
user2code2vec: Embeddings for Profiling Students Based on
Distributional Representations of Source Code

David Azcona
Insight Centre for Data Analytics

Dublin City University
Dublin, Ireland

david.azcona@insight-centre.org

Piyush Arora
ADAPT Centre

Dublin City University
Dublin, Ireland

parora@computing.dcu.ie

I-Han Hsiao
Computing Systems & Informatics

Arizona State University
Tempe, AZ, USA

Sharon.Hsiao@asu.edu

Alan Smeaton
Insight Centre for Data Analytics

Dublin City University
Dublin, Ireland

Alan.Smeaton@dcu.ie

ABSTRACT
In this work, we propose a new methodology to profile individual
students of computer science based on their programming design
using a technique called embeddings. We investigate different ap-
proaches to analyze user source code submissions in the Python
language. We compare the performances of different source code
vectorization techniques to predict the correctness of a code sub-
mission. In addition, we propose a new mechanism to represent
students based on their code submissions for a given set of labora-
tory tasks on a particular course. This way, we can make deeper
recommendations for programming solutions and pathways to sup-
port student learning and progression in computer programming
modules effectively at a Higher Education Institution. Recent work
using Deep Learning tends to work better when more and more
data is provided. However, in Learning Analytics, the number of
students in a course is an unavoidable limit. Thus we cannot simply
generate more data as is done in other domains such as FinTech
or Social Network Analysis. Our findings indicate there is a need
to learn and develop better mechanisms to extract and learn ef-
fective data features from students so as to analyze the students’
progression and performance effectively.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; Machine learning;

KEYWORDS
user2code2vec, code2vec, Code Embeddings, Distributed Represen-
tations, Representation Learning for Source Code, Machine Learn-
ing, Computer Science Education

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LAK19, March 4–8, 2019, Tempe, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6256-6/19/03. . . $15.00
https://doi.org/10.1145/3303772.3303813

ACM Reference Format:
David Azcona, Piyush Arora, I-Han Hsiao, and Alan Smeaton. 2019. user2code2vec:
Embeddings for Profiling Students Based on Distributional Representations
of Source Code. In The 9th International Learning Analytics & Knowledge
Conference (LAK19), March 4–8, 2019, Tempe, AZ, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3303772.3303813

1 INTRODUCTION
Online learning tools and platforms including MOOCs provide a
rich mechanism to engage and interact with educational material
based on individuals’ knowledge and development. Such tools also
provide a mechanism to support personalised learning effectively
using customized recommendations. These recommendations are
developed based on users’ understanding, effort and interaction
with the systems by interpreting historical data from previous co-
horts of students. Use of students’ digital footprints and, particu-
larly, interactions on VLE systems have been rising in last decade
because of their advantage to better support individualized learn-
ing. However, developing a richer representation for student digital
footprints effectively and efficiently is still a challenging problem
which has been an area of recent interest in research, and is the
focus of this work.

Learning richer distributed representations of words has shown
to be quite effective for Natural Language Processing tasks [10, 14].
An embedding is a mapping from discrete objects to real numbers
vectors. Such mappings constitute a dimension which may not
always be meaningful or easily explainable in Machine Learning.
However, the patterns of location and distances between vectors
derived from embeddings may uncover numerous latent factors
among the embeddings. One of the main objectives of this work is
to explore the latent Learning Analytics by building high dimen-
sional and distributional representations of student profiles and
their programming codes.

In this paper we present our work on how to effectively repre-
sent and compare students’ source code submitted on an internal
online platform at a University, described in Section 3. We investi-
gate different techniques to represent students’ code (code2vec) and
evaluate the performance of different representations to predict the

https://doi.org/10.1145/3303772.3303813
https://doi.org/10.1145/3303772.3303813

LAK19, March 4–8, 2019, Tempe, AZ, USA D. Azcona et al.

correctness of a code solution. Furthermore, after investigating dif-
ferent representations of user code (code2vec), we propose a mech-
anism to represent students using their code submissions for given
programming exercises for a course as a matrix (user2code2vec).
This methodology can be used to effectively compare students in
a class, cluster students who show similar behaviour and perform
class-based analytics over them.

The research questions that we investigate in this work are stated
as the following:

• RQ1 (code2vec): How can student programming submis-
sions be encoded into vectors?

• RQ2 (user2code2vec): By leveraging the vectorization of
code submissions for a given course, how can we represent
students based on their programming work?

The main contributions of this work are as follows:
(i) Several mechanisms to represent user source code are in-

vestigated by describing the merits associated with each
approach;

(ii) The performance of different source code representations
for predicting the correctness of student’s source code are
evaluated;

(iii) A mechanism for representing student programming pro-
files is proposed based on their vector representations and
leveraging the code submission for a given course.

Next, we discuss the outline of this paper. Section 2 describes
the prior work related to work presented in this paper. Section 3
discusses the nature of the data we explored and section 4 describes
different methods for code representation and vectorization that
we investigated. Section 5 describes different ways for representing
tokenized source code into real vectors to be used for predicting
the correctness of a program using different code representations.
Section 6 then describes our proposed method to represent a user
using all their code submitted for the tasks or exercises in a course.
In section 7 we discuss the results of our task on predicting the
correctness of a program. Section 8 presents an analysis of users
for two courses based on richer user representation, using all their
program submission for a course. Finally, section 9 describes the
main conclusion and directions for future work.

2 RELATEDWORK
Neural language model-based distributed representations of text as
proposed by Bengio et al. [11] and further developed by Mikolov
et al. [14, 15], learn distributed word representations using Neural
Network based methods which are trained over large collection of
texts. These representations, commonly referred to as embeddings,
embed an entire vocabulary into a comparatively low-dimensional
vector space, where dimensions are real values. These embedding
models have been shown to perform well on semantic similarity
between words and on word analogies tasks [10, 14].

In the area of computer programming, predicting code properties
or extracting meaningful features from vast amounts of code data
has experienced tremendous progress recently [1, 3, 20]. Predicting
code properties without compiling or running is used for name
prediction of program entities [4], code generation [23], code com-
pletion [24] and code summarization [2]. In addition, embeddings-
based techniques have been recently applied to learning effective

code representations, comparing source codes and recommending
approaches to students.

Mou et al. [16] recently proposed how to successfully develop
program vector representations to be used in conjunction with Deep
Learning models for the task of classifying computer programs.
The vector representations learned used the nodes from Abstract
Syntax Trees (ASTs) which are a tree representation of the abstract
syntactic structure of source code [18]. The authors explored other
granularity levels for representations such as characters, tokens
or statements. In our work, we also explore tokens as a way to
vectorize code submissions by leveraging the Python Tokenizer
library.

Even more recently, Alon et al. [3] developed a code2vec neural
attention network that collects AST paths and aggregates them
to extract syntactic information from code snippets. Their objec-
tive was to predict semantic properties such as method names by
representing snippets of code as continuous distributed vectors,
also known as Code Embeddings. In our work, we build similar
higher-level distributed vectors to predict the correctness of code
solutions to verify patterns and meaningful information is then
extracted.

Piech et al. [20] leveraged Code Embeddings to give feedback
to students in MOOCs. First, they captured functional and stylistic
elements of student submissions and, then, they learned how to
give automatic feedback to students. This was done by develop-
ing functionality matrices at each point of the syntax tree of the
submission.

In terms of giving feedback, Paaßen et al. [19] demonstrated a
continuous hint approach can predict what capable students would
do in solving a multi-step programming task and that the hints built
using embeddings can match the edit hints that human tutors would
have given. Also, Gross et al. [12] proposed feedback strategies and
automatic example assignments using structured solution spaces.
More recently, Proksch et al. [21] collected a dataset of rich events
streams. Intead of studying artifacts after they happened, they
build FeedBaG, a general-purpose interaction tracker for Visual
Studio that monitors development activities and collected data from
software developers.

Finally, Mou et al. [17] proposed a tree-based Convolutional
Neural Network, denoted as TBCNN, using a convolution kernel
designed over programs’ ASTs to capture structural information.
They also used this technique to classify programs based on func-
tionality and detecting code snippets with particular patterns. In
addition, developing a dataset of syntax trees can be used for recom-
mendations as Proksch et al. [22] did for C# using solutions taken
from GitHub.

In our work, code solutions from students are transformed into
continuous distributed vectors, Code Embeddings, to be used as
a representation of their programming submissions (code2vec).
These vectors are leveraged to construct a matrix that represents
each user in a comparable way (user2code2vec). Sahebi et al. [25]
proposed a Tensor Factorization approach for modelling learning
and predicting student performance that does not need any prior
knowledge. This work outperformed state-of-the-art approaches for
measuring learning and predicting performance such as Bayesian
Knowledge Tracing and other tensor factorization approaches. We
were inspired by this work [25] to develop a similar representation

user2code2vec: Embeddings for Profiling Students LAK19, March 4–8, 2019, Tempe, AZ, USA

for users who learn coding at our University and we use embeddings
to learn higher level representations of that information.

3 DATA
In our Higher Education Institution, students learn how to code
by taking a variety of programming modules. Students develop
code algorithms for problems proposed by Faculty. Many of these
courses or modules are delivered through a custom Virtual Learn-
ing Environment (VLE) built for the purpose of teaching and learn-
ing computer programming. This custom VLE enables students
to access course information, material and slides for each module.
In addition, our system integrates an automatic grading platform
where students can verify their code submissions for programming
exercises. Students typically develop solutions locally for labora-
tory sheets for the computer programming courses. Then, they
submit their programs online to the automatic grading platform
which runs a number of testcases specified by the lecturer on each
exercise. This provides instant feedback to students based on the
suite of testcases run and ultimately tells the student whether the
program is considered correct or incorrect if any of the testcases
fail. This information is invaluable to their learning and such a
platform is needed to verify their programs work as expected.

The computer programming grading system has been used for
several years on a variety of programming courses at our University.
This allowed researchers and Faculty to gather a fine-grained digital
footprint of students learning programming at our University [5].
Recently, research in Learning Analytics has focused on Predic-
tive Modelling and identifying those students having difficulties
with course material, also in programming courses [9], and offering
remediation, personalized feedback and interventions to students
using Machine Learning techniques [6, 8]. Prior work has reported
that customized notifications sent to students regarding their per-
formance and offering resources such as further learning material,
code solutions from peers in their class and university support ser-
vices helped students to increase their differential performance and
engagement on these programming courses [7]. However, there is
a limit to this prior work where most of the models use little or
no programming work as features for the learning algorithms or
feedback sent to students. In this work we explore different mech-
anisms to represent students’ code to predict its correctness and
to better analyze students’ progress using their interactions which
can be exploited to provide effective feedback and support better
recommendations.

Every time a student submits a code solution for verification,
the system stores the code submission, the student identifier, the
IP used on the network for the upload, the results of the testcases
run with inputs and outputs, the course the submission belongs to,
the exercise and the task name the student is attempting by using
the submission’s filename. In total, we collected more than half a
million programming submissions (591,707) for 666 students from
5 Python programming courses over 3 academic years.

4 RESEARCH METHODOLOGY: CODE
VECTORIZATION

In order for a learning algorithm, like a Logistic Regression Model
or a Support Vector Machine, to understand text, it needs to be

converted into vectors of numbers. In short, text has to be encoded
as numbers to be used as input or output for Machine Learning
and Deep Learning models. For that, a suite of NLP techniques are
employed. In our case, code submissions or programs cannot be
considered as natural language and need to be parsed and analysed
in a different way. We explored the following representations of
programming submissions by tokenizing the code:

(1) Code as Word Vectors
(2) Code as Token Vectors
(3) Code as Abstract Syntax Tree Vectors

In the following sections we dig deeper into vectorized representa-
tions using student code. For that, we support our narrative with
Listings 1, 2, and 3. These examples are code snippets similar to the
students’ submissions in our programming courses.

Listing 1: Hello World Example
! / u s r / b i n / env python
print " Hel lo , ␣ World ! "

Listing 2: Call a Function Example
! / u s r / b i n / env python
def s a y _ h e l l o () :

print (" He l lo , ␣ World ! ")
s a y _ h e l l o ()

Listing 3: Sum of Two Variables Example
! / u s r / b i n / env python
r ead from i n pu t
a = in t (raw_input ()) # f i r s t
b = in t (raw_input ()) # s e c o n d
print a + b

4.1 Program Code as Word Vectors
A straightforward approach to representing programs is to leverage
the words from the code solutions as input to a machine learning
algorithm. For each submission, we split the submission only us-
ing the space, tabular (\t) and new line (\n) characters. A typical
tokenizer uses characters such as exclamation marks and other
operands and operators. In a coding scenario, these characters play
a key role in code submissions and we do not use them as filters
for our tokenizer.

Listings 4, 5 and 6 show how such word vectors are extracted,
prepared and made ready to use for some of our snippets.

Listing 4: Array of Words for Hello World Example
[' p r i n t ' , ' " h e l l o , ' , ' world " ']

Listing 5: Array of Words for Call a Function Example
[' d e f ' , ' s a y _ h e l l o () : ' , ' p r i n t (" Hel lo , ' ,
' World ! ") ' , ' s a y _ h e l l o () ']

Listing 6: Array ofWords for Sum of TwoVariables Example
[' a ' , ' = ' , ' i n t (raw_input ()) ' ,
' b ' , ' = ' , ' i n t (raw_input ()) ' ,

LAK19, March 4–8, 2019, Tempe, AZ, USA D. Azcona et al.

' p r i n t ' , ' a ' , ' + ' , ' b ']

These word vectors may not represent a programming submission
in a very comparable way to other submissions that have, for in-
stance, different variable names. Even though the special characters
like operands carry important information regarding these code
programs, splitting the words only using spaces may not give a
useful representation.

4.2 Code as Token Vectors
In addition, and as we are working with the Python programming
language, we leverage Python’s Tokenizer1 library for source code
analysis. This module provides a lexical scanner for Python source
code and is itself also implemented in Python. For instance, List-
ings 7, 8 show operators and delimiter tokens are clearly identified
and are assigned the generic OP token category in our example
snippets. We hypothesize this fine-grained tokenization such as
the generalization of operands (OP), strings or names can help
determine a more representable vectorization of a code submission.

Listing 7: Token Categories for Hello World Example
C h a r a c t e r s Category Token
1 , 0 −1 , 5 : NAME ' p r i n t '
1 , 6 −1 , 2 0 : STRING ' " Hel lo , ␣ World " '
2 , 0 −2 , 0 : ENDMARKER ' '

Listing 8: Token Categories for Call a Function Example
C h a r a c t e r s Category Token
1 , 0 −1 , 3 : NAME ' d e f '
1 , 4 −1 , 1 3 : NAME ' s a y _ h e l l o '
1 , 1 3 −1 , 1 4 : OP ' ('
1 , 1 4 −1 , 1 5 : OP ') '
1 , 1 5 −1 , 1 6 : OP ' : '
1 , 1 6 −1 , 1 7 : NEWLINE ' \ n '
2 , 0 −2 , 4 : INDENT ' ␣ ␣ ␣ ␣ '
2 , 4 −2 , 9 : NAME ' p r i n t '
2 , 9 −2 , 1 0 : OP ' ('
2 , 1 0 −2 , 2 5 : STRING ' " Hel lo , ␣ World ! " '
2 , 2 5 −2 , 2 6 : OP ') '
2 , 2 6 −2 , 2 7 : NEWLINE ' \ n '
3 , 0 −3 , 1 : NL ' \ n '
4 , 0 −4 , 0 : DEDENT ' '
4 , 0 −4 , 9 : NAME ' s a y _ h e l l o '
4 , 9 −4 , 1 0 : OP ' ('
4 , 1 0 −4 , 1 1 : OP ') '
4 , 1 1 −4 , 1 2 : NEWLINE ' \ n '
5 , 0 −5 , 0 : ENDMARKER ' '

These token categories or types have an associated identifier that
can also be used for vectorization, see Listing 9.

Listing 9: Token IDs for Call a Function Example
C h a r a c t e r s Category Token
1 , 0 −1 , 3 : 1 ' d e f '

1For Python 3: https://docs.python.org/3/library/tokenize.html

Figure 1: AST for Hello World Example

1 , 4 −1 , 1 3 : 1 ' s a y _ h e l l o '
5 1 , 1 3 −1 , 1 4 : 51 ' ('
5 1 , 1 4 −1 , 1 5 : 51 ') '
5 1 , 1 5 −1 , 1 6 : 51 ' : '
4 , 1 6 −1 , 1 7 : 4 ' \ n '
5 , 0 −2 , 4 : 5 ' ␣ ␣ ␣ ␣ '
1 , 4 −2 , 9 : 1 ' p r i n t '
5 1 , 9 −2 , 1 0 : 51 ' ('
3 , 1 0 −2 , 2 5 : 3 ' " He l lo , ␣ World ! " '
5 1 , 2 5 −2 , 2 6 : 51 ') '
4 , 2 6 −2 , 2 7 : 4 ' \ n '
5 4 , 0 −3 , 1 : 54 ' \ n '
6 , 0 −4 , 0 : 6 ' '
1 , 0 −4 , 9 : 1 ' s a y _ h e l l o '
5 1 , 9 −4 , 1 0 : 51 ' ('
5 1 , 1 0 −4 , 1 1 : 51 ') '
0 , 0 −5 , 0 : 0 ' '
Although these tokens appear to represent code solutions more
meaningfully than word vectors, information regarding the struc-
ture, design and flow of the program is still not captured and this
requires a more complex representation, as we shall see in the next
sub-section.

4.3 Code as Abstract Syntax Tree Vectors
In order to preserve the structure of the source code in a student
submission, we also analyze the code submissions using Abstract
Syntax Trees (ASTs). An AST is a tree representation of the abstract
syntactic structure of source code, no matter what programming
language the code is written [18]. An AST is an abstract repre-
sentation as there are no details regarding the correctness of the
implementation but only the structure and content. For instance,
operands are implicit in the AST and IF or While expressions are
denoted with a tree node. Figures 1, 2 and 3 are custom visualiza-
tions2 after recursively traversing the nodes from the AST trees
generated for our example code snippets. Green nodes represent
terminal nodes or leaves. Nodes that have children are colored in
blue.
2https://github.com/hchasestevens/show_ast

https://docs.python.org/3/library/tokenize.html
https://github.com/hchasestevens/show_ast

user2code2vec: Embeddings for Profiling Students LAK19, March 4–8, 2019, Tempe, AZ, USA

Figure 2: AST for Call a Function Example

After traversing the ASTs, nodes can be represented using their
parents in a pair-wise way. See Listings 10 and 11 for two of the
example snippets. The ASTs are traversed using a Breadth-first
search (BFS) approach.

Listing 10: AST Pairs for Hello World Example
P a r e n t Node C h i l d Node
' Module ' ' P r i n t '
' P r i n t ' ' S t r '
' P r i n t ' ' True '
' S t r ' ' H e l l o \ tWorld ! '

Listing 11: AST Pairs for Call a Function Example
P a r e n t Node C h i l d Node
' Module ' ' F u n c t i o n D e f '
' Module ' ' Expr '
' F u n c t i o n D e f ' ' s a y _ h e l l o '
' F u n c t i o n D e f ' ' arguments '
' F u n c t i o n D e f ' ' P r i n t '
' Expr ' ' C a l l '
' P r i n t ' ' S t r '
' P r i n t ' ' b o o l '
' C a l l ' ' Name '
' S t r ' ' H e l l o \ tWorld ! '
'Name ' ' s a y _ h e l l o '
'Name ' ' Load '

5 EXPERIMENT: CODE2VEC
We investigate how student code submissions can be transformed
into meaningful vectors as a form of representation. As mentioned
earlier, computers do not understand text data and text needs to be
represented and encoded into vectors of numbers as the input to a
Machine Learning algorithm. For that, we use the following two
approaches:

Table 1: Count Occurrence Matrix for Listings 1, 2

UNK ‘(’ ‘)’ ‘print’ ‘"Hello, World!"’ ‘say_hello’ ‘def’ ‘:’
0 1 1 1 1 0 0 0
0 3 3 1 1 2 1 1

(1) Code BOW (bag-of-words)
(2) Code Embeddings
The number of words extracted after running the tokenizer on

our data are 231,659 which was fitted with 591,707 code submissions.
A lot of memory is required to generate these large sparse matrices
for learning code2vec and user2code2vec representations. Although
our experiments are run on a GPU for faster computation, running a
classification algorithm for more than half a million source code files
is computationally expensive, hence we set a limit to the number of
Words, Python Categories, Python Tokens Words and AST Nodes
to 2,000. Overall, there are less Token Words than Words.

5.1 Code BOW (bag-of-words)
The bag-of-words (BOW) model, also called the vector space model,
is a simple representation used in NLP and Information Retrieval
[26]. According to this model, a text (such as a sentence or a docu-
ment) is represented as a bag of its words, disregarding grammar
and even word order but keeping multiplicity. In our work, we
leverage the BOW model to represent code submissions by looking
at either:

(a) Words
(b) Python Token Categories
(c) Python Token Words
(d) AST Nodes

The order or these items is ignored and only their frequency is
stored in a large sparse matrix. This matrix can be populated using
one of the following operations:

• Count: count of each word in the document.
• Frequency: frequency of each word as a ratio of words within

each document.
• Binary: presence, whether or not each word is present in the

document.
• TF-IDF: Text Frequency times Inverse Document Frequency

(TF-IDF) scoring for each word in the document.
Table 1 shows a simple BOW example using the count of each To-
ken Word for Listings 1 and 2 as the corpus. This BOW approach
can be used for classification methods where the count, frequency,
presence or TF-IDF of occurrence of each item (Word, Token Cate-
gory, Token Word or AST Node) is used as a feature for training a
classifier.

5.2 Code Embeddings
The BOW model provides an order-independent source code repre-
sentation, only the counts of either (a) Words, (b) Python Categories,
(c) Python Tokens Words or (d) AST Nodes matter. In contrast, em-
beddings are a different type of feature learning technique in NLP
where items, words (or even phrases) from the vocabulary are

LAK19, March 4–8, 2019, Tempe, AZ, USA D. Azcona et al.

Figure 3: AST for Sum of Two Variables Example

mapped to vectors of real numbers. It involves a mathematical em-
bedding from a space with one dimension per word to a continuous
vector space with a much lower dimensionality.

We generate embeddings for code submissions of our students
by transforming them into vectors in a continuous vector space.
In a similar manner, we leverage the vectorization of the code so-
lutions proposed in Section 4. We hypothesize that embeddings
extract patterns using contextual information and in combination
with a Neural Network can predict the correctness of the code
solutions more effectively. Embeddings typically uncover really in-
teresting properties between items or words such as neighborhoods
of items or classes, relationships between items or constant vector
differences, which we describe in the next section.

6 EXPERIMENT: USER2CODE2VEC
Students typically submit programming versions of the same exer-
cise proposed in the labsheets to the grading platform until they
either get it correct, or they give up. There is no limit on the number
of student submissions per exercise. Then, for each user and each
proposed exercise or task, the grading platform contains a set of
versions. In our work, we only leverage the latest version per task
for the vectorized representation of the user. In a similar manner, if
we wanted to keep all versions, we would add another dimension
and develop a tensor with all the submissions.

For each course and academic year, a User Representation
Matrix is constructed for each student using the code vectors of
the submissions to the proposed labsheets by the Lecturer. Having
a vector representation of code submissions allows researchers to
generate a higher-level representation for each student or user. This
User Representation Matrix is built by vectorizing the submissions.
Submission are vectorized using either:

(1) Word Tokenizer

(2) Token Word Python Tokenizer
This results in a User Representation Matrix of shape (number_tasks,
MAX_LENGTH). MAX_LENGTH is the limit for each sequence
that we use for padding the code submission after tokenization.
MAX_LENGTH is set to 50. The User Representation Matrix for
each student is flattened out as a long vector. Principal Component
Analysis (PCA) [28] is leveraged as the dimensionality reduction
technique to visualize the 100-dimension vectors or user embed-
dings into 2 dimensions. In short, a student is represented as a
vector of her submissions.

7 RESULTS: CODE2VEC
In this section, the results of the code2vec technique will be dis-
cussed for both approaches: BOW and Embeddings. We train the
models and learn the representations using all the Python programs
submitted by students in our University over a number of years,
and we use these representations to predict the correctness of a
student’s code.

7.1 Code BOW (bag-of-words)
First, we build four tokenizers constructed and fitted with the
code submissions using either (a) Words, (b) Python Categories, (c)
Python Token Words or (d) AST Nodes respectively. The dictionary
of items and their counts are shown in Table 2. It is interesting
to see the differences between the top occurrences for each tok-
enization, where Token Words are a generalization of Words, Token
Categories are a generalization of Token Words and the AST nodes
are at an abstract level which contain items regarding the structure
of the code submission.

This way, we can construct matrices where each row is a code
submission and we count the number of occurrences for each (a)

user2code2vec: Embeddings for Profiling Students LAK19, March 4–8, 2019, Tempe, AZ, USA

Table 2: Top-5 Words, Token Categories, Token Words & AST Nodes

Word Occurrences Token Category Occurrences Token Word Occurrences AST Nodes Occurrences
‘=’ 2,440,154 51: ‘OP’ 20,368,593 ‘)’ 3,556,931 ‘Name’ 10,005,368
‘i’ 910,221 1: ‘NAME’ 18,075,194 ‘(’ 3,556,907 ‘Load’ 9,607,682
‘+’ 575,607 4: ‘NEWLINE’ 5,886,806 ‘=’ 2,581,991 ‘Store’ 2,665,169
‘if’ 552,539 2: ‘NUMBER’ 2,317,086 ‘:’ 2,248,901 ‘Call’ 2,205,672

‘def’ 522,536 54: ‘NL’ 1,996,531 ‘.’ 2,011,442 ‘Assign’ 2,186,523

Word, (b) Token Category, (c) Token Word and (d) AST Node. Fig-
ure 4a shows details on the performance of these model combina-
tions (a), (b), (c) and (d) just using the count of items. In addition, we
look on the (a) Words (as they work better) and perform a similar
analysis looking at the count, presence (binary), frequency and
TF-IDF of the Words instead of the pure count only. Figure 4b does
not show a meaningful difference between them except that the
frequency model works slightly worse than the others. These mod-
els are trained using a Naive Bayes classification algorithm [13]
holding out 20% of the data as the testset. The models are trained
using around half a million code submissions (less for the Tokens or
AST Trees as some code submissions could not be tokenized using
the Python Tokenizer library or an AST could not be extracted
when the programs are incorrectly constructed). The classes for
this classification problem are well balanced. For instance, for the
model that uses the Words 194,451 submissions were correct and
296,369 were incorrect based on the output of the grading platform.
That is the target of our predictions for training the models.

Interestingly, the least generalized model that uses the Words
instead of Tokens or AST Nodes is the one that performs slightly
better than the rest using BOW. The less generalized the model is,
the better it performs, using Words perform better than Tokens and
Tokens perform better than AST Nodes.

7.2 Code Embeddings
In a similar manner and in order to feed vectors to a Neural Network
we vectorize our code submissions by tokenizing for (a) Words, (b)
Python Categories, (c) Python Token Words and (d) AST Nodes. In
addition, as a pre-processing step, we pad our sequences up to our
limit of 50 words, tokens or nodes. A simple model is developed
using an Embeddings layer, flattening the output of that layer on
the next one and condensing it on the final one using a softmax
function. The embeddings are the representation extracted after
learning from the Embeddings layer and contain 100 dimensions.
This forces the Neural Network to learn patterns as we are inputting
2,000 words that will be 2,000 dimensions using one-shot encoding.

The performance of the models using (a) Words and (b) Token
Words is shown Figure 5. These models are trained using Cross
Validation with 20% of the dataset as the holdout set. Utilizing
Neural Networks with an Embeddings layer allows us to learn better
patterns and representations of the code solutions submitted to the
grading platform. The models perform better than the baseline
BOW and the Word Tokens are better able to distinguish between
correct and incorrect programs. We expect that incorporating the
structure of the program using ASTs will create a richer model.

Table 3 shows the results from the different BOW and Embed-
dings models in a comparable way.

After the models are trained using the code submissions with
the correct or incorrect target for each, the learned embeddings
can be extracted. Figure 6a shows the embeddings of the top 20
most common words. It is interesting to note how operands are
clustered together as are numbers. This confirms that the network
is learning efficient representations. Similarly, we can explore the
top 20 most common tokens in Figure 6b.
These vectors contain really interesting properties similar to word
embeddings. Table 4 shows some cosine similarities between pairs
of words that are very close to other pairs. Neighbors of these
embeddings can also be checked out, and numbers can be found
besides other numbers in String format, but in general, our learned
embeddings have noise such as variable names and Strings that
prevents us to from seeing other relationships as would be found
in word2vec [14].

8 RESULTS: USER2CODE2VEC
user2code2vec has been performed on students of two of the com-
puter programming courses at Dublin City University for a full
academic year. Course details can be found in Table 5. User Repre-
sentation Matrices were constructed using the code submissions
for each student. Then, we flattened them out to input them to a
Deep Learning Network similar to code2vec with an Embeddings
layer that learns representations of users in a continuous space
with a reduced dimensionality. User Embeddings are given 100
dimensions. The input data are very large and sparse vectors with
the indexes of the vocabularies for the code submissions.

In CS1 during 2016/17, these student vectors have 13,800 dimen-
sions as there are 276 tasks to be completed in the course and the
limit of the submission sequences is 50. Figure 7a shows the in-
put to the Neural Network and Figure 7b shows how difficult it
is to distinguish among a few hundred students with such a large
sparse matrix of code submissions. Unfortunately, we cannot add
more data as there were no more students on that cohort, unlike
other domains which allow downloading of more tweets or crawl-
ing more websites when this situation happens. The vectors are
transformed to 2 dimensions using PCA. The variance retained is
very low (between 2% and 6%). Each dot on the graphs represents a
student based on the projection of their student vector. The colour
used represent the average grade of the exams that student took
that year on that course.

Deep Learning is known to work well when more data is pro-
vided and it is expected that more data results in improved perfor-
mance across most domains. Due to the curse of dimensionality, in

LAK19, March 4–8, 2019, Tempe, AZ, USA D. Azcona et al.

(a) Words vs. Token Categories vs. Token Words vs. AST Nodes Using Count (b) Words Using Count, Binary, Frequency & TF-IDF

Figure 4: Performance of code2vec using BOW (bag-of-words).

Table 3: Performance of the Models Using BOW and Embeddings

Model Accuracy F1 Score
Naive Bayes using BOW & Words 59.44% 59.84%
Naive Bayes using BOW & Category Tokens 58.29% 46.95%
Naive Bayes using BOW & Word Tokens 57.63% 57.93%
Naive Bayes using BOW & AST Nodes 56.91% 56.18%
Neural Network using Embeddings & Words 73.25% 64.11%
Neural Network using Embeddings & Category Tokens 74.93% 19.64%
Neural Network using Embeddings & Word Tokens 74.93% 67.18%

Figure 5: Performance of code2vec using Embeddings

a high-dimensional feature space with each feature having a range
of possible values, typically an enormous amount of training data
is required to ensure that there are several samples with each com-
bination of values. A typical rule of thumb is that there should be at
least 5 training examples for each dimension in the representation
[27]. However, the constraint for Learning Analytics in Education
in VLEs, but not in MOOCs, is the number of students enrolled
in a course. Thus instead of representing each student using the
concatenation of all their submission made in a course, it would be

Table 4: Cosine Distance Between Word Vectors

Tokeni Tokenj Cosine Distance
‘(’ ‘)’ 0.9136
‘<’ ‘>’ 0.9241
‘[’ ‘]’ 0.9792
‘if’ ‘elif’ 0.9732
‘}’ ‘]’ 0.8857
‘+’ ‘-’ 0.8846

Table 5: Courses Analysed on user2code2vec

Course Year Code Submissions Tasks Students
CS1 2016/17 68,313 276 126
CS2 2016/17 74,065 132 140

better to identify important features from each submission and con-
catenate key features across the code submission. In short, keep the
number of features low to effectively learn from constrained data.
These user2code2vec representations can then be used to identify
student neighbours for programming recommendations.

user2code2vec: Embeddings for Profiling Students LAK19, March 4–8, 2019, Tempe, AZ, USA

(a) Embeddings for the Top 20 Most CommonWords (b) Embeddings for the Top 20 Most Common Token Words

Figure 6: Embeddings for the Top Words & Token Words Projected from 100D to 2D Using PCA

(a) User Raw Representations Using Word Tokens (b) User Learned Embeddings Using Word Tokens

Figure 7: user2code2vec applied to CS1 course during 2016/17 academic year.

9 CONCLUSIONS AND FUTUREWORK
Our code2vec implementation and results confirm the power of
code embeddings and the latent learning analytics properties in
student code submissions, as compared to using bag-of-words based

representations of source code. We are now working on combining
Tokens and ASTs for creating a richer model that has code details
including structure and context. In addition, we are exploring Con-
crete Syntax Trees which are parse trees, typically built by a parser

LAK19, March 4–8, 2019, Tempe, AZ, USA D. Azcona et al.

during the source code translation and compiling process, adding
subsequent processing to ASTs such as contextual information.

User2Code2vec is a novel technique to represent students in
a high-dimensional space using distributional representations of
student profiles and their programming code. Other techniques
such as Matrix Factorization can be used to find students with
similar coding patterns. In addition, the User Representation Matrix
can be built as as a Tensor with a new dimension using all the
submissions instead of the last one or one at random. That might
give us a better representation of their learning and progression
that we could use.

Embeddings have proven to successfully identify hidden or latent
patterns for code submissions and user representations. Measuring
the quality of these vectors is not straightforward. Several factors
influence the quality of the vectors such as the amount and qual-
ity of the training data, the size of the vectors and the learning
algorithm used. The quality of these vectors is crucial for the repre-
sentations but trying out different hyper-parameters takes a lot of
computation and time. Pre-trained vectors with a large corpus is the
standard in other domains like word vectors using Google’s News
dataset and this community should make the effort to develop good
Code Embeddings that can be used to learn higher level abstracts
like User Embeddings.

Embeddings for source code and student code representations is
still at an early stage of development but has potential to change
how we understand learning to program, recommend code and
peer learning of programming using higher level abstractions.

In our future work we plan to focus on two main aspects, to
learn better distributional semantics using abstract trees to capture
syntactic structure effectively following recent work proposed in [3,
20] and to use the recommendation learned using the user2code2vec
representation proposed in this work and to evaluate how this
representation helps students to improve their learning. 3

ACKNOWLEDGEMENTS
This research was supported by the Irish Research Council in asso-
ciation with the National Forum for the Enhancement of Teaching
and Learning in Ireland under project number GOIPG/2015/3497,
by Science Foundation Ireland under grant numbers 12/RC/2289
and 13/RC/2106, and by Fulbright Ireland. The authors are indebted
to Dr. Stephen Blott who developed the programming grading plat-
form.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ACM, 281–293.

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-
tention network for extreme summarization of source code. In International
Conference on Machine Learning. 2091–2100.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. code2vec: Learn-
ing Distributed Representations of Code. arXiv preprint arXiv:1803.09473 (2018).

[4] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general
path-based representation for predicting program properties. arXiv preprint
arXiv:1803.09544 (2018).

[5] David Azcona, Owen Corrigan, Philip Scanlon, and Alan Smeaton. 2017. Inno-
vative Learning Analytics Research at a data-driven HEI. In Proceedings of the

3Code developed in this work has been made publicly available as a repository on
Github at https://github.com/dazcona/user2code2vec where further details such as
PCA graphs for the learned embeddings can be found.

3rd International Conference on Higher Education Advances. Editorial Universitat
Politècnica de València, Valencia, Spain, 435–443.

[6] David Azcona, I-Han Hsiao, and Alan F Smeaton. 2018. Detecting Students-In-
Need in Programming Classes with Multimodal Learning Analytics. International
Journal of Artificial Intelligence in Education (ijAIED) (2018).

[7] David Azcona, I-Han Hsiao, and Alan F Smeaton. 2018. An Exploratory Study
on Student Engagement with Adaptive Notifications in Programming Courses.
In European Conference on Technology Enhanced Learning. Springer, NY, USA,
644–647.

[8] David Azcona, I-Han Hsiao, and Alan F Smeaton. 2018. PredictCS: Personalizing
Programming Learning by Leveraging Learning Analytics. Companion Proceed-
ings 8th International Conference on Learning Analytics & Knowledge (LAK18)
(2018).

[9] David Azcona and Alan F Smeaton. 2017. Targeting At-risk Students Using
Engagement and Effort Predictors in an Introductory Computer Programming
Course. In European Conference on Technology Enhanced Learning (EC-TEL’17).
Springer, NY, USA, 361–366.

[10] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count,
predict! A systematic comparison of context-counting vs. context-predicting
semantic vectors. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vol. 1. 238–247.

[11] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model. Journal of Machine Learning Research 3, Feb
(2003), 1137–1155.

[12] Sebastian Gross, Bassam Mokbel, Benjamin Paaßen, Barbara Hammer, and Niels
Pinkwart. 2014. Example-based feedback provision using structured solution
spaces. International Journal of Learning Technology 10 9, 3 (2014), 248–280.

[13] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Text
classification and naive bayes. Introduction to information retrieval 1, 6 (2008).

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[16] Lili Mou, Ge Li, Yuxuan Liu, Hao Peng, Zhi Jin, Yan Xu, and Lu Zhang. 2014.
Building program vector representations for deep learning. arXiv preprint
arXiv:1409.3358 (2014).

[17] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural
Networks over Tree Structures for Programming Language Processing.. In AAAI,
Vol. 2. 4.

[18] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. 2005. Understanding source
code evolution using abstract syntax tree matching. ACM SIGSOFT Software
Engineering Notes 30, 4 (2005), 1–5.

[19] Benjamin Paaßen, Barbara Hammer, Thomas William Price, Tiffany Barnes, Se-
bastian Gross, and Niels Pinkwart. 2017. The Continuous Hint Factory-Providing
Hints in Vast and Sparsely Populated Edit Distance Spaces. arXiv preprint
arXiv:1708.06564 (2017).

[20] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. 2015. Learning program embeddings to propagate
feedback on student code. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning-Volume 37. JMLR. org, 1093–1102.

[21] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched event streams: a
general dataset for empirical studies on in-IDE activities of software developers.
In Proceedings of the International Conference on Mining Software Repositories.

[22] Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini. 2016. A dataset of
simplified syntax trees for C. In Proceedings of the 13th International Conference
on Mining Software Repositories. ACM, 476–479.

[23] Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract syntax networks
for code generation and semantic parsing. arXiv preprint arXiv:1704.07535 (2017).

[24] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In Acm Sigplan Notices, Vol. 49. ACM, 419–428.

[25] Shaghayegh Sahebi, Yu-Ru Lin, and Peter Brusilovsky. 2016. Tensor factorization
for student modeling and performance prediction in unstructured domain. In
Proceedings of the 9th International Conference on Educational DataMining. IEDMS,
502–506.

[26] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

[27] Sergios Theodoridis, Konstantinos Koutroumbas, et al. 2008. Pattern recognition.
IEEE Transactions on Neural Networks 19, 2 (2008), 376.

[28] Michael E Tipping and Christopher M Bishop. 1999. Probabilistic principal
component analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 61, 3 (1999), 611–622.

https://github.com/dazcona/user2code2vec

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	4 Research Methodology: Code Vectorization
	4.1 Program Code as Word Vectors
	4.2 Code as Token Vectors
	4.3 Code as Abstract Syntax Tree Vectors

	5 Experiment: code2vec
	5.1 Code BOW (bag-of-words)
	5.2 Code Embeddings

	6 Experiment: user2code2vec
	7 Results: code2vec
	7.1 Code BOW (bag-of-words)
	7.2 Code Embeddings

	8 Results: user2code2vec
	9 Conclusions and Future Work
	References

