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ABSTRACT
It is well known that (timed) ω-regular properties such as ‘p holds

at every even position’ and ‘p occurs at least three times within the

next 10 time units’ cannot be expressed in Metric Interval Temporal

Logic (MITL) and Event Clock Logic (ECL). A standard remedy to

this de�ciency is to extend these with modalities de�ned in terms of

automata. In this paper, we show that the logics EMITL0,∞ (adding

non-deterministic �nite automata modalities into the fragment of

MITL with only lower- and upper-bound constraints) and EECL
(adding automata modalities into ECL) are already as expressive

as EMITL (full MITL with automata modalities). In particular, the

satis�ability and model-checking problems for EMITL0,∞ and EECL
are PSPACE-complete, whereas the same problems for EMITL are

EXPSPACE-complete. We also provide a simple translation from

EMITL0,∞ to diagonal-free timed automata, which enables practical

satis�ability and model checking based on o�-the-shelf tools.

CCS CONCEPTS
•�eory of computation→ Timed and hybrid models; Logic
and veri�cation; Veri�cation by model checking;

KEYWORDS
metric interval temporal logic, timed automata, model checking

1 INTRODUCTION
Timed logics. In the context of real-time systems veri�cation, it

is natural and desirable to add timing constraints to Linear Temporal
Logic (LTL) [42] to enable reasoning about timing behaviours of

such systems. For instance, one may write φ1UI φ2 to assert that φ1

holds until a ‘witness’ point where φ2 holds, and the time di�erence

between now and that point lies within the constraining interval I .
�e resulting logic, Metric Temporal Logic (MTL) [32], can be seen as

a fragment of Monadic First-Order Logic of Order and Metric (FO[<
,+1]) [4], the timed counterpart of the classical Monadic First-Order
Logic of Order (FO[<]). �ere are, nonetheless, some loose ends in

this analogy. For instance, while LTL is as expressive as FO[<] [22,

29], it is noted early on that certain ‘non-local’ timing properties in

FO[<,+1], albeit being very simple, cannot be expressed in timed

temporal logics like MTL [5]. As a concrete example, the property

‘every p-event is followed by a q-event and, later, an r -event within

the next 10 time units’, wri�en as the FO[<,+1] formula

∀x (p(x) ⇒ ∃y
(
q(y) ∧ ∃z (

r (z) ∧ x ≤ y ≤ z ≤ x + 10)
) )

(1)

is not expressible in MTL—indeed, no ‘�nitary’ extension of MTL
can be expressively complete for FO[<,+1] [28].

1
A more serious

1
(1) can, however, be expressed in MTL if the continuous semantics of the logic is

adopted or past modalities are allowed; see [14] for details.

practical concern is that the satis�ability problem for MTL is unde-

cidable [4, 40]. For this reason, research e�orts have been focused

on fragments of MTLwith decidable satis�ability, most notablyMet-
ric Interval Temporal Logic (MITL), the fragment of MTL in which

‘punctual’ constraining intervals are not allowed [3]. In particular,

MITL formulae can be e�ectively translated into timed automata
(TAs) [2], giving practical EXPSPACE decision procedures for its

satis�ability and model-checking problems [16–18].

Automata modalities. It is well known that properties that are

necessarily second order (e.g., ‘p holds at all even positions’) can-

not be expressed in LTL or MITL. Fortunately, it is possible to

add automata modalities into LTL at no additional computational

cost [46, 50]. In timed se�ings, the logic obtained from MITL
by adding time-constrained automata modalities de�ned by non-

deterministic �nite automata (NFAs) is called Extended Metric Inter-
val Temporal Logic (EMITL) [48]. From a theoretical point of view,

EMITL is a fully decidable formalism (i.e. constructively closed un-

der all Boolean operations and with decidable satis�ability [26])

whose class of timed languages strictly contains that of MITL and

Büchi automata.
2

In practice, it can be argued that automata modali-

ties are natural, easy-to-use extensions of the usualMITLmodalities.

�ey also allow properties like (1), which o�en emerge in appli-

cation domains like healthcare and automotive engineering, to be

wri�en as speci�cations.

Example 1.1 ([1]). Discrimination algorithms are implemented in

implantable cardioverter de�brillators (ICDs) to detect potentially

dangerous heartbeat pa�erns. As a simple example, one may want

to check whether the number of heartbeats in one minute is between
120 and 150. �is can be expressed as the CTMITL [33] formula

C≥120

[0,59] p ∧ C≤150

[0,59] p where p denotes a peak in the cardiac signal.

�e counting modalities C∼kI (where 0 ∈ I , which is the case here),

as well as (1), be expressed straightforwardly in terms of automata.

Example 1.2 (adapted from [25]). In autonomous driving, one

may want to specify that a car overtaking another from the le� must
be done in 10 seconds. Suppose the lane on the le� is empty and the

events are sampled su�ciently frequently (say 5ms), this can be

expressed as the EMITL formula A[0,10](TTC > 4, . . . ) (see Fig. 1

and Fig. 2) where TTC is the time to collision, dist is the longitu-

dinal distance between the two vehicles, and to left, to right
are the actions for merging to the le�/right lane—these are taken

immediately a�er TTC <= 4 and dist >= 5, respectively.

Compared with LTL and MITL, however, translating EMITL into

TAs is considerably more challenging. �e original translation by

Wilke [48] is non-elementary and thus not suitable for practical

2
A very recent paper of Krishna, Madnani, and Pandya [35] showed that this class

admits some alternative characterisations (namely, a syntactic fragment of OCATAs

and a timed monadic second-order logic).
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TTC == 4

dist == 5

Fig. 1: �e red car overtakes the blue car from the le�.

TTC > 4 dist < 5

TTC <= 4 dist >= 5 to rightto left

Fig. 2: A in Example 1.2.

purposes. Krishna, Madnani, and Pandya [34] showed that any

EMITL formula can be encoded into an MITL formula of doubly

exponential size (which can then be translated into a TA), but this

does not match the EXPSPACE lower bound inherited from MITL.

More recently, Ferrère [21] proposed an asymptotically optimal

construction from MIDL (Metric Interval Dynamic Logic, which is

strictly more expressive and subsumes EMITL) formulae to TAs,

but it is very complicated and relies heavily on the use of diagonal
constraints (i.e. comparison between clocks) which are, in general,

not preferred in practice [12, 15, 23] and not well-supported by

existing model checkers.
3

Contributions. We consider a simple fragment of EMITL, which

we call EMITL0,∞, obtained by allowing only lower- and upper-

bound constraining intervals (e.g., [0,a) and (b,∞)) and EECL [43]

(adding automata modalities to Event Clock Logic ECL). �e satis�-

ability and model-checking problems for EMITL0,∞ and EECL are

much cheaper than that of EMITL (PSPACE-complete vs EXPSPACE-

complete). Moreover, we show that they are already as expressive as

full EMITL—this is in sharp contrast with the situation for ‘vanilla’

MITL0,∞/ECL and MITL, where the la�er is strictly more expres-

sive when interpreted over timed words [26, 43]—making them

expressive yet tractable real-time speci�cation formalisms. We then

show that EMITL0,∞ admits a much simpler translation into TAs.

Speci�cally, by e�ectively decoupling the timing and operational

aspects of automata modalities, overlapping obligations imposed

by a single automaton subformula can be handled in a purely �fo

manner with a set of sub-components (each of which is a simple

one-clock TA with a polynomial-sized symbolic representation),

avoiding the use of diagonal constraints altogether.
4

�is makes

our construction be�er suited to be implemented to work with

existing highly e�cient algorithmic back ends (e.g., Uppaal [11]

and LTSmin [30]).

Related work. �e idea of extending LTL to capture the full class

of ω-regular languages dates back to the seminal works of Clarke,

Sistla, Vardi, and Wolper [45, 46, 49, 50] in the early 1980s. In par-

ticular, it is shown that LTL with NFA modalities—which essentially

underlies various industrial speci�cation languages like ForSpec [6]

3
It is possible to obtain a diagonal-free TA from an EMITL formula by �rst applying the

construction in [21] and then removing the diagonal constraints [13]. �is, however,

is expensive and di�cult to implement.

4
For simplicity we focus on logics with only future modalities, but our results read-

ily carry over to the versions with both future and past modalities, thanks to the

compositional nature of our construction (cf. e.g., [31, 38]).

and PSL [20]—are expressively equivalent to Büchi automata, yet

the model-checking and satis�ability problems remain PSPACE-

complete, same as LTL.
5

Our approach generalises the construction

in [50] in the case of �nite acceptance.

Henzinger, Raskin, and Schobbens [26, 43] proved a number of

analogous results in timed se�ings; in particular, they showed that

in the continuous semantics (i.e. over �nitely variable signals), (i)

MITL0,∞ and ECL are as expressive as MITL, and (ii) the fragment

of EMITL with unconstrained automata modalities is as expressive

as recursive event-clock automata, and the veri�cation problems for

this fragment can be solved in EXPSPACE. Our results can be seen

as counterparts in the pointwise semantics (i.e. over timed words).
Besides satis�ability and model checking, extending timed logics

with automata or regular expressions is also a topic of great inter-

est in runtime veri�cation. Basin, Krstić, and Traytel [10] showed

that MTL with time-constrained regular-expression modalities ad-

mits an e�cient runtime monitoring procedure in a pointwise,

integer-time se�ing. A very recent work of Ničković, Lebeltel,

Maler, Ferrère, and Ulus [39] considered a similar extension of

MITL with timed regular expressions (TRE) [7, 8] in the context of

monitoring and analysis of Boolean and real-valued signals.

2 TIMED LOGICS AND AUTOMATA
Timed languages. A timed word over a �nite alphabet Σ is an

in�nite sequence of events (σi ,τi )i≥1 over Σ × R≥0 with (τi )i≥1 a

non-decreasing sequence of non-negative real numbers such that

for each r ∈ R≥0, there is some j ≥ 1 with τj ≥ r (i.e. we require

all timed words to be ‘non-Zeno’). We denote by TΣω the set of all

timed words over Σ. A timed language is a subset of TΣω .

Extended timed logics. A non-deterministic �nite automaton (NFA)

over Σ is a tuple A = 〈Σ, S, s0,∆, F 〉 where S is a �nite set of loca-

tions, s0 ∈ S is the initial location, ∆ ⊆ S×Σ×S is the transition rela-

tion, and F is the set of �nal locations. We say thatA is deterministic
(a DFA) i� for each s ∈ S and σ ∈ Σ, |{(s,σ , s ′) | (s,σ , s ′) ∈ ∆}| ≤ 1.

A run of A on σ1 . . . σn ∈ Σ+ (without loss of generality, we only

consider runs of automata modalities over nonempty �nite words

in this paper) is a sequence of locations s0s1 . . . sn where there is

a transition (si ,σi+1, si+1) ∈ ∆ for each i , 0 ≤ i < n. A run of A is

accepting i� it ends in a �nal location. A �nite word is accepted by

A i� A has an accepting run on it. We denote by JAK the set of

�nite words accepted by A.

Extended Metric Interval Temporal Logic (EMITL) formulae over

a �nite set of atomic propositions AP are generated by

φ := > | p | φ1 ∧ φ2 | ¬φ | AI (φ1, . . . ,φn )
where p ∈ AP,A is an NFA over the n-ary alphabet {1, . . . ,n}, and

I ⊆ R≥0 is a non-singular interval with endpoints in N≥0 ∪ {∞}.6
As usual, we omit the subscript I when I = [0,∞) and write pseudo-

arithmetic expressions for lower or upper bounds, e.g., ‘< 3’ for

[0, 3). We also omit the arguments φ1, . . . , φn and simply write

AI , if clear from the context. Following [4, 5, 41, 48], we consider

the pointwise semantics of EMITL and interpret formulae over

5
�ere are other ways to extend LTL to achieve ω-regularity, e.g., adding monadic

second-order quanti�ers (QPTL [46]) or least/greatest �xpoints (µLTL [9, 47]). �ese

formalisms unfortunately su�er from higher complexity or less readable syntax.

6
For notational simplicity, we will occasionally use φ1 , . . . , φn directly as transition

labels (instead of 1, . . . , n).

2



timed words: given an EMITL formula φ over AP, a timed word

ρ = (σ1,τ1)(σ2,τ2) . . . over ΣAP = 2
AP

and a position i ≥ 1,

• (ρ, i) |= >;

• (ρ, i) |= p i� p ∈ σi ;
• (ρ, i) |= φ1 ∧ φ2 i� (ρ, i) |= φ1 and (ρ, i) |= φ2;

• (ρ, i) |= ¬φ i� (ρ, i) 6|= φ;

• (ρ, i) |= AI (φ1, . . . ,φn ) i� there exists j ≥ i such that

(i) τj − τi ∈ I and (ii) there is an accepting run of A on

ai . . . aj where a` ∈ {1, . . . ,n} and (ρ, `) |= φa` for each

`, i ≤ ` ≤ j.7

�e other Boolean operators are de�ned as usual: ⊥ ≡ ¬>,φ1∨φ2 ≡
¬(¬φ1 ∧ ¬φ2), and φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2. We also de�ne the

dual automata modalities
˜AI (φ1, . . . ,φn ) ≡ ¬AI (¬φ1, . . . ,¬φn ).

With the dual automata modalities, we can transform every EMITL
formula φ into negative normal form, i.e. an EMITL formula using

only atomic propositions, their negations, and the operators ∨,

∧, AI , and ÃI . It is easy to see that the standard MITL ‘until’

φ1 UI φ2 can be de�ned in terms of automata modalities. We also

use the usual shortcuts like FI φ ≡ > UI φ, GI φ ≡ ¬ FI ¬φ, and

φ1 RI φ2 ≡ ¬
(
(¬φ1) UI (¬φ2)

)
. We say that ρ satis�es φ (wri�en

ρ |= φ) i� (ρ, 1) |= φ, and we write JφK for the timed language of φ,

i.e. the set of all timed words satisfyingφ. EMITL0,∞ is the fragment

of EMITL where all constraining intervals I must be lower or upper

bounds (e.g., < 3 or ≥ 5). Extended Event Clock Logic (EECL) is

the fragment of EMITL where AI is replaced by a more restricted

‘event-clock’ counterpart:

• (ρ, i) |= .
AI (φ1, . . . ,φn ) i� (i) there is a minimal position

j ≥ i such that A has an accepting run on ai . . . aj where

a` ∈ {1, . . . ,n} and (ρ, `) |= φa` for each `, i ≤ ` ≤ j; and

(ii) j satis�es τj − τi ∈ I .

Timed automata. Let X be a �nite set of clocks (R≥0-valued vari-

ables). A valuation v for X maps each clock x ∈ X to a value in

R≥0. We denote by 0 the valuation that maps every clock to 0,

and we write the valuation simply as a value in R≥0 when X is a

singleton. �e set G(X ) of clock constraints д overX is generated by

д := > | д ∧ д | x ./ c where ./ ∈ {≤, <, ≥, >}, x ∈ X , and c ∈ N≥0.

�e satisfaction of a clock constraint д by a valuation v (wri�en

v |= д) is de�ned in the usual way, and we write JдK for the set of

valuations v satisfying д. For t ∈ R≥0, we let v + t be the valuation

de�ned by (v + t)(x) = v(x) + t for all x ∈ X . For λ ⊆ X , we let

v[λ ← 0] be the valuation de�ned by (v[λ ← 0])(x) = 0 if x ∈ λ,

and (v[λ← 0])(x) = v(x) otherwise.

A timed automaton (TA) over Σ is a tuple A = 〈Σ, S, s0,X ,∆,F 〉
where S is a �nite set of locations, s0 ∈ S is the initial location, X is

a �nite set of clocks, ∆ ⊆ S × Σ × G(X ) × 2
X × S is the transition

relation, and F = {F1, . . . , Fn }, with Fi ⊆ S for all i , 1 ≤ i ≤ n, is

the set of sets of �nal locations.
8

We say that A is deterministic
(a DTA) i� for each s ∈ S and σ ∈ Σ and every pair of transitions

(s,σ ,д1, λ1, s1) ∈ ∆ and (s,σ ,д2, λ2, s2) ∈ ∆,д1∧д2
is not satis�able.

A state of A is a pair (s,v) of a location s ∈ S and a valuation v
for X . A run of A on a timed word (σ1,τ1)(σ2,τ2) · · · ∈ TΣω is

7
Note that it is possible for (ρ, i) |= AI (φ1, . . . , φn ) and (ρ, i) |=
Ac
I (φ1, . . . , φn ), where Ac

is the complement of A, to hold simultaneously.

8
We adopt generalised Büchi acceptance for technical convenience; indeed, any TA

with a generalised Büchi acceptance condition can be converted into a classical Büchi

TA via a simple standard construction [19].

a sequence of states (s0,v0)(s1,v1) . . . where (i) v0 = 0 and (ii)

for each i ≥ 0, there is a transition (si ,σi+1,д, λ, si+1) such that

vi + (τi+1 −τi ) |= д (let τ0 = 0) andvi+1 = (vi + (τi+1 −τi ))[λ← 0].
A run of A is accepting i� the set of locations it visits in�nitely

o�en contains at least one location from each Fi , 1 ≤ i ≤ n. A

timed word is accepted by A i� A has an accepting run on it.

We denote by JAK the timed language accepted by A. For two

TAs A1 = 〈Σ, S1, s1

0
,X 1,∆1,F 1〉 and A2 = 〈Σ, S2, s2

0
,X 2,∆2,F 2〉

over a common alphabet Σ, the (synchronous) product A1 × A2

is de�ned as the TA 〈Σ, S, s0,X ,∆,F 〉 where (i) S = S1 × S2
, s0 =

(s1

0
, s2

0
), and X = X1 ∪ X2; (ii) ((s1

1
, s2

1
),σ ,д, λ, (s1

2
, s2

2
)) ∈ ∆ i� there

exists (s1

1
,σ ,д1, λ1, s1

2
) ∈ ∆1

and (s2

1
,σ ,д2, λ2, s2

2
) ∈ ∆2

such that

д = д1 ∧ д2
and λ = λ1 ∪ λ2

; and (iii) let F 1 = {F 1

1
, . . . , F 1

n }, F 2 =

{F 2

1
, . . . , F 2

m }, then F = {F 1

1
×S2, . . . , F 1

n×S2, S1×F 2

1
, . . . , S1×F 2

m }.
Note in particular that we have JA1 × A2K = JA1K ∩ JA2K.

p ∧ ¬q
x := 0

¬q
x ≤ 1

x > 1

Fig. 3: A TA accepting J¬G(p ⇒ F≤1 q)K.

Example 2.1. Consider the TA over Σ{p,q } in Fig. 3 (following

the usual convention, we omit transition labels when they are >’s

and use Boolean formulae over atomic propositions to represent

le�ers, e.g., here p ∧ ¬q stands for {σ ∈ Σ{p,q } | p ∈ σ ,q < σ }).
It non-deterministically pick an event where p holds but q does

not hold (thus F≤ q is not ful�lled immediately) and enforces that

q does not hold in the next time unit. In other words, it accepts

JF
(
p ∧ G≤1(¬q)

)
K = J¬G(p ⇒ F≤1 q)K.

Alternation. One-clock alternating timed automata (OCATAs)

extend one-clock timed automata with the power of universal choice.
Intuitively, a transition of an OCATA may spawn several copies of

the automaton that run in parallel from the targets of the transition;

a timed word is accepted i� all copies accept it. Formally, for a set

S of locations, let Γ(S) be the set of formulae de�ned by

γ := > | ⊥ | γ1 ∨ γ2 | γ1 ∧ γ2 | s | x ./ c | x .γ

where x is the single clock, c ∈ N≥0, ./ ∈ {≤, <, ≥, >}, and s ∈ S
(the construct x . means “reset x”). For a formula γ ∈ Γ(S), let its

dual γ ∈ Γ(S) be the formula obtained by applying

• > = ⊥; ⊥ = >;

• γ1 ∨ γ2 = γ1 ∧ γ2; γ1 ∧ γ2 = γ1 ∨ γ2;

• s = s; x ./ c = ¬(x ./ c); x .γ = x .γ .

An OCATA over Σ is a tuple A = 〈Σ, S, s0,δ , F 〉 where S is a �nite

set of locations, s0 ∈ S is the initial location, δ : S × Σ → Γ(S) is

the transition function, and F ⊆ S is the set of �nal locations. A

state of A is a pair (s,v) of a location s ∈ S and a valuation v for

the single clock x . Given a set of states M , a formula γ ∈ Γ(S) and

a clock valuation v , we de�ne

• M |=v >; M |=v ` i� (`,v) ∈ M ; M |=v x ./ c i� v ./ c;

M |=v x .γ i� M |=0 γ ;

• M |=v γ1 ∧ γ2 i� M |=v γ1 and M |=v γ2;

• M |=v γ1 ∨ γ2 i� M |=v γ1 or M |=v γ2.

3



We say that M is a model of γ with respect to v i� M |=v γ .
9

A

run of A on a timed word (σ1,τ1)(σ2,τ2) · · · ∈ TΣω is a rooted

directed acyclic graph (DAG) G = 〈V ,→〉 with vertices of the form

(s,v, i) ∈ S × R≥0 ×N≥0, (s0, 0, 0) as the root, and edges as follows:

for every vertex (s,v, i), there is a model M of the formula δ (s,σi+1)
with respect to v + (τi+1 − τi ) (again, τ0 = 0) such that there is an

edge (s,v, i) → (s ′,v ′, i + 1) for every state (s ′,v ′) in M . A run G
ofA is accepting i� every in�nite path inG visits F in�nitely o�en.

A timed word is accepted byA i�A has an accepting run on it. We

denote by JAK the timed language accepted byA. For convenience,

in the sequel we will regard NFAs as (untimed) OCATAs with �nite

acceptance conditions and whose transition functions are simply

disjunctions over locations.

s0 ∧ s1

¬p

p ∧ ¬q

p ∧ q

x := 0

>
x ≤ 1,q

Fig. 4: An OCATA accepting JG(p ⇒ F≤1 q)K.

(s0, 0, 0) (s0, 0.42, 1)
(s0, 0.42, 2)

(s1, 0, 2)

(s0, 0.7, 3) . . .

Fig. 5: A run of the OCATA in Fig. 4 on the timed word
(∅, 0.42)({p}, 0.42)({q}, 0.7) · · · .

Example 2.2. Consider the OCATA over Σ{p,q } in Fig. 4 which ac-

cepts JG(p ⇒ F≤1 q)K. A run of it on (∅, 0.42)({p}, 0.42)({q}, 0.7) · · ·
is depicted in Fig. 5 where the root is (s0, 0, 0). �is vertex has

a single successor (s0, 0.42, 1), which in turn has two successors

(s0, 0.42, 2) and (s1, 0, 2) (a�er �ring the transition δ (s0, {p}) =
s0 ∧ x .s1). �en, (s1, 0, 2) has no successor since the empty set

is a model of δ (s1, {q}) = x ≤ 1 with respect to 0.28.

Veri�cation problems. In this work we are concerned with the

following standard veri�cation problems. Given an EMITL formula

φ, the satis�ability problem asks whether JφK = ∅. Given a TA A
and an EMITL formula φ, the model-checking problem asks whether

JAK ⊆ JφK. As TAs are closed under intersection and the emptiness
problem for TAs is decidable, both problems above can be solved

by �rst translating φ into an equivalent TA Aφ .

3 EXPRESSIVENESS
In this section we study the expressiveness of EMITL0,∞, EECL,

and a ‘counting’ extension of EMITL. It turned out that the class of

timed languages captured by EMITL is robust in the sense that it

remains the same under all these modi�cations. For the purpose of

the proofs below, let us assume (without loss of generality) that the

automatonA = 〈Σ, S, s0,δ , F 〉 in question is a DFA and at most one

of φ1, . . . ,φn may hold at any position in a given timed word [50].

9
Note that |=v is monotonic: if M ⊆ M ′ and M |=v γ then M ′ |=v γ .

Counting in intervals. Recall that the constraining intervals I in

the counting modalities in Ex. 1.1 satisfy 0 ∈ I ; this non-trivial

extension of MTL (and MITL) was �rst considered by Hirshfeld and

Rabinovich [27, 28]. For the case of timed words, it is shown in [33]

that allowing arbitrary I (e.g., (1, 2)) makes the resulting logic even

more expressive. Here we show that, by contrast, adding the ability

to count in I—regardless of whether 0 ∈ I—does not increase the

expressive power of EMITL.
10

We consider an extention of EMITL
(which we call CEMITL) that enables specifying the number of

positions within a given interval I from now at which �nal locations

can be reached. More precisely, we have the following semantic

clause in CEMITL:

• (ρ, i) |= A≥kI (φ1, . . . ,φn ) i� there exists j1 < · · · < jk such

that for each `, 1 ≤ ` ≤ k , (i) j` ≥ i; (ii) τj` −τi ∈ I ; and (iii)

there is an accepting run of A on some ai . . . aj` where

a`′ ∈ {1, . . . ,n} and (ρ, `′) |= φa`′ for each `′, i ≤ `′ ≤ j` .

s1

0
s1

1
s1

2

Fig. 6: A1 in the proof of �eorem 3.1.

Theorem 3.1. CEMITL and EMITL are equally expressive over
timed words.

Proof. We give an EMITL equivalent of A≥kI (φ1, . . . ,φn ). Pro-

vided that φ1, . . . , φn are already in EMITL and A is deterministic

in the sense above, we can count modulo k the number of positions

where �nal locations are reached and ensures that I encompasses all

possible values of the counter; in contrast to [33], here the counter

can be implemented directly using automata modalities. We give a

concrete example which should illustrate the idea. Let k = 3 and

A2
be the product of A and A1

(Fig. 6), i.e. each location of A2

is of the form 〈s, s1〉 where s ∈ S and s1 ∈ {s1

0
, s1

1
, s1

2
}, and it is

accepting i� s and s1
are both �nal. �en, let A3

be the automaton

obtained from A2
by:

• For all the transitions 〈s, s1

0
〉 → 〈s ′, s1

1
〉, 〈s, s1

1
〉 → 〈s ′, s1

2
〉,

and 〈s, s1

2
〉 → 〈s ′, s1

0
〉, keeping only those with s ′ ∈ F ;

• For all the transitions 〈s, s1

0
〉 → 〈s ′, s1

0
〉, 〈s, s1

1
〉 → 〈s ′, s1

1
〉,

and 〈s, s1

2
〉 → 〈s ′, s1

2
〉, keeping only those with s ′ < F .

Now letA1, `
(` ∈ {0, 1, 2}) be the automaton obtained fromA1

by

adding an extra �nal location s1

F and the transition s1

`−1 (mod 3) →
s1

F , and let A3, `
be the corresponding product with A, keeping

transitions 〈s, s1

`−1 (mod 3)〉 → 〈s
′, s1

F 〉 with s ′ ∈ F . �e original

formula A≥3

I is equivalent to

∧
`∈{0,1,2}A3, `

I . �

Restricting to event clocks. We show that the equivalence of ECL
and MITL0,∞ carries over to the current se�ing. More speci�cally,

an EECL formula can be translated into an equilvalent EMITL0,∞
formula of polynomial size (in DAG representation). On the other

10
As EMITL can easily express the ‘until with threshold’ modalities of CTMITL, the

la�er is clearly subsumed by EMITL.
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hand, our translation from MITL0,∞ to EECL induces an exponen-

tial blow-up due to the fact that automata A have to be deter-

minised.

Theorem 3.2. EECL and EMITL0,∞ are equally expressive over
timed words.

Proof. Again, we assume that the arguments φ1, . . . , φn are

already in the target logic. �e direction from EECL to EMITL0,∞ is

simple and almost identical to the translation from ECL to MITL0,∞;

for example,

.
A(3,5) can be wri�en as A<5 ∧ ¬A≤3. For the other

direction consider the following EMITL0,∞ formulae:

• (ρ, i) |= A≤c : the equivalent formula is simply

.
A≤c .

• (ρ, i) |= A≥c : as in [43], we consider the subcases where:

– �ere is no event in [τi ,τi + c) apart from (σi ,τi ):
let A2

be the product of A and A1
where A1

is the

automaton depicted in Fig. 7. We have (ρ, i) |= ¬ .
A1

<c

∧ .
A2

≥c .

– �ere are events in [τi ,τi + c) other than (σi ,τi ): let

the last event in [τi ,τi + c) be (σj ,τj ) and k > j > i be

the minimal position such that there exists ai . . . ak ∈
JAK with (ρ, `) |= φa` for all `, i ≤ ` ≤ k . By as-

sumption, ai . . . ak is unique and A must reach a

speci�c location s ∈ S a�er reading ai . . . aj . �e

idea is to split the unique run of A on ai . . . ak at

s: we take a disjunction over all possible s ∈ S , en-

force that τj − τi < c and A reaches a �nal location

from s by reading aj+1 . . . ak . More speci�cally, let

Bs,φ be the automaton obtained from A by adding a

new location sF , declaring it as the only �nal location,

and adding new transitions s ′
φa∧φ−−−−−→ sF for every

s ′
φa−−→ s in A. Let Cs be the automaton obtained

from A by adding new non-�nal locations s ′
0

and s ′
1
,

adding new transitions s ′
0
→ s ′

1
(i.e. labelled with

>) and s ′
1

φa−−→ s ′′ for every s
φa−−→ s ′′ in A, remov-

ing outgoing transitions from all the �nal locations,

and �nally se�ing the initial location to s ′
0
. We have

(ρ, i) |= .
A1

<c ∧
.
A ∧¬

∨
s ∈S

.
Bs,φ<c where φ = ¬Cs .

�e equivalent formula is the disjunction of these.

�e other types of constraing intervals, such as [0, c), are handled

almost identically. �

s1

0
s1

1
s1

2

Fig. 7: A1 in the proof of �eorem 3.2.

Restricting to one-sided constraining intervals. Recall that a fun-

damental stumbling block in the algorithmic analysis of TAs is

that the universality problem is undecidable [2]. DTAs with �nite

acceptance conditions, on the other hand, can be complemented

easily and have a decidable universality problem. �is raises the

question of whether one can extend MITL with DTA modalities

without losing decidability (both are fully decidable formalisms).

Perhaps surprisingly, the resulting formalism already subsumes

MTL even when punctual constraints are disallowed. For exam-

ple, F[d,d ] φ can be wri�en as ¬A ′ ∧ ¬A ′′ ∧ F[1,∞) φ where A ′
and A ′′ are the one-clock deterministic TAs in Fig. 8 and Fig. 9,

respectively (in particular, note that A ′ and A ′′ only use lower-

and upper-bound constraints). It follows from [40] that the sat-

is�ability problem for this formalism is undecidable. Based on a

x < d

x > d

Fig. 8: A ′.

x < d ¬φ, x ≤ d

¬φ, x ≥ d x > d

Fig. 9: A ′′.

similar trick, we obtain the main result of this section: EMITL0,∞
already has the full expressive power of EMITL. �is, together with

the fact that the satis�ability and model-checking problems for

EMITL0,∞ are only PSPACE-complete (�eorem 4.6) as compared

with EXPSPACE-complete for full EMITL [21], makes EMITL0,∞ a

competitive alternative to other real-time speci�cation formalisms—

while a translation from EMITL to EMITL0,∞ inevitably induces at

least an exponential blow-up, it can be argued that many properties

of practical interest can be wri�en in EMITL0,∞ directly (e.g., Ex. 1.1

and Ex. 1.2). �e idea of the proof below is similar to that of [43,

Lemma 6.3.11] (MITL0,∞ and MITL are equally expressive in the

continuous semantics), but the technical details are more involved

due to automata modalities and the fact that each event is not nec-

essarily preceded by another one exactly 1 time unit earlier in a

timed word; the la�er is essentially the reason why the expressive

equivalence of MITL0,∞ and MITL fails to hold in the pointwise

semantics.

Theorem 3.3. EMITL0,∞ and EMITL are equally expressive over
timed words.

Proof. We explain in detail below how to write the EMITL for-

mulaA(c,c+1)(φ1, . . . ,φn )where c ≥ 0, andφ1, . . . ,φn ∈ EMITL0,∞
as an EMITL0,∞ formula; the other cases, such as (c, c + 1] and

[c, c + 1], are similar.

First consider c = 0. If (ρ, i) |= A(0,1) for ρ = (σ1,τ1)(σ2,τ2) . . .
and i ≥ 1, the �nite word ai . . . ak accepted by A must be at

least two le�ers long. �is again is enforced by A1
in Fig. 7: let

A2
be the product of A and A1

. �en, let A3
be the automaton

obtained fromA2
by adding¬X>0 > (X is the standard MITL ‘next’

operator [41]) to all the transitions 〈s, s1

0
〉 → 〈s ′, s1

0
〉 and X>0 > to

all the transitions 〈s, s1

0
〉 → 〈s ′, s1

1
〉 as conjuncts (in doing so, extend

the alphabet as necessary). It is not hard to see that (ρ, i) |= A3

<1

in the two possible situations: (i) τi+1 − τi > 0 and (ii) τj − τi > 0

for some j > i + 1 and τ` − τi = 0 for all `, i < ` < j. �e other

direction ((ρ, i) |= A3

<1
⇒ (ρ, i) |= A(0,1)) is straightforward. It

follows that the equivalent EMITL0,∞ formula is A3

<1
.

Now consider c > 0. Suppose that (ρ, i) |= A(c,c+1) for ρ =
(σ1,τ1)(σ2,τ2) . . . and i ≥ 1, let k > i be the minimal position

such that τk − τi ∈ (c, c + 1) and there exists ai . . . ak ∈ JAK with

(ρ, `) |= φa` for all `, i ≤ ` ≤ k (since at most one of φ1, . . . , φn
may hold at any position, we �x ai . . . ak below). Consider the

following cases (note that they are not mutually disjoint):
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0 c − 1 c c + 1

σi σj σk

1

Fig. 10: Case (i) in the proof of �eorem 3.3; solid boxes in-
dicate when A accepts the corresponding pre�x of ai . . . ak .

0 c − 1 c c + 1

σi σj σk

1

Fig. 11: Case (ii) in the proof of �eorem 3.3.

(i) �ere exists a maximal j , i < j < k such that (a) τk −τj = 1

and (b) there is no `, j < ` < k such that ai . . . a` ∈ JAK
with (ρ, `′) |= φa`′ for all `′, i ≤ `′ ≤ ` (Fig. 10): we take a

disjunction over all possible s ∈ S such that A reaches s
a�er reading ai . . . aj and enforce that τj − τi ∈ (c − 1, c)
(which we can, by the IH),A reaches a �nal location from s
by readingaj+1 . . . ak , and τk−τj = 1; thanks to (b), the last

condition, which is otherwise inexpressible in EMITL0,∞,

can be expressed as a conjunction of two formulae labelled

with ≤ 1 and ≥ 1. To this end, we use Bs,φ and Cs as

de�ned in the proof of �eorem 3.2: we have

(ρ, i) |= φ1 =
∨
s ∈S
Bs,φ(c−1,c)

where φ = Cs≤1
∧ Cs≥1

.

(ii) �ere exists j, i < j < k such that τk − τj < 1, τj − τi ∈
(c − 1, c], and ai . . . aj ∈ JAK with (ρ, `) |= φa` for all `,

i ≤ ` ≤ j (Fig. 11): let Ds
be the automaton obtained from

A in the same way as Cs except that we do not remove

outgoing transitions from the �nal locations. Regardless

of whether there is a event at τk − 1, it is clear that every

position ` with τ` −τi ∈ (c − 1, c]must satisfy Cs(0,1) where

s is the location of A a�er reading ai . . . a` . We have

(ρ, i) |= φ2 = A(c−1,c] ∧ ¬
∨
s ∈S
Bs,φ(c−1,c]

where φ = ¬Ds
(0,1).

(iii) �ere exists j, i < j < k such that τk − τj < 1, τj − τi ∈
(c − 1, c], but there is no `, i < ` < k such that (a) τ` − τi ∈
(c − 1, c] and (b) ai . . . a` ∈ JAK with (ρ, `′) |= φa`′ for all

`′, i ≤ `′ ≤ `: we have

(ρ, i) |= φ3 = ¬A(c−1,c] ∧
∨
s ∈S
Bs,φ(c−1,c]

where φ = Ds
(0,1).

(iv) �ere exists a maximal j, i < j < k such that τk − τj > 1,

τj − τi ∈ (c − 1, c], and there is no `, j < ` < k such that (a)

τ`−τi ∈ (c−1, c] and (b)ai . . . a` ∈ JAK with (ρ, `′) |= φa`′
for all `′, i ≤ `′ ≤ `: observe that (provided that s’s are

correctly instantiated to the locationsA reaches as it reads

Cs>1
Cs≤1

Cs>1
∧ s ∈ F

Cs>1
Cs≤1

Cs>1
∧ s ∈ F ∧ φs

Cs>1
∧ φs

Fig. 12: An illustration of E3 in the proof of �eorem 3.3.

Cs≤1

s ∈ F

Fig. 13: An illustration of φs in the proof of �eorem 3.3.

ai . . . ak ) while Cs>1
may hold arbitrarily o�en in [τi ,τi +c],

the number of positions `, i ≤ ` ≤ j satisfying

(ρ, `) |= Cs>1
∧ (ρ, ` + 1) |=

(
Cs≤1
∨ (Cs>1

∧ s ∈ F )
)

(2)

is at most c (since any two of such positions must be sep-

arated by more than 1 time unit). We de�ne a family of

automata modalities {Em | m ≥ 1} such that each location

of Em is of the form 〈s,d〉 with s ∈ S and 1 ≤ d ≤ 2m;

see Fig. 12 for an illustration. Each transition updates the

s-component asA would, enforces the formula labelled on

the corresponding transition of A and, additionally, the

formula as labelled in Fig. 12 (with s being the target loca-

tion of the corresponding transition of A). �e formula

φs (illustrated in Fig. 13), which also follows A with an

s-component, checks that the next position either satis-

�es (a) s ∈ F , or (b) Cs≤1
holds continuously until s ∈ F

eventually holds. Let
ˆEm be obtained from Em by ‘inlin-

ing’ φs : removing the le�most locations of φs and merge

the middle locations of φs with the rightmost locations of

Em . Apparently,
ˆEm and Em are equivalent if there is no

constraing interval—the only di�erence between them is

which position is ‘timed’. Now suppose that the number of

positions `, i ≤ ` ≤ j satisfying (2) ism. Since j is the last

of these positions, we have (ρ, i) |= ˆEm<c+1
. On the other

hand, as there are onlym−1 such positions in [τi ,τi +c−1],
we have (ρ, i) |= ¬Em ≤c−1. By the above, we have

(ρ, i) |= φ4 =
∨

1≤m≤c

(
ˆEm<c+1

∧ ¬Em ≤c−1

)
.

(v) �ere is no event in (τi + c − 1,τi + c]: We have

(ρ, i) |= φ5 = ¬ F(c−1,c] > ∧ φ ′ .

If c = 1 then φ ′ can simply be taken as A(0,2), which is

equivalent to A3

<2
by the same argument as before. If

c > 1, then φ ′ can be taken as∨
1≤m≤c−1

(
ˆEm<c+1

∧ ¬Em ≤c−2

)
∨ φ ′′

where φ ′′ is

¬ F(c−2,c−1] > ∧
∨

1≤m≤c−2

(
ˆEm<c+1

∧ ¬Em ≤c−3

)
∨ φ ′′′ .

Intuitively, the former part of φ ′ is used to handle the case

when there is (at least) a event in (τi +c − 2,τi +c − 1], and
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the former part of φ ′′ is for (τi + c − 3,τi + c − 2], and so

on.

We omit the other direction as it is (more or less) straightforward.

�e equivalent EMITL0,∞ formula is φ1 ∨ φ2 ∨ φ3 ∨ φ4 ∨ φ5
. �

4 FROM EMITL0,∞ TO TIMED AUTOMATA
Embedding EMITL formulae into OCATAs. We give a translation

from a given EMITL formula φ over AP (which we assume to be

in negative normal form) into an OCATA Aφ = 〈ΣAP, S, s0,δ , F 〉
such that JAφ K = JφK. While this mostly follows the lines of the

translation for MTL (and MITL) in [16, 41], it is worth noting that

the resulting OCATA Aφ is weak [36, 37] but not necessarily very-
weak [24, 44] due to the presence of automata modalities. �e set

of locations S of Aφ contains (i) s init; (ii) all the locations of A for

every subformula AI (φ1, . . . ,φn ); (iii) all the locations of A for

every subformula
˜AI (φ1, . . . ,φn ). �e initial location s0 is s init, and

the �nal locations F are all the locations ofA for every subformula

˜AI (φ1, . . . ,φn ). Finally, for each σ ∈ ΣAP, δ is de�ned inductively

as follows (let A = 〈ΣA , SA , sA
0
,δA , FA〉 with ΣA = {1, . . . ,n}):

• δ (s init,σ ) = x .δ (φ,σ ), δ (>,σ ) = >, and δ (⊥,σ ) = ⊥;

• δ (p,σ ) = > if p ∈ σ , δ (p,σ ) = ⊥ otherwise;

• δ (¬p,σ ) = > if p < σ , δ (¬p,σ ) = ⊥ otherwise;

• δ (φ1 ∨ φ2,σ ) = δ (φ1,σ ) ∨ δ (φ2,σ ), and δ (φ1 ∧ φ2,σ ) =
δ (φ1,σ ) ∧ δ (φ2,σ );
• δ (AI (φ1, . . . ,φn ),σ ) = x .δ (sA

0
,σ );

• δ (sA ,σ ) = ∨
a∈ΣA

(
δ (φa ,σ )∧δA [sAF ← sAF ∨x ∈ I ](s

A ,a)
)

where sA ∈ SA and δA [sAF ← sAF ∨ x ∈ I ] is obtained

from δA by substituting every sAF ∈ F
A

with sAF ∨ x ∈ I
for some subformula AI (φ1, . . . ,φn );

• δ ( ˜AI (φ1, . . . ,φn ),σ ) = x .δ (sA
0
,σ );

• δ (sA ,σ ) = ∧
a∈ΣA

(
δ (φa ,σ )∨δA [sAF ← sAF ∧x < I ](s

A ,a)
)

where sA ∈ SA and δA [sAF ← sAF ∧ x < I ] is obtained

from δA by substituting every sAF ∈ F
A

with sAF ∧ x < I
for some subformula

˜AI (φ1, . . . ,φn ).

Proposition 4.1. Given an EMITL formula φ in negative normal
form, JAφ K = JφK.

We now focus on the case where φ is an EMITL0,∞ formula

and give a set of component TAs whose product ‘implements’ the

correspondingOCATAAφ . As we will need some notions from [17],

we brie�y recall them here to keep the paper self-contained.

Compositional removal of alternation in φ. Let Φ be the set of

temporal subformulae (i.e. whose outermost operator is AI or ÃI )

of φ. We introduce a new atomic proposition pψ for each ψ ∈ Φ

(the trigger forψ ) and let APΦ = {pψ | ψ ∈ Φ}. For a timed word ρ ′

over ΣAP∪APΦ , we denote by projAP(ρ ′) the timed word obtained

from ρ ′ by hiding all p < AP (i.e. p ∈ APΦ). For a timed language L
over AP∪ APΦ we write projAP(L) = {projAP(ρ ′) | ρ ′ ∈ L}. Letψ
be the formula obtained from an EMITL0,∞ formulaψ (in negative

normal form) by replacing all of its top-level temporal subformulae

by their corresponding triggers, i.e. ψ is de�ned inductively as

follows (where p ∈ AP):

• ψ1 ∧ψ2 = ψ1 ∧ψ2;

• ψ1 ∨ψ2 = ψ1 ∨ψ2;

• ψ = ψ whenψ is > or ⊥ or p or ¬p;

• ψ = pψ whenψ is AI (φ1, . . . ,φn ) or
˜AI (φ1, . . . ,φn ).

Note that ψ is simply a positive Boolean combination of atomic

propositions. In this way, we can turn the given EMITL0,∞ formula

φ into an equisatis�able EMITL0,∞ formula φ ′ over AP ∪ APΦ: the

conjunction of φ, ∧
{ψ ∈Φ |ψ=AI (φ1, ...,φn )}

G
(
pψ ⇒ AI (φ1, . . . ,φn )

)
,

and the counterparts for {ψ ∈ Φ | ψ = ˜AI (φ1, . . . ,φn )}. Finally,

we construct the component TAs Cinit (which accepts JφK) and

Cψ (which accepts, say, JG
(
pψ ⇒ AI (φ1, . . . ,φn )

)
K) for every

ψ ∈ Φ. �e timed language of φ ′ is accepted by the product

Cinit ×∏
ψ ∈Φ Cψ and, in particular, projAP(JCinit ×

∏
ψ ∈Φ Cψ K) =

JAφ K. Intuitively, pψ being > (the trigger pψ is ‘pulled’) at some

position means that the OCATAAφ spawns a copy (several copies)

of A whereψ = AI (ψ = ˜AI ) at this position or, equivalently, an

obligation that AI (
˜AI ) must hold is imposed on this position.

Component TAs for automata modalities. As the construction

of Cinit is trivial, we only describe the component TAs Cψ for

ψ = AI (φ1, . . . ,φn ) and ψ = ˜AI (φ1, . . . ,φn ) where I = [0, c] or

I = [c,∞) for some c ∈ N≥0; the other types of constraining inter-

vals are handled similarly. �e crucial observation that allows us

to bound the number of clocks needed in Cψ is that two or more

obligations, provided that their corresponding copies of A are in

the same location(s) at some point(s) and I is a lower or upper

bound, can be merged into a single one. Instead of keeping track

of the order of the values of its clocks, Cψ non-deterministically

guesses how obligations should be merged and put them into suit-

able sub-components accordingly. To ensure that all obligations are

satis�ed, we use an extra variable ` such that ` = 0 when there is

no obligation, ` = 1 when there is at least one pending obligation,

` = 2 when the pending obligations have just been satis�ed and a

new obligation has just arrived, and �nally ` = 3 when we have to

wait the current obligations to be satis�ed (explained below). In

all the cases below we �x Σ = ΣAP∪APΦ and |SA | = m. We write

Ssrc
σ−→
∨

S tgt, where Ssrc and S tgt are two subsets of SA , i� S tgt is

a minimal set such that for each sA,1 ∈ Ssrc, there is a transition

sA,1
φa−−→ sA,2 (where a ∈ {1, . . . ,n}) of A with σ |= φa and

sA,2 ∈ S tgt. Similarly, we write Ssrc
σ−→
∧

S tgt i� S tgt is a minimal set

such that for each sA,1 ∈ Ssrc and each transition sA,1
φa−−→ sA,2

(where a ∈ {1, . . . ,n}) of A, either sA,2 ∈ S tgt or σ |= φa .

ψ = A≤c . Let Cψ = 〈Σ, S, s0,X ,∆,F 〉 be de�ned as follows

(to simplify the presentation, in this case we assume that A only

accepts words of length ≥ 2):

• Each location s ∈ S is of the form 〈`1, S1, . . . , `m , Sm〉
where `j ∈ {0, 1, 2} and Sj ⊆ SA for all j ∈ {1, . . . ,m};
intuitively, 〈`j , Sj 〉 can be seen as a location of the sub-

component C
ψ
j ;

• s0 = 〈0, ∅, . . . , 0, ∅〉;
• X = {x1, . . . ,xm };
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• F = {F1, . . . , Fm } where Fj contains all locations with

`j = 0 or `j = 2;

• ∆ is obtained by synchronising the transitions 〈`, S〉
σ ,д,λ
−−−−−→

〈`′, S ′〉 of individual sub-components (we omit the sub-

scripts for brevity):

– pψ < σ ; `′ = 0, ` = 0; S ′ = ∅, S = ∅; д = >; λ = ∅.
– pψ < σ ; `′ = 1, ` ∈ {1, 2}; S σ−→

∨
S ′; д = >; λ = ∅.

– pψ < σ ; `′ = 0, ` ∈ {1, 2}; S ′ = ∅, S = {sA }, sAF |=
δ (sA ,σ ) for some sAF ∈ F

A
; д = x ≤ c; λ = ∅.

– pψ ∈ σ ; `′ = 1, ` = 0; {sA
0
} σ−→
∨

S ′, S = ∅; д = >;

λ = {x}.
– pψ ∈ σ ; `′ = 1, ` ∈ {1, 2}; S ′ is the union of some S ′′

such that S
σ−→
∨

S ′′ and S ′′′ with {sA
0
} σ−→
∨

S ′′′; д = >;

λ = ∅.
– pψ ∈ σ ; `′ = 2, ` ∈ {1, 2}; {sA

0
} σ−→
∨

S ′, S = {sA },
sAF |= δ (s

A ,σ ) for some sAF ∈ FA ; д = x ≤ c; λ =
{x}.

If pψ ∈ σ , then exactly one of the sub-components takes a

‘pψ ∈ σ ’ transition while the others proceed as if pψ < σ .

Proposition 4.2. JCψ K = JG
(
pψ ⇒ A≤c (φ1, . . . ,φn )

)
K.

Proof sketch. Let ψ ′ = G
(
pψ ⇒ A≤c (φ1, . . . ,φn )

)
and Aψ ′

be the equivalent OCATA obtained via Proposition 4.1. If a timed

word ρ = (σi ,τi )i≥1 satis�esψ ′, there must be an accepting runG =
〈V ,→〉 ofAψ ′ on ρ; in particular, a copy ofA is spawned whenever

pψ holds. Now consider each ‘level’ Li = {(s,v) | (s,v, i) ∈ V } of

G in the increasing order of i . If |{(sA ,v) | (sA ,v) ∈ Li }| ≤ 1 for

every sA ∈ SA , in Cψ we simply put each corresponding obligation

into an unused sub-component (with ` = 0 and S = ∅) when it

arrives, i.e.pψ holds. If |{(sA ,v) | (sA ,v) ∈ Li }| > 1 for some sA ∈
SA , since the constraining interval [0, c] is downward closed, the

DAG obtained from G by replacing all the subtrees rooted at nodes

(sA ,v, i) with (sA ,vmax, i), where vmax = max{v | (sA ,v) ∈ Li },
is still an accepting run of Aψ ′ ; in Cψ , this amounts to pu�ing

the obligations that correspond to nodes (sA ,v, i) into the sub-

component that holds the (oldest) obligation that corresponds to

(sA ,vmax, i). We do the same for all such sA , obtain G ′, and start

over from i + 1. In this way, we can readily construct an accepting

run of Cψ on ρ. �e other direction obviously holds as each sub-

component Cψj does not reset its associated clock x j when pψ ∈ σ
and `j ∈ {1, 2}, unless the (only remaining) obligation in Sj is

ful�lled right away. In other words, Cψj adds an obligation that

is at least as strong to Sj without weakening the existing ones in

Sj . �

ψ = A≥c . Let Cψ = 〈Σ, S, s0,X ,∆,F 〉 be de�ned as follows:

• Each location s ∈ S is of the form 〈`1, S1,T1 . . . , `m , Sm ,Tm〉
where `j ∈ {0, 1, 2, 3} and Sj ,Tj ⊆ SA for all j ∈ {1, . . . ,m};
intuitively, 〈`j , Sj ,Tj 〉 can be seen as a location of the sub-

component C
ψ
j ;

• s0 = 〈0, ∅, ∅, . . . , 0, ∅, ∅〉;
• X = {x1, . . . ,xm };

• F = {F1, . . . , Fm } where Fj contains all locations with

`j = 0 or `j = 2;

• ∆ is obtained by synchronising (in the same way as before)

〈`, S,T 〉
σ ,д,λ
−−−−−→ 〈`′, S ′,T ′〉 of individual sub-components:

– pψ < σ ; `′ = 0, ` = 0; S ′ = ∅, S = ∅, T ′ = ∅, T = ∅;
д = >; λ = ∅.

– pψ < σ ; `′ = 1, ` ∈ {1, 2}; S σ−→
∨

S ′, T ′ = ∅, T = ∅;
д = >; λ = ∅.

– pψ < σ ; `′ = 3, ` = 3; S
σ−→
∨

S ′, T
σ−→
∨

T ′; д = >; λ = ∅.
– pψ < σ ; `′ = 0, ` ∈ {1, 2}; S ′ = ∅, S = {sA }, sAF |=
δ (sA ,σ ) for some sAF ∈ F

A
,T ′ = ∅,T = ∅; д = x ≥ c ;

λ = ∅.
– pψ < σ ; `′ = 2, ` = 3; T

σ−→
∨

S ′, S = {sA }, sAF |=
δ (sA ,σ ) for some sAF ∈ FA , T ′ = ∅; д = x ≥ c;

λ = {x}.
– pψ ∈ σ ; `′ = 1, ` = 0; {sA

0
} σ−→
∨

S ′, S = ∅, T ′ = ∅,
T = ∅; д = >; λ = {x}.

– pψ ∈ σ ; `′ = 1, ` ∈ {1, 2}; S ′ is the union of some S ′′

such that S
σ−→
∨

S ′′ and S ′′′ with {sA
0
} σ−→
∨

S ′′′,T ′ = ∅,
T = ∅; д = >; λ = {x}.

– pψ ∈ σ ; `′ = 3, ` = 1; S
σ−→
∨

S ′, {sA
0
} σ−→
∨

T ′, T = ∅;
д = >; λ = ∅.

– pψ ∈ σ ; `′ = 3, ` = 3; S
σ−→
∨

S ′,T ′ is the union of some

T ′′ such that T
σ−→
∨

T ′′ and T ′′′ with {sA
0
} σ−→
∨

T ′′′;

д = >; λ = ∅.
– pψ ∈ σ ; `′ = 2, ` ∈ {1, 2}; {sA

0
} σ−→
∨

S ′, S = {sA },
sAF |= δ (sA ,σ ) for some sAF ∈ FA , T ′ = ∅, T = ∅;
д = x ≥ c; λ = {x}.

– pψ ∈ σ ; `′ = 2, ` = 3; S ′ is the union of some S ′′ such

that T
σ−→
∨

S ′′ and S ′′′ with {sA
0
} σ−→
∨

S ′′′, S = {sA },
sAF |= δ (s

A ,σ ) for some sAF ∈ F
A

,T ′ = ∅; д = x ≥ c ;

λ = {x}.

Proposition 4.3. JCψ K = JG
(
pψ ⇒ A≥c (φ1, . . . ,φn )

)
K.

Proof sketch. Similar to the proof of Proposition 4.2, but since

[c,∞) is upward closed, we replace all the subtrees rooted at nodes

(sA ,v, i) with (sA ,vmin, i), where vmin = min{v | (sA ,v) ∈ Li };
in Cψ , we still put the obligations that correspond to nodes (sA ,v, i)
into the sub-component that holds the (oldest) obligation that cor-

responds to (sA ,vmax, i). �ere is, however, a potential issue: since

we reset x j whenever the trigger pψ is pulled and Cψj is chosen,

it might be the case that x j never reaches c , i.e. the satisfaction

of the obligations in Sj are delayed inde�nitely. Following [17],

we solve this by locations with `j = 3 such that, when entered,

we stop rese�ing x j and put the new obligations into Tj instead;

when the obligations in Sj are ful�lled, we move the obligations in

Tj to Sj and reset x j . �e other direction obviously holds as each

sub-component Cψj resets x j when pψ ∈ σ and `j ∈ {1, 2}, unless
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it goes from `j = 1 to `j = 3. In other words, Cψj adds the new

obligation to Sj while strengthening the existing ones in Sj . �

ψ = ˜A≤c . Let Cψ = 〈Σ, S, s0,X ,∆,F 〉 be de�ned as follows:

• Each location s ∈ S is of the form 〈S1, . . . , Sm+1〉 where

Sj ⊆ SA for all j ∈ {1, . . . ,m + 1}; intuitively, Sj can be

seen as a location of the sub-component C
ψ
j ;

• s0 = 〈∅, . . . , ∅〉;
• X = {x1, . . . ,xm+1};
• F = ∅, i.e. any run is accepting;

• ∆ is obtained by synchronising (in the same way as before)

S
σ ,д,λ
−−−−−→ S ′ of individual sub-components:

– pψ < σ ; S ′ = ∅, S = ∅; д = >; λ = ∅.
– pψ < σ ; S

σ−→
∧

S ′, S ′ ∩ FA = ∅; д = x ≤ c; λ = ∅.
– pψ < σ ; S ′ = ∅; д = x > c; λ = ∅.
– pψ ∈ σ ; {sA

0
} σ−→
∧

S ′, S ′ ∩ FA = ∅, S = ∅; д = >;

λ = {x}.
– pψ ∈ σ ; S ′ is the union of some S ′′ such that S

σ−→
∧

S ′′

and S ′′′ with {sA
0
} σ−→
∧

S ′′′, S ′ ∩ FA = ∅; д = x ≤ c;

λ = {x}.
– pψ ∈ σ ; {sA

0
} σ−→
∧

S ′, S ′∩FA = ∅; д = x > c ; λ = {x}.

Proposition 4.4. JCψ K = JG
(
pψ ⇒ ˜A≤c (φ1, . . . ,φn )

)
K.

Proof sketch. Let ψ ′ = G
(
pψ ⇒ ˜A≤c (φ1, . . . ,φn )

)
and Aψ ′

be the equivalent OCATA obtained via Proposition 4.1. Consider

each level Li = {(s,v) | (s,v, i) ∈ V } of an accepting run G =
〈V ,→〉 of Aψ ′ on ρ = (σi ,τi )i≥1 in the increasing order of i . In

Cψ , whenever the trigger pψ is pulled, we a�empt to put the corre-

sponding obligation into an unused sub-component (with S = ∅)
or a sub-component that can be cleared (with x > c); if this is not

possible, since for every sA ∈ SA all the subtrees rooted at nodes

(sA ,v, i) can be replaced with the subtree rooted at (sA ,vmin, i)
where vmin = min{v | (sA ,v) ∈ Li }, at least one sub-component

C
ψ
j becomes redundant, i.e. all of its obligations are implied by the

other sub-components C
ψ
k , k , j. A consequence is that the obli-

gations in the sub-component C
ψ
k with the minimal non-negative

value of x j − xk can be merged with the obligations in C
ψ
j , freeing

up a sub-component for the current incoming obligation. �is can

be repeated to construct an accepting run of Cψ on ρ. �e other

direction holds as each C
ψ
j adds the new obligation to Sj while

strengthening the existing obligations in Sj . �

ψ = ˜A≥c . Let Cψ = 〈Σ, S, s0,X ,∆,F 〉 be de�ned as follows (for

simplicity, assume that c > 0):

• Each location s ∈ S is of the form 〈S1,T1 . . . , Sm+1,Tm+1〉
where Sj ,Tj ⊆ SA for all j ∈ {1, . . . ,m + 1}; intuitively,

〈Sj ,Tj 〉 can be seen as a location of the sub-component

C
ψ
j ;

• s0 = 〈∅, ∅, . . . , ∅, ∅〉;
• X = {x1, . . . ,xm+1};
• F = ∅, i.e. any run is accepting;

• ∆ is obtained by synchronising (in the same way as before)

〈`, S,T 〉
σ ,д,λ
−−−−−→ 〈`′, S ′,T ′〉 of individual sub-components:

– pψ < σ ; S ′ = ∅, S = ∅, T ′ = ∅, T = ∅; д = >; λ = ∅.
– pψ < σ ; S ′ = ∅, S = ∅, T σ−→

∧
T ′, T ′ ∩ FA = ∅; д = >;

λ = ∅.
– pψ < σ ; S

σ−→
∧

S ′, T ′ = ∅, T = ∅; д = x < c; λ = ∅.

– pψ < σ ; S
σ−→
∧

S ′, T
σ−→
∧

T ′, T ′ ∩ FA = ∅; д = x < c;

λ = ∅.
– pψ < σ ; S ′ = ∅, T ′ is the union of some T ′′ such

that S
σ−→
∧

T ′′ and T ′′′ with T
σ−→
∧

T ′′′, T ′ ∩ FA = ∅;
д = x ≥ c; λ = ∅.

– pψ ∈ σ ; {sA
0
} σ−→
∧

S ′, S = ∅, T ′ = ∅, T = ∅; д = >;

λ = {x}.
– pψ ∈ σ ; {sA

0
} σ−→
∧

S ′, S = ∅, T σ−→
∧

T ′, T ′ ∩ FA = ∅;
д = >; λ = {x}.

– pψ ∈ σ ; S ′ is the union of some S ′′ such that S
σ−→
∧

S ′′

and S ′′′ with {sA
0
} σ−→
∧

S ′′′, T ′ = ∅, T = ∅; д = x < c;

λ = ∅.
– pψ ∈ σ ; S ′ is the union of some S ′′ such that S

σ−→
∧

S ′′

and S ′′′ with {sA
0
} σ−→
∧

S ′′′, T
σ−→
∧

T ′, T ′ ∩ FA = ∅;
д = x < c; λ = ∅.

– pψ ∈ σ ; {sA
0
} σ−→
∧

S ′,T ′ is the union of someT ′′ such

that S
σ−→
∧

T ′′ and T ′′′ with T
σ−→
∧

T ′′′, T ′ ∩ FA = ∅;
д = x ≥ c; λ = {x}.

Proposition 4.5. JCψ K = JG
(
pψ ⇒ ˜A≥c (φ1, . . . ,φn )

)
K.

Proof sketch. As in the proof of Proposition 4.4, whenever pψ
is pulled inCψ , we a�empt to put the corresponding obligation into

an unused sub-component (with S = ∅) or a sub-component that can

be cleared (if x > c , we move the obligations in S to T and let them

remain there). If this is not possible, since for every sA ∈ SA all the

subtrees rooted at nodes (sA ,v, i) can be replaced with the subtree

rooted at (sA ,vmax, i) where vmax = max{v | (sA ,v) ∈ Li }, some

C
ψ
j becomes redundant, and the obligations in the sub-component

C
ψ
k with the minimal non-negative value of xk − x j can be merged

with the obligations in C
ψ
j , freeing up a sub-component for the

current incoming obligation. �is can be repeated to construct an

accepting run of Cψ on ρ. �e other direction holds as each C
ψ
j

adds an obligation that is at least as strong to Sj without weakening

the existing obligations in Sj . �

Finally, thanks to the fact that each location of Cψ can be repre-

sented using space polynomial in the size of A, and the product

Cinit×∏
ψ ∈Φ Cψ need not to be constructed explicitly, we can state

the main result of this section.

Theorem 4.6. �e satis�ability and model-checking problems for
EMITL0,∞ over timed words are PSPACE-complete.
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Corollary 4.7. �e satis�ability and model-checking problems
for EECL over timed words are PSPACE-complete.

5 CONCLUSION
It is shown that EMITL0,∞ and EECL are already as expressive

as EMITL over timed words, a somewhat unexpected yet very

pleasant result. We also provided a compositional construction

from EMITL0,∞ to diagonal-free TAs based on one-clock alternat-

ing timed automata (OCATAs); this allows satis�ability and model

checking based on existing algorithmic back ends for TAs. �e nat-

ural next step would be to implement the construction and evaluate

its performance on real-world use cases. Another possible future

direction is to investigate whether similar techniques can be used

to handle full EMITL or larger fragments of OCATAs (like [21]).
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Problem for Büchi Automata with Applications to Temporal Logic (Extended

Abstract). In ICALP (LNCS), Vol. 194. Springer, 465–474.

[47] Moshe Y. Vardi. 1987. Uni�ed Veri�cation �eory. In TLS (LNCS), Vol. 398.

Springer, 202–212.

[48] �omas Wilke. 1994. Specifying timed state sequences in powerful decidable

logics and timed automata. In FTRTFT (LNCS), Vol. 863. Springer, 694–715.

10

http://arxiv.org/abs/1806.11007
http://arxiv.org/abs/1806.11007
http://arxiv.org/abs/1806.11007
http://www.openscenario.org/docs/OSCUserMeeting20160629pub.pdf
http://www.openscenario.org/docs/OSCUserMeeting20160629pub.pdf
http://arxiv.org/abs/1802.02514
http://arxiv.org/abs/1802.02514


[49] Pierre Wolper. 1983. Temporal Logic Can be More Expressive. Information and
Control 56, 1/2 (1983), 72–99.

[50] Pierre Wolper and Moshe Y. Vardi. 1994. Reasoning about In�nite Computations.

Information and Computation 115, 1 (1994), 1–37.

A PROOF OF PROPOSITION �
Proof. We �rst show that JAφ K ⊆ JφK. Suppose that Aφ =

〈Σ, S, s0,δ , F 〉 has an accepting runG = 〈V ,→〉 on ρ = (σ1,τ1)(σ2,τ2) · · ·
and let Li = {(s,v) | (s,v, i) ∈ V }. We claim that:

(1) For each sA ∈ SA whereA occurs in a subformulaAI (φ1, . . . ,φn )
and i ≥ 1, Li |=v sA implies that there is a �nite rooted

DAG G ′ = 〈V ′,→′〉 with V ′ ⊆ SA × N≥0, (sA , i) as the

root, and for each vertex (s,k) either (a)k > i ,v+(τk−τi ) ∈
I , and s ∈ FA , or (b) there is some ak+1

∈ ΣA such that

Lk+1
|=v+(τk+1

−τi ) δ (φak+1
,σk+1

) and there is a model M

of the formula δA (s,ak+1
) such that (s,k) →′ (s ′,k + 1)

for every state s ′ in M .

(2) For each sA ∈ SA whereA occurs in a subformula
˜AI (φ1, . . . ,φn )

and i ≥ 1, Li |=v sA implies that there is a rooted DAG

G ′ = 〈V ′,→′〉 withV ′ ⊆ SA×N≥0, (sA , i) as the root, and

each vertex (s,k) satis�es (a) if k > i then v + (τk − τi ) ∈ I
implies s < FA , and (b) for every ak+1

∈ ΣA , either

Lk+1
|=v+(τk+1

−τi ) δ (φak+1
,σk+1

) or there is a model M

of the formula δA (s,ak+1
) such that (s,k) →′ (s ′,k + 1)

for every state s ′ in M .

We prove (1); (2) can be proved similarly. First note that every

branch labelled with locations of A must terminate. If (sA ,v, i)
is a leaf with respect to SA in G, we must have N |=v+(τi+1−τi )
δ (φa ,σi+1) ∧ δA [sAF ← sAF ∨ x ∈ I ](s

A ,a) for some a ∈ ΣA and

N ⊆ (S \ SA ) × R≥0 such that N ⊆ Li+1. It follows that either (i)

N |=v+(τi+1−τi ) δ (φa ,σi+1)∧δA (sA ,a) or (ii)v+(τi+1−τi ) ∈ I and

N ∪M |=v+(τi+1−τi ) δ (φa ,σi+1) ∧ δA (sA ,a) for some nonempty

M ⊆ FA × {v + (τi+1 − τi )}. In case (i), (b) trivially holds. In

case (ii) note that N |=v+(τi+1−τi ) δ (φa ,σi+1), and let {(s ′, i + 1) |
(s ′,v ′) ∈ M} be the successors of (sA , i) inG ′: each of them satis�es

(a). If (sA ,v, i) is not a leaf with respect to SA in G, we have

N ∪ M |=v+(τi+1−τi ) δ (φa ,σi+1) ∧ δA [sAF ← sAF ∨ x ∈ I ](sA ,a)
for some a ∈ ΣA , N ⊆ (S \ SA ) × R≥0 such that N ⊆ Li+1, and

nonemptyM ⊆ SA×{v+(τi+1−τi )} such thatM ⊆ Li+1. It follows

that either (i) N ∪ M |=v+(τi+1−τi ) δ (φa ,σi+1) ∧ δA (sA ,a) or (ii)

v + (τi+1−τi ) ∈ I and N ∪M ′ |=v+(τi+1−τi ) δ (φa ,σi+1)∧δA (sA ,a)
for some M ′ ⊃ M with M ′ \M ⊆ FA × {v + (τi+1 − τi )}. In case

(i), let {(s ′, i + 1) | (s ′,v ′) ∈ M} be the successors of (sA , i) in G ′;
applying the IH on Li+1 |=v+(τi+1−τi ) s

′
for all such s ′ yields the

corresponding sub-DAGs, which we combine to obtainG ′. Case (ii)

is similar.

We now claim that for each subformulaψ of φ and i ≥ 1, Li |=0

δ (ψ ,σi ) implies ρ, i |= ψ . �e cases of atomic propositions, negation,

and Boolean operators are trivial. Forψ = AI (φ1, . . . ,φn ), as Li |=0

δ (sA
0
,σi ) we have, for some a ∈ ΣA , (i) Li |=0 δ (φa ,σi ) and (ii)

Li |=0 δ
A [sAF ← sAF ∨x ∈ I ](s

A
0
,a). From (i) and the IH we obtain

ρ, i |= φa . From (ii) we deduce that there is M ⊆ (SA \ FA ) × {0}
such that M ⊆ Li , and M ′ ⊇ M such that M ′ \ M ⊆ FA × {0}
and M ′ |=0 δ

A (sA
0
,a). Applying (1) on every sA ∈ M and the IH

(note that by the de�nition of δ , we have Lk+1
|=0 δ (φak+1

,σk+1
) if

Lk+1
|=v+(τk+1

−τi ) δ (φak+1
,σk+1

)) and combining sub-DAGs gives

ρ, i |= ψ . �e case ofψ = ˜AI (φ1, . . . ,φn ) is analogous.

Finally, as s init ∈ L0, we have L1 |=τ1
x .δ (φ,σ1), which is equiv-

alent to L1 |=0 δ (φ,σ1). It follows that ρ, 1 |= φ; this �nishes the

proof of JAφ K ⊆ JφK.

For the other direction, observe thatA¬φ = (Aφ )c (up to renam-

ing of locations) where (Aφ )c is obtained from Aφ by dualising

the transition function and swapping the sets of �nal and non-�nal

locations. �e desired result (JφK ⊆ JAφ K) immediately follows

from the fact that Aφ is a tree-like OCATA [16]. �
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