
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Moore-Machine Filtering for
Timed and Untimed Pattern Matching

Masaki Waga and Ichiro Hasuo

©2018 IEEE. DOI: 10.1109/TCAD.2018.2857358

Abstract—Monitoring is an important body of techniques in
runtime verification of real-time, embedded and cyber-physical
systems. Mathematically, the monitoring problem can be formal-
ized as a pattern matching problem against a pattern automaton.
Motivated by the needs in embedded applications—especially the
limited channel capacity between a sensor unit and a processor
that monitors—we pursue the idea of filtering as preprocessing for
monitoring. Technically, for a given pattern automaton, we present
a construction of a Moore machine that works as a filter. The
construction is automata-theoretic, and we find the use of Moore
machines particularly suited for embedded applications, not only
because their sequential operation is relatively cheap but also
because they are amenable to hardware acceleration by dedicated
circuits. We prove soundness (i.e. absence of lost matches), too.
We work in two settings: in the untimed one, a pattern is an NFA;
in the timed one, a pattern is a timed automaton. The extension
of our untimed construction to the timed setting is technically
involved, but our experiments demonstrate its practical benefits.

Index Terms—Monitoring, filtering, timed pattern matching,
Moore machine, timed automaton, real-time system

I. INTRODUCTION

A. Monitoring and (Timed) Pattern Matching

THE COMPLEXITY of cyber-physical systems (CPS) has
been rapidly growing, due to increasingly advanced digital

control that realizes not only enhanced efficiency (e.g. in cars’
fuel consumption) but also totally new functionalities such as
automatic driving. Getting those systems right is, therefore, a
problem that is as important, and as challenging, as ever.

Due to such complexity of CPS, combined with other reasons
such as black-box components provided by other suppliers,
formal verification in the conventional sense is often hard to
apply to real-world CPS. This has made researchers and prac-
titioners turn to so-called lightweight formal methods. Runtime
verification is a major branch therein, where execution traces
of a given system is checked against a given specification [1].
Various algorithms for monitoring have been proposed for this
purpose.

Mathematically speaking, one common formalization of the
monitoring problem is as the problem of pattern matching.1 In

This article was presented in the International Conference on Embedded
Software 2018 and appears as part of the ESWEEK-TCAD special issue.

This work is supported by JST ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), and JSPS Grants-in-Aid No.
15KT0012 & 18J22498.

M. Waga and I. Hasuo are with National Institute of Informatics, Tokyo,
Japan, and SOKENDAI (the Graduate University for Advanced Studies),
Kanagawa, Japan.

M. Waga is a JSPS Research Fellow.
1Another common formalization is as what we call the pattern search

problem. Pattern search is easier than pattern matching, but is less informative.
Their comparison is at the end of §I.

case an execution trace is given by a word w = a1a2 . . . an,
the expected outcome is the set

Match(w, pat) := {(i, j) | w|[i,j] |= pat}
(where w|[i,j] = aiai+1 . . . aj)

(1)

of pairs (i, j) of indices, the restriction of w to which satisfies
the given pattern pat. The pattern pat can be given by a string,
a set of strings, a regular expression, an automaton, etc.

Example I.1. Consider a word w1 = abb bbb aab and a pattern
given by a regular expression A1 = aa∗b. There are three
matches, and we have Match(w1,A1) = {(1, 2), (7, 9), (8, 9)}.

More interesting in the CPS context is the timed version of
pattern matching. In one common formalization, an execution
trace is given by a timed word—a sequence of time-stamped
characters such as w2 = (a, 0.1)(b, 2.5)(a, 3.5)(b, 4.8). A
pattern pat is then specified by a timed automaton (TA) A
from [2], and we compute the set

Match(w,A) :=
{

(t, t′) ∈ R2
≥0
∣∣ t < t′ and w|(t,t′) ∈ L(A)

}
(2)

of intervals (t, t′), the restriction of w to which is accepted by
the TA A. Unlike the untimed setting, a TA A allows one to
express various real-time constraints, which leads to a much
more refined analysis of execution traces of CPS.

Example I.2. Consider the timed word w2 =
(a, 0.1)(b, 2.5)(a, 3.5)(b, 4.8), and the pattern “b occurs
within two seconds after a does” (a TA for a pattern that is
essentially the same is in Fig. 9). Any match contains the
second succession of a and b—note that the first succession is
too far apart. One such match is given by w2|(3,5); but there
are uncountably many such matches. The match set can be
expressed symbolically as {(t, t′) | 2.5 ≤ t < 3.5, 4.8 < t′}.

Despite its obvious applications in various stages of CPS
design and deployment, the study of timed pattern matching
was started only recently [3]–[8]. Consequently, the use of
timed pattern matching is quite limited in the current industry
practice: for example, the existence of algorithms that can
match against temporal specifications is not commonly known.

B. Remote Monitoring in Embedded Applications

In this paper, we propose filtering for (timed and untimed)
pattern matching. It is preprocessing that is applied to an input
word.

Our motivation comes from embedded applications. In em-
bedded systems—an important aspect of CPS—it is common

ar
X

iv
:1

81
0.

09
63

3v
2

 [
cs

.F
L

]
 1

1
Ju

l 2
01

9

https://doi.org/10.1109/TCAD.2018.2857358

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

Fig. 1. Common hardware architecture for embedded monitoring

exec. trace
(a word, or

a timed word)

//filter MN,A
filtered word // pattern matching

against pattern A

matching
result

(intervals)
//

Fig. 2. Proposed monitoring workflow with filtering

w

I
I ...
I

I
I ...
I ...

I
I ...
I

Fig. 3. Back and forth in pat-
tern matching

that a sensor unit and a processor (that conducts the com-
putational task of monitoring) are placed physically apart.
Moreover, the communication channel between them often has
a limited capacity. See Fig. 1.

An example of such a situation is in a modern automobile,
in which a sensor unit in the engine gathers data and sends
them to a processor that is far apart (to avoid the engine’s
heat and vibration, for example). They are interconnected by
a controller area network (CAN), which is subject to severe
performance limitation due to cost reduction. Another example
is in an IoT device like a connected electronic appliance and a
connected car. It continually sends its own status to a server,
that is set up in the computer cloud and monitors the device.
The wireless communication channel between them is limited
e.g. by the battery capacity of the device.

C. Filtering for (Timed) Pattern Matching

A natural idea in such remote monitoring situations is to try
to reduce the amount of data that is sent from the sensor unit
to the processor, in such a way that does not affect the result
of monitoring. Many sensor units come with processors within,
and we can use them for such preprocessing. We assume that
the preprocessor (within the sensor unit, Fig. 1) is much slower
than the processor that conducts actual monitoring; therefore
the preprocessing must be computationally cheap.

This leads to our proposed workflow shown in Fig. 2. There
we apply computationally cheap filtering to the input word, in
order to reduce the load on the communication channel to the
processor, and to reduce the load on the processor as well.

D. Moore Machines as Filters

In this paper we focus on two settings of monitoring: (1)
in the untimed setting, an execution trace is a word w ∈ Σ∗

and a pattern is a nondeterministic finite automaton (NFA) A
over Σ; and (2) in the timed setting, an execution trace is a
timed word and a pattern is a timed automaton (TA) A. Our
technical contribution is the construction of a filter MA,N
realized as a Moore machine, based on a pattern automaton
A and a parameter N ∈ N called the buffer size. Moore
machines are a well-known model of state-based computation:
it is an automaton with an additional state-dependent output
function. It operates in a nicely sequential and synchronous
manner, reading one input character, moving to a next state
and outputting one character. This feature is especially suited

to the logic synthesis of digital circuits [9], opening up the way
to hardware acceleration by FPGA or ASIC.

Such sequential operation of Moore machines is in stark
contrast with that of pattern matching. Since a pattern is given
by an automaton A in our settings, the length of matches
(i.e. |w|[i,j]| = j − i + 1 such that w|[i,j] ∈ L(A)) is
not fixed. Therefore we have to try matching windows of
different size at different positions, going back and forth over
the input word w (see Fig. 3). This exhibits a qualitative
difference between the (sequential) filtering task conducted
by the (slower) preprocessor, and the (back-and-forth) pattern
matching task conducted by the (faster) main processor. Our
construction yields an (untimed) Moore machine as a filter
MA,N , even in the timed setting.

The output of our filter MA,N is the same as input (timed)
word w, except that some characters are masked by a fresh
character ⊥. For example: w = abb bbb aab is turned into
ab⊥⊥⊥⊥ aab under the pattern A = aa∗b. By the binary
representation of the length of successive ⊥’s, the data size
can be reduced exponentially. Moreover, in case we are only
interested in the matched subwords w|[i,j] (but not in the
indices i, j), we can further suppress successive ⊥’s into one
⊥. (Note that removing all ⊥’s after the filtering stage can
result in spurious matches in the pattern matching stage, see
Fig. 2.)

Our Moore-machine filter MA,N is constructed based on a
pattern automaton A and a positive integer N for the buffer
size. The parameter N allows a user to choose the balance
between the computational cost of filtering (the greater N is,
the more statesMA,N has) and the size of the filtered word (the
greater N is, the more ⊥, i.e. the smaller the filtered word is).
This flexibility makes the algorithm suited for various hardware
configurations.

We have implemented our construction; we present our
experiment results for the timed setting (which is harder). Our
examples come from the automotive domain. We observe that
for realistic pattern TAs A and input timed words w, the filtered
words can be 2–100 times shorter than the original word w.
We also experimentally confirm that running a Moore machine
MA,N is cheap. Furthermore, we observe that having a filter
(like in Fig. 2) accelerates the task of timed pattern matching
itself, by 1.2–2 times.

In the theoretical analysis of our construction, we prove
soundness: all the matches in the original input word are
preserved by filtering. We show soundness for both of the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

untimed and timed settings. We note, however, that soundness
is satisfied by the trivial (identity) filter; so soundness itself
does not speak much about the benefit of filtering. Besides
our experiments, we present some theoretical results about the
filtering performance in the untimed setting. They include the
following: completeness (in the sense that all the unnecessary
characters get masked) if L(A) is finite (this is the setting
of multiple string matching [10]); and monotonicity (bigger
N leads to better filtering results). These results also suggest
performance advantages of our timed construction since it
shares the basic ideas with the untimed one.

Our construction of filters is automata-theoretic, with two
principal steps of 1) equipping a buffer (of size N), and 2)
determinization. For the second step in the timed setting, we
employ one-clock determinization of timed automata (TA) [11,
§5.3] that overapproximates a given TA by a deterministic and
one-clock TA.

E. Contribution
Overall, our contribution is summarized as follows.
• A construction of a filter MA,N for untimed pattern

matching against A. The filter is given by a Moore
machine and thus operates in a simple, sequential and syn-
chronous way. It is also amenable to hardware acceleration
by logic circuits. The parameter N gives flexibility to a
user in the trade-off between computational cost and the
effect of filtering.

• A construction of a filter MA,N for timed pattern match-
ing. Given a timed automaton A as a pattern and the buffer
size, we construct an (untimed) Moore machine MA,N .
The construction extends the untimed version, and is more
involved, employing zone-based abstraction of the pattern
timed automaton. Given also its practical relevance, we
consider the timed construction to be the main contribution
of the paper.

• Soundness (preservation of all matches) is proved in the
untimed and timed settings.

• In the timed setting we also prove some theoretical results
about the performance of our filters.

• Implementation of the timed construction, and experi-
ments that demonstrate the benefit of our filtering con-
struction.

F. Pattern Matching vs. Pattern Search
Another mathematical formulation of monitoring—that is

alternative to our choice of pattern matching—is what we call
the pattern search problem. It asks if the match set (see (1–2))
is empty or not. Pattern search is appealing since it is easily
reduced to the membership problem. Roughly speaking, given
a pattern automaton A, one first adds a self-loop to the initial
state so that prefixes of an input word can be disregarded, and
then monitors if any accepting state becomes active. Pattern
search has been extensively studied in the monitoring context:
see e.g. [12], [13].

Pattern matching is more expensive than pattern search,
since it requires remembering indices (Fig. 3). It is never-
theless highly relevant to real-world monitoring applications—
especially to remote monitoring such as in Example I.3 below.

Note that remote monitoring is often only semi-online: a log
can arrive at a monitor in sizable chunks, in an intermittent
manner. Then it is imperative to be able to single out which
part of the received log is issuing an alert.

The relevance of pattern matching to monitoring applications
is widely acknowledged in the community, as is witnessed by
the recent proliferation of literature [3]–[6], [14]–[19].

Example I.3 (semi-online remote monitoring). As a concrete
example of remote monitoring (Fig. 1), let us imagine a semi-
connected vehicle. It keeps driving logs in its memory, and
sends them to a center over the Internet once it stops within the
range of a known wireless network. Analysis of the logs is done
in the center. A driving log is a timed word with information
on the vehicle’s position, velocity and throttle. One such timed
word w, taken from ROSBAG STORE (rosbag.tier4.jp), looks
like the left below after we plot the vehicle’s position. (The
plot is discontinuous: the absence of data can be attributed e.g.
to loss of the GPS signals.)

Let us say that we are interested in those road segments
where the throttle is greater than a certain threshold for ten
seconds or longer. We run timed pattern matching on w with
a suitable pattern automaton A. By mapping the identified
time intervals to the position plot, we identify the road seg-
ments of our interests (right above, red, generated by the tool
MONAA [20]).

G. Organization

We fix notations in §II. We present a construction of filter
Moore machines for untimed pattern matching, in §III. We also
prove some properties such as soundness. The same idea is used
in §IV for a more complicated problem of filtering for timed
pattern matching. Here we prove soundness. Implementation
and experiment results for the timed case are presented in §V.
We discuss related work in §VI. Most of the proofs are deferred
to the appendix.

II. PRELIMINARIES

The set Σ∗ =
⋃
n∈N Σn is that of words over Σ. The length

n of a word w = a1a2 . . . an (where ai ∈ Σ) is denoted by
|w|.

For an NFA A = (Σ, S, s0, SF , E) and a string w ∈ Σ∗ over
the common alphabet Σ, a run s of A over w is a sequence
s = s0, s1, . . . , s|w| such that for each i ∈ [1, |w|] we have
(si−1, wi, si) ∈ E. A run s = s0, s1, . . . , s|w| is accepting if
we have s|w| ∈ SF .

The powerset of a set X is denoted by P(X). The disjoint
union of X,Y is X q Y . For an alphabet Σ, the set Σq {⊥}
augmented with a fresh symbol ⊥ is denoted by Σ⊥.

We will be using the set {1, 2, . . . , N} for the value domain
of counters. This is denoted by Z/NZ, because we rely on its
algebraic structure (such as addition modulo N).

rosbag.tier4.jp

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

A Moore machine is given byM = (Σin,Σout, Q, q0,∆,Λ)
where Σin and Σout are input and output alphabets, Q is a
finite set of states, q0 ∈ Q is an initial state, ∆ : Q × Σin →
Q is a transition function, and Λ : Q → Σout is an output
function. For M and an input word w = a1a2 . . . an ∈ Σ∗in
(where ai ∈ Σin), the run q of M over w is the sequence
q = q0q1 . . . qn ∈ Q∗ satisfying qi = ∆(qi−1, ai) for each
i ∈ [1, |w|]. In this case, the output word w′ ∈ Σ∗out of M
over w is given by w′ = Λ(q0)Λ(q1) . . .Λ(qn−1) ∈ Σ∗out.

III. MOORE-MACHINE FILTERING FOR PATTERN
MATCHING I: UNTIMED

A. Problem Formulation

Definition III.1 ((untimed) pattern matching). Given an NFA
A over an alphabet Σ and a word w = a1a2 . . . an ∈
Σ∗, the pattern matching problem asks for the match set
Match(w,A) =

{
(i, j) ∈ N2

∣∣ w|[i,j] ∈ L(A)
}

, where
w|[i,j] = aiai+1 . . . aj .

Our goal is the workflow shown in Fig. 2. We fix the in-
put/output type of the filter in the following general definition.

Definition III.2 (Moore-machine filter for (untimed) pattern
matching). Let A be an NFA over an alphabet Σ, and let N
be a positive integer. A filter for A with buffer size N is a
Moore machineM = (Σin,Σout, Q, q0,∆,Λ) that satisfies the
following.
• Σin = Σout = Σ⊥.
• Let w = a1 . . . an ∈ Σ∗ be an arbitrary word, and consider

the word w⊥N obtained by padding ⊥’s in the end. We
require that the output word ofM over this word w⊥N be
of the form ⊥Nw′, where w′ = b1 . . . bn, and bi is either
⊥ or ai for each i ∈ [1, n]. We say that the character ai
at the position i is passed if bi = ai; otherwise (i.e. if
bi = ⊥) we say ai is masked.

A filter M is sound if it preserves all matching intervals. That
is, bk = ak for each k ∈ [1, n] such that ∃i, j. (k ∈ [i, j] ∧
[i, j] ∈ Match(w,A)).

Fig. 4. Padding in filtering

Explanations are in order,
especially about the buffer
size N and the padding by
⊥N of the input and output
words. The padding means fil-
tering is done in the way de-
picted in Fig. 4, with a delay
of N steps. This is because
of how our Moore machine
works (Fig. 5): it scans the input word from left to right; the
machine stores N characters in the FIFO buffer in it (encoded
in its state space Q); and the characters are output once they
are dequeued from the FIFO buffer. Hence there is a delay of
N steps. Initially, the buffer is filled with ⊥ (Fig. 5, Step 0);
this accounts for the prefix ⊥N of the output word ⊥Nw′. The
padding ⊥N at the end of the input word w⊥N is needed to
dequeue the content of the buffer (from Step n+ 1 to n+N).
In the course of the scanning in Fig. 5, some characters in
w = a1 . . . aN get masked, although such masking is not
explicit in the figure.

B. Construction of Filter Moore Machine MA,N
Definition III.3 (the filterMA,N for (untimed) pattern match-
ing). Let Σ be an alphabet, N be a positive integer, and
A = (Σ, S, s0, SF , E) be an NFA. We define a Moore machine

MA,N = (Σ⊥,Σ⊥, Q, q0,∆,Λ)

as follows. Its input and output alphabets are both Σ⊥.
The state space is Q = P

(
S × (Z/NZ)

)
×
(
(Σ⊥)N ×

{pass,mask}N
)
. Here Z/NZ is the N -element set with addi-

tion modulo N (§II).
The initial state is q0 =({
(s0, 0)

}
, (⊥, . . . ,⊥), (mask, . . . ,mask)

)
.

The transition ∆: Q × Σ⊥ → Q is as follows. For each
a ∈ Σ⊥,

∆
((
S, (a1, a2, . . . , aN), (l1, l2, . . . , lN)

)
, a
)

=
(
S ′, (a2, . . . , aN , a), l

)
, where

(3)

S ′ =
{

(s′, (n mod N) + 1) | (s, n) ∈ S, (s, a, s′) ∈ E
}

∪ {(s0, 0)} , and
(4)

l =


(pass, . . . , pass) if ∃s. (s,N) ∈ S′,

(l2, l3, . . . , lN−ψ(S′)+1,

ψ(S′)︷ ︸︸ ︷
pass, . . . , pass) else if ∃n, s ∈ SF .

(s, n) ∈ S′,
(l2, l3, . . . , lN ,mask) otherwise.

(5)

Here ψ(S ′) ∈ Z>0 is ψ(S ′) = max{n | ∃s ∈ SF . (s, n) ∈ S ′}.
Finally, the output function Λ: Q → Σ⊥ is defined as

follows.

Λ
(
S, (a1, a2, . . . , aN), (l1, l2, . . . , lN)

)
=

{
a1 if l1 = pass

⊥ if l1 = mask
(6)

We describe intuitions. The construction ofMA,N combines
three building blocks: determinization, counters and a buffer of
size N .

(Determinization) The pattern A is an NFA, but we want a
deterministic Moore machine. This determinization accounts
for the powerset construction P in the component P

(
S ×

(Z/NZ)
)

of the state space Q. For example, an element
{ (s1, n1), . . . , (sk, nk) } of this component means “the states
s1, . . . , sk are active in the NFA A.” Observe that, in (4), the
part regarding states (s, s′, . . .) follows the usual determiniza-
tion. An exception is the addition of (s0, 0) in (4): it is because
a matching can start at any position of the input word.

(Counters) Moreover, each active state that traverses A keeps
a counter for how many steps it has traveled since the initial
state. This is the component Z/NZ in the state space Q. The
maximum value of those counters is the same as the buffer size
N . Once this maximum is reached, a counter starts over from
1. See (4), where counters for active states are incremented
modulo N .

(Buffer) A FIFO buffer of size N accounts for the second
component (Σ⊥)N×{pass,mask}N of the state space Q. Each
of the N cells stores a character from Σ⊥ and a label (pass
or mask). See (3) and (5), where the basic behavior of the
buffer is to dequeue the leftmost element and to enqueue the
read character on the right.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Fig. 5. Filtering by a Moore machine. Sometimes a character ai is decided to be unnecessary and gets masked by ⊥ (i.e. bi = ⊥), although such masking
is not explicit in the figure.

s0start s1 s2
a b

a

(s0, 0)start

q′0

(s0, 0), (s2, 2)

q′3

(s0, 0), (s1, 1)

q′1

(s0, 0), (s1, 1),
(s1, 2)

q′2

(s0, 0), (s2, 1),
(s2, 2)

q′4

b

a
a

b

a

a bb

a

b

Fig. 6. Left: a pattern NFA A0 for aa∗b. Right: the filter Moore machine
MA0,2, its non-buffer part

(
q′0,

⊥ ⊥
mask mask

)
a−→
⊥

(
q′1,

⊥ a

mask mask

)
b−→
⊥

(
q′3,

a b

pass pass

)
b−→
a

(
q′0,

b b

pass mask

)
b−→
b

(
q′0,

b b

mask mask

)
a−→
⊥

(
q′1,

b a

mask mask

)
a−→
⊥

(
q′2,

a a

pass pass

)
b−→
a

(
q′4,

a b

pass pass

)
⊥−→
a

(
{(s0, 0)}, b ⊥

pass mask

)
⊥−→
b

(
{(s0, 0)}, ⊥ ⊥

mask mask

)
Fig. 7. The run of MA0,2 over the word w = abbbaab. The tables show
the states of the buffer, enqueued from the right. In a−→

b
, a is the input

character and b is the output character.

It is the labels in the buffer (pass or mask) that determine
whether to mask a character or not. The default label is mask
(the third case in (5)), and if it remains unchanged for N
steps then the corresponding character gets masked by ⊥ in the
output (the second case in (6)). The label can change from mask
to pass for two different reasons (the first two cases in (5)).

• The second case in (5) is when it is detected that some
characters towards the end of the buffer form a match
against the pattern A, leading to an accepting state s ∈ SF
of A. Then we mark those characters by pass, indicating
that they need to be passed to pattern matching (Fig. 2).
The number ψ(S ′) of characters to be passed is calculated
using the counter n associated to the active state s ∈ SF .

• On the first case in (5), its condition ∃s. (s,N) ∈ S ′ says
that the counter for some active state s has reached the
maximum N . In this case we are not sure whether this
active state s of A will eventually reach an accepting state
or not. To be on the safe side, we pass all the N characters
to pattern matching without masking them. In the untimed
setting, this is the only place where completeness of
filtering is potentially lost.

In summary, in Def. III.3 we construct a Moore machine that
works in the way depicted in Fig. 5. The Moore machine’s state
space combines the following: determinization of the pattern
NFA A; counters for the steps from the initial state; and a
FIFO buffer that stores N characters labeled by pass or mask.

Proposition III.4. The Moore machine MA,N is a filter for
A with buffer size N , in the sense of Def. III.2.

In our implementation, we realize a filter not as a plain
Moore machine with a state space Q = P(S × (Z/NZ)) ×
((Σ⊥)N × {pass,mask}N) as described in Def. III.2. Instead,
we separate the state space Q into the “buffer part” (Σ⊥)N ×
{pass,mask}N and the “non-buffer part” P(S×(Z/NZ)), and
we generate the former buffer part on-the-fly. More specifically,
the non-buffer part is constructed as a DFA all at once in the
beginning, and this DFA dictates how to operate on the buffer
part that is realized as an array of size N . See Example III.6
later for illustration.

Proposition III.5. Let A = (Σ, S, s0, SF , E) be an NFA. For
the induced filter Moore machine MA,N , the size of the non-
buffer part P(S × (Z/NZ)) of its state space is bounded by
O(2N ·|S|).

Therefore, the memory usage for the non-buffer part (includ-
ing the transitions) is O(2N ·|S| · |Σ|). The memory usage for
the buffer part is O(N log |Σ|); overall, the space complexity of
running our filter Moore machineMA,N is O(2N ·|S| ·|Σ|).

The space complexity is exponential in N , and this comes
from the powerset construction for the non-buffer part P(S ×
(Z/NZ)). Experimentally, however, the memory consumption
does not necessarily grow exponentially in N . This is because
not all states in P(S×(Z/NZ)) are reachable. See RQ2 in §V.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Example III.6. Let us consider the pattern aa∗b. It is ex-
pressed by the NFA A0 in Fig. 6. The filter Moore machine
MA0,2 from Def. III.3 is depicted in Fig. 6, where buffer states
are omitted. Its run over the word w = abbbaab is shown in
Fig. 7; its output word is ⊥⊥ab⊥⊥aab, which means that the
filtering result is ab⊥⊥aab.

C. Properties of the Moore Machine MA,N
Throughout the rest of this section, let A be a pattern NFA

A = (Σ, S, S0, E, SF), N be a positive integer, and MA,N =
(Σ⊥,Σ⊥, Q, q0,∆,Λ) be the filter Moore machine in Def. III.3.
Let w = a1a2 . . . an be a word over Σ, and ⊥Nw′ be the
output word of MA,N over the input word w⊥N . Let w′ =
b1b2 . . . bn, where bi ∈ Σ⊥.

Theorem III.7 (soundness). The Moore machine MA,N is
sound, in the sense of Def. III.2.

Completeness holds if, the length of matches is bounded
and the buffer size N is no shorter than the bound. This is
essentially the setting of multiple string matching [10].

Theorem III.8 (completeness). Assume we have max{|w| |
w ∈ L(A)} ≤ N < ∞. Then we can construct an NFA A′
with L(A) = L(A′), so that the filter Moore machine MA′,N
is complete. The latter means: if the index k satisfies ak = bk,
then there is an interval [i, j] such that k ∈ [i, j] and w|[i,j] ∈
L(A).

The intuition for monotonicity is that, the bigger the buffer
size N ′ is, the filter MA,N ′ masks more characters while
its state space grows. A precise statement is more intricate,
requiring the bigger buffer size N ′′ to be a multiple of the
smaller one.

Theorem III.9 (monotonicity). For any positive integer N ′,
let MA,N ′ be the filter Moore machine of Def. III.3, and
⊥N ′w′(N ′) be the output word of MA,N ′ over the input word
w⊥N ′ . Let w′(N

′) = b
(N ′)
1 b

(N ′)
2 . . . b

(N ′)
n where b

(N ′)
i ∈ Σ⊥.

For any positive integers n,N ′ and any index k of w, b(N
′)

k = ⊥
implies b(nN

′)
k = ⊥.

As mentioned in Prop. III.5, the state space of our filter
Moore machine is exponentially bigger than that of A. This
is because of the powerset construction required by its de-
terministic branching. By sacrificing the execution time, one
can determinize the NFA on the fly, which usually needs less
memory space. See Appendix D of [21].

IV. MOORE-MACHINE FILTERING FOR PATTERN
MATCHING II: TIMED

We present our main contribution, that is, the construction
of filter Moore machines for timed pattern matching. While
the basic ideas stay the same as in the untimed setting (§III),
determinization poses a technical challenge, since timed au-
tomata (TA) cannot determinized in general [22]. Here we
rely on one-clock determinization [11, §5.3]. The construction
overapproximates reachability, hence we maintain soundness
of filtering. Moreover, the local nature of the resulting TA—it

has only one clock variable that is reset at every transition—
allows us to devise a filter that is an untimed, finite-state Moore
machine.

A. Problem Formulation

Definition IV.1 (timed words). Let Σ be an alphabet. A timed
word over Σ is a sequence w of pairs (ai, τi) ∈ Σ × R>0

satisfying τi < τi+1 for any i ∈ [1, |w| − 1]. Let w = (a, τ)
be a timed word. The set of timed words over Σ is denoted by
T (Σ).

We denote the subsequence
(ai, τi), (ai+1, τi+1), · · · , (aj , τj) by w(i, j). For t ∈ R≥0,
the t-shift of w is (a, τ) + t = (a, τ + t) where
τ + t = (τ1 + t, τ2 + t, · · · , τ|τ | + t). For timed words
w = (a, τ) and w′ = (a′, τ ′), their absorbing concatenation
is w ◦ w′ = (a ◦ a′, τ ◦ τ ′) where a ◦ a′ and τ ◦ τ ′ are
usual concatenations, and their non-absorbing concatenation
is w · w′ = w ◦ (w′ + τ|w|). We note that the absorbing
concatenation w ◦ w′ is defined only when τ|w| < τ ′1.

For a timed word w = (a, τ) on Σ and t, t′ ∈ R>0 satisfying
t < t′, a timed word segment w|(t,t′) is defined by the timed
word (w(i, j)−t)◦($, t′−t) on the augmented alphabet Σq{$},
where i, j are chosen so that τi−1 ≤ t < τi and τj < t′ ≤ τj+1.
Here the timed word w(i, j) − t is the (−t)-shift of w(i, j);
and the fresh symbol $ is called the terminal character.

Definition IV.2 (timed automaton). Let C be a finite set of
clock variables, and Φ(C) denote the set of conjunctions of
inequalities x ./ c where x ∈ C, c ∈ Z≥0, and ./ ∈ {>,≥, <
,≤}. A timed automaton A = (Σ, S, s0, SF , C,E) is a tuple
where Σ is an alphabet, S is a finite set of states, s0 ∈ S
is an initial state, SF ⊆ S is a set of accepting states, and
E ⊆ S × S × Σ × P(C) × Φ(C) is a set of transitions. The
components of a transition (s, s′, a, λ, δ) ∈ E represent: the
source, target, action, reset variables and guard of the transition,
respectively.

We define a clock valuation ν as a function ν : C → R≥0.
We define the t-shift ν + t of a clock valuation ν, where
t ∈ R≥0, by (ν + t)(x) = ν(x) + t for any x ∈ C. For a
timed automaton A = (Σ, S, s0, SF , C,E) and a timed word
w = (a, τ), a run of A over w is a sequence r of pairs
(si, νi) ∈ S × (R≥0)C satisfying the following: (initiation)
s0 is the initial state and ν0(x) = 0 for any x ∈ C; and
(consecution) for any i ∈ [1, |w|], there exists a transition
(si−1, si, ai, λ, δ) ∈ E such that νi−1 + τi − τi−1 |= δ and
νi(x) = 0 (for x ∈ λ) and νi(x) = νi−1(x) + τi − τi−1 (for
x 6∈ λ). A run only satisfying the consecution condition is a
path. A run r = (s, ν) is accepting if the last element s|s|−1 of
s belongs to SF . The language L(A) is defined to be the set
{w | there is an accepting run of A over w} of timed words.

Here is our target problem. Its algorithms have been actively
studied [3], [4], [6]; filtering Moore machines as preprocessors
for those algorithms is this paper’s contribution.

Definition IV.3 (timed pattern matching). Let A be a timed
automaton, and w be a timed word, over a common alphabet Σ.
The timed pattern matching problem requires all the intervals
(t, t′) for which the segment w|(t,t′) is accepted by A. That is,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

it requires the match set Match(w,A) = {(t, t′) | w|(t,t′) ∈
L(A)}.

B. One-Clock Determinization of TA

Among the three main building blocks for our untimed
construction of filter (Def. III.3), counters and a buffer carry
over smoothly to the current timed setting. For determinization
we rely on the overapproximating notion in Def. IV.5; it is
taken from [11, §5.3].

We start with some auxiliary notations.

Definition IV.4 (restriction ν|C , join νtν′). Let ν : C ′ → R≥0
be a clock valuation. The restriction of ν to C ⊆ C ′ is denoted
by ν|C : C → R≥0. That is, (ν|C)(x) = ν(x) for each x ∈ C.

Let ν : C → R≥0 and ν′ : C ′ → R≥0 be clock variations.
We define their join νtν′ : CqC ′ → R≥0 to be the following
clock valuation over the disjoint union C q C ′.

(ν t ν′)(x) =

{
ν(x) if x ∈ C
ν′(x) if x ∈ C ′.

The function that maps xi to ri (for each i ∈ {1, . . . , n}) is
denoted by [x1 7→ r1, . . . , xn 7→ rn].

Definition IV.5 (one-clock determinization). Let A =
(Σ, S, s0, SF , C,E) be a timed automaton (TA), and y
be a fresh clock variable (i.e. y 6∈ C). A TA A′ =
(Σ, S′, s′0, S

′
F , {y}, E′) is a one-clock determinization of A if

the following conditions hold.
1) Each element S ∈ S′ of the (new, finite) state space

S′ is a finite set S = {(s1, Z1), . . . , (sm, Zm)} of pairs
(si, Zi), where si ∈ S is a state of A, and Zi is a subset
of (R≥0)Cq{y} given by a special polytope called a zone
(see e.g. [23]).

2) For each transition (S, a, δ, λ,S ′) ∈ E′ of A′, the
guard δ is a finite union of intervals of y. Moreover it
respects enabledness of transitions E in A. Precisely, for
any u, u′ ∈ R≥0 that satisfy δ, we have Ea(S, u) =
Ea(S, u′), where the set Ea(S, u) ⊆ E is defined by

Ea(S, u) =
{

(s, a, δ′, λ′, s′) ∈ E
∣∣

∃(s, Z) ∈ S.∃ν ∈ Z. ν(y) = u and ν satisfies δ′
}
.

3) Each transition of A′ resets the unique clock variable y.
That is, for each transition (S, a, δ, λ,S ′) ∈ E′, we have
λ = {y}.

4) Each transition (S, a, δ, λ,S ′) ∈ E′ of A′ simulates
transitions of A. More precisely, let (s, Z) ∈ S and
(ν : C q {y} → R≥0) ∈ Z. Assume that (s, ν|C)

a,τ−−→
(s′, ν′) is a (length-1) path of A, for some s′ ∈ S and
ν′ : C → R≥0 (here τ is the dwell time). Then we require
that there exist a zone Z ′ ⊆ (R≥0)Cq{y} such that 1)
(s′, Z ′) ∈ S ′ and 2) the valuation ν′ t [y 7→ τ], over the
clock set C q {y}, belongs to Z ′.

5) A′ is deterministic: for each state S ∈ S′, each clock
valuation ν ∈ (R≥0){y}, a ∈ Σ and τ ∈ R≥0 for the
dwell time, a length-1 path from (S, ν) labeled with a, τ
is unique. That is, if (S, ν)

a,τ−−→ (S ′, ν′) and (S, ν)
a,τ−−→

(S ′′, ν′′) are both paths in A′, then S ′ = S ′′ and ν′ = ν′′.
(Note that Cond. 3 forces ν′ = ν′′ = [y 7→ 0].)

6) The initial state s′0 of A′ is given by s′0 = {(s0, {0})}.
Here 0 is the valuation that maps every clock variable to
0.

7) A state S belongs to S′F if and only if there exists
(s, Z) ∈ S such that s ∈ SF .

Proposition IV.6. Let A = (Σ, S, s0, SF , C,E) be a TA, and
A′ = (Σ, S′, s′0, S

′
F , {y}, E′) be a one-clock determinization

of A. Then A′ satisfies the following properties.
• (Simulation) Let w ∈ T (Σ) be a timed word, and assume

that there exists a run over w to a state s ∈ S in A.
Then there exists S ∈ S′ that satisfies the following: 1)
(s, Z) ∈ S for some zone Z, and 2) there exists a run
over w to S in A′.

• (Language inclusion) In particular, L(A) ⊆ L(A′).

Note that Def. IV.5 gives a property and not a construction:
there are multiple one-clock determinizations—of varying size
and precision—of the same TA A. In our implementation we
use a specific construction presented in [11, §5.3.4]. A sketch
is in Appendix D of [21].

C. Construction of Our Filter MA,N
Definition IV.7 (the filter MA,N for timed pattern matching).
Let A = (Σ, S, s0, SF , C,E) be a TA, and N ∈ Z>0. The
construction of the filter Moore machine MA,N is by the
following steps.

In the first step we augment the original TA A
with counters. Specifically, let AN -ctr = (Σ⊥, S ×
[0, N], (s0, 0), SN -ctr

F , C,EN -ctr) be defined as follows.
SN -ctr
F = {(sf , n) | sf ∈ SF , n ∈ [0, N]}, and

EN -ctr =
{ (

(s0, 0), a, true, C, (s0, 0)
) ∣∣ a ∈ Σ⊥

}
∪
{ (

(s, n), a, δ, λ, (s′, n+ 1)
) ∣∣ (s, a, δ, λ, s′) ∈ E,n ∈ [0, N − 1]

}
∪
{ (

(s,N), a, δ, λ, (s′, 1)
) ∣∣ (s, a, δ, λ, s′) ∈ E

}
.

In the second step we take a one-clock deter-
minization (Def. IV.5) of AN -ctr. Let AN -ctr-d =
(Σ⊥, S

N -ctr-d, sN -ctr-d
0 , SN -ctr-d

F , {y}, EN -ctr-d) be the
outcome.

Finally in the third step we define the Moore machine
MA,N :

MA,N =
(

Σ⊥ × R≥0, {pass,mask}, SN -ctr-d × {pass,mask}N ,(
sN -ctr-d
0 , (mask, . . . ,mask)

)
, ∆, Λ

)
,

where ∆ and Λ are defined as follows. ∆
(

(S, l), (a, τ)
)

=

(S ′, l′), where S ′ is the unique successor of S in AN -ctr-d

under the character a and the dwell time τ (Def. IV.5), and l
′

is defined as follows.

l
′
=


passN if ∃s, Z.

(
(s,N), Z

)
∈ S

l2, l3, . . . , lN−ψ(S′)+1,

ψ(S′)︷ ︸︸ ︷
pass, . . . , pass else if ∃((s, n), Z) ∈ S. s ∈ SF

l2, l3, . . . , lN ,mask otherwise

Here ψ(S ′) = max{n | ∃s, Z. ((s, n), Z) ∈ S and s ∈ SF }.
We define Λ

(
(S, (l1, l2, . . . , lN))

)
= l1.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

Note that the resulting
Moore machine takes timed
words as input. This makes
its input alphabet infinite
(namely Σ⊥ × R≥0). This is
not a big issue in implementation: we note that the state space
is still finite. Moreover, the output alphabet of MA,N is a
two-element set {pass,mask}, meaning that the filter Moore
machine only outputs the masking information. A finite-state
Moore machine is certainly not capable of buffering time-
stamped characters, but the original timed word can be copied
and suitable masking can be applied to it later. See the above
figure.

Theorem IV.8 (soundness). Let A be a pattern TA A =
(Σ, S, s0, SF , C,E), N be a positive integer, and MA,N
be the filter Moore machine in Def. IV.7. Let w =
(a1, τ1)(a2, τ2) . . . (an, τn) be a timed word over Σ, and
maskNw′ be the output word of MA,N over the input word
w(⊥, τn)N (here the input and output words are padded
by maskN and (⊥, τn)N , much like in Fig. 4). Let w′ =
b1b2 . . . bn, where bk ∈ {pass,mask}.

For any pair (i, j) of indices of w satisfying w(i, j)−τi−1 ∈
L(A) and for any index k ∈ [i, j] of w, we have bk = pass.

V. IMPLEMENTATION AND EXPERIMENTS

We implemented our filter construction for timed pattern
matching. Our implementation suppresses successive ⊥’s into
two ⊥’s, maintaining the timestamp of the first and the last
⊥’s. We generate the buffer part of the state space Q on-the-fly
(namely {pass,mask}N of Def. IV.7); this is as we discussed
before Prop. III.5. We conducted experiments to answer the
following research questions.

RQ1: Does our filter Moore machine mask many events?
RQ2: Is our filter Moore machine online capable? That is, does

it work in linear time and constant space, with respect to
the length of the input timed word?

RQ3: Does our filter Moore machine accelerate the whole task
of timed pattern matching?

RQ4: Is our filter precise? That is, do many of the non-masked
events contribute to actual matches?

RQ5: Is our filter responsive? That is, does it not cause large
delays?

We implemented our filter construction in C++ and compiled
them by clang-900.0.39.2. The tool’s input consists of a pattern
TA A, the buffer size N and a timed word w; it outputs a
filtered word. The experiments are done on Mac OS 10.13.4,
MacBook Pro Early 2013 with 2.6 GHz Intel Core i5 processor
and 8 GB 1600MHz DDR3 RAM. The benchmark problems
we used are in Fig. 8—10. All of them are from automotive
scenarios.

For the measurement of the execution time and the memory
usage, we used GNU time and took the average of 20 execu-
tions. In each experiment, we measured the whole workflow: in
RQ2, the time and memory usage include that for constructing a
filter; and in RQ3, the time and memory usage account for filter
construction, filtering, process intercommunication, and pattern
matching. In the experiments for RQ3, we used MONAA [20], a

s0start s1 s2 s3 s4 s5 s6

low, true
/x := 0

high,
0 < x < 1

high,
0 < x < 1

high,
0 < x < 1

high,
0 < x < 1

high,
1 < x

high, true

Fig. 8. TORQUE. The set W (length 242,808–4,873,207) of input words is
generated by the automotive engine model sldemo_enginewc.slx [24]
with random input. The pattern specifies four or more consecutive occurrences
of high in one second. For N = 10, the size of our filter Moore machine
MA,10, measured by the number of the reachable states in the non-buffer
part SN -ctr-d (cf. Def. IV.7 and Prop. III.5), is 16.

start g1 g2
g1/x := 0 g2, x < 2

Fig. 9. GEAR. The set W (length 306–1,011,426) of input words is generated
by the automatic transmission system model in [25]. The pattern, from φAT

5
in [25], is for an event in which gear shift occurs too quickly (from the 1st to
2nd). For N = 10, the size of our filter Moore machineMA,10, measured in
the same way of Fig. 8, is 3.

recent tool for timed pattern matching. See Appendix F of [21]
for the detailed results.

A. RQ1: Filtering Rate

Fig. 11 shows the length of the filtered timed words by
our filter Moore machine for each pattern timed automaton
A, buffer size N , and timed word w ∈W .

We observe that the filtered word gets shorter as N is
bigger. This concurs with our theoretical consideration in
Theorem III.9 (although the result is for the untimed setting). It
seems that peak performance is achieved with a relatively small
N , such as N = 10. With N = 10 the length of the filtered
timed word is about 1/3, 1/2, and 1/100 of that of the original
timed word in TORQUE, GEAR, and ACCEL respectively. For
ACCEL our filter masks many characters, because the sizes
of the alphabet and the pattern timed automaton are relatively
large. This significant data reduction demonstrates the practical
use of our filtering methodology in embedded usage scenarios
(see Fig. 1).

B. RQ2: Speed and Memory Usage

Fig. 12 and 13 show the execution time and memory usage
of our filter Moore machine for each pattern timed automaton
A, buffer size N , and timed word w ∈W .

?start

g1

?

g2

g1

g3

g2

g4

g3 g4 3

g1, true

g2, true g3, true g4, true

ω ≥ 2500, true ω ≥ 2500, true ω ≥ 2500, true
ω ≥ 2500, x < 10

/x := 0

g1, true g2, true g3, true
g4, x < 10
/x := 0

ω ≥ 2500, true

ω < 2500, x > 1
ω ≥ 2500, x > 1

g3, x > 1
g4, x > 1

ω < 2500/x := 0
ω ≥ 2500/x := 0

g3/x := 0
g4/x := 0

ω < 2500, true
ω ≥ 2500, true

g3, true
g4, true

ω < 2500, x > 1
ω ≥ 2500, x > 1

g3, x > 1
g4, x > 1

Fig. 10. ACCEL. The set W (length 708–1,739,535) of input words is
generated by the same model as in GEAR. The pattern is from φAT

8 in [25]:
the gear shifts from 1st to 4th and RPM gets high in its course, but the velocity
is low (i.e. the event v ≥ 100 is absent). For N = 10, the size of our filter
Moore machine MA,10, measured in the same way of Fig. 8, is 71.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TORQUE

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

L
en
gt
h
of

th
e
F
il
te
re
d
T
im

ed
W
or
d
[×

10
00
00
]

Length of the Input Timed Word [×100000]

NOT FILTERED

NOT FILTERED, N = 1

N = 2, N = 3,N = 4,
N = 5,N = 10

N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

GEAR

0

2

4

6

8

10

12

0 2 4 6 8 10 12

L
en
gt
h
of

th
e
F
il
te
re
d
T
im

ed
W
or
d
[×

10
00
00
]

Length of the Input Timed Word [×100000]

NOT FILTERED

NOT FILTERED

N = 1

N = 2,N = 3,N = 4,
N = 5,N = 10

N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

ACCEL

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

L
en
gt
h
of

th
e
F
il
te
re
d
T
im

ed
W
or
d
[×

10
00
00
]

Length of the Input Timed Word [×100000]

NOT FILTERED
N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

Fig. 11. Length of the input and filtered timed words

TORQUE

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

E
x
ec
u
ti
on

T
im

e
[s
]

Length of the Input Timed Word [×100000]

N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

GEAR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12

E
x
ec
u
ti
on

T
im

e
[s
]

Length of the Input Timed Word [×100000]

N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

ACCEL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18

E
x
ec
u
ti
on

T
im

e
[s
]

Length of the Input Timed Word [×100000]

N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

Fig. 12. Execution time of our filter Moore machine (including time for construction of a filter)

TORQUE

1785

1790

1795

1800

1805

1810

1815

1820

1825

0 5 10 15 20 25 30 35 40 45 50

M
em

or
y
U
sa
ge

[k
b
y
te
]

Length of the Input Timed Word [×100000]

N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

GEAR

1640

1660

1680

1700

1720

1740

1760

1780

1800

0 2 4 6 8 10 12

M
em

or
y
U
sa
ge

[k
b
y
te
]

Length of the Input Timed Word [×100000]

N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

ACCEL

1750

1800

1850

1900

1950

2000

2050

0 2 4 6 8 10 12 14 16 18

M
em

or
y
U
sa
ge

[k
b
y
te
]

Length of the Input Timed Word [×100000]

N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

Fig. 13. Memory usage of our filter Moore machine

TORQUE

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50

E
x
ec
u
ti
on

T
im

e
[s
]

Length of the Input Timed Word [×100000]

NOT FILTERED
N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

GEAR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12

E
x
ec
u
ti
on

T
im

e
[s
]

Length of the Input Timed Word [×100000]

NOT FILTERED
N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

ACCEL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16 18

E
x
ec
u
ti
on

T
im

e
[s
]

Length of the Input Timed Word [×100000]

NOT FILTERED
N = 1
N = 2
N = 3
N = 4
N = 5
N = 10

Fig. 14. Execution time of the workflow in Fig. 2, with our filter and monitoring by MONAA

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

In Fig. 12, we observe that the execution time is linear to
the length of the input word. In Fig. 13, the memory usage is
more or less constant with respect to the length of the input
word. These two results suggest that our filtering methodology
is online capable.

The time for constructing a filter Moore machine is seen to
be negligible: see the execution time for short input words in
Fig. 12.

On the effect of varying the buffer size N , for smaller N the
execution time was relatively large. This seems to be because
fewer characters get masked, more characters are output, and
this incurs I/O cost. On memory usage, despite the worst-case
result in Prop. III.5 (exponential in N), the growth for bigger N
was moderate. This is because not all states from the powerset
construction are reachable.

C. RQ3: Acceleration of Timed Pattern Matching

Fig. 14 shows the execution time of the workflow in Fig. 2,
where the filter is given by our algorithm and pattern matching
is done by a recent tool MONAA [20]. More specifically, we
connect the standard output of the filter Moore machine to the
standard input of MONAA by Unix pipeline. This way the filter
and MONAA run parallelly on different cores.

We observe that, via filtering, the overall performance of
timed pattern matching is accelerated when N is large enough
(say N = 10). For TORQUE and GEAR, the speedup is
1.2 times; for ACCEL, it is roughly twice. This acceleration
suggests that our filtering methodology is potentially beneficial
independent of the architecture assumption in Fig. 1: when a
log is enormous monitoring can take hours or days; by running
a filter in parallel the time can be shortened.

D. RQ4: Precision

For the three examples TORQUE, GEAR, and ACCEL, and
N = 10, the ratios of non-masked events contributing to actual
matches were 0.34%, 99%, and 92% respectively. Therefore the
precision differs greatly depending on patterns. It should also
be noted that, even in the low-precision example (TORQUE),
our filter successfully reduced the log size by approximately
three times (Fig. 11).

Most of the imprecision in the current timed setting is at-
tributed to the laxness of one-clock determinization (Def. IV.5).
For example, the TA for TORQUE (Fig. 8) requires four
consecutive occurrences of high within one second, using
the same clock x. The best overapproximation by one-clock
determinization—in which all clock variables get reset after
each transition—is to require an occurrence of high in each
of four consecutive time segments of length ≤ 1. This is a
much looser requirement than the original, and explains the
comparatively poorer precision in the example TORQUE.

E. RQ5: Responsiveness

For the three examples TORQUE, GEAR, ACCEL, and the
buffer size N = 10, we calculated the average delay caused
by our filter, which is (the execution time)/|w| × N . The
results were 2.2µs, 3.1µs, and 0.91µs respectively. Although

these delays highly depend on the computation power of the
processor, the delays were tiny. We conclude our filter is
responsive enough.

VI. RELATED WORK

Efficiency of pattern matching has been actively pursued in
the fields of database [17], [18] and networking [12], [19],
[26]–[29]. In these fields, issues in hardware architecture—
such as speed gap between L1/L2 caches and main memory—
constitute situations similar to that of embedded monitors that
we discussed in the above.

Many works in these application domains deal with (poten-
tially multiple) strings as patterns. There the main source of
inspiration is classic algorithms such as Boyer–Moore [30],
Commentz-Walter [31], and Aho–Corasick [10]. Examples are
e.g. in [32]. Many algorithms for patterns given by regular
expressions or automata (instead of strings) also rely on those
string-matching techniques. See e.g. [17].

In database and networking, pattern matching against reg-
ular expressions is mainly approached by application-specific
heuristics that often take machine architecture into account.
For example, in [19], [26] pattern regular expressions undergo
application of some application-specific rewrite rules. The
hierarchical structure of L1/L2 caches and main memory is ex-
ploited in [17], [18], while the features of content-addressable
memory (CAM)—an alternative to RAM often used in network
devices—are exploited in [12]. The work [29] extends the
formalism of DFA by auxiliary variables for the purpose of
moderating state space inflation when multiple patterns are
combined.

Pre-filtering before actual pattern matching has been consid-
ered in the above lines of works [17], [26], [32]. The principal
difference between those works and ours is that their filters
produce match candidates, data that include explicit indices
for potential matches. For this reason, the second step of the
workflow (what we call pattern matching) is called verification
in those papers. In contrast, our filter only masks the input
word. This is because our goal—motivated by embedded
applications—is not only in the matching speed but also in
reducing the amount of data passed from the sensor to the
pattern matching unit. This choice enables us to use Moore
machines, too, which can be readily implemented on FPGA
and ASIC.

Monitoring over a real-time temporal logic property [33],
[34] and timed pattern matching [3], [14] are relatively new
topics. They have been mainly pursued in the context of cyber-
physical systems, although its applications in database and
networking are very likely. In timed pattern matching, specifi-
cations can be given by timed automata (as we do in the current
work), timed regular expressions [35] and metric temporal logic
formulas [36]. Algorithms for timed pattern matching against
specifications in these formalisms have been actively pursued
in [3]–[5], [7], [8]. Besides, the line of work [6], [14], [20] has
pursued acceleration of timed pattern matching, by combining
shift table techniques (like in Boyer–Moore [30] and Franek–
Jennings–Smyth [37]) and timed automata [6], [14]. This idea
of automata-theoretic shift tables is pioneered in [38].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

VII. CONCLUSIONS AND FUTURE WORK

Motivated by the recent rise of monitoring needs in em-
bedded applications, we presented the construction of filtering
Moore machines for (untimed and timed) pattern matching. The
construction is automata-theoretic, realizing filters as Moore
machines.

We will pursue embedded implementation of the proposed
technique. In particular, we will investigate hardware acceler-
ation by FPGA or ASIC, exploiting that our filters are Moore
machines [9].

On the theoretical side, we plan to further investigate the re-
lationship among: automata theory, lightweight formal methods
for cyber-physical and embedded systems, and other fields like
database and networking. The papers in §VI seem to suggest
that there are many techniques waiting for being exported from
one field to another.

Besides, a generalization to a distributed setting was sug-
gested by anonymous reviewers. It is often the case with the
actual embedded systems, and we believe it will be interesting
future work.

REFERENCES

[1] G. Reger and K. Havelund, Eds., RV-CuBES 2017. An
International Workshop on Competitions, Usability, Benchmarks,
Evaluation, and Standardisation for Runtime Verification Tools,
September 15, 2017, Seattle, WA, USA, ser. Kalpa Publications
in Computing, vol. 3. EasyChair, 2017. [Online]. Available:
http://www.easychair.org/publications/volume/RV-CuBES 2017

[2] R. Alur and D. L. Dill, “A theory of timed automata,” Theor.
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(94)90010-8

[3] D. Ulus, T. Ferrère, E. Asarin, and O. Maler, “Timed pattern matching,”
in Formal Modeling and Analysis of Timed Systems - 12th International
Conference, FORMATS 2014, Florence, Italy, September 8-10, 2014.
Proceedings, ser. Lecture Notes in Computer Science, A. Legay and
M. Bozga, Eds., vol. 8711. Springer, 2014, pp. 222–236. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-10512-3 16

[4] ——, “Online timed pattern matching using derivatives,” in Tools
and Algorithms for the Construction and Analysis of Systems -
22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, ser.
Lecture Notes in Computer Science, M. Chechik and J. Raskin,
Eds., vol. 9636. Springer, 2016, pp. 736–751. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-49674-9 47

[5] D. Ulus, “Montre: A tool for monitoring timed regular expressions,”
in Computer Aided Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, ser.
Lecture Notes in Computer Science, R. Majumdar and V. Kuncak,
Eds., vol. 10426. Springer, 2017, pp. 329–335. [Online]. Available:
https://doi.org/10.1007/978-3-319-63387-9 16

[6] M. Waga, I. Hasuo, and K. Suenaga, “Efficient online timed
pattern matching by automata-based skipping,” in Formal Modeling
and Analysis of Timed Systems - 15th International Conference,
FORMATS 2017, Berlin, Germany, September 5-7, 2017, Proceedings,
ser. Lecture Notes in Computer Science, A. Abate and G. Geeraerts,
Eds., vol. 10419. Springer, 2017, pp. 224–243. [Online]. Available:
https://doi.org/10.1007/978-3-319-65765-3 13

[7] A. Bakhirkin, T. Ferrère, O. Maler, and D. Ulus, “On the quantitative
semantics of regular expressions over real-valued signals,” in Formal
Modeling and Analysis of Timed Systems - 15th International Conference,
FORMATS 2017, Berlin, Germany, September 5-7, 2017, Proceedings,
ser. Lecture Notes in Computer Science, A. Abate and G. Geeraerts,
Eds., vol. 10419. Springer, 2017, pp. 189–206. [Online]. Available:
https://doi.org/10.1007/978-3-319-65765-3 11

[8] E. Asarin, O. Maler, D. Nickovic, and D. Ulus, “Combining the temporal
and epistemic dimensions for MTL monitoring,” in Formal Modeling
and Analysis of Timed Systems - 15th International Conference,
FORMATS 2017, Berlin, Germany, September 5-7, 2017, Proceedings,
ser. Lecture Notes in Computer Science, A. Abate and G. Geeraerts,
Eds., vol. 10419. Springer, 2017, pp. 207–223. [Online]. Available:
https://doi.org/10.1007/978-3-319-65765-3 12

[9] R. B. Reese, Introduction to Logic Synthesis Using Verilog HDL. Morgan
and Claypool Publishers, 2006.

[10] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, 1975.

[11] M. Krichen and S. Tripakis, “Conformance testing for real-time systems,”
Formal Methods in System Design, vol. 34, no. 3, pp. 238–304, 2009.
[Online]. Available: https://doi.org/10.1007/s10703-009-0065-1

[12] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu,
“Fast regular expression matching using small tcams for network
intrusion detection and prevention systems,” in 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings.
USENIX Association, 2010, pp. 111–126. [Online]. Available: http:
//www.usenix.org/events/sec10/tech/full papers/Meiners.pdf

[13] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4,
pp. 14:1–14:64, 2011. [Online]. Available: http://doi.acm.org/10.1145/
2000799.2000800

[14] M. Waga, T. Akazaki, and I. Hasuo, “A boyer-moore type algorithm
for timed pattern matching,” in Formal Modeling and Analysis
of Timed Systems - 14th International Conference, FORMATS
2016, Quebec, QC, Canada, August 24-26, 2016, Proceedings, ser.
Lecture Notes in Computer Science, M. Fränzle and N. Markey,
Eds., vol. 9884. Springer, 2016, pp. 121–139. [Online]. Available:
https://doi.org/10.1007/978-3-319-44878-7 8

[15] D. Ulus and O. Maler, “Specifying timed patterns using temporal logic,”
in HSCC. ACM, 2018, pp. 167–176.

[16] T. Ferrère, O. Maler, D. Nickovic, and D. Ulus, “Measuring with timed
patterns,” in CAV (2), ser. Lecture Notes in Computer Science, vol. 9207.
Springer, 2015, pp. 322–337.

[17] R. Kandhan, N. Teletia, and J. M. Patel, “Sigmatch: Fast and
scalable multi-pattern matching,” PVLDB, vol. 3, no. 1, pp.
1173–1184, 2010. [Online]. Available: http://www.comp.nus.edu.sg/
∼vldb2010/proceedings/files/papers/R104.pdf

[18] A. Majumder, R. Rastogi, and S. Vanama, “Scalable regular expression
matching on data streams,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008,
Vancouver, BC, Canada, June 10-12, 2008, J. T. Wang, Ed. ACM, 2008,
pp. 161–172. [Online]. Available: http://doi.acm.org/10.1145/1376616.
1376635

[19] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast
and memory-efficient regular expression matching for deep packet
inspection,” in Proceedings of the 2006 ACM/IEEE Symposium on
Architecture for Networking and Communications Systems, ANCS 2006,
San Jose, California, USA, December 3-5, 2006, L. N. Bhuyan,
M. Dubois, and W. Eatherton, Eds. ACM, 2006, pp. 93–102. [Online].
Available: http://doi.acm.org/10.1145/1185347.1185360

[20] M. Waga, I. Hasuo, and K. Suenaga, “monaa,” https://github.com/
MasWag/monaa, 2017.

[21] M. Waga and I. Hasuo, “Moore-machine filtering for timed and untimed
pattern matching (extended ver.),” Available at request, 2018.

[22] S. Tripakis, “Folk theorems on the determinization and minimization of
timed automata,” Inf. Process. Lett., vol. 99, no. 6, pp. 222–226, 2006.
[Online]. Available: https://doi.org/10.1016/j.ipl.2006.04.015

[23] G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelánek, “Lower
and upper bounds in zone-based abstractions of timed automata,”
STTT, vol. 8, no. 3, pp. 204–215, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10009-005-0190-0

[24] Simulink User’s Guide, The MathWorks, Inc., Natick, MA, USA, 2015.
[25] B. Hoxha, H. Abbas, and G. E. Fainekos, “Benchmarks for

temporal logic requirements for automotive systems,” in 1st and
2nd International Workshop on Applied veRification for Continuous
and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Germany, April
14, 2014 / ARCH@CPSWeek 2015, Seattle, WA, USA, April 13,
2015., ser. EPiC Series in Computing, G. Frehse and M. Althoff,
Eds., vol. 34. EasyChair, 2014, pp. 25–30. [Online]. Available:
http://www.easychair.org/publications/paper/250954

[26] T. Liu, Y. Sun, A. X. Liu, L. Guo, and B. Fang, “A prefiltering
approach to regular expression matching for network security systems,”
in Applied Cryptography and Network Security - 10th International
Conference, ACNS 2012, Singapore, June 26-29, 2012. Proceedings, ser.

http://www.easychair.org/publications/volume/RV-CuBES_2017
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-319-10512-3_16
http://dx.doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-319-63387-9_16
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-319-65765-3_12
https://doi.org/10.1007/s10703-009-0065-1
http://www.usenix.org/events/sec10/tech/full_papers/Meiners.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Meiners.pdf
http://doi.acm.org/10.1145/2000799.2000800
http://doi.acm.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-319-44878-7_8
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R104.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R104.pdf
http://doi.acm.org/10.1145/1376616.1376635
http://doi.acm.org/10.1145/1376616.1376635
http://doi.acm.org/10.1145/1185347.1185360
https://github.com/MasWag/monaa
https://github.com/MasWag/monaa
https://doi.org/10.1016/j.ipl.2006.04.015
http://dx.doi.org/10.1007/s10009-005-0190-0
http://www.easychair.org/publications/paper/250954

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

Lecture Notes in Computer Science, F. Bao, P. Samarati, and J. Zhou,
Eds., vol. 7341. Springer, 2012, pp. 363–380. [Online]. Available:
https://doi.org/10.1007/978-3-642-31284-7 22

[27] X. Zhou, B. Xu, Y. Qi, and J. Li, “MRSI: A fast pattern
matching algorithm for anti-virus applications,” in Seventh International
Conference on Networking (ICN 2008), 13-18 April 2008, Cancun,
Mexico. IEEE Computer Society, 2008, pp. 256–261. [Online].
Available: https://doi.org/10.1109/ICN.2008.119

[28] O. Erdogan and P. Cao, “Hash-av: fast virus signature scanning by
cache-resident filters,” IJSN, vol. 2, no. 1/2, pp. 50–59, 2007. [Online].
Available: https://doi.org/10.1504/IJSN.2007.012824

[29] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big
bang: fast and scalable deep packet inspection with extended finite
automata,” in Proceedings of the ACM SIGCOMM 2008 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, Seattle, WA, USA, August 17-22, 2008, V. Bahl,
D. Wetherall, S. Savage, and I. Stoica, Eds. ACM, 2008, pp. 207–218.
[Online]. Available: http://doi.acm.org/10.1145/1402958.1402983

[30] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, vol. 20, no. 10, pp. 762–772, 1977. [Online]. Available:
http://doi.acm.org/10.1145/359842.359859

[31] B. Commentz-Walter, “A string matching algorithm fast on the average,”
in Automata, Languages and Programming, 6th Colloquium, Graz,
Austria, July 16-20, 1979, Proceedings, ser. Lecture Notes in Computer
Science, H. A. Maurer, Ed., vol. 71. Springer, 1979, pp. 118–132.
[Online]. Available: https://doi.org/10.1007/3-540-09510-1 10

[32] L. Salmela, J. Tarhio, and J. Kytöjoki, “Multipattern string matching
with q-grams,” ACM Journal of Experimental Algorithmics, vol. 11,
2006. [Online]. Available: http://doi.acm.org/10.1145/1187436.1187438

[33] O. Maler and D. Nickovic, “Monitoring temporal properties of
continuous signals,” in Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, Joint International Conferences on
Formal Modelling and Analysis of Timed Systems, FORMATS 2004 and
Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT
2004, Grenoble, France, September 22-24, 2004, Proceedings, ser.
Lecture Notes in Computer Science, Y. Lakhnech and S. Yovine,
Eds., vol. 3253. Springer, 2004, pp. 152–166. [Online]. Available:
https://doi.org/10.1007/978-3-540-30206-3 12

[34] D. A. Basin, F. Klaedtke, S. Müller, and E. Zalinescu, “Monitoring metric
first-order temporal properties,” J. ACM, vol. 62, no. 2, pp. 15:1–15:45,
2015. [Online]. Available: http://doi.acm.org/10.1145/2699444

[35] E. Asarin, P. Caspi, and O. Maler, “Timed regular expressions,”
J. ACM, vol. 49, no. 2, pp. 172–206, 2002. [Online]. Available:
http://doi.acm.org/10.1145/506147.506151

[36] R. Alur and T. A. Henzinger, “Back to the future: Towards a theory of
timed regular languages,” in 33rd Annual Symposium on Foundations
of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October
1992. IEEE Computer Society, 1992, pp. 177–186. [Online]. Available:
https://doi.org/10.1109/SFCS.1992.267774

[37] F. Franek, C. G. Jennings, and W. F. Smyth, “A simple fast hybrid pattern-
matching algorithm,” J. Discrete Algorithms, vol. 5, no. 4, pp. 682–695,
2007. [Online]. Available: https://doi.org/10.1016/j.jda.2006.11.004

[38] B. W. Watson and R. E. Watson, “A boyer-moore-style algorithm
for regular expression pattern matching,” Sci. Comput. Program.,
vol. 48, no. 2-3, pp. 99–117, 2003. [Online]. Available: https:
//doi.org/10.1016/S0167-6423(03)00013-3

[39] C. Dima, “Real-time automata and the kleene algebra of sets of real
numbers,” in STACS 2000, 17th Annual Symposium on Theoretical
Aspects of Computer Science, Lille, France, February 2000, Proceedings,
ser. Lecture Notes in Computer Science, H. Reichel and S. Tison,
Eds., vol. 1770. Springer, 2000, pp. 279–289. [Online]. Available:
https://doi.org/10.1007/3-540-46541-3 23

[40] A. Abate and G. Geeraerts, Eds., Formal Modeling and Analysis of
Timed Systems - 15th International Conference, FORMATS 2017, Berlin,
Germany, September 5-7, 2017, Proceedings, ser. Lecture Notes in
Computer Science, vol. 10419. Springer, 2017. [Online]. Available:
https://doi.org/10.1007/978-3-319-65765-3

Masaki Waga received the B.S and M.S degrees
in computer science from the University of Tokyo,
Tokyo, Japan, in 2016 and 2018, respectively. He
is currently pursuing the Ph.D degree in informatics
with SOKENDAI, Kanagawa, Japan.

His current research interests include runtime veri-
fication of cyber-physical systems and theory of timed
automata.

Ichiro Hasuo is an Associate Professor at National
Institute of Informatics (NII), Tokyo, Japan, where he
also leads JST ERATO Metamathematics for Systems
Design Project. He received the BSc and MSc degrees
from the University of Tokyo (2002) and Tokyo Insti-
tute of Technology (2004), respectively, and received
the PhD degree (cum laude) from Radboud University
Nijmegen, the Netherlands (2008). Prior to joining
NII, he was an Assistant Professor at RIMS, Kyoto
University, and a Lecturer and an Associate Professor
at the University of Tokyo. His research interests

are in mathematical (logical, algebraic and categorical) structures in formal
methods; abstraction and generalization of deductive and automata-theoretic
verification techniques; and their application to cyber-physical systems.

https://doi.org/10.1007/978-3-642-31284-7_22
https://doi.org/10.1109/ICN.2008.119
https://doi.org/10.1504/IJSN.2007.012824
http://doi.acm.org/10.1145/1402958.1402983
http://doi.acm.org/10.1145/359842.359859
https://doi.org/10.1007/3-540-09510-1_10
http://doi.acm.org/10.1145/1187436.1187438
https://doi.org/10.1007/978-3-540-30206-3_12
http://doi.acm.org/10.1145/2699444
http://doi.acm.org/10.1145/506147.506151
https://doi.org/10.1109/SFCS.1992.267774
https://doi.org/10.1016/j.jda.2006.11.004
https://doi.org/10.1016/S0167-6423(03)00013-3
https://doi.org/10.1016/S0167-6423(03)00013-3
https://doi.org/10.1007/3-540-46541-3_23
https://doi.org/10.1007/978-3-319-65765-3

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

APPENDIX

Notation A.1 (s0 6
w−→ ·). Let A = (Σ, S, s0, E, SF) be an NFA,

and w = a1 . . . an ∈ Σ∗ be a word. The fact that reading w in
A leads to no active states, that is,

{
s ∈ S | ∃s1, . . . , sn−1 ∈

S. (s0
a1−→ s1

a2−→ . . .
an−1−−−→ sn−1

an−−→ s in A)
}

= ∅, is
denoted by s0 6

w−→ ·.

Lemma A.2. Let A be an NFA A = (Σ, S, s0, E, SF), and N
be a positive integer. Let MA,N = (Σ⊥,Σ⊥, Q, q0,∆,Λ) be
the Moore machine in Def. III.3. of A, w = a1a2 . . . an be a
word over Σ, and ⊥Nw′ be the output word of MA,N over
the input word w⊥N where w′ = b1b2 . . . bn. For any index k
of w, we have bk = ⊥ if and only if for any i ∈ [1, k] and
k′ ∈ [k, k+N−1], we have either (k′− i) mod N < k′−k or
w|[i,k′] 6∈ L(A), and for any k′ ∈ [k, k+N−1] and m ∈ Z>0,

we have s0 6
w|[k′−mN+1,k′]−−−−−−−−−−→ ·.

Proof. Let (S0, a0, l0), (S1, a1, l1), . . . , (S|w|+N , a|w|+N , l|w|+N) ∈
Q∗ be the run of M over w⊥N . By the definition of Λ, we
have bk = ⊥ if and only if we have lk+N,1 = mask, which
holds if and only if we have

∀k′ ∈ [k, k+N−1], (s, n) ∈ Sk′ . (s 6∈ SF∨n ≤ k′−k)∧n 6= N
(7)

by the definition of ∆. The first part ∀k′ ∈ [k, k + N −
1], (s, n) ∈ Sk′ . s 6∈ SF ∨n < k′−k of (7) holds if and only if
for any i ∈ [1, k], we have either (k′ − i) mod N < k′ − k or
w|[i,k′] 6∈ L(A). The second part ∀k′ ∈ [k, k+N −1], (s, n) ∈
Sk′ . n 6= N holds if and only if for any k′ ∈ [k, k + N − 1]

and m ∈ Z>0, we have s0 6
w|[k′−mN+1,k′]−−−−−−−−−−→ ·.

A. Proof of Thm. III.7

Proof. Let (i, j) be a pair of indices of w satisfying w|[i,j] ∈
L(A) and si, si+1, . . . , sj ∈ S∗ be a sequence of states
such that we have (s0, ai, si) ∈ E, sj ∈ SF , and
for each k ∈ [i + 1, j], (sk−1, ak, sk) ∈ E holds. Let
(S0, a0, l0), (S1, a1, l1), . . . , (Sn+N , an+N , ln+N) ∈ Q∗ be the
run of MA,N over w⊥N . By the definition of the transi-
tion function ∆ of MA,N , for each k ∈ [i, j], we have
(sk, nk) ∈ Sk where nk ∈ Z/NZ. Thus for each m ∈
Z≥0 satisfying i + Nm ≤ j, we have ai+Nm+N−1 =
(ai+Nm, ai+Nm+1, · · · , ai+Nm+N−1) and li+Nm+N−1 =
(pass, pass, . . . , pass). Also, because of sj ∈ SF , we have
aj−N+1 = (aj−N+1, aj−N+1, · · · , aj) and for each m ∈
[N − ((j − i) mod N), N] we have lj−N+1,m = pass. Thus,
for any index k ∈ [i, j] of w, we have ak = bk.

B. Proof of Thm. III.8

Proof. Since max{|w| | w ∈ L(A)} < ∞, there is an
NFA A′ such that L(A) = L(A′) holds and there is no
transition from any accepting states. LetA′ be such an NFA and
(S0, a0, l0), (S1, a1, l1), . . . , (S|w|+N , a|w|+N , l|w|+N) ∈ Q∗

be the run of MA,N over w⊥N . Since the length of a run
of A′ is not more than N + 1 and the run is accepting if
its length is N + 1, ak = bk holds if and only if there exist
i ∈ [1, k] and j ∈ [k, k + N − 1], we have w|[i,j] ∈ L(A), by
Lemma A.2.

C. Proof of Thm. III.9

Proof. By Lemma A.2, if we have b(N)
k = ⊥, we have

∀i ∈ [1, k], j ∈ [k, k+N−1]. w|[i,j] 6∈ L(A)∨(j−i) mod N < j−k
(8)

and

∀j ∈ [k, k +N − 1],m ∈ Z>0. s0 6
w|[j−mN+1,j]−−−−−−−−→ · . (9)

Because of (8), we have either

∀i ∈ [1, k], j ∈ [k, k+N−1]. w|[i,j] 6∈ L(A)∨(j−i) mod nN < j−k
(10)

or

∀i ∈ [1, k], j ∈ [k, k+N−1]. w|[i,j] 6∈ L(A)∨∃p ∈ [1, n−1]. pN ≤ j−i−qnN < Np+j−k
(11)

where q is the positive integer satisfying 0 ≤ j−i−qnN < nN .
Because of pN ≤ j − i − qnN < Np + j − k ⇐⇒ k ≤
j−i−qnN−pN+k < j and pN ≤ j−i−qnN < Np+j−k ≤
pN +N , (11) implies ∀i ∈ [1, k], j ∈ [k, k +N − 1]. w|[i,j] 6∈
L(A)∨∃q ∈ Z>0. k ≤ j− i−qN +k < j, which is equivalent
to ∀i ∈ [1, k], j ∈ [k, k + N − 1]. w|[i,j] 6∈ L(A) ∨ ∃q ∈
Z>0. k < i+ qN ≤ j. Because of (9), if there exists q ∈ Z>0

satisfying k < i+ qN ≤ j, we have s0 6
w|[i,i+qN]·w|[i+qN+1,j]−−−−−−−−−−−−−−−→ ·

Thus, (11) implies w|[i,j] 6∈ L(A) and we have (10). Besides,
by (9), for any j′ ∈ [k, k + nN − 1] and m′ ∈ Z>0, we have

s0 6
w|[j′−mN+1,j′′]−−−−−−−−−−→ · where j′′ = k+ ((j′ − k) mod N), which

leads s0 6
w|[j′−mN+1,j′′]·w|[j′′+1,j′]−−−−−−−−−−−−−−−−−→ ·.

Because of (9), for any i ∈ [1, k] there exists k′ ∈ [k, k +

N − 1] such that we have s0 6
w|[i,k′]−−−−→ ·. Thus, for any i ∈ [1, k]

and j ∈ [k + N, k + nN − 1], we have w|[i,j] 6∈ L(A). Thus,
we have both

∀i ∈ [1, k], j ∈ [k, k+nN−1]. w|[i,j] 6∈ L(A)∨(j−i) mod nN < j−k

and

∀j ∈ [k, k + nN − 1],m ∈ Z>0. s0 6
w|[j−mnN+1,j]−−−−−−−−−→ · ,

and we have b(nN)
k = ⊥.

D. Proof of Thm. IV.8

Proof. If we have w(i, j) − τi−1 ∈ L(A), there is an
accepting run ((s0, si, si+1, . . . , sj), (ν0, νi, νi+1, . . . , νj)) of
A over w(i, j) − τi−1. Let ν = (ν0, νi, νi+1, . . . , νj).
By the definition of AN -ctr, there is an accepting run
(((s0, 0), (si, ni), (si+1, ni+1), . . . , (sj , nj)), ν) of AN -ctr over
w(i, j) − τi−1 where for any k ∈ [i, j], nk = (k − i mod
N) + 1. Let ((S0,S1, . . . ,Sj), (ν′0, ν′1, . . . , ν′j)) be the run of
AN -ctr-d over w(1, j). By Prop. IV.6, for any k ∈ [i, j] we
have ((sk, nk), Zk) ∈ Sk where sk = (k − i mod N) + 1
and sj ∈ SF . Let ((S0, l0), (S1, l1), . . . , (Sn+N , ln+N)) be
the run of MA,N over w(⊥, τn)N . By the definition of
the filter Moore machine MA,N , for any m ∈ Z≥0 sat-
isfying i + Nm − 1 ≤ j, we have bi+Nm−1 = N and
li+Nm−1 = passN . Also, because of Sj ∈ S′F , we have

lj = l2, l3, . . . , lN−ψ(Sj)+1,

ψ(Sj)︷ ︸︸ ︷
pass, . . . , pass where for any k ∈

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

[2, N − ψ(Sj) + 1], lk is either pass or mask. Thus, for any
k ∈ [i, j], we have bk = pass.

See Alg. 1.
We shall now sketch the one-clock determinization. We

can split the one-clock determinization into two steps: 1)
overapproximation of a timed automaton by a real-time au-
tomaton (RTA); and 2) determinization of the resulting real-
time automaton.

E. Overapproximation of TA by RTA

Real-time automata (RTA) [39] form a subclass of TA. Intu-
itively, in an RTA the enabledness of a transition is determined
solely by the dwell time at the source state of the transition.
This amounts, in technical terms, to the condition that an RTA
has only one clock variable, and the clock is reset after each
transition.

Algorithm 2, that gives an RTA Art such that L(A) ⊆
L(Art), is essentially the construction described in [11, §5.3.4].
The difference is as follows. In Line 8 we use zones and
their representation by difference bound matrices (DBM) for
constructing new guards, while in [11, §5.3.4] a region-like
construction is suggested (the latter should be more expensive)
. We use DBM also in Lines 6, 7 and 9; this is the same as
in [11, §5.3.4].

In Line 9, we take a clock valuation ν ∈ Z ′ and first reset
all the clocks in λ and additionally y, and then take t-shift
for arbitrary t. We note that each endpoint of the interval I is
an integer or +∞, and hence the condition “y ∈ I” (e.g. in
Line 10) can be represented by a constraint in Φ({y}).

Termination of Algorithm 2 can be established much like the
termination of usual zone automata constructions.

F. Determinization of RTA

Determinization of RTA is possible unlike general TA. This
is because each transition resets the unique clock y, and
therefore the enabledness of a transition is determined locally.

For an RTA A = (Σ, S, s0, SF , {y}, E), its determinization
Ad = (Σ,P(S), {s0}, Sd

F , {y}, Ed) can be defined as follows.
The accepting states are defined by Sd

F = {S ∈ P(S) | S ∩
SF 6= ∅}, as usual. On transitions, for any S ∈ P(S) and a ∈
Σ, let IS,a = {I1, I2, . . . , In} be the coarsest partition of R≥0
such that for any i ∈ {1, 2, . . . , n} and (s, a, y ∈ I, {y}, s′) ∈
E, we have either Ii ⊆ I or Ii ∩ I = ∅. This is used in the
definition of the transition set Ed:

Ed =
{

(S, a, y ∈ I ′,S ′)
∣∣ I ′ ∈ IS,a,

S ′ = {s′ ∈ S | ∃s ∈ S.∃(s, a, y ∈ I ′′, {y}, s′) ∈ E. I ′ ⊆ I ′′}
}
.

See Table I–VI.

TABLE I
FILTER (TORQUE)

|w| N Execution Time [s] Memory Usage [kbyte] |w′|

242,808 1 0.12 1,796.80 242,808
487,021 1 0.25 1,791.20 487,021
732,281 1 0.36 1,796.40 732,281
1,221,149 1 0.60 1,787.40 1,221,149
1,830,434 1 0.93 1,791.20 1,830,434
2,436,963 1 1.21 1,801.80 2,436,963
3,045,927 1 1.54 1,796.20 3,045,927
3,654,904 1 1.87 1,787.00 3,654,904
4,265,044 1 2.16 1,790.20 4,265,044
4,873,207 1 2.44 1,788.80 4,873,207
242,808 2 0.05 1,795.20 74,333
487,021 2 0.11 1,798.20 149,805
732,281 2 0.16 1,793.60 226,107
1,221,149 2 0.26 1,796.00 372,876
1,830,434 2 0.40 1,795.60 557,182
2,436,963 2 0.53 1,793.40 740,611
3,045,927 2 0.67 1,802.60 926,892
3,654,904 2 0.80 1,797.00 1,110,315
4,265,044 2 0.93 1,791.40 1,294,699
4,873,207 2 1.06 1,797.40 1,479,893
242,808 3 0.06 1,809.60 74,274
487,021 3 0.12 1,806.80 149,698
732,281 3 0.18 1,797.80 225,932
1,221,149 3 0.29 1,803.40 372,592
1,830,434 3 0.44 1,814.40 556,749
2,436,963 3 0.58 1,810.80 740,047
3,045,927 3 0.74 1,802.40 926,197
3,654,904 3 0.88 1,799.80 1,109,452
4,265,044 3 1.04 1,809.20 1,293,686
4,873,207 3 1.16 1,803.60 1,478,727
242,808 4 0.06 1,808.00 74,305
487,021 4 0.11 1,801.40 149,743
732,281 4 0.16 1,796.60 225,993
1,221,149 4 0.27 1,801.60 372,702
1,830,434 4 0.41 1,801.00 556,904
2,436,963 4 0.54 1,806.00 740,241
3,045,927 4 0.68 1,804.20 926,438
3,654,904 4 0.82 1,807.60 1,109,733
4,265,044 4 0.95 1,813.40 1,294,033
4,873,207 4 1.08 1,811.00 1,479,095
242,808 5 0.06 1,806.00 74,133
487,021 5 0.11 1,805.40 149,439
732,281 5 0.16 1,809.80 225,548
1,221,149 5 0.27 1,812.20 371,902
1,830,434 5 0.41 1,813.80 555,670
2,436,963 5 0.54 1,809.60 738,656
3,045,927 5 0.68 1,809.80 924,412
3,654,904 5 0.81 1,815.40 1,107,300
4,265,044 5 0.96 1,821.80 1,291,174
4,873,207 5 1.08 1,820.60 1,475,874
242,808 10 0.06 1,812.60 74,119
487,021 10 0.11 1,819.60 149,425
732,281 10 0.16 1,823.80 225,513
1,221,149 10 0.27 1,815.60 371,832
1,830,434 10 0.41 1,817.20 555,572
2,436,963 10 0.53 1,816.60 738,537
3,045,927 10 0.68 1,824.20 924,272
3,654,904 10 0.82 1,812.20 1,107,153
4,265,044 10 0.96 1,816.60 1,290,985
4,873,207 10 1.08 1,818.80 1,475,657

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 15

Algorithm 1 A Filtering Algorithm for Pattern Matching with On-The-Fly Determinization

Require: Word w ∈ Σ∗, NFA A = (Σ, S, s0, E, SF), N ∈ Z>0

Ensure: ⊥N−1 · w′ ∈ Σ⊥ is the output word of MA,N given the input word w · ⊥N−1
1: currSN ← {(s0, 0)}; a← ⊥N ; l← maskN

2: for i = 1; i ≤ |w|; i← i+ 1 do
3: nextSN ← {(s0, 0)} ∪ {(s′, n+ 1 mod N) | ∃(s, n) ∈ currSN , s′ ∈ S. (s, w(i), s′) ∈ E}
4: a← a2, a3, . . . , aN , wi
5: if ∃(s,N) ∈ nextSN then
6: l← passN

7: else if ∃(s, n) ∈ nextSN . s ∈ SF then
8: maxN ← max{n | (s, n) ∈ nextSN , s ∈ SF }
9: l← l2, l3, . . . , lN−maxN+1, pass

maxN

10: else
11: l← l2, l3, . . . , lN ,mask
12: if l1 = pass then
13: w′ ← w′ · a1
14: else
15: w′ ← w′ · ⊥
16: currSN ← nextSN
17: for i = 1; i ≤ N − 1; i← i+ 1 do
18: if li = pass then
19: w′ ← w′ · ai
20: else
21: w′ ← w′ · ⊥

Algorithm 2 An over-approximation of a timed automaton by a real-time automaton.

Require: a timed automaton A = (Σ, S, s0, SF , C,E)
Ensure: a real-time automaton Art = (Σ, Srt, srt0 , S

rt
F , {y}, Ert)

1: srt0 ← (s0, {0 + t | t ∈ R≥0}); Srt ← {srt0 }; currS ← {srt0 }
2: while currS 6= ∅ do
3: nextS ← ∅
4: for (s, Z) ∈ currS do . Z is a zone in (R≥0)Cq{y}

5: for (s, a, δ, λ, s′) ∈ E do
6: Z ′ ← {ν | ν ∈ Z, ν |= δ}
7: if Z ′ 6= ∅ then
8: I ← {ν|{y} | ν ∈ Z ′}
9: Z ′′ ← {ν[x 7→ 0]x∈(λq{y}) + t | ν ∈ Z ′, t ∈ R≥0}

10: Ert ← Ert ∪ {((s, Z), a, y ∈ I, {y}, (s′, Z ′′))}
11: if (s′, Z ′′) 6∈ Srt then
12: nextS ← nextS ∪ {(s′, Z ′′)}
13: currS ← nextS ; Srt ← Srt ∪ nextS
14: Srt

F ← {(s, Z) ∈ Srt | s ∈ SF }

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 16

TABLE II
FILTER (GEAR)

|w| N Execution Time [s] Memory Usage [kbyte] |w′|

306 1 < 0.01 1,658.80 201
127,552 1 0.05 1,779.40 75,666
255,750 1 0.09 1,779.00 152,584
383,168 1 0.13 1,785.00 229,136
508,756 1 0.17 1,779.40 301,952
632,484 1 0.22 1,785.80 369,940
758,500 1 0.26 1,779.60 444,020
894,692 1 0.31 1,784.00 534,112
1,011,426 1 0.35 1,781.60 591,858

306 2 < 0.01 1,657.20 59
127,552 2 0.04 1,781.20 64,245
255,750 2 0.08 1,781.80 129,929
383,168 2 0.12 1,781.00 195,143
508,756 2 0.15 1,781.60 256,385
632,484 2 0.19 1,781.40 312,581
758,500 2 0.22 1,779.00 375,159
894,692 2 0.27 1,776.40 454,755
1,011,426 2 0.30 1,778.40 500,001

306 3 < 0.01 1,664.80 59
127,552 3 0.04 1,785.40 64,245
255,750 3 0.08 1,793.60 129,929
383,168 3 0.12 1,785.40 195,143
508,756 3 0.16 1,791.00 256,385
632,484 3 0.20 1,786.60 312,581
758,500 3 0.24 1,791.00 375,159
894,692 3 0.29 1,790.00 454,755
1,011,426 3 0.32 1,786.80 500,001

306 4 < 0.01 1,657.40 59
127,552 4 0.04 1,778.40 64,245
255,750 4 0.08 1,776.80 129,929
383,168 4 0.12 1,783.20 195,143
508,756 4 0.16 1,780.60 256,385
632,484 4 0.19 1,777.20 312,581
758,500 4 0.23 1,782.60 375,159
894,692 4 0.27 1,778.80 454,755
1,011,426 4 0.31 1,784.60 500,001

306 5 < 0.01 1,665.60 59
127,552 5 0.04 1,789.60 64,245
255,750 5 0.08 1,791.80 129,929
383,168 5 0.12 1,798.00 195,143
508,756 5 0.16 1,790.60 256,385
632,484 5 0.19 1,792.60 312,581
758,500 5 0.23 1,790.20 375,159
894,692 5 0.28 1,784.80 454,755
1,011,426 5 0.31 1,789.80 500,001

306 10 < 0.01 1,663.20 59
127,552 10 0.04 1,783.40 64,245
255,750 10 0.08 1,781.20 129,929
383,168 10 0.12 1,788.20 195,143
508,756 10 0.16 1,782.20 256,385
632,484 10 0.19 1,783.00 312,581
758,500 10 0.23 1,786.20 375,159
894,692 10 0.28 1,785.60 454,755
1,011,426 10 0.31 1,783.80 500,001

TABLE III
FILTER (ACCEL)

|w| N Execution Time [s] Memory Usage [kbyte] |w′|

708 1 0.00 1,776.60 677
218,247 1 0.10 1,903.40 190,726
436,611 1 0.19 1,921.80 380,611
655,237 1 0.29 1,913.20 572,777
870,967 1 0.38 1,914.80 761,240
1,087,411 1 0.48 1,921.40 950,127
1,304,404 1 0.57 1,924.40 1,140,025
1,527,632 1 0.67 1,922.00 1,333,230
1,739,525 1 0.76 1,927.60 1,520,334

708 2 0.01 1,810.40 287
218,247 2 0.06 1,917.00 106,107
436,611 2 0.13 1,921.80 215,710
655,237 2 0.18 1,913.00 323,056
870,967 2 0.24 1,912.60 423,590
1,087,411 2 0.30 1,933.40 517,707
1,304,404 2 0.36 1,924.40 621,700
1,527,632 2 0.43 1,918.80 752,312
1,739,525 2 0.47 1,917.20 828,584

708 3 0.01 1,817.40 154
218,247 3 0.03 1,936.40 16,226
436,611 3 0.06 1,949.40 33,137
655,237 3 0.09 1,938.00 48,475
870,967 3 0.11 1,937.60 63,868
1,087,411 3 0.14 1,940.40 81,909
1,304,404 3 0.17 1,949.80 98,221
1,527,632 3 0.20 1,942.00 113,203
1,739,525 3 0.22 1,936.80 131,265

708 4 0.01 1,820.40 143
218,247 4 0.03 1,935.40 13,678
436,611 4 0.05 1,943.00 27,300
655,237 4 0.07 1,943.80 40,133
870,967 4 0.09 1,935.60 54,500
1,087,411 4 0.12 1,943.60 66,614
1,304,404 4 0.14 1,941.60 80,141
1,527,632 4 0.16 1,935.60 93,248
1,739,525 4 0.18 1,942.20 106,825

708 5 0.01 1,842.80 1
218,247 5 0.02 1,945.00 2,844
436,611 5 0.04 1,962.20 6,190
655,237 5 0.06 1,957.00 8,531
870,967 5 0.08 1,952.80 10,509
1,087,411 5 0.10 1,976.60 13,096
1,304,404 5 0.12 1,954.60 15,790
1,527,632 5 0.14 1,958.40 19,545
1,739,525 5 0.15 1,960.20 21,170

708 10 0.01 1,890.60 1
218,247 10 0.03 1,987.80 2,340
436,611 10 0.04 2,016.20 5,287
655,237 10 0.06 2,005.20 7,068
870,967 10 0.08 2,000.80 8,514
1,087,411 10 0.10 2,009.40 10,058
1,304,404 10 0.11 2,004.40 12,129
1,527,632 10 0.13 2,001.80 16,199
1,739,525 10 0.15 2,004.60 16,277

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 17

TABLE IV
FILTERED MONAA (TORQUE)

|w| N Execution Time [s] Memory Usage [kbyte]

242,808 1 0.24 3,725.00
487,021 1 0.40 3,709.20
732,281 1 0.57 3,695.00
1,221,149 1 0.90 3,715.20
1,830,434 1 1.31 3,724.80
2,436,963 1 1.72 3,696.20
3,045,927 1 2.14 3,692.60
3,654,904 1 2.54 3,710.40
4,265,044 1 2.94 3,721.20
4,873,207 1 3.40 3,721.00
242,808 2 0.17 3,686.00
487,021 2 0.27 3,698.60
732,281 2 0.37 3,693.00
1,221,149 2 0.56 3,711.40
1,830,434 2 0.79 3,709.60
2,436,963 2 1.04 3,712.00
3,045,927 2 1.27 3,706.60
3,654,904 2 1.50 3,722.20
4,265,044 2 1.75 3,703.80
4,873,207 2 2.04 3,716.80
242,808 3 0.17 3,715.80
487,021 3 0.27 3,711.20
732,281 3 0.37 3,695.40
1,221,149 3 0.56 3,696.00
1,830,434 3 0.81 3,700.80
2,436,963 3 1.04 3,706.20
3,045,927 3 1.28 3,701.00
3,654,904 3 1.52 3,716.80
4,265,044 3 1.77 3,698.40
4,873,207 3 2.03 3,719.00
242,808 4 0.17 3,698.80
487,021 4 0.27 3,704.40
732,281 4 0.37 3,692.20
1,221,149 4 0.56 3,697.40
1,830,434 4 0.80 3,704.20
2,436,963 4 1.03 3,705.80
3,045,927 4 1.27 3,701.20
3,654,904 4 1.51 3,705.60
4,265,044 4 1.74 3,722.80
4,873,207 4 1.99 3,707.80
242,808 5 0.17 3,688.40
487,021 5 0.27 3,691.00
732,281 5 0.37 3,691.60
1,221,149 5 0.55 3,701.80
1,830,434 5 0.80 3,722.80
2,436,963 5 1.03 3,707.20
3,045,927 5 1.28 3,713.00
3,654,904 5 1.51 3,697.80
4,265,044 5 1.75 3,708.00
4,873,207 5 1.99 3,720.00
242,808 10 0.17 3,703.80
487,021 10 0.27 3,701.40
732,281 10 0.37 3,697.80
1,221,149 10 0.55 3,708.40
1,830,434 10 0.79 3,702.80
2,436,963 10 1.02 3,710.60
3,045,927 10 1.28 3,703.20
3,654,904 10 1.50 3,710.00
4,265,044 10 1.75 3,731.60
4,873,207 10 1.98 3,714.80

TABLE V
FILTERED MONAA (GEAR)

|w| N Execution Time [s] Memory Usage [kbyte]

306 1 0.01 2,163.60
127,552 1 0.18 2,250.00
255,750 1 0.36 2,258.60
383,168 1 0.52 2,273.20
508,756 1 0.69 2,278.20
632,484 1 0.83 2,260.00
758,500 1 1.00 2,266.00
894,692 1 1.21 2,261.20
1,011,426 1 1.32 2,255.20

306 2 0.01 2,172.60
127,552 2 0.18 2,273.60
255,750 2 0.34 2,266.20
383,168 2 0.51 2,265.80
508,756 2 0.67 2,265.40
632,484 2 0.81 2,253.20
758,500 2 0.96 2,267.40
894,692 2 1.17 2,257.00
1,011,426 2 1.29 2,250.20

306 3 0.01 2,167.20
127,552 3 0.18 2,289.80
255,750 3 0.34 2,279.00
383,168 3 0.51 2,265.20
508,756 3 0.67 2,280.60
632,484 3 0.80 2,266.80
758,500 3 0.98 2,247.20
894,692 3 1.19 2,258.20
1,011,426 3 1.29 2,243.80

306 4 0.01 2,155.80
127,552 4 0.18 2,273.40
255,750 4 0.35 2,265.20
383,168 4 0.51 2,261.20
508,756 4 0.67 2,273.40
632,484 4 0.81 2,269.00
758,500 4 0.97 2,259.80
894,692 4 1.18 2,247.40
1,011,426 4 1.29 2,265.60

306 5 0.01 2,162.00
127,552 5 0.18 2,250.00
255,750 5 0.35 2,258.00
383,168 5 0.51 2,266.80
508,756 5 0.66 2,262.20
632,484 5 0.81 2,266.40
758,500 5 0.98 2,274.80
894,692 5 1.18 2,258.40
1,011,426 5 1.29 2,262.40

306 10 0.01 2,160.20
127,552 10 0.17 2,286.00
255,750 10 0.34 2,265.20
383,168 10 0.51 2,271.60
508,756 10 0.67 2,261.60
632,484 10 0.81 2,282.40
758,500 10 0.96 2,275.20
894,692 10 1.17 2,249.60
1,011,426 10 1.30 2,265.40

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 18

TABLE VI
FILTERED MONAA (ACCEL)

|w| N Execution Time [s] Memory Usage [kbyte]

708 1 0.20 4,953.80
218,247 1 0.30 4,976.20
436,611 1 0.40 4,968.00
655,237 1 0.51 4,964.40
870,967 1 0.67 4,995.00
1,087,411 1 0.71 4,971.00
1,304,404 1 0.81 4,995.80
1,527,632 1 0.90 5,004.00
1,739,525 1 1.01 4,957.40

708 2 0.20 4,960.40
218,247 2 0.26 4,987.40
436,611 2 0.33 4,973.40
655,237 2 0.39 4,987.20
870,967 2 0.46 4,982.00
1,087,411 2 0.52 4,964.60
1,304,404 2 0.58 4,972.80
1,527,632 2 0.65 4,974.60
1,739,525 2 0.71 4,987.40

708 3 0.20 4,959.20
218,247 3 0.22 4,999.80
436,611 3 0.25 4,966.80
655,237 3 0.28 4,970.40
870,967 3 0.30 4,982.20
1,087,411 3 0.33 4,987.20
1,304,404 3 0.36 4,967.20
1,527,632 3 0.39 4,967.40
1,739,525 3 0.42 4,982.20

708 4 0.20 4,949.80
218,247 4 0.21 4,976.80
436,611 4 0.24 4,975.40
655,237 4 0.26 4,973.20
870,967 4 0.28 4,989.00
1,087,411 4 0.30 4,975.00
1,304,404 4 0.33 4,957.00
1,527,632 4 0.35 4,990.40
1,739,525 4 0.37 4,988.80

708 5 0.20 4,955.20
218,247 5 0.21 4,985.00
436,611 5 0.22 4,975.80
655,237 5 0.23 4,978.00
870,967 5 0.24 4,994.00
1,087,411 5 0.26 4,972.60
1,304,404 5 0.28 4,996.80
1,527,632 5 0.30 4,983.80
1,739,525 5 0.31 4,983.20

708 10 0.20 4,952.60
218,247 10 0.21 4,979.40
436,611 10 0.22 5,001.00
655,237 10 0.22 4,979.00
870,967 10 0.23 4,989.80
1,087,411 10 0.24 4,980.00
1,304,404 10 0.26 4,969.40
1,527,632 10 0.30 4,998.40
1,739,525 10 0.30 4,988.40

	I Introduction
	I-A Monitoring and (Timed) Pattern Matching
	I-B Remote Monitoring in Embedded Applications
	I-C Filtering for (Timed) Pattern Matching
	I-D Moore Machines as Filters
	I-E Contribution
	I-F Pattern Matching vs. Pattern Search
	I-G Organization

	II Preliminaries
	III Moore-Machine Filtering for Pattern Matching I: Untimed
	III-A Problem Formulation
	III-B Construction of Filter Moore Machine MA,N
	III-C Properties of the Moore Machine MA,N

	IV Moore-Machine Filtering for Pattern Matching II: Timed
	IV-A Problem Formulation
	IV-B One-Clock Determinization of TA
	IV-C Construction of Our Filter MA,N

	V Implementation and Experiments
	V-A RQ1: Filtering Rate
	V-B RQ2: Speed and Memory Usage
	V-C RQ3: Acceleration of Timed Pattern Matching
	V-D RQ4: Precision
	V-E RQ5: Responsiveness

	VI Related Work
	VII Conclusions and Future Work
	References
	Biographies
	Masaki Waga
	Ichiro Hasuo

	Appendix
	A Proof of Thm. III.7
	B Proof of Thm. III.8
	C Proof of Thm. III.9
	D Proof of Thm. IV.8
	E Overapproximation of TA by RTA
	F Determinization of RTA

