes ideas from
falsification methods based on optimal control [2, 15, 22, 25]. Similar
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to the work in [15], we use well known results in optimal control
theory but for systems equipped with NN and against properties
that are not necessarily described in the form of standard opti-
mal control cost functionals. In [2], authors study the falsification
problem of white-box nonlinear systems with piece-wise constant
inputs. They calculate gradient descent directions for system’s ini-
tial conditions and input parameters using sensitivity analysis. This
work has been extended in [22] to include gray-box nonlinear sys-
tems using the linearizations of the system model, and in [23] to
include hybrid systems. Another search-based method for falsifica-
tion of Hybrid systems is multiple shooting optimization technique
which is studied in [25].

In terms of testing and verification for NN, in [14], a verification
framework based on Satisfiability Modulo Theory (SMT) for feed-
forward multi-layer neural networks is developed. The framework
aims to evaluate the robustness of image classifiers to manipulations.
The work is limited to feed-forward networks and proves properties
statically: it does not consider the NN in a closed loop system.

In [9], a tool for calculating the reachable set of ReLU1 feed-
forward NNs (FNNs) based on mixed integer linear programs is
introduced. This tool is used in [10] for verifying stability and reach-
ability properties of systems with FNNs in a feedback loop. However,
NNs in complex dynamical systems may contain more complicated
activation functions like sigmoids or Gaussian functions.

Along these lines, the authors in [21] study the problem of safety
verification for dynamical systems with FNNs with general acti-
vation functions. They develop an algorithm to compute an over-
approximation of the reachable set of the neural network control
system over a finite time horizon.

Due to the complexity and the growth in the model order, formal
verification methods cannot currently be used for control systems
with more general NNs than feed-forward. In these applications
one need to resort to testing methods. The works in [1, 6, 7, 20] test
autonomous vehicles equipped with NNs for perception, guided by
system-level requirements.

3 PRELIMINARIES
3.1 Neural Networks
Neural Networks are brain-inspired functions/dynamical systems
that can learn to replicate real systems if provided by enough data
about that system. NN’s consist of input, output and usually hidden
layers that each include a number of nodes/neurons connected to
transform the input into a suitable signal for replicating the desired
output. The input layer passes the inputs to the network, where
some computations are applied on them in the hidden layers, and
the output layer consists of at least one node that generates the
output vector. The inputs to each node are the outputs from other
nodes, and the output of each node is computed by applying non-
linear functions to the weighted sum of its inputs. Many methods
have been studied in literature to train a NN to replicate a system’s
behavior, most of which minimize a loss function, such as the mean-
squared error of the output. We briefly introduce two types of the
most generally used NNs in the following:

1ReLU in this work is assumed to be f (x ) =max (0, x )

3.1.1 Feed forward Neural Networks (FNN). FNNs are the simplest
type of NNs. They are static or memory-less networks with no
feedback loops. Multi-layer perceptron (MLP) is the most general
form of FNN, which has the ability to approximate any nonlinear
function (Universal Approximation Theorem [13]). Assuming l
layers in the FNN, the ith layer applies the following function to its
inputs ui ∈ IRmi ,

yi = ϕi (WT
i ui + bi ) i ∈ {1, 2..., l} (1)

where assuming that the layer has ni outputs yi ∈ IRni (usually
ni = mi+1), Wi is a IRmi × IRni weight matrix, bi ∈ IRni is a bias
vector, and ϕi : IRmi → IRni is an activation function which is
usually one of the continuous nonlinear functions: ReLU, tanh,
arctan, logistic or sigmoid. The weight matrices Wi and the bias
vectors bi should be adjusted using a training approach [12]. After
the training phase, the function FNN : IRm1 → IRnl formed by
neurons of Eq. (1), calculates the final output of the feed forward
neural net at time t given the input at that time: y(t) = FNN (u(t))
3.1.2 Recurrent Neural Networks (RNN). Unlike FNNs, RNNs are
dynamic networks. The feedback loops between neurons equip the
network with long/short term memory. The output at each time
t represented as y(t) = RNN(t,u(.)) is a function of the vector-
ized input signal/sequence u(.)2 and is a solution to the following
continuous or discrete system of equations:

Ûxnn = f rc (xnn,u), or
xnn (t) = f rd (xnn (t − 1), xnn (t − 2), ...,u(t)) (2)

y(t) = д(xnn (t))
where xnn is the internal state (memory) of the RNN which is
usually initially zero (xnn (0) = 0). These states are the outputs of
the delay/integrator blocks whose inputs are calculated using the
functions f rc or f rd given the input and (previous) states. Note that
despite FNN formulation in Eq. (1), the above formulation describes
the overall input output relationship of the RNN rather than the
individual neurons. The RNN output at each time t is a function of
the states xnn at t .

We denote the solution of an arbitrary NN at time t as NN (t, u(.)).

3.2 Closed-loop Control Systems Description
In this paper NNs can be combined with a system plant in a general
way. Many of the dynamical systems in which NNs are used for
controls (in feedback, feedforward or end-to-end), unmodeled dy-
namics estimation or predictions, can lie under the class of systems
that we consider (shown in Fig. 1). The system is studied in the
bounded time interval [0,T ] and described in the following.

Σ : Ûxp = fp (xp ,w,NN(t, xp (.),w(.))) (3)

where xp ∈ X ⊂ IRn , xp (0) ∈ X0, and w ∈ U ⊂ IRm are the system
states, state initial values, and inputs, respectively. Also, x(.),w(.)
are the state and input trajectories, NN : IR+×X [0,T ]×U [0,T ] → IRk ,
and fp : IRn × IRm × IRk → IRn are C1 functions. The solution to
system (3) at time t with initial condition xp (0) and input w is
denoted by sp (t, xp (0),w).
2Because of the properties of RNN, the output at each time t ′ can be dependent on the
values of the input signal at any time t < t ′, so instead of using u(t ) that represents
the value of signal at time t, we use u(.) to represent the input trajectory
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Figure 1: A close-loop control system containing a NN

3.3 Specifications
Desired system behaviors can be specified using Signal Temporal
logic (STL) formulas which are reviewed in [4]. These formulas are
created by combining atomic propositions or predicates using logical
and temporal operators. Logical operators include: and (∧), or (∨),
and not (¬), and temporal operators include: always (�), eventually
(^), and until (U) that can be combined with time intervals to
specify when operators are active.

Given the system state trajectory sp (t, x0,w), a robustness value
can be calculated with respect to an STL formula φ (see [11]), which
shows how well the trajectory satisfies the formula. Positive values
indicate satisfaction and negative values indicate violation. The
absolute value of the robustness shows how far the trajectory is
from being satisfied/falsified.

The robustness value is calculated using max and min functions
over the distances of the points on the trajectory from sets that are
defined by the formula predicates and as a result the robustness
function is not differentiable. In [18] differentiable semantics of
logic are defined approximately. The accuracy of the approximation
however depends on various parameters and there is not a mature
enough tool to calculate the robustness using them yet either. So
in the following, we use the approach in [2] to deal with the non-
differentiability of the robustness function:

It can be shown that the absolute value of the robustness of
the trajectory sp (t, xp (0),w) corresponds to the distance between
a point sp (t∗, xp (0),w) on the trajectory and a point z∗ that be-
longs to a critical set. The critical set corresponds to a predicate
in the STL formula φ, and t∗ is called the critical time. The vari-
ables z∗ and t∗ are simply calculated using tools such as S-Taliro
while evaluating the robustness. The robustness of neighboring
trajectories sp (t, x ′p (0),w ′) where x ′p (0) = xp (0) + δxp (0), and
w ′(t) = w(t) + δw(t) is upper bounded by | |sp (t∗, x ′p (0),w ′) − z∗ | |
so minimizing the following cost w.r.t. x ′p (0) and w ′ will locally
minimize the robustness function. Note that the dependence of the
cost function on xp (0) and w is through z∗ and t∗.

Jxp (0),w =
1
2
(
sp (t∗, x ′p (0),w ′) − z∗

)⊤ (
sp (t∗, x ′p (0),w ′) − z∗

)
(4)

4 ANALYTICAL ADVERSARIAL TESTING
4.1 Problem Formulation
In adversarial testing, we are interested in finding adversarial w ∈
U [0,T ] and x0 ∈ X0 for which the solution to the system (3) does
not satisfy a given formula φ. The adversary can be used later to
improve the system performance by adapting or retraining the NN
(similar to [8]). We look at the problem as a constrained optimization
problem in which we minimize the robustness function over X0

and U [0,T ] and under the dynamics of Eq. (3). This optimization
problem can be locally solved by minimizing the cost in Eq. (4)
instead of the robustness value. Also, we integrate the NN with the
plant and rewrite the system in Eq. (3) as:

Ûx = f (x,w) (5)

The solution to system (5) at time t with initial condition x(0) and
inputw is denoted by s(t, x(0),w). Note that the states of the closed
loop system above (x) include the states of the plant (xp ∈ IRn )
and possible states of the neural network (xnn ∈ IRb ,b ≥ 0)3.
However the system requirements are usually on the plant states
rather than the NN states, so the value of the neural net states xnn
do not affect the robustness value directly. As a result z∗ ∈ IRn only
concerns xp and any value of xnn is considered to be desired for
falsification. In the rest of the paper, the superscript i shows the
variables corresponding to the i-th iteration.

Problem 1. At the ith iteration, given an STL formula φ, an initial
condition x ip (0)4, and an input signal wi , find the solution to the
system of Eq. (5): s(t, x i (0),wi ) , x i = [x ip , x inn ], where x i (0) =
[x ip (0), zeros(b)]5. Calculate for the formula φ, the critical time t i∗
and the critical point zi∗ corresponding to x ip . Let r i∗ , [zi∗, x inn (t i∗)],
and solve the following constrained minimization problem:

Minimize
xp (0),w

J i =
1
2
(
x(t i∗) − r i∗

)⊤ (
x(t i∗) − r i∗

)
(6)

s .t Ûx = f (x,w)
xp (0) ∈ X0,w ∈ U

4.2 Specification Falsification Attack
Due to the nonlinear constraints, finding the global minimizer to
Problem (1) cannot be guaranteed. However, taking a small enough
step in the direction of the negative of the gradient of the cost
function (6) w.r.t x0 and w , will decrease the cost locally. Using the
well known method of the Lagrange multipliers, Problem 1 can be
reduced to the problem of minimizing the following cost function:

J̄ i =
1
2
(
x(t i∗) − r i∗

)⊤ (
x(t i∗) − r i∗

)
+

∫ t i∗

0
λ⊤

(
f (x,w) − dx

dt

)
dt

Forming the Hamiltonian as H (x,w) = λ⊤ f (x,w), and ϕi (x) =
1
2
(
x − r i∗

)⊤ (
x − r i∗

)
, J̄ i can be written as:

J̄ i = ϕi (x(t i∗))+λ(0)⊤x(0) −λ(t i∗)⊤x(t i∗)+
∫ t i∗

0
(H (x,w)+ dλ

dt

⊤
x
)
dt

As a result, the gradient of the cost function J̄ i is:

δ J̄ i =
(dϕi (x i (t i∗))

dx
− λ⊤(t i∗)

)
δx(t i∗) + λ⊤(0)δx(0)

+

∫ t i∗

0

( ( ∂H
∂x
+ Ûλ⊤)δx + ∂H

∂w
δw

)
dt

3These states exist only for RNN (See Sec. 3.1.2).
4The initial condition for neural network states xnn are usually considered as zero.
5zeros(b) is a vector of b zeros
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By updating the co-states λ backward in time with the following
final value ordinary differential equation,

Ûλ = − ∂H
∂x

⊤
= − ∂ f
∂x

���⊤
x i ,w i

λ (7)

λ(t i∗) =
(dϕi (x i (t i∗))

dx

)⊤
= x i (t i∗) − r i∗ (8)

δ J̄ i is reduced to δ J̄ i = λ⊤(0)δx(0) +
∫ t i∗
0

∂H
∂w δw dt . The following

choices of δx(0) and δw with a small enough positive step size h
will result in a negative δ J̄ i and as a result a decrease in J̄ i :

δx i (0) = −λ(0) (9)

δwi (t) = − ∂H
∂w
= − ∂ f
∂w

���⊤
x i ,w i

λ(t) (10)

In order to find δx(0) and δw(t) using Eq. (7-10), we either need
to differentiate f w.r.t x and w which requires knowledge about f
(or fp and NN ) or we can use modified version of the successive
linearization approach introduced in [22]. Recall that linear approx-
imations of f around operating points can usually be provided.
Given x ip (0) and wi (t) assume that we take N time samples on the
corresponding trajectory and the following is a linear approxima-
tion of Eq. (5) at sample time tk ∈ [0,T ] (t1 = 0, tN = T )

Ûx = Aikx + B
i
kw k = 1, ..N

where Aik ,B
i
k are constant matrices. For each time t ∈ [tk , tk+1],

we calculate the time-varying functions Ai (t) and Bi (t) as follows:

αk =
tk+1 − t
tk+1 − tk

, αk+1 =
t − tk

tk+1 − tk
Ai (t) = αkA

i
k + αk+1A

i
k+1, Bi (t) = αkB

i
k + αk+1B

k
k+1 (11)

and calculate δx(0) and δw(t) using the following equations

λ(t i∗) = x i (t i∗) − r i∗ (12)
Ûλ = −A(t)⊤λ (13)

δx i (0) = − λ(0) (14)

δwi (t) = − B(t)⊤λ(t) (15)

The linearization matrices Aik ,B
i
k can be computed analytically

or approximated numerically. Similar to the work in [15], using
numerical approximaions, our approach can be applied to blackbox
systems too. The MATLAB ’Linearize’ command that we use in
our implementation can compute the linearizations analytically (us-
ing a block-by-block approach) or numerically (using perturbetions)
for Simulink models. However, Mathworks strongly recommends
that the analytical approach is used as it is faster and more accurate.

Algorithm 1 describes the process of finding adversarial inputs
and initial conditions. In this algorithm, InBox is a function that
saturates its first input argument to lie in the set which is specified
in its second input argument. Note that we can stop the algorithm
based on different criteria. The algorithm can be stopped if:
• A maximum number of iterations is reached.
• The change in the robustness is less than a minimum value.
• The changes in the initial conditions and inputs are less than

a minimum value.

6δx ip (0) is the non NN part of δx i (0)

Algorithm 1 Optimal input and initial condition for falsification

Require: TL formula φ, x1
p (0), w1(t), X0, U , and a tool to extract

linearizations of f , and initial step size h0, and constant c > 1.
Ensure: local optimal initial condition x∗p , local optimal input w∗.

1: Initialize i = 1,d∗ = ∞,h = h0
2: Evaluate the system response x i (t), and find the corresponding

robustness value d , and t i∗, r i∗.
3: If d < d∗ let d∗ = d , x∗p (0) = x ip (0), w∗ = wi , and h = ch,

otherwise let h = h/c and go to step 6.
4: If d < 0 (φ is falsified): stop and return the corresponding

x∗p (0),w∗.
5: Linearize the system around sample times taken in [0, t i∗] and

evaluate δx i (0) and δwi using equations (11-15)
6: While the stop condition is not active, let x ip (0) = InBox(x ip (0)+

h δx ip (0), X0) 6and ∀t ∈ [0, t i∗] : wi (t) = InBox(wi (t) +
h δwi (t), U ) and go back to step 2.

7: Let i = i + 1, δx i (0) = δx i−1(0) and δwi = δwi−1

Use UR or SA to 
choose next 𝒙𝒑 and 𝒘

Best samples 
so far?

Yes  

No

𝒄 = 𝒄 + 𝟏𝒄 ≥ 𝒄𝒎𝒂𝒙
No

Use Alg. 1 to choose 
next 𝒙𝒑 and 𝒘 values,

Return accordingly

Yes

Counter-
example?

No

Return

Yes

𝒄 = 𝟎Start

Figure 2: The falsification framework

4.3 Framework
The robustness function is a non-convex non-differentable func-
tion in nature. In order to locally solve the problem we defined the
function Jxp (0),w . However, in order to search for the global mini-
mizer of the robustness function, the gradient based local search
still needs to be combined with a “sampling method for coverage"
or a “stochastic global optimization" approach. In what follows we
combine the local search with Uniform Random Sampling (UR) and
Simulated Annealing optimization (SA). The framework is shown
in Fig. 2, where c = 0 in the beginning and cmax is a design choice.

5 CASE STUDIES
In this section we study two systems containing NNs. The NNs
serve as controllers and they are trained to replicate the behavior of
well-known controllers. Motivated by the fact that Simulink models
are widely used in industry for modeling complicated systems, both
of our case studies are Simulink models that are treated as gray-box,
and the only information that we extract from their model, is the
dynamical model linearizations along systems’ trajectories that are
anyway extractable using the Simulink’s linear analysis toolbox.

5.1 Nonlinear system with FNN controller
Consider the following nonlinear system under a FNN controller
that has 5 layers and tangent-sigmoid activation functions. Also let
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Figure 3: Falsifying Input and trajectory: The trajectory does
not settle down below 0.1 within 7 seconds of the rise time.

x1(0) = −0.2, x2(0) = 5, and w(t) ∈ [−0.1, 0.1]:
Ûx1 = −0.5x1 − 2e−0.5t sin(3t) + sin(x2)
Ûx2 = −x2 + x

2
1 (cos(x2 +w(t)) + FNN (x1, x2)

The system is tested against the specification:
�
((x1(t) < 0 ∧ ^[0,ϵ ] x1(t) > 0) → ^[0,7]�(x1(t) < 0.1))

in which ϵ is a small positive constant. The requirement requires
the signal to always stay below 0.1 within 7 second of the rise
time. Starting from w(t) = 0 the local optimal search finds an input
(shown in Fig. 3) that falsifies the requirement. The robustness for
the falsifying trajectory is −7.7 × 10−7.

5.2 Steam Condenser with RNN Controller
We studied a dynamic model of a steam condenser with 5 continu-
ous states based on energy balance and cooling water mass balance
[5] under an RNN controller with 6 discrete states and tangent-
sigmoid activation functions. The Simulink model for the system
is shown in Fig. 4. The steam flow rate w(t) (Input 1 in Fig. 4) is
allowed to vary in the set [3.99, 4.01] and the system is tested for
T = 35 seconds against the specification �[30,35] p(t) ∈ [87, 87.5].
Starting from a constant valued signal w(t) = 4 that results in a
robustness value equal to 0.20633, the above approach finds a falsi-
fying trajectory with robustness 0.00030222. The initial and final
trajectories and inputs are shown in Fig. (5). Using w(t) = 3.99
and w(t) = 4.01 initially, the robustness values were reduced from
0.24131 to 0.00033674 and from 0.17133 to 0.0002290, respectively.
These nearly falsifying trajectories are the result of very similar in-
puts with small differences in switch times. These small differences
result in slightly different robustness values due to the hard timing
constraints in the requirement. While the local search reduces the
robustness values significantly in all the above 3 cases, in none of
them a falsifying behavior is found. The importance of combining
this local search with a global sampler/optimizer becomes more
clear in the next section where the combination of the local search
with uniform random sampling or Simulated Annealing method
finds adversarial examples.

Note that, while the utilized NNs have fairly small number of
layers (since they were found to perform good enough during the

Figure 4: Simulink model for Steam Condenser with Feed-
back RNN Controller

0 5 10 15 20 25 30 35

87

88

89

90

P
(t

)

Initial P
Final P

0 5 10 15 20 25 30 35

t

3.99

3.995

4

4.005

4.01

4.015
w

(t
)

Initial Input
Final Input

Figure 5: The system robustness is reduced from 0.20633 us-
ing a constant input w(t) = 4 to 0.00030222 using the local
optimal input shown in the picture.

training phase), the scalability of the proposed approach was tested
on the systems of Sec. 5.1 and 5.2 including NN controllers with
larger number of layers (20 to 100) too. These experiments showed
that the proposed approach scales well. Theoretically increasing the
number of layers/neurons in FNNs or the number of non-recurrent
layers (with no delay/memory) in RNNs will just increase the num-
ber of blocks in the Simulink model linearly. Since MATLAB analyti-
cal linearization is computed block-by-block, increasing the number
of these kinds of layers (l) increases the linearization complexity
by O(l × r ) where r is the maximum number of neurons in layers.
However increasing the size of state-space or the number of layers
of the RNN with memory increases the linearziation complexity
faster. Specifically the size of linearized matrices grow quadrati-
cally with the number of state-space plus RNN states. However, in
practice, we observed much less increase in the computation time
of the overall algorithm when increasing the size of the NN states.

6 EXPERIMENTAL RESULTS
Experiments are conducted using MATLAB 2017a on an Intel(R)
Core(TM) i7-4790 CPU @3.6 GHZ with 16 GB memory processor
with Windows 10 Enterprise.
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Table 1: Falsification Results of Steam Condenser system
with RNN controller using different search methods.

UR SA UR+GD SA+GD
# falsifications 0/50 0/50 50/50 50/50

Avg min robustness 0.0843 0.0503 -0.0018 -0.0016
Avg execution time >60 >60 15.7812 13.0688
Avg # simulations 600 600 87.48 62.26

We used Uniform the Random Sampling (UR) and Simulated
Annealing (SA) implementations of S-Taliro [3] unaided and aided
by the optimal local search (UR+GD and SA+GD, respectively) for
finding adversarial inputs to the more difficult problem described in
Sec. 5.2 with RNN in the loop. For sampling using SA and UR, inputs
were (initially7) considered to be piece-wise constant signals with
12 control points with varying sample times (total of 24 variables).
In the UR+GD implementation, local optimal search is performed
when the sampler cannot find a sample with a less robustness
value 50 times in a row, and in the SA+GD implementation it is
applied when the optimizer cannot find a less robust sample 30
times in a row. We run the experiments 50 times, and in each run
the maximum execution time is limited to 60 seconds8. The search
is initialized with the same seed for all the experiments. The above
search methods are compared against the number of falsifications
found, average minimum robustness found, average execution time,
and average total number of simulations before returning. The
improvement in the results from left to right in Table 1 is evident
and it motivates the use of the proposed local search. While SA
and UR were not able to find any counterexamples in 50 runs,
their combination with gradient based descent found an adversarial
example in all the runs within a short amount of time and with less
than 90 simulations on average.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a gradient based local search approach
for falsification using results from optimal control theory. We ap-
plied our method to a case study of a Simulink model of a steam
condenser with an RNN controller. The results suggest that when
combined with a sampler or a global optimizer, the gradient based
local search is indeed very useful in detecting counterexamples to
the requirements for control systems with RNNs.

As a future line of work, we will extend our results to falsification
of dynamical systems with classifier neural networks. This can be
done by manipulating the system’s inputs in a way that the NN
inputs approach the decision boundary of the falsifying NN output.
In a different line of work we will try to augment the adversarial
samples into the training set of the NN in order to adapt its gains
and improve the system’s performance.

ACKNOWLEDGMENTS
This research was partially funded by the NSF awards CNS 1350420
and IIP 1361926, and the NSF I/UCRC Center for Embedded Systems.
7when aided by the optimal local search, arbitrary perturbations were applied to inputs
8The next sample is taken only if the execution time so far is less than 60 seconds. The
algorithm returns faster in case of finding a counter/adversarial example.

REFERENCES
[1] Houssam Abbas, Matthew O’Kelly, Alena Rodionova, and Rahul Mangharam.

2017. Safe At Any Speed: A Simulation-Based Test Harness for Autonomous
Vehicles. (2017).

[2] Houssam Abbas, Andrew Winn, Georgios Fainekos, and A. Agung Julius. 2014.
Functional Gradient Descent Method for Metric Temporal Logic Specifications.
In American Control Conference. https://doi.org/10.1109/ACC.2014.6859453

[3] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. 2011. S-taliro: A tool for temporal logic falsification for hybrid
systems. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 254–257.

[4] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donze, Georgios Fainekos, Oded
Maler, Dejan Nivckovic, and Sriram Sankaranarayanan. 2018. Specification-based
monitoring of cyber-physical systems: a survey on theory, tools and applications.
In Lectures on Runtime Verification. Springer, 135–175.

[5] Yi Cao. [n. d.]. Dynamic Modelling of a Steam Condenser. ([n. d.]).
[6] Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. 2017. Compositional

falsification of cyber-physical systems with machine learning components. In
NASA Formal Methods Symposium. Springer, 357–372.

[7] T. Dreossi, S. Ghosh, A. Sangiovanni-Vincentelli, and S. A. Seshia. 2017. Sys-
tematic Testing of Convolutional Neural Networks for Autonomous Driving. In
Reliable Machine Learning in the Wild (RMLW).

[8] Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Kurt Keutzer, Alberto
Sangiovanni-Vincentelli, and Sanjit A Seshia. 2018. Counterexample-guided
data augmentation. arXiv preprint arXiv:1805.06962 (2018).

[9] Souradeep Dutta, Susmit Jha, Sriram Sanakaranarayanan, and Ashish Tiwari. 2017.
Output range analysis for deep neural networks. arXiv preprint arXiv:1709.09130
(2017).

[10] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Learning and verification of feedback control systems using feedforward neural
networks. IFAC-PapersOnLine 51, 16 (2018), 151–156.

[11] Georgios Fainekos and George Pappas. 2009. Robustness of temporal logic
specifications for continuous-time signals. Theoretical Computer Science 410, 42
(2009), 4262–4291.

[12] Simon S Haykin, Simon S Haykin, Simon S Haykin, and Simon S Haykin. 2009.
Neural networks and learning machines. Vol. 3. Pearson Upper Saddle River.

[13] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-
forward networks are universal approximators. Neural networks 2, 5 (1989),
359–366.

[14] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety
verification of deep neural networks. In International Conference on Computer
Aided Verification. Springer, 3–29.

[15] Nan Li, Anouck Girard, and Ilya Kolmanovsky. [n. d.]. Optimal Control Based
Falsification of Unknown Systems with Time Delays: A Gasoline Engine A/F
Ratio Control Case StudyâŃĘ. ([n. d.]).

[16] Mohammadreza Mehrabian et al. 2017. Timestamp Temporal Logic (TTL) for
Testing the Timing of Cyber-Physical Systems. ACM Transactions on Embedded
Computing Systems (TECS) 16, 5s (2017), 169.

[17] Nhan T. Nguyen and Stephen A. Jacklin. 2010. Stability, Convergence, and Verifica-
tion and Validation Challenges of Neural Net Adaptive Flight Control. SCI, Vol. 268.
Springer, 77–110.

[18] Yash Vardhan Pant, Houssam Abbas, and Rahul Mangharam. 2017. Smooth
operator: Control using the smooth robustness of temporal logic. In Control
Technology and Applications (CCTA), 2017 IEEE Conference on. IEEE, 1235–1240.

[19] Johann Schumann and Yan Liu. 2010. Applications of Neural Networks in High
Assurance Systems. SCI, Vol. 268. Springer.

[20] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski.
2018. Simulation-based Adversarial Test Generation for Autonomous Vehicles
with Machine Learning Components. arXiv preprint arXiv:1804.06760 (2018).

[21] Weiming Xiang and Taylor T Johnson. 2018. Reachability Analysis and Safety
Verification for Neural Network Control Systems. arXiv preprint arXiv:1805.09944
(2018).

[22] Shakiba Yaghoubi and Georgios Fainekos. 2017. Hybrid approximate gradient
and stochastic descent for falsification of nonlinear systems. In American Control
Conference (ACC), 2017. IEEE, 529–534.

[23] Shakiba Yaghoubi and Georgios Fainekos. 2017. Local Descent for Temporal
Logic Falsification of Cyber-Physical Systems. In Seventh Workshop on Design,
Modeling and Evaluation of Cyber Physical Systems.

[24] Shakiba Yaghoubi and Georgios Fainekos. 2018. Falsification of Temporal Logic
Requirements Using Gradient Based Local Search in Space and Time. IFAC-
PapersOnLine 51, 16 (2018), 103–108.

[25] Aditya Zutshi, Jyotirmoy V Deshmukh, Sriram Sankaranarayanan, and James
Kapinski. 2014. Multiple shooting, cegar-based falsification for hybrid systems.
In Proceedings of the 14th International Conference on Embedded Software. ACM.

184


