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ABSTRACT

It is well known that (timed) w-regular properties such as ‘p holds
at every even position’ and ‘p occurs at least three times within the
next 10 time units’ cannot be expressed in Metric Interval Temporal
Logic (MITL) and Event Clock Logic (ECL). A standard remedy to
this deficiency is to extend these with modalities defined in terms of
automata. In this paper, we show that the logics EMITL, o (adding
non-deterministic finite automata modalities into the fragment of
MITL with only lower- and upper-bound constraints) and EECL
(adding automata modalities into ECL) are already as expressive
as EMITL (full MITL with automata modalities). In particular, the
satisfiability and model-checking problems for EMITL¢, o and EECL
are PSPACE-complete, whereas the same problems for EMITL are
EXPSPACE-complete. We also provide a simple translation from
EMITLo, o to diagonal-free timed automata, which enables practical
satisfiability and model checking based on off-the-shelf tools.
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1 INTRODUCTION

Timed logics. In the context of real-time systems verification, it
is natural and desirable to add timing constraints to Linear Temporal
Logic (LTL) [42] to enable reasoning about timing behaviours of
such systems. For instance, one may write ¢1 Uy @2 to assert that ¢
holds until a ‘witness’ point where @2 holds, and the time difference
between now and that point lies within the constraining interval I.
The resulting logic, Metric Temporal Logic (MTL) [32], can be seen as
a fragment of Monadic First-Order Logic of Order and Metric (FO[<
, +1]) [4], the timed counterpart of the classical Monadic First-Order
Logic of Order (FO[<]). There are, nonetheless, some loose ends in
this analogy. For instance, while LTL is as expressive as FO[<] [22,
29], it is noted early on that certain ‘non-local’ timing properties in
FO[<, +1], albeit being very simple, cannot be expressed in timed
temporal logics like MTL [5]. As a concrete example, the property
‘every p-event is followed by a g-event and, later, an r-event within
the next 10 time units’, written as the FO[<, +1] formula

Vx (p(x) = Ty (q(y) Az(rk)Ax<y<z<x+ 10))) (1)

is not expressible in MTL—indeed, no ‘finitary’ extension of MTL
can be expressively complete for FO[<,+1] [28].] A more serious

1(1) can, however, be expressed in MTL if the continuous semantics of the logic is
adopted or past modalities are allowed; see [14] for details.

practical concern is that the satisfiability problem for MTL is unde-
cidable [4, 40]. For this reason, research efforts have been focused
on fragments of MTL with decidable satisfiability, most notably Met-
ric Interval Temporal Logic (MITL), the fragment of MTL in which
‘punctual’ constraining intervals are not allowed [3]. In particular,
MITL formulae can be effectively translated into timed automata
(TAs) [2], giving practical EXPSPACE decision procedures for its
satisfiability and model-checking problems [16—18].

Automata modalities. It is well known that properties that are
necessarily second order (e.g., ‘p holds at all even positions’) can-
not be expressed in LTL or MITL. Fortunately, it is possible to
add automata modalities into LTL at no additional computational
cost [46, 50]. In timed settings, the logic obtained from MITL
by adding time-constrained automata modalities defined by non-
deterministic finite automata (NFAs) is called Extended Metric Inter-
val Temporal Logic (EMITL) [48]. From a theoretical point of view,
EMITL is a fully decidable formalism (i.e. constructively closed un-
der all Boolean operations and with decidable satisfiability [26])
whose class of timed languages strictly contains that of MITL and
Biichi automata.? In practice, it can be argued that automata modali-
ties are natural, easy-to-use extensions of the usual MITL modalities.
They also allow properties like (1), which often emerge in appli-
cation domains like healthcare and automotive engineering, to be
written as specifications.

Example 1.1 ([1]). Discrimination algorithms are implemented in
implantable cardioverter defibrillators (ICDs) to detect potentially
dangerous heartbeat patterns. As a simple example, one may want
to check whether the number of heartbeats in one minute is between
120 and 150. This can be expressed as the CTMITL [33] formula

C[Zo}szg] pA C[So’lgg] p where p denotes a peak in the cardiac signal.
~k

The counting modalities C 7 (where 0 € I, which is the case here),
as well as (1), be expressed straightforwardly in terms of automata.

Example 1.2 (adapted from [25]). In autonomous driving, one
may want to specify that a car overtaking another from the left must
be done in 10 seconds. Suppose the lane on the left is empty and the
events are sampled sufficiently frequently (say 5ms), this can be
expressed as the EMITL formula Afg, 19(TTC > 4,...) (see Fig. 1
and Fig. 2) where TTC is the time to collision, dist is the longitu-
dinal distance between the two vehicles, and to_left, to_right
are the actions for merging to the left/right lane—these are taken
immediately after TTC <= 4 and dist >= 5, respectively.

Compared with LTL and MITL, however, translating EMITL into
TAs is considerably more challenging. The original translation by
Wilke [48] is non-elementary and thus not suitable for practical

2 A very recent paper of Krishna, Madnani, and Pandya [35] showed that this class
admits some alternative characterisations (namely, a syntactic fragment of OCATAs
and a timed monadic second-order logic).
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Fig. 1: The red car overtakes the blue car from the left.
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Fig. 2: A in Example 1.2.

purposes. Krishna, Madnani, and Pandya [34] showed that any
EMITL formula can be encoded into an MITL formula of doubly
exponential size (which can then be translated into a TA), but this
does not match the EXPSPACE lower bound inherited from MITL.
More recently, Ferrére [21] proposed an asymptotically optimal
construction from MIDL (Metric Interval Dynamic Logic, which is
strictly more expressive and subsumes EMITL) formulae to TAs,
but it is very complicated and relies heavily on the use of diagonal
constraints (i.e. comparison between clocks) which are, in general,
not preferred in practice [12, 15, 23] and not well-supported by
existing model checkers.?

Contributions. We consider a simple fragment of EMITL, which
we call EMITLg, «, obtained by allowing only lower- and upper-
bound constraining intervals (e.g., [0, a) and (b, 00)) and EECL [43]
(adding automata modalities to Event Clock Logic ECL). The satisfi-
ability and model-checking problems for EMITLg, - and EECL are
much cheaper than that of EMITL (PSPACE-complete vs EXPSPACE-
complete). Moreover, we show that they are already as expressive as
full EMITL—this is in sharp contrast with the situation for ‘vanilla’
MITLy,o/ECL and MITL, where the latter is strictly more expres-
sive when interpreted over timed words [26, 43]—making them
expressive yet tractable real-time specification formalisms. We then
show that EMITL, « admits a much simpler translation into TAs.
Specifically, by effectively decoupling the timing and operational
aspects of automata modalities, overlapping obligations imposed
by a single automaton subformula can be handled in a purely fifo
manner with a set of sub-components (each of which is a simple
one-clock TA with a polynomial-sized symbolic representation),
avoiding the use of diagonal constraints altogether.* This makes
our construction better suited to be implemented to work with
existing highly efficient algorithmic back ends (e.g., UppaaL [11]
and LTSMiIN [30]).

Related work. The idea of extending LTL to capture the full class
of w-regular languages dates back to the seminal works of Clarke,
Sistla, Vardi, and Wolper [45, 46, 49, 50] in the early 1980s. In par-
ticular, it is shown that LTL with NFA modalities—which essentially
underlies various industrial specification languages like ForSpec [6]

31t is possible to obtain a diagonal-free TA from an EMITL formula by first applying the
construction in [21] and then removing the diagonal constraints [13]. This, however,
is expensive and difficult to implement.

4For simplicity we focus on logics with only future modalities, but our results read-
ily carry over to the versions with both future and past modalities, thanks to the
compositional nature of our construction (cf. e.g., [31, 38]).

and PSL [20]—are expressively equivalent to Biichi automata, yet
the model-checking and satisfiability problems remain PSPACE-
complete, same as LTL.> Our approach generalises the construction
in [50] in the case of finite acceptance.

Henzinger, Raskin, and Schobbens [26, 43] proved a number of
analogous results in timed settings; in particular, they showed that
in the continuous semantics (i.e. over finitely variable signals), (i)
MITLy, and ECL are as expressive as MITL, and (ii) the fragment
of EMITL with unconstrained automata modalities is as expressive
as recursive event-clock automata, and the verification problems for
this fragment can be solved in EXPSPACE. Our results can be seen
as counterparts in the pointwise semantics (i.e. over timed words).

Besides satisfiability and model checking, extending timed logics
with automata or regular expressions is also a topic of great inter-
est in runtime verification. Basin, Krsti¢, and Traytel [10] showed
that MTL with time-constrained regular-expression modalities ad-
mits an efficient runtime monitoring procedure in a pointwise,
integer-time setting. A very recent work of Nickovic, Lebeltel,
Maler, Ferrére, and Ulus [39] considered a similar extension of
MITL with timed regular expressions (TRE) [7, 8] in the context of
monitoring and analysis of Boolean and real-valued signals.

2 TIMED LOGICS AND AUTOMATA

Timed languages. A timed word over a finite alphabet X is an
infinite sequence of events (oj,7;)i>1 over X X R>o with (7;);>1 a
non-decreasing sequence of non-negative real numbers such that
for each r € R, there is some j > 1 with 7; > r (i.e. we require
all timed words to be ‘non-Zeno’). We denote by T the set of all
timed words over 3. A timed language is a subset of TZ?.

Extended timed logics. A non-deterministic finite automaton (NFA)
over X is a tuple A = (3, S, s9, A, F) where S is a finite set of loca-
tions, so € S is the initial location, A C SXX XS is the transition rela-
tion, and F is the set of final locations. We say that A is deterministic
(a DFA)iff foreachs € Sand o € 2, |{(s, 0,5") | (s,0,s") € A}| < 1.
Arunof Aonoy...on €T (without loss of generality, we only
consider runs of automata modalities over nonempty finite words
in this paper) is a sequence of locations sgsj . . . s, where there is
a transition (s;, 0j+1,Si+1) € A foreachi,0 < i < n. Arun of A is
accepting iff it ends in a final location. A finite word is accepted by
A iff A has an accepting run on it. We denote by [A] the set of
finite words accepted by A.

Extended Metric Interval Temporal Logic (EMITL) formulae over
a finite set of atomic propositions AP are generated by

o:=TIlple1 A2 | -e| Ap1,...,0n)

where p € AP, A is an NFA over the n-ary alphabet {1, ...,n}, and
I C Ry is a non-singular interval with endpoints in N»o U {c0}.6
As usual, we omit the subscript I when I = [0, co) and write pseudo-
arithmetic expressions for lower or upper bounds, e.g., ‘< 3’ for
[0,3). We also omit the arguments ¢1, ..., ¢, and simply write
AJ, if clear from the context. Following [4, 5, 41, 48], we consider
the pointwise semantics of EMITL and interpret formulae over

5There are other ways to extend LTL to achieve w-regularity, e.g., adding monadic
second-order quantifiers (QPTL [46]) or least/greatest fixpoints (uLTL [9, 47]). These
formalisms unfortunately suffer from higher complexity or less readable syntax.
®For notational simplicity, we will occasionally use ¢, ..., ¢@n directly as transition
labels (instead of 1, ..., n).



timed words: given an EMITL formula ¢ over AP, a timed word
p = (01,71)(02,72) ... over Sap = 2P and a position i > 1,

e (pDET;
(p.1) Epiffp € oi;
(p1) | @1 A @2 iff (p, ) |= @1 and (p, 1) |= @2;
(p, 1) E —o iff (p, 1) I 3
(p,i) = Ar(p1,...,pn) iff there exists j > i such that
(i) rj — ; € I and (ii) there is an accepting run of A on
aj...aj where ap € {1,...,n} and (p, ) |= ¢q, for each
ti<t<j’
The other Boolean operators are defined asusual: L = =T, 1 Vg2 =
=(=p1 A —¢@2), and @1 = @2 = @1 V @2. We also define the
dual automata modalities fll((pl, cesn) = ~A(=@1, .. m0n).
With the dual automata modalities, we can transform every EMITL
formula ¢ into negative normal form, i.e. an EMITL formula using
only atomic propositions, their negations, and the operators V,
A, Ap, and Ap. It is easy to see that the standard MITL ‘until’
@1 Uy @2 can be defined in terms of automata modalities. We also
use the usual shortcuts like Ff ¢ = T Uy ¢, Gy ¢ = = Fy ¢, and
@1 Ry 92 = =((=¢1) Uy (=¢2)). We say that p satisfies ¢ (written
p E @) iff (p,1) |= ¢, and we write [¢] for the timed language of ¢,
i.e. the set of all timed words satisfying ¢. EMITLg, o is the fragment
of EMITL where all constraining intervals I must be lower or upper
bounds (e.g., < 3 or > 5). Extended Event Clock Logic (EECL) is
the fragment of EMITL where A is replaced by a more restricted
‘event-clock’ counterpart:
o (p,i) |=.5;II (@15 - - -, @n) iff (i) there is a minimal position
Jj = i such that A has an accepting run on a; . . . a; where
ap€{1,...,n}and (p,{) = @q, foreach £,i < ¢ < j; and
(ii) j satisfies 7j — 7; € I.

Timed automata. Let X be a finite set of clocks (R >¢-valued vari-
ables). A valuation v for X maps each clock x € X to a value in
R>o. We denote by 0 the valuation that maps every clock to 0,
and we write the valuation simply as a value in R»o when X is a
singleton. The set G(X) of clock constraints g over X is generated by
g:=T|gAg|xracwhereree {<,<,>2,>}, x € X,and c € Ny,.
The satisfaction of a clock constraint g by a valuation v (written
v |= g) is defined in the usual way, and we write [g] for the set of
valuations v satisfying g. For t € R0, we let v + t be the valuation
defined by (v + t)(x) = v(x) + t for all x € X. For 1 C X, we let
v[A « 0] be the valuation defined by (v[A « 0])(x) = 0if x € A,
and (v[A < 0])(x) = v(x) otherwise.

A timed automaton (TA) over X is a tuple A = (Z, S, s0, X, A, F)
where S is a finite set of locations, sg € S is the initial location, X is
a finite set of clocks, A C § x I x G(X) x 2X x § is the transition
relation, and F = {F1,...,Fy}, with F; C Sforalli,1 <i < n,is
the set of sets of final locations.® We say that A is deterministic
(a DTA) iff for each s € S and o € ¥ and every pair of transitions
(s, a,gl, A sl) € Aand (s, o, gz, 22, sz) €A, gl /\g2 is not satisfiable.
A state of A is a pair (s,v) of a location s € S and a valuation v
for X. A run of A on a timed word (o1, 71)(02,72) -+ € T2? is

"Note that it is possible for (p,i) FE Ar(@r, ..., en) and (p,i) |=
.7[;'((p1, ..., @n), where A€ is the complement of A, to hold simultaneously.

8We adopt generalised Biichi acceptance for technical convenience; indeed, any TA
with a generalised Biichi acceptance condition can be converted into a classical Biichi
TA via a simple standard construction [19].

a sequence of states (so,vo)(s1,v1)... where (i) vop = 0 and (ii)
for each i > 0, there is a transition (s;, 0i+1, 9, A, si+1) such that
v +(ris1 - 7)) E g (let 1o = 0) and vi41 = (v; + (1i41 — 73))[A < 0].
A run of A is accepting iff the set of locations it visits infinitely
often contains at least one location from each F;, 1 < i < n. A
timed word is accepted by A iff A has an accepting run on it.
We denote by [A] the timed language accepted by A. For two
TAs A = (2,81, s, X1, AL F') and A% = (3, 5%, 52, X2, A%, F2)
over a common alphabet 3, the (synchronous) product A' x A2
is defined as the TA (2, S, s0, X, A, ) where (i) S = S! x §2, 59 =
(sé,sg), and X = X3 U Xo; (ii) ((si,s%), 0,9, A, (s%,s%)) € A iff there
exists (s%,a,gl,/ll,s%) e A! and (sf,d,gz,)tz,sg) € A? such that
g=g' Ag?and A = A U A%; and (iii) let F! = {F},...,Fl}, F2 =
{F2,... F4}.then ¥ = {F/ xS%, ... FAxS% S'xF2 ... S'xFZ}.
Note in particular that we have [A* x A%] = [A!] N [AZ].

Q x>1 @

Fig. 3: A TA accepting [-G(p = F<1 q)].

Example 2.1. Consider the TA over 2{, 4y in Fig. 3 (following
the usual convention, we omit transition labels when they are T’s
and use Boolean formulae over atomic propositions to represent
letters, e.g., here p A =g stands for {0 € £, 4y | p € 0,9 & 0}).
It non-deterministically pick an event where p holds but g does
not hold (thus F< g is not fulfilled immediately) and enforces that
q does not hold in the next time unit. In other words, it accepts

[F(p A G<1(=9)] = [-G(p = F<1 9)].

Alternation. One-clock alternating timed automata (OCATAs)
extend one-clock timed automata with the power of universal choice.
Intuitively, a transition of an OCATA may spawn several copies of
the automaton that run in parallel from the targets of the transition;
a timed word is accepted iff all copies accept it. Formally, for a set
S of locations, let T'(S) be the set of formulae defined by

y=TlLllnVyrlnAyls|xsc|xy

where x is the single clock, ¢ € N3g, < € {<,<,>,>},ands € S
(the construct x. means “reset x”). For a formula y € I'(S), let its
dual y € T(S) be the formula obtained by applying

e T=1;1=T,

* niVyz=yiAyasyi Ava=y1Vyas

¢ =5 Fe = (x4} T = x .
An OCATA over X is a tuple A = (2, S, s, J, F) where S is a finite
set of locations, sy € S is the initial location, §: S X ¥ — I'(S) is
the transition function, and F C S is the set of final locations. A
state of A is a pair (s, v) of a location s € S and a valuation v for
the single clock x. Given a set of states M, a formula y € I'(S) and
a clock valuation v, we define

e M=y T; My Ciff (6,0) € My M |= x ><ciffv s

M =y x.y iff M =0 y;
e My y1 Ay2ift M |=4 y1 and M =4, y2;
e My 1 Vy2ifft M |=¢ y1 or M |55 yo.



We say that M is a model of y with respect to v iff M |=, y.0 A
run of A on a timed word (o1, 71)(02,72) - -+ € TZ? is a rooted
directed acyclic graph (DAG) G = (V, —) with vertices of the form
(s,v,i) € SX R0 X N>, (s0,0,0) as the root, and edges as follows:
for every vertex (s, v, i), there is a model M of the formula (s, oj+1)
with respect to v + (zj4+1 — 7;) (again, 79 = 0) such that there is an
edge (s,v,i) = (s’,v’,i + 1) for every state (s’,v’) in M. Arun G
of A is accepting iff every infinite path in G visits F infinitely often.
A timed word is accepted by A iff A has an accepting run on it. We
denote by [A] the timed language accepted by A. For convenience,
in the sequel we will regard NFAs as (untimed) OCATAs with finite
acceptance conditions and whose transition functions are simply
disjunctions over locations.

P

T
@ PAq n x:=0 g x<1,4q

PAq

Fig. 4: An OCATA accepting [G(p = F<1 q)].

(50,0.42,2) — (50,0.7,3)
(50,0,0) —» (s0,0.42,1) <

(51,0,2)

Fig. 5: A run of the OCATA in Fig. 4 on the timed word
(0,0.42)({p}, 0.42)({q},0.7) - - .

Example 2.2. Consider the OCATA over 2y, 4y in Fig. 4 which ac-
cepts [G(p = F<1 g)]. Arunofiton (0,0.42)({p},0.42)({¢},0.7) - - -
is depicted in Fig. 5 where the root is (sg,0,0). This vertex has
a single successor (sg,0.42, 1), which in turn has two successors
(s0,0.42,2) and (s1,0,2) (after firing the transition 5(so, {p}) =
so A x.s1). Then, (s1,0,2) has no successor since the empty set
is a model of §(s1, {q}) = x < 1 with respect to 0.28.

Verification problems. In this work we are concerned with the
following standard verification problems. Given an EMITL formula
@, the satisfiability problem asks whether [¢]] = 0. Given a TA A
and an EMITL formula ¢, the model-checking problem asks whether
[A] < [¢]. As TAs are closed under intersection and the emptiness
problem for TAs is decidable, both problems above can be solved
by first translating ¢ into an equivalent TA A,,.

3 EXPRESSIVENESS

In this section we study the expressiveness of EMITLg, e, EECL,
and a ‘counting’ extension of EMITL. It turned out that the class of
timed languages captured by EMITL is robust in the sense that it
remains the same under all these modifications. For the purpose of
the proofs below, let us assume (without loss of generality) that the
automaton A = (2, S, so, J, F) in question is a DFA and at most one
of ¢1, ..., ¢, may hold at any position in a given timed word [50].

Note that |=,, is monotonic: if M € M’ and M |=,, y then M’ |=4 y.

Counting in intervals. Recall that the constraining intervals I in
the counting modalities in Ex. 1.1 satisfy 0 € I; this non-trivial
extension of MTL (and MITL) was first considered by Hirshfeld and
Rabinovich [27, 28]. For the case of timed words, it is shown in [33]
that allowing arbitrary I (e.g., (1, 2)) makes the resulting logic even
more expressive. Here we show that, by contrast, adding the ability
to count in I—regardless of whether 0 € I—does not increase the
expressive power of EMITL.1? We consider an extention of EMITL
(which we call CEMITL) that enables specifying the number of
positions within a given interval I from now at which final locations
can be reached. More precisely, we have the following semantic
clause in CEMITL:

o (p,i)E ﬂfk(qal,...,qon)iffthereexistsjl < -+ < jg such
that foreach £,1 < £ < k, (i) jo 2 i; (ii) 7j, — 7; € I; and (iii)
there is an accepting run of A on some q; . ..aj, where
ap €{1,...,n}and (p,t’) |= g4, foreach £’,i < £’ < jo.

1 Q 1
ﬁgg (D) 5

Fig. 6: A! in the proof of Theorem 3.1.

THEOREM 3.1. CEMITL and EMITL are equally expressive over
timed words.

Proor. We give an EMITL equivalent of ﬂIZk((pl, ..., ®n). Pro-
vided that ¢, ..., ¢, are already in EMITL and A is deterministic
in the sense above, we can count modulo k the number of positions
where final locations are reached and ensures that I encompasses all
possible values of the counter; in contrast to [33], here the counter
can be implemented directly using automata modalities. We give a
concrete example which should illustrate the idea. Let k = 3 and
A? be the product of A and A' (Fig. 6), i.e. each location of A?
is of the form (s,sl) where s € S and s! € {sé,s%,s; }, and it is
accepting iff s and s! are both final. Then, let A be the automaton
obtained from A? by:

e For all the transitions (s, sé) — (s, s%}, (s, s%) — (s, s%),
and (s, sé) — (s, sé), keeping only those with s” € F;
e For all the transitions (s,sé) - (s',sé), (s,s%) — (s’,si ,
and (s, s%) — (s, sé), keeping only those with s’ ¢ F.
Now let AL (¢ € {0, 1,2}) be the automaton obtained from A’ by

: ‘o ol PP |
adding an extra final location sy and the transitions,_, (mod 3) ~

sll:, and let A>¢ be the corresponding product with A, keeping

transitions (s, s (s’ ,s},) with s’ € F. The original

1
£—1 (mod 3)> -
formula ﬂle is equivalent to A\ (0,12} ﬂ?’[. O

Restricting to event clocks. We show that the equivalence of ECL
and MITLg,« carries over to the current setting. More specifically,
an EECL formula can be translated into an equilvalent EMITLg, o
formula of polynomial size (in DAG representation). On the other

10 A5 EMITL can easily express the ‘until with threshold’ modalities of CTMITL, the
latter is clearly subsumed by EMITL.



hand, our translation from MITLg « to EECL induces an exponen-
tial blow-up due to the fact that automata A have to be deter-
minised.

THEOREM 3.2. EECL and EMITLg o are equally expressive over
timed words.

PrROOF. Again, we assume that the arguments ¢1, ..., ¢, are
already in the target logic. The direction from EECL to EMITL, o is
simple and almost identical to the translation from ECL to MITLg, co;
for example, 5{(3’5) can be written as A<s A = A<3. For the other
direction consider the following EMITL, o formulae:

o (p,i) | A<c: the equivalent formula is simply A <c-
o (p,i) | Axc: as in [43], we consider the subcases where:

— There is no event in [7;,7; + ¢) apart from (oj, 7;):
let A2 be the product of A and A! where A is the
automaton depicted in Fig. 7. We have (p, i) |= = §ll< ¢
ANAL,.

— There are events in [zj, 7; + ¢) other than (o, 7;): let
the last event in [7;, 7; + ¢) be (0}, 7j) and k > j > i be
the minimal position such that there exists a; ... ay €
[A] with (p,€) = @q, forall ¢,i < ¢ < k. By as-
sumption, g; ...ay is unique and A must reach a
specific location s € S after reading a; ...a;. The
idea is to split the unique run of A on a;...a; at
s: we take a disjunction over all possible s € S, en-
force that 7j — 7; < ¢ and A reaches a final location
from s by reading aj41 ... a. More specifically, let
B% ¢ be the automaton obtained from A by adding a
new location sf, declaring it as the only final location,

. s Palp
and adding new transitions s’ ——— sp for every

' 2% s in A. Let C® be the automaton obtained
from A by adding new non-final locations sj and s;,
adding new transitions s; — s (i.e. labelled with
Pa Pa .
T) and s; — s” for every s — s’ in A, remov-
ing outgoing transitions from all the final locations,
and finally setting the initial location to s]. We have
. > 1 > >S,
(pi) EA<c A A A=V ges BLL where ¢ = ~C*.
The equivalent formula is the disjunction of these.

The other types of constraing intervals, such as [0, ¢), are handled

almost identically. O
DG

Fig. 7: A! in the proof of Theorem 3.2.

Restricting to one-sided constraining intervals. Recall that a fun-
damental stumbling block in the algorithmic analysis of TAs is
that the universality problem is undecidable [2]. DTAs with finite
acceptance conditions, on the other hand, can be complemented
easily and have a decidable universality problem. This raises the
question of whether one can extend MITL with DTA modalities
without losing decidability (both are fully decidable formalisms).

Perhaps surprisingly, the resulting formalism already subsumes
MTL even when punctual constraints are disallowed. For exam-
ple, F4 4] ¢ can be written as ~ A" A A" A F[y o) ¢ Where A’
and A" are the one-clock deterministic TAs in Fig. 8 and Fig. 9,
respectively (in particular, note that A’ and A’ only use lower-
and upper-bound constraints). It follows from [40] that the sat-
isfiability problem for this formalism is undecidable. Based on a

x<d x<d —p,x <d
48 x>d © 48 g x>d Q x>d ©
Fig. 8: A’. Fig. 9: A”.

similar trick, we obtain the main result of this section: EMITLg, o
already has the full expressive power of EMITL. This, together with
the fact that the satisfiability and model-checking problems for
EMITL, are only PSPACE-complete (Theorem 4.6) as compared
with EXPSPACE-complete for full EMITL [21], makes EMITLg 00 a
competitive alternative to other real-time specification formalisms—
while a translation from EMITL to EMITL, « inevitably induces at
least an exponential blow-up, it can be argued that many properties
of practical interest can be written in EMITLg, o directly (e.g., Ex. 1.1
and Ex. 1.2). The idea of the proof below is similar to that of [43,
Lemma 6.3.11] (MITLo, and MITL are equally expressive in the
continuous semantics), but the technical details are more involved
due to automata modalities and the fact that each event is not nec-
essarily preceded by another one exactly 1 time unit earlier in a
timed word; the latter is essentially the reason why the expressive
equivalence of MITLg o and MITL fails to hold in the pointwise
semantics.

THEOREM 3.3. EMITLg o and EMITL are equally expressive over
timed words.

Proor. We explain in detail below how to write the EMITL for-
mula Ac c11)(@1, - - -, @n) Wherec > 0,and 1, . .., ¢n € EMITLj,00
as an EMITLg,« formula; the other cases, such as (c,c + 1] and
[e, ¢ + 1], are similar.

First consider ¢ = 0. If (p, i) |= A(q,1) for p = (01, 11)(02, 72) - - -
and i > 1, the finite word a; ... ay accepted by A must be at
least two letters long. This again is enforced by A" in Fig. 7: let
A2 be the product of A and Al Then, let A? be the automaton
obtained from A? by adding ~ X5 T (X is the standard MITL ‘next’
operator [41]) to all the transitions (s, sé) — (s, sé) and Xso T to
all the transitions (s, sé) — (s, s%) as conjuncts (in doing so, extend
the alphabet as necessary). It is not hard to see that (p, i) |= ﬂ3<1
in the two possible situations: (i) 741 — 7; > 0 and (ii) 7j — 7; > 0
for some j > i+ 1landztp —7; = 0forall {,i < ¢ < j. The other
direction ((p, i) = ﬂ3<1 = (p,i) |= A(q,1)) is straightforward. It
follows that the equivalent EMITLg, o formula is ‘7‘3<1'

Now consider ¢ > 0. Suppose that (p,1) |= A c41) for p =
(01,71)(02,72)... and i > 1, let k > i be the minimal position
such that 7p — 7; € (¢, ¢ + 1) and there exists g; . . . a; € [A] with
(p,€) = @a, forall £,i < € < k (since at most one of ¢, ..., ¢pn
may hold at any position, we fix g; ... ar below). Consider the
following cases (note that they are not mutually disjoint):
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Fig. 12: An illustration of &3 in the proof of Theorem 3.3.

Fig. 10: Case (i) in the proof of Theorem 3.3; solid boxes in-
dicate when A accepts the corresponding prefix of a; . .. a. €4,

1 -0

seF @

[ eeeennn T TR S I TR B S SO Fig. 13: An illustration of ¢° in the proof of Theorem 3.3.
i ! aj o !
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Fig. 11: Case (ii) in the proof of Theorem 3.3.

a; . ..ax) while C$ | may hold arbitrarily often in [z;, 7; +¢],
the number of positions ¢, i < £ < j satisfying

PO EC AP L+1) (Cgl V(C:, As€F)) )

is at most ¢ (since any two of such positions must be sep-

(i) There exists a .maxlma{] i< J<ksuchthat (a) 7 —7; = 1 arated by more than 1 time unit). We define a family of
and (b) there is no ¢, j < £ < k such that a; ...a, € [A] daliti m h th h locati
ith (p. ) forall ¢, 1 < ¢ < £ (Fig. 10): we take a automata modalities {E™ | m > 1} such that each location
WL, . Pap LT & 10 of &™ is of the form (s,d) withs € Sand 1 < d < 2m;
disjunction over all possible s € S such that A reaches s . . . .
. see Fig. 12 for an illustration. Each transition updates the
after reading a; . .. a; and enforce that 7; — 7; € (c — 1,¢)
. ) s-component as A would, enforces the formula labelled on
(which we can, by the IH), A reaches a final location from s . .. .
. the corresponding transition of A and, additionally, the
by readingajy1 ... ag,and 7p. —7; = 1; thanks to (b), the last o . .
o Lo ko . . formula as labelled in Fig. 12 (with s being the target loca-
condition, which is otherwise inexpressible in EMITLg, co, . . ..
. . ’ tion of the corresponding transition of A). The formula
can be expressed as a conjunction of two formulae labelled s /s T . .

. . ¢® (illustrated in Fig. 13), which also follows A with an
with < 1 and > 1. To this end, we use 8%? and C® as hat th n . .
defined in the broof of Theorem 3.2: we have s-component, checks that the next position either satis-

P - fies (a) s € F, or (b) C;I holds continuously until s € F
(p.)) E o' = v B(Sﬁl 0) eventually holds. Let & be obtained from &™ by ‘inlin-
ses ing’ ¢°: removing the leftmost locations of ¢* and merge
where ¢ = Ci LA Ci » the middle locations of ¢* with the rightmost locations of
(ii) There exists j, i < j < ksuchthatty —7j < 1,7j—17; € &™. Apparently, &™ and E™ are equivalent if there is no
(¢c—1,c],and a; ...aj € [A] with (p, ) £ @q, for all £, constraing interval—the only difference between them is
i < ¢ < j(Fig. 11): let D° be the automaton obtained from which position is ‘timed’. Now suppose that the number of
A in the same way as C* except that we do not remove positions £, i < € < j satisfying (2) is m. Since j is the last
outgoing transitions from the final locations. Regardless of these positions, we have (p, i) |F &7, ;. On the other
of whether there is a event at 73 — 1, it is clear that every hand, as there are only m—1 such positions in [z;, 7; +¢— 1],
position ¢ with 7, — 7; € (¢ — 1, ¢] must satisfy C(SO 1 where we have (p, i) |= =E™ <._1. By the above, we have
s is the location of A after reading a; . .. ap. We have (p,i) = q04 _ \/ (éTcﬂ A _‘8m§c—l) )
. S,
(p, 1) F (Pz = ﬂ(c—l,c] A= \/SB(CfLC] lsmsc
*€ (v) There is no event in (z; + ¢ — 1, 7; + ¢]: We have
where ¢ = =D5 .
©D (p,i) [ ¢° = ~Fe_rq TAQ
(iii) There exists j, i < j < ksuchthatry —7; <1,7j-17; € P E @ =T e-1,c] @ -
(¢c—1,c], but thereisno ¢, i < { < k such that (a) 7p — 7; € If ¢ = 1 then ¢’ can simply be taken as A(o,2)» which is
(C, —1Lcland (b) a;...ac € [A] with (p, ) |= ¢q,, for all equivalent to .?13<2 by the same argument as before. If
. ’
U',i <" < : we have ¢ > 1, then ¢’ can be taken as
N = 23— S, ¢ ~
(D) ¢° = A1, A \/ Bliel \/ (EM A=EM<ca) Vo
s€s 1<m<c-1
— S
where ¢ = D(O,l)' where ¢’ is
(iv) There exists a maximal j, i < j < k such that 7. — 7; > 1,

7j—7; € (c—1,c], and thereisno ¢, j < £ < k such that (a)
1¢—7; € (c—1,cland (b)a; .. .ap € [A] with(p, ') |= ¢a,
forall ¢/, i < ¢’ < ¢: observe that (provided that s’s are
correctly instantiated to the locations A reaches as it reads

V(e AE <o) Vo

1<m<c-2

- F(L‘—Z,c—lj TA

Intuitively, the former part of ¢’ is used to handle the case
when there is (at least) a event in (7; + ¢ — 2, 7; + ¢ — 1], and



the former part of ¢’ is for (z; + ¢ — 3,7; + ¢ — 2], and so
on.
We omit the other direction as it is (more or less) straightforward.
The equivalent EMITLg o formulais o' vV ¢? v @3 v o? v ¢®. O

4 FROM EMITLy . TO TIMED AUTOMATA

Embedding EMITL formulae into OCATAs. We give a translation
from a given EMITL formula ¢ over AP (which we assume to be
in negative normal form) into an OCATA A, = (Zap, S, 50,9, F)
such that [Ay] = [¢]. While this mostly follows the lines of the
translation for MTL (and MITL) in [16, 41], it is worth noting that
the resulting OCATA A,, is weak [36, 37] but not necessarily very-
weak [24, 44] due to the presence of automata modalities. The set
of locations S of A, contains (i) siMit. (ij) all the locations of A for
every subformula A(@1, ..., ¢n); (iii) all the locations of A for
every subformula A(¢1, . . ., ¢n). The initial location sy is s, and
the final locations F are all the locations of A for every subformula
&;II((pl, ..., ®n). Finally, for each o € Y p, J is defined inductively
as follows (let A = (2, s s, 67 FA) with 27 = {1,.. ., n}):
8(s™ o) = x.8(p, ), (T, 0) = T,and 8(L,0) = L;
é(p,0) = Tifp € 0, 5(p,0) = L otherwise;
8(-p,0)=Tifp ¢ o, 5(=p,0) = L otherwise;
8(p1 V 92,0) = 8(p1,0) V S(p2,0), and 5(p1 A 92,0) =
8(p1,0) A 5(p2,0);

o 8(Ar(g1.....¢n)0) = x.5(s3",0);

o 5(sM,0) = V gesa (5((/),1,0)/\55{[31‘?{ — sl‘?[Vx € I](sﬂ,a))
where s € $7 and Sﬂ[s? — sg{ V x € I] is obtained
from 8§71 by substituting every sF‘ﬂ € FA with sF“ﬂ Vxel
for some subformula Ar(¢1, ..., ¢n);

o 5(Ap1.....¢n).0) = x.5(s3", 0);

o 5(7.0) = Ngesa (8(pa, oWVOA s — sfnx ¢ (57, a)
where s™ € $7 and Sﬂ[sFﬂ — sFﬂ A x ¢ I] is obtained
from 67 by substituting every sFﬂ € FA with sFﬂ Ax ¢l

< Pn)-

for some subformula Ay (g1, . .

PROPOSITION 4.1. Given an EMITL formula ¢ in negative normal
Jorm, [Ay] = [o].

We now focus on the case where ¢ is an EMITLy,  formula
and give a set of component TAs whose product ‘implements’ the
corresponding OCATA A,. As we will need some notions from [17],
we briefly recall them here to keep the paper self-contained.

Compositional removal of alternation in ¢. Let ® be the set of
temporal subformulae (i.e. whose outermost operator is Aj or Ay)
of . We introduce a new atomic proposition py, for each § € @
(the trigger for /) and let APg = {py, | ¥ € ®}. For a timed word p’
over ApuAP,, We denote by projap(p’) the timed word obtained
from p’ by hiding all p ¢ AP (i.e. p € APg). For a timed language £
over AP U APg we write projap(L) = {projap(p’) | p’ € L}. Let
be the formula obtained from an EMITLg, o formula ¢ (in negative
normal form) by replacing all of its top-level temporal subformulae
by their corresponding triggers, i.e. J is defined inductively as
follows (where p € AP):

o Y1 Ay =1 Ay

o Y1 Vi =1V
e =y whenyis T or L or p or —p;

oy = py when ¢ is Ar(e1, ..., ¢n) or A1, s Pn)-

Note that i is simply a positive Boolean combination of atomic
propositions. In this way, we can turn the given EMITLg, o formula
¢ into an equisatisfiable EMITLg, e formula ¢” over AP U APg: the
conjunction of @,

G(p¢ ﬂﬂ](m,...,(p_n)),

{yely=Ar(p1,---»¢n)}

and the counterparts for {y € ® | ¢ = ﬁl((pl, ...,¢n)}. Finally,
we construct the component TAs C™ (which accepts [¢]) and
CY (which accepts, say, [G (by = Ar(@1,....on))]) for every
Y € ®. The timed language of ¢’ is accepted by the product
Cinit x [Tyeo CY and, in particular, proj,p([C™ x [Tyco cv)) =
[Ap]. Intuitively, py, being T (the trigger py, is ‘pulled’) at some
position means that the OCATA A, spawns a copy (several copies)
of A where i = A ( = Aj) at this position or, equivalently, an
obligation that Aj (Ar) must hold is imposed on this position.

Component TAs for automata modalities. As the construction
of C™Mit is trivial, we only describe the component TAs cY for
Y = A(e1,...,0n) and ¥ = Ap(@1,...,¢n) where I = [0,c] or
I = [c, o) for some ¢ € Nx¢; the other types of constraining inter-
vals are handled similarly. The crucial observation that allows us
to bound the number of clocks needed in CY is that two or more
obligations, provided that their corresponding copies of A are in
the same location(s) at some point(s) and I is a lower or upper
bound, can be merged into a single one. Instead of keeping track
of the order of the values of its clocks, C 4 non-deterministically
guesses how obligations should be merged and put them into suit-
able sub-components accordingly. To ensure that all obligations are
satisfied, we use an extra variable ¢ such that ¢ = 0 when there is
no obligation, £ = 1 when there is at least one pending obligation,
¢ = 2 when the pending obligations have just been satisfied and a
new obligation has just arrived, and finally £ = 3 when we have to
wait the current obligations to be satisfied (explained below). In
all the cases below we fix % = Xapuap, and |SA| = m. We write

gsre 2, S8 where S5 and S%! are two subsets of ST, iff S is
v
a minimal set such that for each s7>1 € S5¢, there is a transition

sA1 Pa, (A2 (where a € {1,...,n}) of A with 0 | ¢, and

o
s7b2 ¢ 58! Similarly, we write $5¢ — S%! iff $%8* is a minimal set
A

.\ Pa
such that for each s™! € $5¢ and each transition s7+1 —% 7.2

(where a € {1,...,n}) of A, either s72 € S8 or ¢ |= 7g.

¥ = A<c. Let cY = (2,S,50,X, A, F) be defined as follows
(to simplify the presentation, in this case we assume that A only
accepts words of length > 2):

e Each location s € S is of the form (£1,S1,...,¢m,Sm)
where £; € {0,1,2} and S; C SAforallj e {1,...,m};
intuitively, (£;,S;) can be seen as a location of the sub-
component C;f//;

e s50=10,0,...,0,0);

e X ={x1,...,xm}



e ¥ = {F,...,Fy} where F; contains all locations with
fj =0or fj =2;

e Ais obtained by synchronising the transitions (¢, S) 297,
(¢’,S”) of individual sub-components (we omit the sub-
scripts for brevity):

- pl/,éo;f’=O,€:0;5’=(2),5=(Z);g='l';ﬂ=(2).

- by ¢o;t' =1,(¢ {1,2};5%5’;921';)\.:(2).

—pp ol =0,0e{1,255 =0,5={s"), s} |
8(s7, o) for some s}? € Fﬂ;g =x<cA=0.

_ L= — 0 A O g = T
py €0l 1, ¢ 0,{30}75,5 0;9=T;
A={x}.

- py €T ¢’ =1,¢ € {1,2}; S’ is the union of some S’
such that S % S’ and """ with {soﬂ} % §"g="T;
A=0.

- py el =2,0e {12} {s]) % s, S = {s7},
sg{ l= 6(s7, o) for some sg[ €eFlg=x<c )=
{x}.

If py € o, then exactly one of the sub-components takes a
‘py € o’ transition while the others proceed as if py, ¢ 0.

o))

Proor skeTcH. Let ¥/ = G (P'# = A<c(@1,...,9n)) and Ay
be the equivalent OCATA obtained via Proposition 4.1. If a timed
word p = (04, 7;)i>1 satisfies ¢/, there must be an accepting run G =
(V, =) of Ay, on p; in particular, a copy of A is spawned whenever
py holds. Now consider each ‘level’ L; = {(s,v) | (s,v,i) € V} of
G in the increasing order of i. If H{(s7,0) | s, v) € Li}| < 1for
everys? € S inC Y we simply put each corresponding obligation
into an unused sub-component (with £ = 0 and S = 0) when it
arrives, i.e. py holds. If[{(s?*,v) | (s?,v) € L;i}| > 1forsome s? €
§A

ProposiTION 4.2. [CY] = [G (py = A<c(pr1.. ..

, since the constraining interval [0, c] is downward closed, the
DAG obtained from G by replacing all the subtrees rooted at nodes
(s7, v, i) with (s7, 0™ ), where v™ = max{v | (s7,v) € L;},
is still an accepting run of Ay; in C ¥ this amounts to putting
the obligations that correspond to nodes (s, v, i) into the sub-
component that holds the (oldest) obligation that corresponds to
(sﬁ, 0™ i), We do the same for all such sA obtain G/, and start
over from i + 1. In this way, we can readily construct an accepting
run of C¥ on p. The other direction obviously holds as each sub-
component Cf// does not reset its associated clock x;j when py € o
and ¢; € {1,2}, unless the (only remaining) obligation in S; is
fulfilled right away. In other words, CJ‘.// adds an obligation that
is at least as strong to S; without weakening the existing ones in

Sj. ]
Y = Asc. Let cY = (2,S,50, X, A, F) be defined as follows:

e Eachlocations € Sisofthe form (£1,51,T1 ..., €m,Sm, Tm)
where {; € {0,1,2,3}and S;, Tj C sA forallj € {1,...,m};
intuitively, ((j, Sj, Tj) can be seen as a location of the sub-
component C i

e 50=40,0,0,...,0,0,0);

o X ={x1,...,Xm};

o ¥ = {Fi,...,Fnu} where F; contains all locations with
4 j=0or 4 =2
e Ais obtained by synchronising (in the same way as before)

29,7
(¢,8,T) 294, (¢’,S’,T") of individual sub-components:

—p¢eZa;f':0,520;5'ZO,S:(Z),T'Z(D,TZQ);

g=T;A=0.
—p¢,¢o-;£”=1,€e{1,2};5€—>5’,T’=(Z),T=(D;
g=T;A=0.

—p¢¢0;€':3,523;8%5',7"%]“';9:T;AZO.

—py gl =00e{12:8 =0,5={s")s] F
5(sﬂ,a)forsomes? EFAT =0,T=0;9=x >c;
A=0. Y

- py ¢ ol =2,=3;T 75’,5 = {sﬂ},sg{ =
5(s?, o) for some s? EFAT =0;9g=x > ¢
A= {x}.

—p¢ea;t”:1,6’:0;{567(}%5',520,7"'
T=0;9g=T;A={x}.

- py €T ¢’ =1,¢ € {1,2}; S is the union of some S”’
such that S —[\j—> S’ and S’’’ with {séﬂ} —(\j—> ST =0,
T=0;9=T;A={x}.

. — — 1. o Ay © — -

—pl/,ea,f’—3,€—1,575’,{so }7T’,T—(7),
g=T;A=0.

I
=

- by ecr;f’=3,€=3;5%S’,T’istheunionofsome

T’ such that T % T’ and T""" with {sgq} % T,
g=T;A=0.

-py et =20e {12k {57 —‘} s, S = {s7},
s;:"l = 6(332[,0') for some sf‘ eFA T =0, T =0,
g=x2>cA={x}.

- py €T ¢’ =2,¢=3;S is the union of some S”’ such
that T % S’ and S”” with {soﬂ} % .8 = {s},
sFﬂ I= 8(s7, &) for some sfl eFA T = 0;9=x2>c¢
A={x}.

ProposiTION 4.3. [CY] = [G (Py = Axc(@1,- .-, 0n)]-

ProoF skETCH. Similar to the proof of Proposition 4.2, but since
[c, 00) is upward closed, we replace all the subtrees rooted at nodes
(s, v, i) with (s7, ™" 1), where ™" = min{v | (s7,v) € L;};
inCY, we still put the obligations that correspond to nodes (s7, v, i)
into the sub-component that holds the (oldest) obligation that cor-
responds to (sﬂ, 0™ §). There is, however, a potential issue: since
we reset xj whenever the trigger py is pulled and ¢’ is chosen,
it might be the case that x; never reaches c, i.e. the satisfaction
of the obligations in S; are delayed indefinitely. Following [17],
we solve this by locations with £; = 3 such that, when entered,
we stop resetting x; and put the new obligations into T; instead;
when the obligations in S; are fulfilled, we move the obligations in
Tj to Sj and reset x;. The other direction obviously holds as each

sub-component Cf resets x; when py, € o and ¢; € {1, 2}, unless



it goes from £; = 1 to {; = 3. In other words, C}// adds the new
obligation to Sj while strengthening the existing ones in S;. ]

Y = A<c. Let C¥ = (3,5, 50, X, A, F) be defined as follows:

e Each location s € S is of the form (Si,...,Sm+1) where
S; € SA for all j € {1,...,m + 1}; intuitively, S; can be
seen as a location of the sub-component C]]f//;
so=4(0,...,0);
X =A{xt,.... Xm+1};
F =0, i.e. any run is accepting;
A is obtained by synchronising (in the same way as before)

0,9,
s 222, ¢ of individual sub-components:

—pll,éa;S':O,S:O;g:T;A:(Z).

—pll,éa;S—i—)S’,S’ﬂFﬂ=(Z);g=xSc;A=(Z).

-py¢oS =0g=x>cA=0.

- Py ea;{s(‘)ﬂ}%s’,S’OFﬂ =0,S=0;,9=T,;
A= {x).

- py € 055 is the union of some S”’ such that S % s

and S””” with {saﬂ} % $" .S NFA =0;9=x<c

A={x}.
- py €T {s(‘)ﬂ} % S, 8’NFA = 0;9=x>c;A={x}.
ProrosiTiON 4.4. [CY] = [G by = A<c(@t, ... om)]-
PROOF SKETCH. Let /' = G (py, = A<c(@1,- .., ¢n)) and Ay

be the equivalent OCATA obtained via Proposition 4.1. Consider
each level L; = {(s,v) | (s,v,i) € V} of an accepting run G =
(V,—) of Ay, on p = (04,71)i>1 in the increasing order of i. In
CY, whenever the trigger py, is pulled, we attempt to put the corre-
sponding obligation into an unused sub-component (with § = 0)
or a sub-component that can be cleared (with x > c); if this is not
possible, since for every s € S all the subtrees rooted at nodes
(s?,v,1) can be replaced with the subtree rooted at (s, v™", i)
where ™" = min{v | (s7,v) € L;}, at least one sub-component

C}/I becomes redundant, i.e. all of its obligations are implied by the
other sub-components Cw, k # j. A consequence is that the obli-
gations in the sub-component CZ/ with the minimal non-negative

value of xj — xj can be merged with the obligations in C}//, freeing
up a sub-component for the current incoming obligation. This can
be repeated to construct an accepting run of C ¥ on p. The other
direction holds as each C}/l adds the new obligation to S; while
strengthening the existing obligations in S;. O

Y= ﬁzo LetCY = (2,8, 50, X, A, F) be defined as follows (for
simplicity, assume that ¢ > 0):

e Each location s € S is of the form (S1,T1 ..., Sm+1, Tm+1)

where S;,Tj C SAforallje{1,...,m+1); intuitively,

(Sj, Tj) can be seen as a location of the sub-component

C;.ﬁ;
® 50=(0,0,...,0,0);
o X ={x1,....Xm+1}5;

e 7 =0, ie. any run is accepting;

o A is obtained by synchronising (in the same way as before)
g, A
(¢,8,T) 297, (¢’,S’, T") of individual sub-components:

- pw§E0';S'=(D,S=(D,T'=0,T=0;g='l’;/1=0.

- py éa;S':@,S:@,T%T',T’OFﬂ =0,g="T;
A=0.

- Py oSS T =0.T=0g=x<ci=0.

_ ¢ % o O, 71 s A g = .
pl/,eéa,STS,TT)T,TﬂF 0;9g=x<c
A=0.

- py ¢ o S’ = 0, T’ is the union of some T’ such

that S —‘} T” and T"” with T —‘} T, T N FA = 0,

g=x2c1=0.
- R A il 4 = /= = (: = R
pwea,{SO}TS,S 0, 7" =0,T=0,9g=T;
A={x}.

LAy C — o A — .
—pll,ea,{so}—/\—>S’,S—(Z),T—A—>T’,T’HF =0
g=Ti;A={x}

- py €03 S’ is the union of some S”” such that S % S”

andS”’with{séﬂ}—i—)S”’,T’=(2),T=Q);g=x<c;
A=0.
o
- py € 055" is the union of some S’ such that § — s

and S’ with {soﬂ} —Z—> ST {_) T, T N FA = 0;
g=x<cA=0.

- py €T {soﬂ} % S’, T’ is the union of some T’” such
that S % T’ and T"” with T % ", 7' nFA = 0,
g=x2cA={x}.

ProposiTION 4.5. [CY] = [G (py = As (@1, om)]-

PROOF SKETCH. As in the proof of Proposition 4.4, whenever py,
is pulled in C¥, we attempt to put the corresponding obligation into
an unused sub-component (with S = 0) or a sub-component that can
be cleared (if x > ¢, we move the obligations in S to T and let them
remain there). If this is not possible, since for every s € s all the
subtrees rooted at nodes (s™, v, i) can be replaced with the subtree
rooted at (s, ™, ) where v™% = max{v | (s}, v) € L;}, some

C;f// becomes redundant, and the obligations in the sub-component
CZ with the minimal non-negative value of x; — x; can be merged

with the obligations in CJlfl/, freeing up a sub-component for the
current incoming obligation. This can be repeated to construct an
accepting run of C ¥ on p. The other direction holds as each Cy

adds an obligation that is at least as strong to S; without weakening
the existing obligations in S;. O

Finally, thanks to the fact that each location of C¥ can be repre-
sented using space polynomial in the size of A, and the product
cinitx [Tyes C ¥ need not to be constructed explicitly, we can state
the main result of this section.

THEOREM 4.6. The satisfiability and model-checking problems for
EMITLo,c over timed words are PSPACE-complete.



COROLLARY 4.7. The satisfiability and model-checking problems
for EECL over timed words are PSPACE-complete.

5 CONCLUSION

It is shown that EMITLg, and EECL are already as expressive
as EMITL over timed words, a somewhat unexpected yet very
pleasant result. We also provided a compositional construction
from EMITLg, to diagonal-free TAs based on one-clock alternat-
ing timed automata (OCATASs); this allows satisfiability and model
checking based on existing algorithmic back ends for TAs. The nat-
ural next step would be to implement the construction and evaluate
its performance on real-world use cases. Another possible future
direction is to investigate whether similar techniques can be used
to handle full EMITL or larger fragments of OCATAs (like [21]).
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A PROOF OF PROPOSITION ??
Proor. We first show that [A,] C [¢]. Suppose that A, =

(%, 8, 50,0, F) hasan acceptingrun G = (V, =) on p = (01, 71)(02, 72) - - -

andlet L; = {(s,v) | (s,v,i) € V}. We claim that:

(1) Foreachs™ e 5/ where A occurs in a subformula A (¢, . . .

andi > 1,L; = sA implies that there is a finite rooted
DAG G’ = (V/,—’) with V/ € S x Nsg, (s7, i) as the
root, and for each vertex (s, k) either (a) k > i, v+(rp —7;) €
I,and s € FA, or (b) there is some ap,; € 27 such that
Li+1 Fos(rpsi-1;) 9(Pag,;> Ok+1) and there is a model M
of the formula 67(s, ag1) such that (s,k) =’ (s’,k + 1)
for every state s’ in M.

andi > 1,L; |=¢ s™ implies that there is a rooted DAG
G = (V', ="y with V/ € $AxNx, (s7, i) as the root, and
each vertex (s, k) satisfies (a) if k > i thenv + (1. — ;) € I
implies s ¢ FA, and (b) for every ag,; € =7, either
L1 Fot(ress—1i) 9(@ag,,» Ok+1) or there is a model M

of the formula § A(s, a1 ) such that (s, k) —’ (s’,k + 1)
for every state s’ in M.

We prove (1); (2) can be proved similarly. First note that every
branch labelled with locations of A must terminate. If (s7, v, i)
is a leaf with respect to S? in G, we must have N Eot(rim-1)
pa,0ir1) A 57‘[3? — s};ﬂ Vv x € I|(s?, a) for some a € 37 and
N C (S\ ™) x Rx¢ such that N C L;;1. It follows that either (i)
N Eos(rin-z;) 6(0as 6i+1) A (7, a) or (i) v+(ri41—7;) € T and
NUM Eyi(ri-1;) 0(@as0iv1) A 5A(sA, a) for some nonempty
M C FA x {0+ (riy1 — 11)}. In case (i), (b) trivially holds. In
case (ii) note that N |=;,4(7,,,-,) 6(¢a, 0i+1), and let {(s",i+1) |
(s’,v") € M} be the successors of (s7, i) in G’: each of them satisfies
(a). If (s7,v,i) is not a leaf with respect to S in G, we have
NUM Eyi(ryy-1;) 0(@as0it1) A 531{[31_‘?{ — sl‘? vV x € I|(s™, a)
for some a € 3/, N C (S \ S™) x Rxg such that N C L;;1, and
nonempty M C SAx {v+(riy1—1;)} such that M C Ly 1. It follows
that either (i) N UM |=1(r,,,-1,) 0(@a.0ir1) A 5 (s7, @) or (i)
v+(tis1 1) € Tand NUM' =y (1, —1y) 8(0ar 0i41) ASTU(s 7, a)
for some M’ > M with M’ \ M € FA' x {v + (r;4+1 — ;)}. In case
@), let {(s’,i+ 1) | (s’,v’) € M} be the successors of (s7, i) in G’;
applying the TH on Li+1 Fyi(r,,,—,) § for all such s” yields the
corresponding sub-DAGs, which we combine to obtain G’. Case (ii)
is similar.

We now claim that for each subformula ¢y of p and i > 1, L; |=o
O(y, o) implies p, i |= . The cases of atomic propositions, negation,
and Boolean operators are trivial. For ¢ = A(¢1,...,¢n) asL;i o
5(36(1(, i) we have, for some a € 37, (i) L; o 6(¢a,0i) and (ii)
L; =o 591[3? — s‘Fﬂ Vx e I](soﬂ, a). From (i) and the IH we obtain
p.i | ¢q. From (ii) we deduce that there is M C (S7' \ F7) x {0}
such that M C L;, and M’ 2 M such that M’ \ M C F# x {0}
and M’ |=¢ Sﬂ(séﬂ, a). Applying (1) on every s € M and the IH

For each s € S where A occurs in a subformula A (o1, ...

(note that by the definition of 6, we have Ly 41 |Fo 8(@a,,> 0k+1) if
Lik+1 For(rps-1i) (@ay.,» 0k+1)) and combining sub-DAGs gives
p,i|= . The case of y = Ar(g1, . . ., ¢n) is analogous.

Finally, as s € Lo, we have L; |=7, x.6(¢, o1), which is equiv-
alent to Ly =g (¢, 01). It follows that p, 1 |= ¢; this finishes the
proof of [A,] € [e].

For the other direction, observe that A~y = (Ay)° (up to renam-
ing of locations) where (Ay)¢ is obtained from A, by dualising
the transition function and swapping the sets of final and non-final

, pulocations. The desired result ([¢] C [Ayp]) immediately follows

from the fact that Ay, is a tree-like OCATA [16]. O
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