
HTML5 MSE Playback of MPEG 360 VR Tiled Streaming
JavaScript implementation of MPEG-OMAF viewport-dependent video profile with HEVC tiles

Dimitri Podborski, Jangwoo Son, Gurdeep Singh Bhullar, Robert Skupin, Yago Sanchez
Cornelius Hellge, Thomas Schierl
Fraunhofer Heinrich Hertz Institute
Multimedia Communications Group

Berlin, Germany
name.surname@hhi.fraunhofer.de

ABSTRACT
Virtual Reality (VR) and 360-degree video streaming have gained
significant attention in recent years. First standards have been
published in order to avoid market fragmentation. For instance,
3GPP released its first VR specification to enable 360-degree video
streaming over 5G networks which relies on several technologies
specified in ISO/IEC 23090-2, also known as MPEG-OMAF. While
some implementations of OMAF-compatible players have already
been demonstrated at several trade shows, so far, no web browser-
based implementations have been presented. In this demo paper
we describe a browser-based JavaScript player implementation of
the most advanced media profile of OMAF: HEVC-based viewport-
dependent OMAF video profile, also known as tile-based streaming,
with multi-resolution HEVC tiles. We also describe the applied
workarounds for the implementation challenges we encountered
with state-of-the-art HTML5 browsers. The presented implementa-
tion was tested in the Safari browser with support of HEVC video
through the HTML5 Media Source Extensions API. In addition, the
WebGL API was used for rendering, using region-wise packing
metadata as defined in OMAF.

CCS CONCEPTS
• Information systems→Multimedia streaming; RESTful web
services; • Computing methodologies→ Virtual reality.

KEYWORDS
OMAF, VR, 360 video, Streaming, HEVC, Tiles, JavaScript, MSE

ACM Reference Format:
Dimitri Podborski, Jangwoo Son, Gurdeep Singh Bhullar, Robert Skupin,
Yago Sanchez and Cornelius Hellge, Thomas Schierl. 2019. HTML5 MSE
Playback of MPEG 360 VR Tiled Streaming: JavaScript implementation
of MPEG-OMAF viewport-dependent video profile with HEVC tiles. In
MMSys ’19: ACM Multimedia Systems Conference - Demo Track, June 18–
21, 2019, Amherst, MA, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3304109.3323835

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MMSys ’19, June 18–21, 2019, Amherst, MA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6297-9/19/06.
https://doi.org/10.1145/3304109.3323835

1 INTRODUCTION
Virtual Reality (VR) and 360-degree video streaming have gained
popularity among researchers and the multimedia industry in re-
cent years. For example, in addition to many published research
papers in this area, several standardization organizations such as
ISO/IEC, MPEG and 3GPP have published their first specifications
on VR [1] [6]. One such specification is the result of an MPEG
activity and is referred to as the Omnidirectional Media Format
(OMAF) that specifies a storage and delivery format for 360-degree
multimedia content. OMAF particularly defines the HEVC-based
viewport-dependent media profile for video which allows to stream
HEVC tiles of different resolutions and finally combine them into
a single bitstream so that only one video is decoded on the client
end-device. This approach, often referred to as tile-based stream-
ing, allows the service operator to increase the resolution within
the viewport while decoding a lower resolution video compared
to the conventional naive 360-degree video streaming approach.
However, this is coupled with additional complexity of the player
implementation, particularly when implemented in a web browser
environment using only JavaScript. In addition, the W3C Media
Source Extensions (MSE) offer no direct support for OMAF which
requires workarounds at certain functional steps. In this paper we
describe how to overcome these challenges in order to implement
a fully standard-compliant OMAF player for tile-based streaming
in JavaScript. Furthermore, the entire source code of our implemen-
tation is available on GitHub [4].

The remainder of the paper is structured as follows. Section 2
presents the overall architecture of our implementation and de-
scribes each component of the system. The proof of concept is
presented in Section 3, explaining the most important challenges
and workarounds. Finally, Section 4 concludes our paper.

2 ARCHITECTURE
A general overview of the main components involved in our im-
plementation is depicted in Figure 1. It consists of six main mod-
ules which interact with each other and together provide a fully
functional player for OMAF 360-degree video. Those modules are:
Player, Downloader (DL), MPD Parser (MP), Scheduler (SE), Media
Engine (ME) and finally the Renderer (RE).

The Player module represents the core of the entire application.
It connects all modules with each other and controls them. The DL
module deals with all HTTP requests to the server. TheMPmodule
implements the parsing of the DASH manifest file (MPD) together
with additional metadata defined in OMAF. The SEmodule controls

ar
X

iv
:1

90
3.

02
97

1v
2 

 [
cs

.M
M

] 
 2

3 
A

pr
 2

01
9

https://doi.org/10.1145/3304109.3323835
https://doi.org/10.1145/3304109.3323835
https://doi.org/10.1145/3304109.3323835


MMSys ’19, June 18–21, 2019, Amherst, MA, USA Dimitri Podborski, et al.

Player

Downloader 
DL 

Media Engine 
ME   

Renderer 
RE 

Sensor

Scheduler 
SE 

MPD Parser 
MP 

Fetch API 
(http 2.0) 

DASH 
Content 

MSE
SourceBuffer 

Media / Metadata 
Control data 

Figure 1: Overall architecture.

the DL module and decides when requests for the next segments
should be executed, based on the current status of the player. The
task of theME module is to parse OMAF related metadata on the
File Format level and re-package the downloaded OMAF content
in such a way that the Media Source Extensions API of the web
browser can process the data. Finally, the RE module uses the
OMAF metadata in order to correctly render the video texture on
the canvas using WebGL API. The following subsections describe
each of these six modules in more detail.

2.1 Player
As already mentioned in the previous section the Player module
can be seen as the core of the entire application. Its main goal is
to connect all modules with each other and to control them. It
also connects HTML elements such as video and canvas from the
main page with the ME and RE modules. In addition, it provides
a basic functionality to the user such as load a source, play, pause,
loop, change into or go out of full screen mode and retrieve certain
metrics of the application in order to plot the data on the screen.

2.2 Downloader
The main task of this module is to manage all HTTP traffic between
our application and the server. This module receives a list of URLs
from the player module and downloads them using the Fetch API.
After all required HTTP requests are processed and all requested
data is successfully downloaded, it forwards the data to the ME
module for further processing. Since the current version of the
player fires a lot of simultaneous HTTP requests it is desirable
to host the media data on an HTTP/2 enabled server in order to
improve the streaming performance.

2.3 MPD Parser
OMAF uses Dynamic Adaptive Streaming over HTTP (DASH) as a
primary delivery mechanism for VR media. It also specifies addi-
tional metadata for 360-degree video streaming such as:

• Projection type: only Equirectangular (ERP) or Cubemap
(CMP) projections are allowed.

• Content coverage: is used to determine which region each
DASH Adaptation Set covers while each HEVC tile is stored
in a separate Adaptation Set. This information is required
to select only those Adaptation Sets which cover the entire
360-degree space.

• Spherical region-wise quality ranking: (SRQR) is used to de-
termine where the region with the highest quality is located
within an Adaptation Set. This metadata allows us to se-
lect an Adaptation Set based on current orientation of the
viewport.

In addition to OMAFmetadata, another notable feature is the DASH
Preselection Descriptor which indicates the dependencies between
different DASH Adaptation Sets. The MPmodule parses all required
DASH manifest metadata and implements several helper functions
which are used by the Player module in order to make appropriate
HTTP requests.

2.4 Scheduler
One of the key aspects of any streaming service is maintaining a
sufficient buffer in order to facilitate smooth media playback. In
the implementation, the buffer is maintained using a parameter
named ’buffer limit’ which can be set prior or during a streaming
session. The parameter indicates the maximum buffer fullness level
in milliseconds and depending on its value the SE module schedules
the next request. If the buffer is able to accommodate a segment,
then the SE module initiates the request for the next segment. On
the other hand, if the buffer is full, then the request for the next
segment is delayed until buffer fullness and the current time of the
media playback indicate otherwise.

An important point to mention for any viewport-dependent
streaming implementation, is that the user can change the viewport
orientation during the playback at any time. Therefore, the sys-
tem should adapt to the changed viewport orientation as quickly
as possible, which implies that the buffer fullness limit must be
kept relatively small. Preferably, it should be in the range of a few
seconds.

2.5 Media Engine
The ME module is taking input from the DL module and prepares
the downloaded media segments for the consumption by the Media
Source Extension (MSE). Current state-of-the-art MSE implementa-
tions do not yet fully support all modern features of the ISO Base
Media File Format, in particular some File Format features used in
OMAF media segments. Therefore, the downloaded media segment
data is repackaged in a format that is compatible with MSE imple-
mentations. For the parsing and writing of the File Format data we
are using the JavaScript version of GPAC’s MP4Box tool mp4box.js
[2]. Furthermore, the parsing of the OMAF related metadata is also
implemented in the ME module. Figure 2 visualizes the repackaging
process and shows the flow of downloaded media segments through
the ME module to the MSE SourceBuffer.

Before the ME module processes the media segments, each seg-
ment should be completely downloaded and consist of multiple
hvc1 video tracks (one track for each HEVC tile) and one additional



HTML5 MSE Playback of MPEG 360 VR Tiled Streaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

Seg N+1

hvc1

hvc1

hvc1

hvc2

...

ID 
49 

Seg N

hvc1

hvc1

hvc1

hvc2

...

ID 
60 

Media 
Engine 

...

Seg (N+1)*

hvc1
ID=1 

Seg N*

hvc1
ID=1 

MSE 
SourceBuffer 

Figure 2: Media Engine module repackages the downloaded
DASH segments before pushing them to MSE SourceBuffer.

hvc2 video track with Extractor NAL Units for HEVC video [5].
The extractor track is required for the creation of a single HEVC
bitstream from the individually delivered HEVC tiles in order to use
a single decoder instance. An extractor represents the in-stream
data structure using a NAL unit header for extraction of data from
other tracks and can be logically seen as a pointer to data located in
a different File Format track. Unfortunately, currently available web
browsers do not natively support File Format extractor tracks and
thus a repackaging workaround as performed by the ME module is
necessary. Therefore, the ME module resolves all extractors within
an extractor track and packages the resolved bitstream into a new
track with a unique track ID, even if the extractor track ID changes.
Hence, from the MSE SourceBuffer perspective, it looks like the
segments are coming from the same DASH Adaptation Set even if
the player switches between different tiling configurations.

2.6 Renderer
After the repackaged segment is processed by theMSE SourceBuffer,
the browser decodes the video and the video texture is finally ren-
dered by the RE module using OMAF metadata. The RE module is
implemented using a custom shader written in OpenGL Shading
Language (GLSL) together with a three.js library (WebGL library)
[8] which is used to implement three-dimensional graphics on the
Web. Our rendering implementation is based on triangular polygon
mesh objects and supports both: equirectangular and cubemap po-
jections. In case of a cubemap projection one cube face is divided
into two triangular surfaces, while in case of an equirectangular
projection, a helper class from three.js library is used to create a
sphere geometry.

Figure 3 shows three main processes used for rendering, from the
decoded picture to the final result rendered on the cube. It shows an
example where each face of the cube is divided into four tiles while
the decoded picture is composed of 12 high-resolution and 12 low-
resolution tiles. The 12 triangular surfaces of the cube as depicted in
Figure 3 (c) can be represented as a 2D plane like in Figure 3 (b). The
fragment shader of the RE module uses OMAF metadata to render
the decoded picture correctly at the cube faces as shown in Figure 3
(b). The Region-wise Packing (RWPK) of OMAF metadata has top-
left position, width, height in packed and unpacked coordinates as
well as rotation of tiles for all tracks. Since the shader reconstructs
the position of pixels based on OMAF metadata, Figure 3 (b) can
be assumed to be a region-wise Un-Packed image. Therefore, the
shader sets the rendering range of the Figure 3 (a) using the RWPK
metadata, and renders the tiles of the decoded picture to the cube
faces of the Figure 3 (b). However, when there is a change in the

Left Front Right

Bottom Back Top
Back

Low Resolution

High Resolution

Packed Top-Left Coordinates 

Un-Packed Top-Left Coordinates 

(a) (b) (c)

Tile Boundaries 

Figure 3: Rendering process of one face of the cube; (a) the
decoded video texture before unpacking; (b) the 12 triangu-
lar surfaces on the 2D plane after region-wise unpacking; (c)
the composition of 12 triangular surfaces on the cube.

viewport position, the RE module has to be given correct metadata
for the current track. In the implementation, when the manifest
file is loaded, the RE module is initialized with all RWPK metadata
to correctly render all tracks. The synchronization of the track
switching is covered in the following section.

3 PROOF OF CONCEPT
In this section, we first give a brief overview of the implementation.
We then discuss the most important challenges we encountered
during implementation and describe their workarounds.

3.1 Implementation overview
Figure 4 shows the screenshot of the main page of our OMAF
JavaScript Player. In addition to some basic video player controls
such as load MPD, play, pause, change to full screen mode etc., it
also provides several controls for debugging purposes. In the top
input menu, the user can provide the URL to a DASH manifest
file (MPD) and load it. After the MPD is successfully loaded and
parsed, the player downloads all initialization segments (one for
each emphasized viewport, which, in relation to the example in
Figure 3, corresponds to 24 extractor tracks), parses OMAF-related
metadata and initializes the RE module with extracted region-wise
packing information. In addition, the ME module creates a pseudo-
initialization segment for the MSE SourceBuffer to initialize it in a
way such that following repackaged media segments can be suc-
cessfully decoded by the web browser.

The streaming session starts when the user presses the play
button. The player then continuously downloads media segments of
a certain extractor track, depending on the current orientation of the
viewport. In addition, all dependent media segments (hvc1 tracks)
are also downloaded. All downloaded media segments are then
immediately repackaged and the corresponding RWPK metadata
is used to correctly render the video on the canvas. We tested
our implementation on Safari 12.02 since only web browsers from
Apple and Microsoft1 natively support it. Raw video sequences
were provided by Ericsson and prepared for streaming using the
1Microsoft Edge web browser supports the implementation on devices with a hardware
HEVC decoder. For devices that do not provide hardware support for HEVC, the HEVC
Video Extensions have to be enabed in the Microsoft Store.



MMSys ’19, June 18–21, 2019, Amherst, MA, USA Dimitri Podborski, et al.

Figure 4: Screenshot of the OMAF JavaScript Player user in-
terface.

OMAF file creation tools from Fraunhofer HHI [3] [4]. Finally, the
content was hosted on Amazon CloudFront CDN, which supports
HTTP/2 in conjunction with HTTPS.

The following section covers some of the issues that we faced
during the implementation.

3.2 Implementation challenges
An important prerequisite for good functionality of the implemen-
tation is the synchronization of the extractor track switching and
the corresponding RWPK metadata. When the user changes the
viewport, the extractor track is changed and the high and low-
quality tile positions of the decoded picture are derived using the
corresponding region-wise packing metadata. The RE module has
to reset the texture mapping of the decoded picture according to
the changed track and it shall be done at exactly the same time
when the video texture changes from one track to another. The
simplest way to detect the exact frame number is to check the cur-
rent time of the video. Unfortunately, W3C organizations are still
discussing the precise accuracy of the currentTime of the video
element [7] and nowadays it is not possible to conveniently detect
the exact frame number of the video reliably using currentTime.
Therefore, the ME module uses two video elements together with
two MSE SourceBuffers and alternately switches between them
when the extractor track (and RWPK) changes. The ME module
saves the bitstream of the changed track in the SourceBuffer of the
other video element. When the Player reaches the end of the active
buffer it subsequently switches to the other video element. At the
same time, the player informs the RE module through an event
about the change of the video element. The RE module declares
two scene objects and associates them with each video element.
Also, the RE module calculates and stores the RWPK metadata of
the decoded picture for all tracks in the initialization phase. When
receiving the event about the change of the video element from
the Player, the RE module replaces the scene and maps the video

texture of the decoded picture based on the scene object, so that
track synchronization is performed without an error.

While this solution works well on Safari, we discovered an open
issue on Microsoft Edge browser [9] that interferes with the two
buffers workaround. The Edge web browser requires a few seconds
of data in each buffer in order to start the decoding process, and
therefore the new segment at every track switch cannot be instantly
rendered.

Furthermore, due to the track synchronization solution using
two video elements, we need to operate two MSE SourceBuffer
objects, which makes the buffering logic a bit more complex as
the SE module has to monitor the buffer fullness level of both
SourceBuffer objects. The duration of media segments present in the
two media sources is combined together to determine the available
buffer time at a given moment so that the SE module can make
requests for the future media segments accordingly.

For future work we plan to further optimize the streaming perfor-
mance of the player while reducing the amount of HTTP requests
and implement suitable rate-adaptation algorithms for tile-based
streaming.

4 CONCLUSIONS
In this paper, we present the first implementation for the playback
of the HEVC-based viewport-dependent OMAF video profile in a web
browser. This OMAF profile allows to increase the resolution of
360-degree video inside the viewport by sacrificing resolution of
the areas which are not presented to the user. The entire imple-
mentation is in JavaScript and therefore no additional plugins are
required. Although current state-of-the-art MSE implementations
do not yet fully support some File Format features used in OMAF,
our implementation shows how these limitations can be overcome
by using JavaScript in combinationwithMSE.We also point out that
W3C is currently working on accurate frame-by-frame signaling of
media elements, which currently requires a slightly more complex
workaround in the rendering process using two MSE SourceBuffer
elements in alternating order. The entire source code of the im-
plementation presented in this paper is published on GitHub [4].
Information on other MPEG-OMAF implementations from Fraun-
hofer HHI can be found in [3].

REFERENCES
[1] 3GPP. 2019. 5G; 3GPP Virtual reality profiles for streaming applications. Technical

Specification (TS) 26.118. 3rd Generation Partnership Project. Version 15.1.0.
[2] GPAC 2019. GPAC Multimedia Open Source Project, JavaScript version of GPACs

MP4Box tool. Retrieved April 19, 2019 from https://gpac.github.io/mp4box.js
[3] Fraunhofer HHI. 2019. Better quality for 360-degree video. Retrieved April 19,

2019 from http://hhi.fraunhofer.de/omaf
[4] Fraunhofer HHI. 2019. HTML5 MSE Playback of MPEG 360 VR Tiled Streaming.

Retrieved April 19, 2019 from https://github.com/fraunhoferhhi/omaf.js
[5] ISO/IEC 2017. 14496-15, Information technology - Coding of audio-visual objects -

Part 15: Carriage of network abstraction layer (NAL) unit structured video in the ISO
base media file format. ISO/IEC.

[6] ISO/IEC 2019. 23090-2, Information technology - coded representation of immersive
media (MPEG-I) - Part 2: Omnidirectional media format. ISO/IEC.

[7] W3C Media and Entertainment Interest Group. 2018. Frame accurate seeking of
HTML5 MediaElement. Retrieved April 19, 2019 from https://github.com/w3c/
media-and-entertainment/issues/4

[8] three.js 2019. Three.js, JavaScript 3D Library. Retrieved April 19, 2019 from
https://threejs.org/ Version r101.

[9] David V. 2017. Video MSE issues as of March 01 2017. Retrieved April 19,
2019 from https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/
11147314

https://gpac.github.io/mp4box.js
http://hhi.fraunhofer.de/omaf
https://github.com/fraunhoferhhi/omaf.js
https://github.com/w3c/media-and-entertainment/issues/4
https://github.com/w3c/media-and-entertainment/issues/4
https://threejs.org/
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/11147314
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/11147314

	Abstract
	1 Introduction
	2 Architecture
	2.1 Player
	2.2 Downloader
	2.3 MPD Parser
	2.4 Scheduler
	2.5 Media Engine
	2.6 Renderer

	3 Proof of concept
	3.1 Implementation overview
	3.2 Implementation challenges

	4 Conclusions
	References

