
A Multilevel Cybersecurity and Safety Monitor for Embedded
Cyber-Physical Systems

Smitha Gautham
Virginia Commonwealth University

gauthamsm@vcu.edu

Georgios Bakirtzis
Virginia Commonwealth University

bakirtzisg@ieee.org

Matthew T. Leccadito
Virginia Commonwealth University

leccaditomt@vcu.edu

Robert H. Klenke
Virginia Commonwealth University

rhklenke@vcu.edu

Carl R. Elks
Virginia Commonwealth University

crelks@vcu.edu

ABSTRACT

Cyber-physical systems (cps) are composed of various embedded
subsystems and require specialized software, firmware, and hard-
ware to coordinate with the rest of the system. These multiple levels
of integration expose attack surfaces which can be susceptible to
attack vectors that require novel architectural methods to effec-
tively secure against. We present a multilevel hierarchical monitor
architecture cybersecurity approach applied to a flight control sys-
tem. However, the principles present in this paper apply to any
cps. Additionally, the real-time nature of these monitors allow for
adaptable security, meaning that they mitigate against possible
classes of attacks online. This results in an appealing bolt-on solu-
tion that is independent of different system designs. Consequently,
employing such monitors leads to strengthened system resiliency
and dependability of safety-critical cps.

CCS CONCEPTS

• Security and privacy → Intrusion detection systems; Em-

bedded systems security;Hardware attacks and countermea-

sures; • Computer systems organization → Embedded sys-

tems.

KEYWORDS

cyber-physical systems, security, safety, monitoring systems
ACM Reference Format:

Smitha Gautham, Georgios Bakirtzis, Matthew T. Leccadito, Robert H.
Klenke, and Carl R. Elks. 2019. A Multilevel Cybersecurity and Safety
Monitor for Embedded Cyber-Physical Systems. In Proceedings of (Con-

ference’19). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Ensuring the safety and security of high integrity cps applications
is a difficult task. Rigorous verification and design assurance strate-
gies are especially important for safety-critical embedded real-time
systems where the significance of failure or malicious exploitation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’19, April, 2019, Montreal, Canada

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

systems may result in far-reaching consequences to human life,
environment, and financial loss. In these situations, design assur-
ance standards and regulatory guidelines, for example, iec 61508,
do-254, and iso-26262, are used to provide high levels of assurance
evidence to confirm that the systems’s unsafe or security failures
are mitigated to “as low as reasonably achievable” standard. Fur-
thermore, the complexity of these systems makes it increasingly
difficult to assure security through traditional perimeter-based se-
curity approaches. Because design assurance methods are not 100%
foolproof, employing additional safety and security measures at
runtime have been used for some time [33].

In recent years, runtime verification methods have become more
prevalent and mature as a means to augment the safety and se-
curity of systems [13, 21]. Runtime verification tries to bridge the
gap between design-time safety assurance methods and traditional
safety testings. Additionally, runtime verification addresses the
shortfalls of design-time verification and testing in a way that is
complementary to both verification methods.

While runtime verification and monitors are not unique to cps,
they can provide significant advantages in this domain. This is
because cps has a specific expected service and limited functions in
contrast to more general personal computing systems. Hence, mak-
ing it amenable to use monitors and applying specific constraints
or conditions on the monitored state of the system to detect and
mitigate attacks. Monitors in the realm of cps can use the physics of
the system to provide resilience. For example, when an unmanned
aerial system (uas) is at a certain altitude it can physically only
move to another gradually. Therefore, an abrupt change in altitude
value could mean an attack is taking place or an intrinsic fault
is degrading the operation of the system. Similarly, in the com-
puting domain, for example, communications or execution, there
is expected behavior—the normal state—which is deviated from
can indicate a potential attacker is attempting to violate system
resources. This is an immediate consequence of viewing system
security as an emergent property.

Another important aspect of monitors is their they ability to
log the system state at all times. This can further inform of what
consists normal and abnormal states for the given system based
on real situational data. Furthermore, it can facilitate offline foren-
sics analysis in the event of a known breach that can lead to more
secure and safer cps architectures getting deployed later. This is
increasingly important in safety-critical cps, where attacks can lead
to hazardous states, which can in turn lead to accidents. There-
fore, architectural solutions—in the form of application-specific

ar
X

iv
:1

81
2.

03
37

7v
1 

 [
cs

.C
R

] 
 8

 D
ec

 2
01

8

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’19, April, 2019, Montreal, Canada S. Gautham, G. Bakirtzis, M.T. Leccadito, R.H. Klenke, C.R. Elks

security/safety monitors—can be seen both as necessary and cost
effective.

Nonetheless, embedded real-time systems and specifically cps
present particular challenges for runtime monitoring. System in-
ternals are not easily observable (such as address and data buses),
as many device features are incorporated deep within complex
chip packages. Some embedded cps have limited computational
and memory resources or have real-time requirements that must
adhere to strict deadlines. Moreover, cps and embedded systems
are vulnerable to security threats at multiple levels that span both
hardware peripherals and software implementations. These include
sensors, actuators, application software, firmware, and communica-
tion networks, to name a few.

These traits suggest that focused (limited) monitoring, but dis-
tributed across different architectural layers in a cps may be more
effective at timely detection of attacks (or failures) and lessen the
burden of monitoring overhead; high overhead could compromise
core system resources or affect scheduling, causing interference to
the target application [19]. Specifically, the two issues examined in
this paper are: (1) the development of a monitoring framework ca-
pable of sufficiently observing the internal operation of a target cps
at multiple levels and (2) design and implementation of a multilevel
monitoring framework to preliminary characterize and discuss the
challenges of realization.

Towards these goals, we propose and develop the multilayer hier-
archical architecture for implementing cps security/safety monitors
for safety-critical applications.

Contributions. Our contributions are:
• the presentation of design principles for building and evalu-
ating cps security monitors;

• the construction of a general-purpose hierarchy for the im-
plementation of cps security monitors; and

• the evaluation of multilayer hierarchical architecture by im-
plementing a cps security monitor on field-programmable
gate array (fpga) fabric and a processor for a flight control
system (fcs) application.

2 BACKGROUND

A cps is often comprised of numerous integrated components and
subsystems interacting and communicating with each other to
satisfy system (plant) level goals. These goals are often related to
the functional performance, safety and security of the service a
cps is providing—example being, an automobile cruise control will
always disengage when the brake is applied. With the functional
safety applications, failure due to the presence of attackers can lead
to situations where security breaches affect safety. The important
considerations while designing the multilevel monitor architecture
and the questions at hand while designing are:

• The characteristics and vulnerabilities of the cps that define
the threat model at each functional level of the system.

• What is the impact of overhead at multiple levels?
• The evaluation of the benefits to the system of deploying
multiple monitors rather than a single monitor; that is, what
are the design issues?

• Is the use of multiple monitors justified at the implementa-
tion stage for detections of attack vectors?

Cyber-Physical 
System

Monitor

osk

 ?k 

Sk 

failsafe

insk detection

Figure 1: The single monitor setup observes the cps to pro-

duce a detection, at which point it attempts to mitigate the

issue.

• Given an architecture, how does one determine where to
place monitors?

In general, runtime monitoring makes use of an external mon-
itor that observes the execution behavior of a target system dur-
ing runtime while making as few as possible assumptions about
the trustworthiness or proper functioning of the monitored com-
puter [2, 9, 14, 17, 24]. For example, we can monitor discrete rep-
resentations of continuous time variables such as sensor readings,
operating system parameters, power spectral density (psd) signa-
tures [11], and application level variables such as control states.
In these instances, the monitor, given a set of information states
from the cps, checks if the system is compliant to a reference of
acceptable behavior. A reference of acceptable behavior implies
there exists checking conditions or detection predicates to decide
upon a notion of acceptable behavior [12].

Multiple monitors are necessary for timely detection of security
risks in today’s cps architectures. These multiple monitors work
independently and can individually detect an attack occurring in
each layer of a cps.

Prior work recognizes this need for multiple monitors. Lu et
al. [20] propose an architectural approach where the system is di-
vided into three layers: the execution layer, the transport layer, and
the control layer to monitor attacks against the system hardware,
the communication network, and the control policies. Liu et al. [18]
model a cps by dividing the system on the basis of available phys-
ical, communication, and computational entities. Further in this
work various ways of ensuring security of each of the entities and
their interactions are surveyed.

The hierarchical approach proposed here transcend various lay-
ers and ensures hardware, informational, and executional integrity
building on the notion of hierarchical architecture monitors [16].

3 FORMAL DEVELOPMENT OF MULTILEVEL

RUNTIME MONITORING

3.1 Definitions

We develop a formal model of multilevel monitors using event
calculus and graph theory. We use that formal model in the imple-
mentation of the monitor’s detector function (Section 5).

In the case of a single monitor the behavior of the cps is observed
and investigated for faults and security violations by a monitor
(Figure 1). As with before we denote amonitor asM . We assume that
the monitor observes stream of information from the target system,
which includes its interactions with the environment, and sends



A Multilevel Cybersecurity and Safety Monitor for Embedded Cyber-Physical Systems Conference’19, April, 2019, Montreal, Canada

the a fail-safe state when an abnormal condition, for example, fault
or attack, is detected. These streams can be discrete or continuous
time states, sensor data, instructions, or other external states, for
example, gps, time, etc. Due to the reactive nature of cps, we view
streams of information from a historical perspective. That is, from
the current state of the cps to states previous in time, or past time
temporal observations.

Each stream can be a sequence of inputs or outputs to and from
the cps for each point in time. We denote the kth prefix for pastm
instances of an infinite stream, s as sk = (s(k−m), . . . , s(k−2), s(k−
1), s(k)). Thus, the stream at an instance k includes information
of the pastm instances starting with s(k −m) and ending at the
current instance s(k).

The monitor also observes the control flow transitions δ of the
cps, to keep track of the execution flow in the design. The transition
flow at time k δk is: δk = (δ (k −m), . . . ,δ (k − 2),δ (k − 1),δ (k)).
Hence, the monitor observes the current state of the the cps as
constructed from all previous states: Sk1 , S

k
2 , . . . , S

k
m . The language

of the monitor is defined by the set of monitored streams,Mw =(
insk ,osk ,δk , Sk1 , S

k
2 , . . . , S

k
m

)
, where insk the input stream, osk

the output stream, δk the execution transition data stream, and
Sk1 , S

k
2 , . . . , S

k
m the observed states from current time k for the past

m instances.
The role of a monitorM is to answer the proposition “given a set

of monitored streams from a process, did the proper sequence of
operations occur in that process, and is the result safe and secure”
based on observed streams of sequenced events Mw . These events
can be characterized as language or alphabet of the safety monitor.
In the case where these events are compromised by security exploits
or faulty behavior they may not be contained in the language and
are termed as the anomalous or out-of-specification events. If there
is an attack, and that attack is observable and is contained in Mw ,
then we want the monitorM to be able to detect the attack.

The monitor also observes the control flow transitions δ of the
cps, to keep track of the execution flow in the design. The transition
flow at time k , δk is: δk = (δ (k −m), . . . ,δ (k − 2),δ (k − 1),δ (k)).
Hence, the monitor observes the current state of the the cps as
constructed from all previous states: Sk1 , S

k
2 , . . . , S

k
m . The language

of the monitor is defined by the set of monitored streams,Mw =(
insk ,osk ,δk , Sk1 , S

k
2 , . . . , S

k
m

)
, where insk the input stream, osk

the output stream, δk the execution transition data stream, and
Sk1 , S

k
2 , . . . , S

k
m the observed states from current time k for the past

m instances.
We define the attack and fault detection concept more clearly

below by defining monitors that recognize safety properties of the
target cps.

Definition 1 (Monitor). Following from above, a monitor,M , is

a distinct module that recognizes a set of traces or streams Mw =(
insk ,osk ,δk , Sk1 , S

k
2 , . . . , S

k
m

)
from a target cpswhose computations

can be represented as a monitorable safety language [31].

Assuming that all security violations or faults in the system are
observable, then we can extend the definition as follows.

• Let Pobservable be a set of all observable runs which has
events and conditions that are monitorable (from themonitor

input 
processsing 

system

application 
processing 

system

output 
processing 

system

monitor 
M0

monitor 
M1

monitor 
M2

cyber event 
recognizer 
(decision 
making)

operator

enforcement 
mechanism 

(corrective or 
compensative 

actions)

phyical devices

monitored 
information

corrective or compensative 
actions to the cyber physical 

system

actuation 
commands

sensor data

cyber-physical system 
to be protected

violation 
(restrictive)

security monitor 

Figure 2: Themultiplemonitor setup observes several differ-

ent domains in the cps.

languageMw ) and acted upon bymonitorM defined byMw .
Pobservable has one on one correspondence with monitor
languageMw .

• Let P̂ be a detection predicate over the streams of data Mw
and β be the set of all safe runs in the observed data stream.

• Let Psafe be a condition that holds true if there exists only β
from the set of all observable runs.

• Let α be a set of bad finite prefixes (violations over Psafe)
from the set of all runs.

Then, the monitorM witnesses Pobservable as follows:

P̂(Pobservable) =⇒ β ∈ Pobservable =⇒ Pobservable ∈ Psafe
∴ Psafe = holds.

When the detection predicate acts on the observable data Mw
and the data is safe and has no security exploits, then it implies that
only the safety runs belong to Pobservable and the safety property
Psafe holds.

¬P̂(Pobservable) =⇒ (∃α : αβ < Psafe)
∴ Psafe = rejected.

When the detection predicate acts on the observable data Mw
and has detected a fault or an attack, then there exists at least one
bad prefix α with the safety run β . Therefore, the safety property
Psafe ceases to hold.

The above definition is provisioned on two sufficient conditions:

Condition 1. The detection predicate(s) P̂ that define the safe ex-

ecution of a run must be defined within the monitor and be under

control of the monitor.

Condition 2. External processes to the monitor cannot manipulate,

gain access or view the detection predicate(s) P̂ within monitorM .

Therefore, themonitorM with all the observable dataMw makes
real-time safety and security assessments of the cps using the de-
tection predicate P̂.



Conference’19, April, 2019, Montreal, Canada S. Gautham, G. Bakirtzis, M.T. Leccadito, R.H. Klenke, C.R. Elks

Monitor 
(Event 1)

Processor 
(Event 2)

Actuator 
(Event 3)

Event 1 happens at V1

Action at V2 happens
in responce to Event 1

Figure 3: The graph structure allows for representing event

calculus fluents as dependence relationships within the cps

and a monitor.

A cps can have attacks at different levels of the system. The
attacks can be on the inputs and outputs of the system such as on
the sensors and actuators. They can also be on the communication
channel such as changes in baud rate, denial of service attacks. To
detect attacks at multiple levels in a system and to identify and
isolate the attacks we require multiple collaborative monitors rather
than a single monitor.

3.2 Extending to Multiple Monitors

Multiple collaborative monitors observe the monitorable data Mw
and detect attacks occurring at different levels in the target system.
Furthermore, multiple monitors provide many layers of defense
against an attack and faster detection and isolation of an attack.
The single monitor M, is extended to comprise of multiple monitors
and is denoted as:M = (M1,M2, . . . ,Mn ) (Figure 2).

The natural organization of an embedded cps suggests a specific
grouping of the monitors. For example, if certain events in the cps
are checked by monitor M1 and there are prerequisite events for
the monitorM1 to make decisions which are checked by monitor
M2, then the grouping of these two monitors follow a specific
configuration. In general, monitors can be grouped as sequential,
parallel, associative, and complimentary configurations [5].

One way to formalize and model the multiple monitor architec-
ture and the system it targets is by reasoning in assets and their de-
pendence relationships between these assets,G = (Σ,M,E), where
Σ the target cps, M the multiple monitors as defined above, and
E the edges between monitors, between monitors and the system,
and vice versa.

In summary, each monitor element M ∈ M and each system
elementσ ∈ Σ form the vertices of the graph and the interactions be-
tween any of these elements construct the edges. The interactions
among the monitors is one of the key elements of the architec-
ture and are initiated by occurrences of events observed in the
monitored stream Mw from the cps, Σ. To further formalize these
interactions such that we can implement the detection predicates—
a set of safety and security conditions/guards in the monitor—we
use event calculus [8, 28, 29] (Figure 3).

3.3 Expressing Monitoring Events

Event calculus is a temporal language that represents properties of a
system [27]. Based on those properties it can, further, represent the

potential consequences of an action over the system.More generally,
event calculus logically describes (i) the properties that hold true
in a system and (ii) when they hold true. This is determined based
on two conditions: (a) “What happens and when?”: the events that
occur in a system and the time at which they occur. (b) “What do
actions do?”: How the action taken on a system can change the
state of the fluents of the system. Here a fluent is analogous to
a variable whose value can change over time. The following are
standard predicates in event calculus:

• Happens(α , t) means that an action α happens at time t .
• Initiates(α , f , t) means that an action α occurs at time t and
a fluent f starts to hold true. Fluent f that holds true at the
start of an operation is shown by the predicate InitiallyP(f ).

• Terminates(α , f , t), means the termination of a fluent which
signifies that fluent f stops being true after an action α
occurs at time t .

• HoldsAt(f , t) shows that the fluent f holds at time t .
• Clipped(t1, f , t2) indicates that the fluent f holds true be-
tween time period t1 and t2.

Events are observable states in the finite prefix of a stream that
express real time properties. This provides a method to describe
safety and security predicates in the context of streams. If some
properties are violated and the monitor detects that the system is
unsafe, a mitigation strategy must commence. An example of such
a strategy is to transition the system to a fail-safe mode.

The multiple monitor observe different kinds of phenomena as
they pertain to the safety and security status of the cps. Ontologi-
cally, the three main domains for an exhaustive safety and security
monitor are: (1) hardware integrity, (2) information integrity, and
(3) execution integrity.

To construct such monitors using the formalism presented above,
it is necessary to put together the graph formalism; that is, the
structure, with the event calculus formalism; that is, the conditionals
in which unsafe or insecure events are detected.

To do so we label the vertices and edges with a set of event
calculus predicates. Meaning that for the vertices V (G) there is a
subset of event occurrences E = (Event1,Event2, . . . ,Eventn ). For
example, for an event occurrence Event1 ∈ E at vertex M1 ∈ M
there might be some influence to some vertexM2 ∈ M, its response
toM1 is described through some subset of event occurrences in E.
Additionally, since the two verticesM1,M2 are dependent, an edge
in G exists between them.

The implication of this is that inbound edges to any M ∈ M
provides a means for monitors to observe streamsMw or communi-
cate events occurring to other monitors. Whereas, outbound graph
edges provide propagation of monitor decisions to other monitors
or external users of confirmation of correct operations (for example,
a safety property holding). The output edges can also instruct the
cps to apply some mitigation strategy in the event that a threat or
a fault is detected.

4 THREAT MODEL

To understand and correctly utilize a cps security monitor we first
need to understand the threat model associated with the system
under evaluation. A concrete metric in this case can be the system’s
attack surface—the possible entry points into the cps by an attacker.



A Multilevel Cybersecurity and Safety Monitor for Embedded Cyber-Physical Systems Conference’19, April, 2019, Montreal, Canada

To do so, we need to enumerate the fundamental functions a given
cps has to perform based on its expected service, how that func-
tionality is realized in the specific implementation, and which parts
of that implementation are observable from the outside.

Fortunately, this information is either already established for a
number of cps domains [15] or there are methodologies for finding
the threat model or vulnerability space for any arbitrary cps [1, 3].

In general, there are three taxonomic levels to consider when
it comes to cps security [16]. The first is the phase of creation of
the vulnerability in the lifecycle of the cps; that is, it can be in the
development stage, maintenance stage, or operational stage. The
second is the access points; that is, individual element of the attack
surface. Third and final describes the types of attacks that can occur
at each access points.

Therefore the threat model needs to include the hardware, infor-
mation and execution layers. These are all very appealing entrance
and pivoting points for an attacker. Therefore monitors are needed
to counteract a possible violation at those layers. A thorough under-
standing of the vulnerabilities of the cps and ways of manipulating
the system by an attacker is essential to monitor and defend the
system against persistent threats (Figure 4).

To evaluate our methodology and monitor design we first pro-
duce a threatmodel for the fcs. Specifically, the fcs uses an STM32F4
ARM Cotrex-M4 168 MHz microcontroller. Additionally, it has on-
board memory components, multiple peripheral options, dedicated
buses for networking, components for the communications inter-
faces, and sensory systems (e.g., gps). This makes it a simple but
comprehensive cps to produce a threat model and deploy the moni-
tor design present in this paper.

The observable functions for the fcs are:

(1) Sensor communication: the communication between the
main processor and the on-board sensors.

(2) Application software: the software programmed onto the
main processor running the peripheral firmware.

For the first function the link between the sensors and the main
processor is directly monitored. One important vulnerability that
can be exploited through an attack is the violation and consequent
degradation of the on-board hardware protocols. Specifically, an
attacker can change the configuration of the sensors’s hardware pe-
ripheral communication protocol or inject a fault into the physical
signal. Further, an attacker could exploit the firmware associated
with the sensors by injecting a malicious binary version of the
sensor. This can occur either at the supply chain by the manufac-
turer or distributor. This does need not be an insider attack, for
example, in the case of Havex an attacker maliciously modified the
manufacturers distribution website to infect customers [26, 30].

For the second functions, the design is programmed into the
main processors flash memory, and is monitored through a debug
interface such as jtag or swd. An attacker can exploit this interface
by code injection, where an attacker injects shell code on stack and
overwrites the return address. Specifically, code injection attempts
to cause a buffer overflow; that is, write more data than the allocated
memory size which leads to the return address to be overwritten. By
doing this, the control flow of the program changes in unpredictable
ways.

- Buffer overflow
- Code injection
- Code reuse
- Fault attack
- Control flow attack
- Memory attack

Execution Layer

Information Layer

Hardware Layer

- Eavesdropping
- Signal delay
- Packet Sniffing
- False data injection
- Denial of service

- Sensor spoofing
- Jamming
- Physical destruction
- Replay attack
- Firmware attack

Figure 4: The threat model for an fcs spans three main do-

mains: the execution layer, the information layer, and the

hardware layer [4, 7, 10, 16, 20, 23].

5 EVALUATION

The implementation of the multilayer monitor architecture con-
tains a hardware resource integrity monitor (hrim), an information
integrity monitor (i2m), and an execution integrity monitor (eim).
Thus, covering all three major domains of vulnerability and expo-
sure in cps.

5.1 Monitoring through Event Calculus Fluents

hrim. hrim monitors the hardware communication protocol,
physical signal faults, and configuration information. This monitor
has no knowledge of the sensor and receives only the bus con-
figuration information from the bus used by the cps. It uses this
information to check if the bus protocol of the sensor matches the
bus configuration data received by i2m. If they match, then the
sensor data is written into registers which can be accessed by i2m.
If it does not, then it enables a crossbar switch, which disconnects
the sensor. To mitigate, hrim attempts to reconfigure the faulty
sensor and if successful, it reconnects the sensor.

The following predefined event calculus fluents are used by hrim:



Conference’19, April, 2019, Montreal, Canada S. Gautham, G. Bakirtzis, M.T. Leccadito, R.H. Klenke, C.R. Elks

• sensor_okay, which indicates that the sensor is in expected
working condition and, therefore, no fault or security viola-
tion has been found.

• bus_config_okay, which indicates that the communication
bus is working as expected and, therefore, the communica-
tion protocol has not been tampered with.

• sensor_reconfig, which attempts to mitigate a sensor that
has been deemed to be under fault or security violation.

• hrim_data_ready, which indicates that there is no fault or se-
curity violation detected for the data received by the system
hardware.

Based on the occurrence of events in the system we define the
following actions:

• read_sensor_data, which indicates that the sensor data is
ready to be read by other subsystems.

• store_sensor_data, which indicates the sensor data is not
faulty and is stored in data registers that could be thereby
be read by other subsystems.

• cross_bar_en, which indicates the sensor is faulty and cross-
bar is enabled to disconnect the sensor.

• i2m_send_InfoToDisconnect, which makes the i2m to send
sensor information to hrim when it has to disconnect the
faulty sensor as hrim has no knowledge of the sensor.

Having predefined some baseline fluents and actions we can now
define the behavior of hrim through a sequential pattern of events:

(1) InitiallyP (sensor_okay);
(2) ∧¬Clipped (ti , bus_config_okay, tn )

∧ ti < t < tn =⇒ HoldsAt (sensor_okay, t);
(3) HoldsAt (sensor_okay, t) =⇒

∧ Happens(read_sensor_data, t)
∧ Happens(store_sensor_data, t2)
∧ Initiates(store_sensor_data, hrim_data_ready, t)
∧ t < t2;

(4) ¬HoldsAt(sensor_okay, t) =⇒
∧ Happens(i2m_send_InfoToDisconnect, t)
∧ Happens(cross_bar_en, t)
∧ Initiates(cross_bar_en, sensor_reconfig, t).

i2m. i2mmonitors the integrity of the data received from hrim
by performing certain data verification actions to detect potential
attacks. It also checks for subsystem inactivity and repeated val-
ues. Specifically, it waits for the data ready signal from the hrim,
hrim_data_ready, and reads the sensor data from the hrim data
registers when it is ready. If the sensor is has no detected faults or
security violations and the data ready signal is not received after a
certain predefined time td , then i2m enables the cross bar switch
and disconnects the sensor. After reading the sensor data, i2m ad-
ditionally verifies the data by performing data integrity checks. If
the sensor data passes the verification tests, the data is ready to be
used by the cps.

The following are the predefined fluents for i2m:
• sensor_idle, which indicates that the sensor is idle. This is
the initial state of the sensor.

• i2m_parse_data_success, which indicates that i2m has per-
formed integrity checks on the data received from hrim and
the data has no faults or detected security violations.

Flight Control 
System (FCS)

Execution 
Integrity 

Monitor (EIM)

Hardware Resource 
Integrity Monitor 

(HRIM)

Events
Events

Crossbar 
Switch

M
on

ito
r

S
ys

te
m

Physical Components

Sensors Actuators

Information Integrity 
Monitor (I2M)

Events

Figure 5: The implementation of the multilayer monitor ar-

chitecture has a clear boundary between the system and the

monitor.

• i2m_data_ready, which indicates that the data is not faulty
and lets i2m write this data into registers to be read by other
subsystems.

We extend the possible actions given the requirements of i2m.
• i2m_read_data, which indicates i2m reads data from the reg-
isters. The data is written to the registers by hrim.

• i2m_parse_data, whcih indicates that i2m performs integrity
checks on the data read from the registers.

• store_I2M_data, I2M stores the non-faulty data on to regis-
ters that can be read by other subsystems after data verifica-
tion.

Following these definitions, the pattern of i2m is as follows:
(1) InitiallyP(sensor_idle);
(2) Terminates(i2m_read_data, sensor_idle, t);
(3) HoldsAt(hrim_data_ready, t1) =⇒

∧ Happens(i2m_read_data, t2)
∧ Happens(i2m_parse_data, t3)
∧ t1 < t2 < t3;

(4) HoldsAt(i2m_parse_data_success, t) =⇒
∧ Happens(store_i2m_data, t);

(5) Initiates(store_i2m_data, i2m_data_ready, t);
(6) ∨¬HoldsAt(i2m_parse_data_success, t)

∨ ¬HoldsAt(sensor_okay, t)
∧ ¬HoldsAt(hrim_data_ready, td )
∧ t < td =⇒
∧ Happens(i2m_send_InfoToDisconnect, t)
∧ Happens(cross_bar_en, t)
∧ Initiates(cross_bar_en, sensor_reconfig, t).

eim. eim first checks the firmware by comparing the memory
against the static memory contents stored in the processor. If the
firmware is acting as expected, then the monitor signals the appli-
cation to execute the program. Moreover, it monitors the memory
addresses during branching operations and ensures that the return
addresses andmemory addresses during jump and call instructions
are not tampered.

The predefined fluents of eim are:



A Multilevel Cybersecurity and Safety Monitor for Embedded Cyber-Physical Systems Conference’19, April, 2019, Montreal, Canada

Figure 6: The hrimmonitor can detect a baud rate change.

• firmware_ok, which indicates the firmware is verified.
• control_flow_ok, which indicates that the control flow is
verified.

The following actions are taken by eim depending on the occur-
rence of events in the system:

• check_firmware_ok, which checks that the firmware in in
an expected state by comparing the memory to the static
memory contents stored in the processor.

• check_control_flow_ok, which checks two things, (1) the
control flow of the program and (2) potential tampering with
return addresses during jump and call instructions.

• execute_program, which checks for control flow of the design—
this happens only after verifying the correct operation of
the firmware and memory of the cps.

• fail_safe, which forces the cps to jump the execution to a
failsafe part of the program in the event of a detected fault
or security violation.

The patterns of events occurring in the system that aremonitored
by eim are:

(1) Happens(check_firmware_ok, t) =⇒
HoldsAt(firmware_ok, t);

(2) Initiates(execute_program, firmware_ok, t);
(3) Happens(check_control_flow_ok, t) =⇒

HoldsAt(control_flow_ok, t);
(4) Initiates(fail_safe,¬firmware_ok ∧ ¬control_flow_ok, t).

5.2 Implementation

The hrim and i2m monitors were implemented on a Nexys 4 ddr
which is a ready to use development platform based on Xilinx
Artix-7 XC7A100T fpga. An fpga board has customizable features,
simulation capabilities, observability and testability that makes it
advantageous to implement hrim and i2m [16]. Instead, the eim
monitor is implemented on a processor—a more flexible platform
for the complex detection techniques it implements. Specifically, we
implemented eim on a Raspberry Pi 2 with OpenOCD running on it.
OpenOCD is an open source software used for hardware debugging.
Additionally, OpenOCD has a debug adapter which supports trans-
port protocols such as jtag and swd [25]. To test the multilayer
architecture presented in this paper we implement monitors for
a custom fcs, which in turn is implemented on STM32F407VGT6
arm cortex microprocessor [32].

The design principles and patterns governing the monitoring sys-
tems are based on the event calculus pattern sequences (Section 5.1).
This allows us to use a formal model to understand acceptable and

Figure 7: The i2mmonitor can detect an hrim gps uart lock

up.

unacceptable states the system might transition too. Therefore, con-
structing a well-formed detection mechanism at the different layers
of the monitoring architecture.

The implementation of the multilevel monitor architecture has
a clear boundary between the system and the monitoring layers
(Figure 5). Specifically, two of the monitors are connected serially
since they need to cooperate when producing a decision and, con-
sequently, a mitigative action; that is, the monitor checking for
hardware integrity and the monitor that checks information in-
tegrity. On the other hand, the execution monitor is connected in
parallel checking the actual program execution of low-level primi-
tives. A crossbar switch is used to decouple the digital system from
physical actions. This is to avoid an attacker to take advantage of
either the system or the monitors to violate a physical property.

5.3 Example Results & Discussion

5.3.1 Hardware Integrity Monitor. To demonstrate the fault detec-
tion and isolation capability of hrim, we perform an experiment
in which a gps sensor baud-rate is manipulated during run-time.
The results of injecting a physical signal fault validates the moni-
tor’s capabilities for detecting both security violation and intrinsic
faults and demonstrates the isolation of sensors using the crossbar
switch. Validating this functionality shows the utility of an fpga
implementation by detecting configuration attacks and isolating
a sensor in the event of a fault or security violations. To capture
this functionality we capture the logic analyzer trace of the uart
signals between processor and gps emulator (Figure 6).

The uart baud-rate of the autopilot and gps sensors are con-
figures to 57600 Bd. During runtime and after the initialization
sequence of the autopilot, the baud-rate is expected to remain the
same. Instead, a fault was injected a few seconds after the autopilot
booted up to test the detection mechanism of hrim. The monitor
correctly detected the higher baud rate produces by the injected
fault. In this case the monitor forces the autopilot uart receive
line to idle and disconnects the gps sensor that is still sending
data. Then, the mitigation sequence is initiated by i2m. Since data
is being sent out of the gps sensor uart receive line the mitigation
sequence is conducted correctly.

5.3.2 Information Integrity Monitor. One of the tasks performed by
the i2M apart from data verification is, when an attack is detected
by hrim, the I2M resets, reconfigures, and reconnects the sensor



Conference’19, April, 2019, Montreal, Canada S. Gautham, G. Bakirtzis, M.T. Leccadito, R.H. Klenke, C.R. Elks

Figure 8: The disassembled code for mcu_init.

to the autopilot and sends a mitigation sequence to the hrim (Fig-
ure 6). The i2m monitor also detects failure of a monitor subsystem
(Figure 7). In this example, the hrim gps uart locks up and the
i2m does not receive data from the sensor. Therefore triggering a
fault since it expects data to be received at a specified frequency
and treats it as a sensor attack due to the inactivity. It can be seen
that the operation of other sensors, in the example below, that the
barometric pressure sensor is unaffected. When i2m stops receiving
data due to hrim gps uart lock up, it detects the fault and enables
the crossbar switch in hrim which will not allow for the sensor to
pass through any data to the autopilot.

5.3.3 Execution Integrity Monitor. During the execution of a pro-
gram, control is transferred from one part of the program to another
when there is branch instruction such as a function call or jump
instruction. To ensure that there is no return address tampering
attack, the eim monitors the return address during branching. If
the return address is verified to be consistent and, therefore, not
manipulated, then eim concludes that there has been no attack that
leads to illegal control flow.

To achieve this, the eim monitor lets the application start exe-
cuting only after the checking the firmware. Once the firmware is
verified, the eim observes the address locations whenever there is a
branching operation. As an example for execution monitoring, eim
monitors the return address to the main program from a processor
initialization function mcu_initwhenever it has finished executing
and, also, monitors the memory contents when the main program
calls the mcu_init initialization function.

To show the operation of eimwe disassembled the fcs code using
Radare2—an open-source disassember [22] (Figure 8). We visualized
the information by using the dot files produced by Radare2 using
graphviz [6].

Working principle. The binary values of the branching instruc-
tions are stored in the monitor and compared at runtime. The

Figure 9: The control flow from the main function of the fcs

to mcu_init initialization function.

mcu_init function is called by main (Figure 9). The branching in-
struction from main and the return instruction from mcu_init are
compared with the copy of data stored in the monitor at runtime.

If there is an attack on the memory locations involving the
branching instructions, the values at the memory locations would
not match with the data stored in the monitor and it would thereby
alter the control flow of the program. The output of the execution
monitor is captured using OpenOCD when the program was run
while simulating an attack event (Figure 10). If the monitor detects
the deviation from the normal branching operation, it sends the
fcs to a failsafe state by changing the control flow to a safe landing
function at the location 0x08006168.

In summary, by monitoring the address locations at run time
and comparing it with the control flow data, we are able to iden-
tify attacks on the system memory during branching operations.
OpenOCD was used as a prototyping platform to test non intrusive
monitoring of execution conditions and events in the fcs. Radare2
was used to disassemble, analyze and get a visual graphs of the
functions that can be monitored using OpenOCD. Grapviz com-
patible dot file is generated from Radare2 to obtain call graphs
for the functions to monitor. However, the execution of the full
flight controller has thousands of functions and Graphviz could not
generate a full call graphs. Since we only needed the main program
and the function mcu_init the framework could obtain the data
requirements.

6 CONCLUSION

We formulate a multilevel monitor comprising of hardware, infor-
mation, execution monitoring using a graph of assets where the
dependence conditions are defined using event calculus. Event cal-
culus provides a semantic foundation for the design of a multiple
monitor architecture. Additionally, representing the system in a
formal language helps understand the design decisions made at
both the level of individual subsystems in a cps and also globally at
the system level. Further, the use of graphs is amenable to imple-
ment control flow with edges based on events and event calculus
conditions applied to the vertices that can be mapped to security
monitors.



A Multilevel Cybersecurity and Safety Monitor for Embedded Cyber-Physical Systems Conference’19, April, 2019, Montreal, Canada

Figure 10: Output of the executionmonitor using OpenOCD

when the programwas runwhile simulating an attack event.

Before attack, the monitor memory matched the FCS mem-

ory. After attack, the monitor detects change in contents of

FCS memory.

To evaluate the proposedmonitor architecture, we implement the
hardware and information monitors on an fpga and the execution
monitoring on a processor. We have multiple monitors to watch
different layers of a cps. Multiple monitors help detect the attack
faster and prevent it from affecting the rest of the system.

In the future, we plan to implement a mission monitor to observe
the overall functionality of the system and check for conditions
specific to the application at runtime and ensure that they hold
true to further enhance the security of the cps. Furthermore, in
addition to integrating monitors across different levels, it is also
possible to have multiple monitors within each level which are
horizontally integrated. Furthermore, another orientation for the
organization of monitors is assume-guarantee compositions, which
can be explored as an extension to this work.

REFERENCES

[1] Georgios Bakirtzis, Bryan T Carter, Carl R Elks, and Cody H Fleming. 2018. A
model-based approach to security analysis for cyber-physical systems. In Systems

Conference (SysCon), 2018 Annual IEEE International. IEEE, 1–8.
[2] Alec Bateman, Carl Elks, DavidWard, and John Schierman. 2005. New verification

and validation methods for guidance/control of advanced autonomous systems.
In Infotech@ Aerospace. 7117.

[3] Mike Burmester, Emmanouil Magkos, and Vassilis Chrissikopoulos. 2012. Model-
ing security in cyber–physical systems. International journal of critical infras-
tructure protection 5, 3-4 (2012), 118–126.

[4] Ruan de Clercq and Ingrid Verbauwhede. 2017. A survey of Hardware-based
Control Flow Integrity (CFI). arXiv preprint arXiv:1706.07257 (2017).

[5] Carl R Elks. 2005. A theory of run-time verification for safety critical reactive

systems. University of Virginia.
[6] John Ellson, Emden R Gansner, Eleftherios Koutsofios, Stephen C North, and

Gordon Woodhull. 2004. Graphviz and dynagraphâĂŤstatic and dynamic graph
drawing tools. In Graph drawing software. Springer, 127–148.

[7] Apostolos P Fournaris, Lidia Pocero Fraile, and Odysseas Koufopavlou. 2017.
Exploiting hardware vulnerabilities to attack embedded system devices: a survey
of potent microarchitectural attacks. Electronics 6, 3 (2017), 52.

[8] Massimo Franceschet and Angelo Montanari. 2000. A graph-theoretic approach
to efficiently reason about partially ordered events in (Modal) Event Calculus.
Annals of Mathematics and Artificial Intelligence 30, 1-4 (2000), 93–118.

[9] Klaus Havelund and Grigore Roşu. 2002. Synthesizing monitors for safety prop-
erties. In International Conference on Tools and Algorithms for the Construction

and Analysis of Systems. Springer, 342–356.

[10] Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo. 2017. Cyber-
physical systems securityâĂŤA survey. IEEE Internet of Things Journal 4, 6 (2017),
1802–1831.

[11] Grant A Jacoby, IVDavis, J Nathaniel, Randolph CMarchany, et al. 2011. Detecting
software attacks by monitoring electric power consumption patterns.

[12] Austin Jones, Zhaodan Kong, and Calin Belta. 2014. Anomaly detection in cyber-
physical systems: A formal methods approach. In Decision and Control (CDC),

2014 IEEE 53rd Annual Conference on. IEEE, 848–853.
[13] Aaron Kane. 2015. Runtime monitoring for safety-critical embedded systems.

(2015).
[14] Aaron Kane, Thomas Fuhrman, and Philip Koopman. 2014. Monitor based oracles

for cyber-physical system testing: Practical experience report. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE,
148–155.

[15] Rafiullah Khan, KieranMcLaughlin, David Laverty, and Sakir Sezer. 2017. STRIDE-
based threat modeling for cyber-physical systems. In Innovative Smart Grid

Technologies Conference Europe (ISGT-Europe), 2017 IEEE PES. IEEE, 1–6.
[16] Matthew Leccadito. 2017. A Hierarchical Architectural Framework for Securing

Unmanned Aerial Systems. (2017).
[17] Insup Lee, Hanene Ben-Abdallah, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky,

and Mahesh Viswanathan. 1998. A monitoring and checking framework for run-
time correctness assurance. (1998).

[18] Yang Liu, Yu Peng, Bailing Wang, Sirui Yao, and Zihe Liu. 2017. Review on
cyber-physical systems. IEEE/CAA Journal of Automatica Sinica 4, 1 (2017),
27–40.

[19] Hong Lu and Alessandro Forin. 2007. P2V: An Architecture for Zero-Overhead
Online Verification of Software Programs. InWorkshop on Application Specific

Processors, WASP.
[20] Tianbo Lu, Jiaxi Lin, Lingling Zhao, Yang Li, and Yong Peng. 2015. A Security

Architecture in Cyber-Physical Systems: Security Theories, Analysis, Simulation
and Application Fields. International Journal of Security and Its Applications 9, 7
(2015), 1–16.

[21] Patrick Moosbrugger, Kristin Y Rozier, and Johann Schumann. 2017. R2U2:
monitoring and diagnosis of security threats for unmanned aerial systems. Formal

Methods in System Design 51, 1 (2017), 31–61.
[22] pancake. [n. d.]. https://www.radare.org/r/
[23] Dorottya Papp, Zhendong Ma, and Levente Buttyan. 2015. Embedded systems

security: Threats, vulnerabilities, and attack taxonomy. In Privacy, Security and

Trust (PST), 2015 13th Annual Conference on. IEEE, 145–152.
[24] Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo. 2013. Attack detection

and identification in cyber-physical systems. IEEE Trans. Automat. Control 58, 11
(2013), 2715–2729.

[25] Dominic Rath. 2005. OpenOCD: Open on-chip debugging. Ph.D. Dissertation.
Diploma Thesis, FH Augsburg.

[26] Julian Rrushi, Hassan Farhangi, Clay Howey, Kelly Carmichael, and Joey Dabell.
2015. A quantitative evaluation of the target selection of havex ics malware
plugin. In Industrial Control System Security (ICSS) Workshop.

[27] Murray Shanahan. 1999. The event calculus explained. In Artificial intelligence

today. Springer, 409–430.
[28] George Spanoudakis, Christos Kloukinas, and Kelly Androutsopoulos. 2007. To-

wards security monitoring patterns. In Proceedings of the 2007 ACM symposium

on Applied computing. ACM, 1518–1525.
[29] Carolyn Talcott. 2008. Cyber-physical systems and events. In Software-Intensive

Systems and New Computing Paradigms. Springer, 101–115.
[30] Jan Vávra and Martin Hromada. 2015. An evaluation of cyber threats to industrial

control systems. In Military Technologies (ICMT), 2015 International Conference

on. IEEE, 1–5.
[31] Mahesh Viswanathan. 2000. Foundations for the Run-time Analysis of Software

systems. Ph.D. Dissertation. University of Pennsylvania.
[32] Garrett L Ward, Georgios Bakirtzis, and Robert H Klenke. 2014. A modular soft-

ware platform for unmanned aerial vehicle autopilot systems. In 52nd Aerospace

Sciences Meeting. 1050.
[33] ConalWatterson andDonal Heffernan. 2007. Runtime verification andmonitoring

of embedded systems. IET software 1, 5 (2007), 172–179.

https://www.radare.org/r/

	Abstract
	1 Introduction
	2 Background
	3 Formal Development of Multilevel Runtime Monitoring
	3.1 Definitions
	3.2 Extending to Multiple Monitors
	3.3 Expressing Monitoring Events

	4 Threat Model
	5 Evaluation
	5.1 Monitoring through Event Calculus Fluents
	5.2 Implementation
	5.3 Example Results & Discussion

	6 Conclusion
	References

