
19

A Mixed Signal Architecture for Convolutional

Neural Networks

QIUWEN LOU, University of Notre Dame

CHENYUN PAN, University of Kensas

JOHN MCGUINNESS, University of Notre Dame

ANDRAS HORVATH, Pazmany Peter Catholic University

AZAD NAEEMI, Georgia Institute of Technology

MICHAEL NIEMIER and X. SHARON HU, University of Notre Dame

Deep neural network (DNN) accelerators with improved energy and delay are desirable for meeting the

requirements of hardware targeted for IoT and edge computing systems. Convolutional neural networks

(CoNNs) belong to one of the most popular types of DNN architectures. This article presents the design and

evaluation of an accelerator for CoNNs. The system-level architecture is based on mixed-signal, cellular neural

networks (CeNNs). Specifically, we present (i) the implementation of different layers, including convolution,

ReLU, and pooling, in a CoNN using CeNN, (ii) modified CoNN structures with CeNN-friendly layers to re-

duce computational overheads typically associated with a CoNN, (iii) a mixed-signal CeNN architecture that

performs CoNN computations in the analog and mixed signal domain, and (iv) design space exploration that

identifies what CeNN-based algorithm and architectural features fare best compared to existing algorithms

and architectures when evaluated over common datasets—MNIST and CIFAR-10. Notably, the proposed ap-

proach can lead to 8.7× improvements in energy-delay product (EDP) per digit classification for the MNIST

dataset at iso-accuracy when compared with the state-of-the-art DNN engine, while our approach could offer

4.3× improvements in EDP when compared to other network implementations for the CIFAR-10 dataset.

CCS Concepts: • Hardware → Application specific integrated circuits; Application specific processors;

Additional Key Words and Phrases: Hardware accelerator, convolutional neural networks, analog circuits

ACM Reference format:

Qiuwen Lou, Chenyun Pan, John McGuinness, Andras Horvath, Azad Naeemi, Michael Niemier, and X.

Sharon Hu. 2019. A Mixed Signal Architecture for Convolutional Neural Networks. J. Emerg. Technol. Comput.

Syst. 15, 2, Article 19 (March 2019), 26 pages.

https://doi.org/10.1145/3304110

This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of six centers of STARnet,

a Semiconductor Research Corporation program sponsored by MARCO and DARPA. This project was also supported by the

National Science Foundation under grant 1640081, and the Nanoelectronics Research Corporation (NERC), a wholly-owned

subsidiary of the Semiconductor Research Corporation (SRC), through Extremely Energy Efficient Collective Electronics

(EXCEL), an SRC-NRI Nanoelectronics Research Initiative under Research Task ID2698.004.

Authors’ addresses: Q. Lou, J. McGuinness, M. Niemier, and X. S. Hu, 100 Notre Dame Avenue, Notre Dame, IN, 46637,

USA; C. Pan, University of Kensas, Lawrence, Kensas, USA; A. Horvath, Pazmany Peter Catholic University, Szentkiralyi

U. 28, 1008, Budapest, Hungary; A. Naeemi, Georgia Institute of Technology, Atlanta, Georgia, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1550-4832/2019/03-ART19 $15.00

https://doi.org/10.1145/3304110

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

https://doi.org/10.1145/3304110
mailto:permissions@acm.org
https://doi.org/10.1145/3304110
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3304110&domain=pdf&date_stamp=2019-03-26

19:2 Q. Lou et al.

1 INTRODUCTION

In the machine-learning community, there is great interest in developing computational models
to solve problems related to computer vision [32], speech recognition [16], information security
[25], climate modeling [23], and so on. To improve the delay and energy efficiency of computational
tasks related to both inference and training, the hardware design and architecture communities are
considering how hardware can best be employed to realize algorithms/models from the machine-
learning community. Approaches include application specific circuits (ASICs) to accelerate deep
neural networks (DNNs) [50, 59] and convolutional neural networks (CoNNs) [41], neural process-
ing units (NPUs) [18], hardware realizations of spiking neural networks [14, 28], and so on.

When considering application-specific hardware to support neural networks, it is important
that said hardware can implement networks that can be extensible to a large class of networks and
solve a large collection of application-level problems. Deep neural networks (DNNs) represent a
class of such networks and have demonstrated their strength in applications such as playing the
game of Go [54], image and video analysis [32], target tracking [31], and so on. In this article, we
use convolutional neural network (CoNN) as a case study for DNNs due to its general prevalence.
CoNNs are computationally intensive, which could lead to high latency and energy for inference
and even higher latency/energy for training. The focus of this article is on developing a low energy/
delay mixed-signal system based on cellular neural networks (CeNNs) for realizing CoNN.

A Cellular Nonlinear/Neural Network (CeNN) is an analog computing architecture [11] that
could be well suited for many information processing tasks. In a CeNN, identical processing units
(called cells) process analog information in a concurrent manner. Interconnection between cells is
typically local (i.e., nearest neighbor) and space invariant. For spatio-temporal applications, CeNNs
can offer vastly superior performance and power efficiency when compared to conventional von
Neumann architectures [47, 61]. Using “CeNNs for CoNN” allows the bulk of the computation
associated with a CoNN to be performed in the analog domain. Sensed information could immedi-
ately be processed with no analog-to-digital conversion (ADC). Also, inference-based processing
tasks can tolerate lower precision (e.g., Google’s TPU employs 8-bit integer matrix multiplies [24])
typically associated with analog hardware and can leverage its higher energy efficiency. With this
context, we have made the following contributions in this article.

(i) We elaborate the use of CeNN to realize computations that are typically associated with
different layers in a CoNN. These layers include convolution, ReLU, and pooling. Based
on the implementations for each layer, a baseline CeNN-friendly CoNN for the MNIST
problem [36] is presented.1

(ii) We introduce an improved CoNN model for the MNIST problem to support CeNN-
friendly layers/algorithms that could ultimately improve figures of merit (FOM) such as
delay, energy, and accuracy, and so on. Following the same concept, we also develop a
CeNN-friendly CoNN for the CIFAR-10 problem [33].

(iii) We present a complete, mixed-signal architecture to support CeNN-friendly CoNN de-
signs. Besides CeNN cells and SRAM to store weights, the architecture includes ana-
log memory to store intermediate feature map data and ADC and digital circuits
for the FC layer computation. The architecture also supports efficient programming/
reprogramming CeNN cells.

We have conducted detail studies of energy, delay, and accuracy per classification for the MNIST
and CIFAR-10 datasets and compared our networks and architecture with other algorithms and

1A preliminary version of the design was presented in Reference [19].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:3

architectures [14, 18, 28, 41, 50, 59] that address the same problem. For the MNIST dataset, at
iso-accuracy, our results demonstrate an 8.7× improvement in energy-delay product (EDP) when
compared with a state-of-the-art accelerator. When compared with another recent analog imple-
mentation [5], a 10.3× improvement in EDP is observed. For the CIFAR-10 dataset, a 4.3× improve-
ment in EDP is observed when comparing with a state-of-the-art quantized approach [18].

The rest of the article is structured as follows. Section 2 gives a general discussion of CeNNs
and existing CoNN accelerators. In Section 3, we present the implementation of CoNN layers in
CeNNs. Our baseline network designs as well as other algorithmic changes and network topolo-
gies that might be well suited for our architecture are given in Section 4. Section 5 describes our
proposed architecture, including CeNN cell design, and simulations of various core architectural
components. Evaluation and benchmarking results are presented in Section 6. Last, Section 7 con-
cludes the article.

2 BACKGROUND

Here, we briefly review the basic concepts of CeNN and accelerator designs for CoNN.

2.1 CeNN Basics

A CeNN architecture is a spatially invariant, M × N array of identical cells (Figure 1(a)) [19]. Each
cell Ci j has identical connections with adjacent cells in a predefined neighborhood. These neigh-
borhood cells are denoted as Nr (i, j) of radius r (i.e., a given cell communicates with other cells
within a neighborhood r). The number of cells (m) in the neighborhood is given by the expression
m = (2r + 1)2. (r is typically 1, which suggests that each cell interacts with only its immediate
neighbors.)

A CeNN cell is composed of one resistor, one capacitor, 2m linear voltage-controlled current
sources (VCCSs), and one fixed current source (Figure 1(b)). A cell’s input, state, and the output of
a given cell, Ci j , correspond to the nodal voltages, ui j , xi j , and yi j , respectively. VCCSs controlled
by input and output voltages of each neighbor deliver feedforward and feedback currents to a
given cell. To understand CeNN cell dynamics, we can simply assume a system of M × N ordinary
differential equations. Each equation is simply the Kirchhoff’s Current Law (KCL) at the state
nodes of the corresponding cells (Equation (1)). CeNN cells also employ a non-linear sigmoid-like
transfer function at the output (see Equation (2)),

Ccell

dxi j (t)

dt
= −

xi j (t)

Rcell
+

∑
Ckl ∈Nr (i, j)

ai j,klykl (t) +
∑

Ckl ∈Nr (i, j)

bi j,klukl + Z , (1)

yk,l =
1

2
��xk,l + 1�� − 1

2
��xk,l − 1�� . (2)

Feedback and feed-forward weights from cellCkl to cellCi j are captured by the parameters ai j,kl

andbi j,kl , respectively. ai j,kl , andbi j,kl are space invariant and are denoted by two (2r + 1) × (2r +
1) matrices. (If r = 1, then matrices are 3 × 3.) Matrices of a and b parameters are referred to as
templates—where A and B are the feedback and feed-forward templates, respectively. Template
values are the coefficients in the differential equation and can either be a constant to reflect a
linear relationship between cells or a non-linear function (which can be dependent on the input
or state of the corresponding neighboring cell) to reflect non-linear relationship between cells.
Design flexibility is further enhanced by the fixed bias current Z . This provides a means to adjust
total current flowing into a cell. By selecting values for A, B, and Z , CeNNs can solve a wide range
of problems.

Various circuits including inverters, Gilbert multipliers, operational transconductance ampli-
fiers (OTAs), and so on can be used as VCCSs in CeNN [22, 37]. For the work to be discussed in

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:4 Q. Lou et al.

Fig. 1. (a) CeNN array architecture; (b) CeNN cell circuitry.

this article, we assume the OTA design from Reference [40]. OTAs provide a large linear range for
voltage to current conversion and can implement a wide range of transconductances that could be
used for different CeNN template implementations. Furthermore, these OTAs can also be used to
implement Non-linear templates, which leads to CeNNs with richer functionality [40].

2.2 Convolutional Neural Network Accelerators

Due to the high computational complexity of CoNNs, various hardware platforms are used to en-
able the efficient processing of DNNs, including GPUs, FPGAs, ASICs, and so on. Specifically, there
is a growing interest in using ASICs to provide more specialized acceleration of DNN computa-
tion. A recent review paper summarized these approaches in Reference [56]. Both digital and/or
analog circuitries are proposed to implement these accelerators. In the digital domain, typical ap-
proaches include using optimized dataflow to efficiently reduce the data movement overhead for
the dense matrix multiplication operation [8] or implementing sparse matrix multiplication by ap-
plying pruning to the network [17]. Recently, analog implementations have also been proposed to
accelerate deep learning processes. Work in Reference [5] embedded a charge sharing scheme into
SRAM cells to reduce the overhead of memory accesses. Work in Reference [53] uses a crossbar
circuit with memristors to speed up the inference of deep neural networks.

3 CENN IMPLEMENTATION OF CONN COMPUTATIONS

As pointed out earlier, CeNNs have a number of benefits such as (i) ease of implementation in VLSI,
(ii) low energy due to its nature fit for analog realization, (iii) Turing complete, and so on. We show
in this section that all the core operations in a CoNN can be readily implemented with CeNNs. In
a CoNN, every layer typically implements a simple operation that might include (i) convolutions,
(ii) non-linear operations (usually a rectifier), (iii) pooling operations, and (iv) fully connected
layers. Below we describe how each of these layers can map to a CeNN. A more detailed description
of the operations and how the layered network itself can be built can be found in References [15,
34]. We will also discuss our network design in Section 4.

3.1 Convolution

Convolution layers are used to detect and extract different feature maps on input data as the sum-
mation of the pointwise multiplication of the feature map and the convolutional kernel. One map
is the input image (f), and the convolutional kernel encodes a desired feature (д) to be detected
by some operation. It is easy to see that a convolution has the highest response at positions where
the desired feature appears. The convolution operation can be defined per Equation (3). The exact
convolutional kernels are optimized during training,

f ∗ д(i, j) =
∞∑

k,l=−∞
f (i − k, j − l)д(k, l). (3)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:5

As can be seen from Equation (1), with the application of the feed-forward template (denoted
as bi j,kl), one CeNN can implement a convolutional kernel for a feature map in a straightforward
manner. Then, all these feature maps after convolutional operations need to sum up together. We
will discuss the mechanism for achieving this in Section 5.

Due to the sigmoid function within the CeNN equation, the output of CeNN is thresholded to
the range (−1, 1). However, in the CoNN computation, the output could be larger than 1 or less than
−1, which leads to an error in data representation. However, our initial simulation results suggest
that this error does not impact the overall classification accuracy in the networks considered in
this article.

3.2 Rectified Linear Units

As CoNNs are built and designed for recognition purposes and classification tasks, non-linear oper-
ations are required. Perhaps the most commonly used non-linearity in deep learning architectures
[12] is the rectified linear unit (ReLU) that per Equation (4), thresholds every value below zero,

R (x) =

{
0, i f x ≤ 0
x , i f x > 0

}
. (4)

In a CeNN, the ReLU operation can be implemented using a non-linear template. In CeNN the-

ory, nonlinear templates are usually noted as D̂ templates in parallel with A templates and B tem-
plates. To realize the required non-linear computation here, one can define an additional template

implementing the non-linear function of the ReLU operation: D̂ (xi, j) = max(0,xi, j). This func-
tion sets all negative values to zero and leaves the positive values unchanged, and hence it directly
implements Equation (4). That said, (i) while non-linear templates are well established in the the-

ory of CeNNs, (ii) the application of a non-linear function has obvious computational utility, and
(iii) non-linear templates can be easily simulated, in practice, non-linear operations are much more
difficult to realize. While existing hardware considers non-linear template implementations [40],
it may still not exactly mimic the behavior of non-linear templates. (We will discuss this in more
detail in Section 3.4.)

Alternatively, as the CeNN-UM is Turing complete, all non-linear templates can be implemented
as a series of linear templates together with the implicit CeNN non-linearity (i.e., sigmoid output,
see Equation (2)) [52]. This implicit CeNN non-linearity is widely implemented in real devices
such as the ACE16k chip [51] or the SPS 02 Smart Photosensor from Toshiba [1]. In the CoNN
case, the ReLU operation can be rewritten as a series of linear operations (with the implicit CeNN
non-linearity) by applying templates below.

First, one can execute the feed-forward template given by Equation (5), which simply decreases
all values by 1. Because the standard CeNN non-linearity thresholds all values in a CeNN array
below −1, after this shift all values between −1 and 0 are simply set to −1:

B1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,Z = −1. (5)

Next, one can shift the values back (i.e., increase them by 1) by applying the template operation in
Equation (6):

B2 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,Z = 1. (6)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:6 Q. Lou et al.

As the non-linearity thresholds a given value, these two linear operations implement the re-
quired ReLU operator, i.e., leaving all positive values unchanged, and thresholds all values below
0.

3.3 Pooling

Pooling operations are employed to decrease the amount of information flow between consecutive
layers in a deep neural network to compensate for the effects of small translations. Two pooling
approaches are widely used in CoNN: max pooling and average pooling. Here, we discuss the
implementations of both pooling approaches using CeNN.

3.3.1 Max Pooling. A max pooling operation selects the maximum element in a region around
every value per Equation (7):

P (i, j) = max
k,l ∈S

f (i − k, j − l). (7)

Similarly to ReLU, max pooling is also a non-linear function. As before, functionality associated
with max pooling can also be realized with a sequence of linear operations. We use a pooling
operation with a 3×3 receptive field as an example to illustrate the process. The idea here is to
compare the intensity of each pixel in the image with all its neighbors in succession (with a radius
of 1 in the 3×3 case). We use xi, j to represent the intensity for pixel (i, j). For each comparison, if the
intensity of its neighbor pixel (defined as xk,l) is larger than xi, j , then we use xk,l to replace xi, j in
the location (i, j); otherwise, xi, j remains unchanged. By making comparisons with all neighboring
pixels, the value of xi, j can be set to the magnitude of all of its neighbors.

We developed a sequence of CeNN templates to realize the comparison between xi, j and all
its neighboring pixels, xk,l . Then, by simply rotating the templates, we can easily compare xi, j

to other neighbor pixels. Downsampling could be performed afterwards to extract the maximum
value within a certain range if needed. The detailed CeNN operations to realize the comparison can
be broken down into four steps and are summarized as follows. (i) Apply the linear DIFF template
shown in Equation (8):

B1 =

⎡⎢⎢⎢⎢⎢⎣
0 0.5 0
0 −0.5 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,Z = −1. (8)

The output after applying this template is y = −0.5xi, j + 0.5xk,l − 1. After applying the sigmoid
function, y = −1 if xi, j ≥ xk,l ; otherwise, y remains unchanged. (ii) Apply the linear INC template
in Equation (9) to shift the pixel intensity up. After this operation, y becomes 0 if xi, j ≥ xk,l ; oth-
erwise, y = −0.5xi, j + 0.5xk,l ,

B2 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,Z = 1. (9)

(iii) Apply the CeNN MULT template to multiply y by 2. Thus, y = 0 if xi, j ≥ xk,l ; otherwise,
y = −xi, j + xk,l . (iv) Add xi, j to y to obtain the maximum between xk,l and xi, j , and use it to
update the intensity in the location (i, j).

3.3.2 Average Pooling. Per Section 3.3.1, a max pooling operation with linear CeNN templates
requires up to 16 computational steps. (Each comparison requires four steps, while the pixel needs
to compare with (at least) its neighboring four pixels.) That said, average pooling can be used in
lieu of max pooling and may have only a nominal impact on the classification accuracy in certain
scenarios [6]. Average pooling operations can be easily realized with CeNNs; in fact, only one

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:7

template operation is required. To perform an average pooling operation in 2 × 2 or 3 × 3 grids,
one can simply employ the B templates in Equation (10) (Z = 0),

B2x2 =

⎡⎢⎢⎢⎢⎢⎣
1/4 1/4 0
1/4 1/4 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , B3x3 =

⎡⎢⎢⎢⎢⎢⎣
1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

⎤⎥⎥⎥⎥⎥⎦ . (10)

3.4 Non-linear Template Operations

While CeNN templates typically suggest linear relationships between cells, non-linear relation-
ships are also possible and can be highly beneficial. (As noted earlier, while non-linear template
operations are well supported by CeNN theory, in hardware realizations, linear operations are
more common owing to the complexity of the circuitry required for non-linear steps.) That said,
we also consider what impact non-linear template operations may ultimately have on application-
level FOM.

We consider non-linear implementations of ReLU and pooling per Reference [40]. The non-
linear OTA based I-V characteristic shown in Reference [40] can directly mimic the ReLU function
discussed in Section 3.2. The pooling operation can also be implemented by the non-linear, GLOB-
MAX template, which can be found in the standard CeNN template library [2]. The GLOBMAX
operation selects the maximum value in the neighborhood of a cell in a CeNN array and propagates
it through the array. By setting the execution time of the template accordingly, one can easily set
how far the maximum values can propagate/which regions the maximum values can fill. Here, the

non-linear templates can also be implemented by using the D̂ type non-linear function as given in
Equation (11),

D̂ (xi, j) =
⎧⎪⎨⎪⎩
− 1

8x , if x ≤ 0

0, if x > 0

⎫⎪⎬⎪⎭. (11)

3.5 Fully Connected Layers

The operations described above are used in local feature extractors and can extract complex fea-
ture maps from a given input image. However, to accomplish classification, one must convert said
feature maps into a scalar index value associated with the selected class. While various machine-
learning algorithms (e.g., SVMs) can be used for this, a common approach is to employ a fully
connected (FC) layer and associated neurons. The FC layer considers information globally and
unifies local features from the lower layers. It can be defined as a pixelwise dot product between a
weight map and the feature map. This product can be used as a classification result, which captures
how strongly the data belongs to a class and the product is calculated for every class independently.
The index of the largest classification result can be selected and associated with the input data.

CeNNs can be readily used to implement the dot product function in the FC layer. However, if for
large feature maps and weight maps, i.e., the pointwise calculation for vector length over 9, CeNN
would require large r ′s and hence cannot efficiently implement such FC layers. To overcome this
challenge, one can leverage a digital processor (e.g., per Reference [43]) to perform the FC layer
function.

4 CENN-BASED CONNS FOR TWO CASE STUDIES

As mentioned in the previous section, (a) CeNNs could operate in the analog domain—which could
result in lower power consumption/improved energy efficiency [29], and (b) CeNNs are Turing
complete [10] and could provide a richer library of functionality than which is typically associated
with CoNNs. In this section, we consider how the topographic, highly parallel CeNN architecture
can efficiently implement deep-learning operations/CoNNs.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:8 Q. Lou et al.

Fig. 2. CeNN-friendly CoNN for the MNIST problem—design 1.

CeNNs are typically composed of a single layer of processing elements (PEs). Thus, while most
CeNN hardware implementations lack the layered structure of CoNNs, by using local memory and
CeNN reprogramming (commonly available on every realized CeNN chip [51] as will be discussed),
a cascade of said operations can be realized by re-using the result of each previous processing layer
[10]. One could also simply use multiple CeNNs to compute different feature maps in each layer in
parallel. These CeNNs need to communicate with each other, e.g., to sum values for different fea-
ture maps. Below, we show how the layered CoNNs can be realized with layers of CeNNs through
two case studies: (i) MNIST and (ii) CIFAR-10.

4.1 CeNN-based CoNNs for MNIST

Using the building blocks described above, we have developed several CeNN-friendly structures
for the MNIST problem. In the MNIST handwritten digit classification task [35], a system must
analyze and classify what digit (0–9) is represented by a 28 × 28 pixel gray scale image. There are
60,000 images in the training set and 10,000 images in the test set.

To develop the CeNN-friendly CoNN, we leverage the following two observations. First, all
computational kernels are best to be restricted to a CeNN friendly size of 3 × 3. In some sense,
this could be viewed as a “departure” from larger kernel sizes (e.g., 7 × 7 or larger) that may be
common in CoNNs. It should be noted that larger kernels are acceptable according to the CeNN
theory (i.e., per Section 2, a neighborhood’s radius r could easily be larger than 1). However, due
to increased connectivity requirements, said kernels are infrequently realized in hardware. That
said, the 3 × 3 kernel size is not necessarily a restriction. Recent works [55] suggests that larger
kernels can be estimated by using a series of 3 × 3 kernels with fewer parameters. Again, this maps
well to CeNN hardware. Second, per the discussion in Section 3, all template operations for the
convolution, ReLU, and pooling steps are feed-forward (B) templates. The feedback template (A) is
not used in any of the feature extracting operations (i.e., per Equation (1), all values would simply
be 0).

During network development, we use TensorFlow to train the network with full precision to
obtain accuracy data. We use stochastic gradient descent for training, with the initial learning rate
set to 10−2. We have also implemented a more versatile/adjustable training framework in MATLAB.
The MATLAB based simulator extracts weights from the trained model (from TensorFlow), and
performs inference in conjunction with CeNN operations at the precision that is equivalent to
actual hardware. Our network learns the parameters of the B-type templates for the convolution
kernels. (Per Section 3, the B-template values for the ReLU and pooling layers are fixed.)

Following the observations and process described above, we develop a layered, CeNN-friendly
network to solve the MNIST problem. The network topology is shown in Figure 2. The network
contains two convolution layers, and each layer contains four feature maps. There is also an FC

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:9

Table 1. Classification Accuracy for Different CoNN

Designs for the MNIST Problem

Approach Network in Figure 2 Network in Figure 3
Baseline 98.1% 97.8%

Average pooling 97.5% 96.7%
Nonlinear templates 93.1% 91.5%

Fig. 3. CeNN-friendly CoNN for the MNIST problem—design 2.

layer that follows the two convolution layers to obtain the classification results. The baseline net-
work is designed using maximum pooling and linear templates to potentially maximize the classifi-
cation accuracy. However, we also study the network accuracy for average pooling and alternatives
based on non-linear templates to evaluate tradeoffs in terms of accuracy, delay, energy, and so on,
to be discussed.

The accuracy for different design options for the network are summarized in the second col-
umn in Table 1. From the table, we can see that max pooling generally leads to better accuracy
than average pooling. The non-linear template implementation is also less accurate than the lin-
ear implementation for max pooling. This is mainly because the GLOBALMAX template is an
approximation for the max pooling, and it is not as accurate as the linear template approach.

4.2 Eliminating FC Layers

One of the potential challenges of a network with a fully connected layer shown in Figure 2 is the
need to convert analog CeNN data into a digital representation to perform computations associated
with an FC layer, since an FC layer is not CeNN friendly (see Section 3.5). To reduce the impact of
analog-to-digital conversion and associated FC layer computation, we have designed an alternative
network for MNIST digit classification to perform computations associated with an FC layer.

In this alternative network (Figure 3), the weights (and image sizes) associated with the last layer
of the network are reduced to CeNN-friendly, 3 × 3 kernels. Changes include modifications to the
pooling layer. In the network in Figure 2, max pooling is achieved by propagating the maximum
pixel value to all neighbors within a certain region specified by the network design. However, the
sizes of these feature maps do not change. For the network in Figure 3, the maximum value is
propagated within a 2 × 2 grid to form a group, and only one maximum pixel value in each group
is extracted to be processed in the next stage of the network. Thus, the network size is reduced by
a factor of two with each pooling layer. For the implementation of downsampling through max
pooling, after a pooling operation is completed, for each a 2 × 2 grid within a feature map, only
one pixel is required to write to an analog memory array for the next stage processing. In the
network in Figure 3, three pooling layers are required to properly downsize an image and obtain
reasonable accuracy. The final computational steps associated with this alternative network are

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:10 Q. Lou et al.

Fig. 4. CeNN-friendly CoNN for CIFAR-10 problem.

readily amenable for CeNN hardware implementations. However, both the image size and the
kernel size are reduced to 3 × 3.

Potential overheads associated with FC layer computations are reduced as only the final results
(10 probability values corresponding to the number of image classes) must be sent to any digital
logic and/or CPU (in lieu of the 16,000 signals associated with the network in Figure 2). Downsam-
pling may also impact classification energy, as smaller subsets of the CeNN array can be used for
computations associated with successive layers in the network. Again, we evaluate the accuracy
of this proposed approach by using average pooling, nonlinear templates, and so on. The results
are shown in the third column in Table 1. In general, these accuracy numbers are still close to the
baseline design discussed in Section 4.1.

In general, this strategy should be applicable to any network, regardless of its depth and width
and the kernel sizes employed. By properly downsampling the feature map in the relevant layer
(i.e., to reduce the feature map size by 1/2 or 1/3 when needed), we can eventually obtain a 3 × 3
feature map in the last layer of a given network.

4.3 CeNN-based CoNNs for CIFAR-10

The networks proposed in Section 4.1 and Section 4.2 for MNIST are relatively simple compared
with state-of-the-art networks. Typically, to solve more complex problem, larger networks with
more layers/feature maps are required. In this subsection, we discuss our design for larger CeNN-
friendly CoNNs.

As a case study, we use CIFAR-10 as the dataset, which consists of 50,000 images in the training
set, 10,000 images in the validation set and 10,000 images in the test set. These images are all color
images with RGB channel. There are 10 classes with different objects (e.g., airplane, automobile,
bird, etc.) within the dataset. Each image belongs to one class, with a size of 32 × 32. During the
inference stage, the network must predict which class the image belongs to.

We use modified AlexNet [32] network to solve the CIFAR-10 problem. AlexNet is originally
used to solve ImageNet [13], which is a more complex problem. Thus, we expect our modifica-
tion still leads to reasonable accuracy for CIFAR-10. We perform our modifications on AlexNet to
(i) enable the modified network to solve the CIFAR-10 problem and (ii) make the network CeNN-
friendly. Specifically, our main modifications are summarized as follows: (i) For all convolution
layers in AlexNet, the kernel sizes are changed to 3 × 3 so that it is readily amendable to CeNNs
with the same template size. (ii) We remove the FC layer in the AlexNet, since it is not CeNN-
friendly, and use a convolution layer with 10 outputs as the last layer to obtain the classification
probabilities. (iii) Downsampling in the pooling layer is not used in the modified network to retain
reasonable model size. The network architecture is shown in Figure 4.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:11

Table 2. Classification Accuracy for Different CoNN Designs for the CIFAR-10 Problem

Approach CeNN-friendly AlexNet CeNN-friendly AlexNet CeNN-friendly AlexNet

C96-C256-C384-C384-C256 C64-C128-C256-C256-C128 C64-C128-C128-C128-C64

Accuracy 84.5% 82.9% 81.8%

We use the network in Figure 4 as a baseline and explore the design space by (1) changing
the number of feature maps in each layer, (2) using the downsampling approach mentioned in
Section 4.2.

In the baseline, the feature maps for the first five convolution layers are the same as AlexNet
(C96-C256-C384-C384-C256). We also considered feature map sizes of C64-C128-C256-C256-C128
and C64-C128-C128-C128-C64. We use the Adam algorithm [30] to train the network, with learning
rate set to 10−4. The accuracy data for different design options are summarized in Table 2. The
accuracies only drop for 1.6% and 2.17% with the decrease of the network size. Therefore, we also
consider these two networks in the benchmarking efforts discussed in Section 6.

We also use the approach mentioned in Section 4.2 to resize the feature maps of selective lay-
ers, to make the size of each feature map in last layer 3×3. The feature maps of the five layers
in the CeNN-friendly AlexNet become 32×32–>16×16–>8×8–>4×4–>3×3, which makes the last
FC layer CeNN friendly. The accuracy of the network with this downsampling strategy reaches
80.5%. Since this approach does not give as good accuracy as these approaches that change the
size of feature map discussed above, we do not include it in the benchmarking effort discussed in
Section 6.

5 CENN ARCHITECTURES

In this section, we introduce our CeNN-based architecture for realizing CeNN-friendly CoNNs.
Our architecture is general and programmable for any CoNN that contains convolution, ReLU,
and pooling layers. Meanwhile, by changing the configurations (e.g., SRAM size, number of OTAs)
and parameters of the circuits (e.g., bias current), our CeNN architecture design could be used to
satisfy different precision requirements for the network. Thus, we can explore tradeoffs among
accuracy, delay, and energy efficiency within the same network. We first present our CoNN-based
architecture in Section 5.1. We then describe each component in the architecture, i.e., CeNN cells
in Section 5.2, analog memories in Section 5.3, and SRAM in Section 5.4. We also highlight the
dataflow for the CoNN network computation using CeNN architecture. In Section 5.5, we discuss
the need for ADCs and digital circuitry to support computations in an FC layer (i.e., to support
networks as discussed in Section 4.1). Finally, we discuss the programming mechanism for the
CeNN templates of the architecture. Throughout we also highlight differences between CeNN cell
designs presented here as compared to previous work (e.g., Reference [19]).

5.1 Architecture

Our CeNN architecture for (Figure 5) CoNN computation consists of multiple CeNN arrays (boxes
labeled by CeNN array i). These arrays are the key components for implementing convolution,
ReLU and pooling operations in a CoNN. Within each array, there are multiple cells per Section 2.1.
The array size can usually accommodate all the image pixels to enable parallel processing of a
whole image (extra cells will be power gated to save power). For large images, time multiplexing
is used to sequentially process part of the image. The connections between these cells follow the
typical CeNN array design as described in Section 2.1. An SRAM array (the rectangle at the bottom
of Figure 5) is used to store the templates needed for the CeNN computation. How to configure the
CeNN templates with the SRAM data is discussed in Section 5.4. An analog memory array (boxes

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:12 Q. Lou et al.

Fig. 5. (a) CeNN-based architecture for CoNN operations; (b) analog memory cell schematic.

labeled by MEM) is embedded into each CeNN cell. The analog memory array is used to store
intermediate results for the CeNN computation. Each CeNN array is associated with an ADC. The
output of the ADC connects to the host processor or a digital logic, which supports computations
for FC layers.

Each CeNN array performs computations associated with one feature map at one time. Thus,
N feature maps could perform computations simultaneously with N CeNN arrays. Generally in a
state-of-the-art CoNN design, there may be hundreds of feature maps. However, it is not possible
to accommodate hundreds of CeNNs in a chip due to area and power restrictions. Therefore, these
CeNNs need to be time multiplexed to compute different feature maps in one layer, and the inter-
mediate data needs to be stored in the associated analog memory for processing in the next layer.
Thus, the number of CeNN arrays should be chosen to balance the power/area of the chip and the
degree of parallel computation of feature maps (FMs) in any given layer.

We use a convolution layer as an example to illustrate how the computation is performed, since
it is typically the most time/energy consuming layer in state-of-the-art CoNN designs. We assume
layer Ll is a convolution layer, and the layer has Cl−1 feature maps as inputs and Cl feature maps
as outputs. We assume the number of CeNN arrays is N . For each output feature map FM (l , i) in
layer Ll , the computation required is shown in Equation (12). Namely, each feature map j (j from 1
toCl−1) in layer Ll−1 must convolve with a kernel K (l , j, i), and the sum of the convolution results
need to be computed. That is,

FM (l , i) =

Cl−1∑
j=1

K (l , j, i) ∗ FM (l − 1, j). (12)

The computation in Equation (12) needs to be repeated Cl times to obtain the results for all the
feature maps in Layer l .

To compute feature map FM (l , i), we first perform convolution operations on N feature maps

in layer l − 1 from FM (l − 1, 1) to FM (l − 1,N), to obtain FM (1)
temp to FM (N)

temp (i.e., FM (N)
temp =

K (l ,N , i) ∗ FM (l − 1,N)). Then we perform FM (1)
pSum

=
∑N

i=1 FM
(i)
temp by leveraging the connec-

tions among these CeNNs. The intermediate results FM (1)
pSum

are stored in the analog memories

associated with the CeNN array 1. Similarly, the convolution operation on another N feature maps

in layer l − 1 (FM (l − 1,N + 1) to FM (l − 1, 2N)) are performed. Again, we compute FM (2)
pSum

and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:13

store it in the analog memories associated with CeNN array 2. We repeat the above process until all

the input feature maps convolved with a convolution kernel, and their partial sums (from FM (1)
pSum

to FM (M)
pSum

, where M = Cl/N) are all stored in the analog memories associated with CeNN1 to

CeNNM . If the number of CeNNs, N , is less than M , then one CeNN would store more than one
feature maps. Then, we sum these partial sums up to obtain the feature map i in layer Ll (i.e.,

FM (l , i) =
∑M

q=1 FM
(q)
pSum

). Again, the above process is repeatedCl times to obtain all feature maps

in layer Ll . The detailed algorithm is shown in Algorithm 1. Other types of CoNN layer compu-
tations are also summarized in the Algorithm 1. By iteratively using the CeNN architecture, we
realize different functionalities. The relation between the processing time and number of CeNNs
for a convolutional layer l can be calculated as in Equation (13),

t =
l=L∑
l=1

[(ClCl−1

N − 1
+
ClCl−1

N

)
(tCeN N + tproд) +

ClCl−1

2(N − 1)
tMEM−r ead +

ClCl−1

2(N − 1)
tMEM−write

]
.

(13)
Here, tCeN N refers to the settling time of an CeNN array, and tMEM−r ead and tMEM−write are

the analog memory read and write time, respectively. tproд refers to the reprogramming time of
CeNN (i.e., loading new templates).

In our architecture, the reprogramming or reconfiguration overhead mainly includes reading
the bit cells from the SRAM block, and using these outputs to control the switches that power
gate OTAs to realize different weight values. The overhead of reading bit cell from the SRAM
block dominates. The delay and energy of reading data from the SRAM is accounted for in the
evaluation section.

The templates of each CeNN can be programmed to implement different kernels in a given
CoNN. Before each CeNN operation, all the OTAs must be reconfigured to implement differ-
ent templates. These templates are read from the SRAM block, where all template values are
stored. The bitline outputs of the SRAM are connected to the switches of the OTAs. After con-
figuration, CeNN operations are performed. Below, we discuss the key blocks in the CeNN
architecture.

5.2 CeNN Cells Design

CeNN arrays are the core computational elements in our architecture. The CeNN template values
for different layers are determined during the network design phase. For convolutional layers,
the templates are the same as weights, which are trained by deep neural network frameworks. The
templates for ReLU and pooling are discussed in Section 3, and they are independent of the specific
problem instance. These template values are read from the SRAM to configure the VCCSs in the
CeNN cells. Note that all the cells in an array share the same template values. However, different
CeNN arrays may employ the same templates (i.e., for ReLU and pooling layers) or employ different
templates (i.e., for convolution layers).

Many prior works have focused on CeNNs implemented by analog circuits using CMOS tran-
sistors. Per Section 2, a widely used implementation is based on OTAs [9]. Here, an OTA is built
with two-stage operational amplifiers [40]. We use N OTAs with quantized дm values (i.e., дm0,
2дm0, . . . , 2

N−1дm0) to realize N-bit templates (i.e., weights). The дm0’s values are set according to
the power requirement, since дm ’s values are proportional to the bias current. Each OTA is con-
nected to a switch for power gating. By power gating different combinations of these OTAs (as
shown in Figure 6), different template values can be realized.

The cell resistance (Rcell in Figure 1) here is set as 1/дm (дm = 2Nдm0) such that the cell voltage
x settles to the desired output to achieve correct CoNN functionality. The cell capacitance (Ccell

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:14 Q. Lou et al.

ALGORITHM 1: CoNN layer computation with CeNN

1: procedure CeNNforCoNN(K , FM (l − 1, j),∀j ∈ {0, 1, . . . ,Cl−1 − 1}), Ll)

2: � K are template values in the layer, FM (l − 1, j), (∀j ∈ {0, 1, . . . ,Cl−1 − 1}) are feature maps from the

last layer, Ll is the type of layer l
3: if layer Ll = CONV then � perform computations in convolution layers

4: for i=0 to Cl − 1 do � compute each feature map FM (l , i) in layer Ll

5: for q=0 to
Cl−1

N − 1 do � compute convolution on all feature maps in layer Ll−1

6: for j=0 to N − 1 do

7: � multiplications processed in parallel, summations processed in series

8: FM
(q)
pSum

=
∑N

j=1 K (l ,q ∗ N + j, i) ∗ FM (l − 1,q ∗ N + j))
9: end for

10: end for

11: FM (l , i) =
∑Cl−1

j=1 FM
(q)
pSum

12: end for

13: end if

14: if layer Ll = ReLU then � compute ReLU on all feature maps

15: for q=0 to
Cl−1

N − 1 do

16: for j=0 to N − 1 do

17: � N FMs are processed in parallel, steps in ReLU are performed in series

18: Intermediate (i + q ∗ N) = K (SHIFTLOW) ∗ FM (l − 1, j + q ∗ N)
19: FM (l , j + q ∗ N) = K (SHIFTBACK) ∗ Intermediate (i + q ∗ N)
20: end for

21: end for

22: end if

23: if layer Ll = Pooling then � compute pooling on all feature maps

24: for q=0 to
Cl−1

N − 1 do

25: for j=0 to N − 1 do

26: for p=0 to 3 do � for each neighbor of the current pixel (see Section 3.3)

27: DIFF (p) = K (DIFF (p)) ∗ FM (l − 1, j)
28: Increase (p) = K (INC) ∗ DIFF (p)
29: Mult (p) = K (MULT) ∗ Increase (p)
30: FM (l , j) = FM (l − 1, j) +Mult (p)
31: end for

32: end for

33: end for

34: end if

35: end procedure

in Figure 1) is the summation of the output capacitance of nearby OTAs. The delay and energy
estimation of a CeNN cell in this article is different from that in Reference [19] in that (1) 32nm
technology is used for the hardware design, (2) the д′ms of the OTAs are larger for faster processing
while still satisfying a given power requirement, and (3) the cell resistance Rcell in Reference [19]
is assumed to be the absolute value of the sum of д′ms , which leads to much larger settling times.
Therefore, the work in Reference [19] is a conservative estimation and overestimates the delay
and the energy.

5.3 Analog Memory Design

To support operations that may require multiple (analog) steps associated with different CeNN
templates, each CeNN cell is augmented by an embedded analog memory array [7] (see Figure 5).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:15

Fig. 6. The schematic for an OTA within each CeNN cell for representing 4-bit weights. Data from SRAM

connect to the transistor switches to power gate OTAs so as to program the CeNN template to different

values.

For the CeNN based convolution computation described in Section 5.1, analog memory is used to
store the intermediate result after each step. For a convolution layer, all the intermediate results
described in Algorithm 1 need to be stored in the analog memory. The design of the analog memory
and the op amp are from Reference [7]. Specifically, the analog memory array is implemented by
a write transistor (Tw) and read transistor (Tr) to enable write and read. An additional op amp
is used to hold the state of the capacitors shown in Figure 5(b). Multiple pass transistors and
capacitors Cmem are used to store data. Each capacitor Cmem and pass transistor forms a memory
cell (as a charge storage capacitor) within the analog memory array that could store one state value
of a CeNN cell (i.e., data correspond to one pixel). The number of capacitors (Cmem) within one
analog memory array depends on the data needed to store in the memory. The gates of the pass
transistors are connected to a MUX. Thus, Vs1 to Vsx shown in Figure 5(b) are controlled by the
MUX to determine which capacitor memory needs to be written/read. If the analog signal needs
to write to the memory, then transistor Tw is on, and one of the pass transistors is selected by the
MUX. The data are written to the corresponding capacitor Cmem . For a read, transistor Tr is on,
and one of the pass transistors is selected by MUX. As each analog memory array is dedicated to
one CeNN cell, CeNN cells can access these memory arrays in parallel.

5.4 SRAM

An SRAM array is used to store all the template values required for CeNNs to realize a CoNN.
While the SRAM itself is a standard design, we still need to carefully select the number of bitlines
within one word line due to power and performance constraints. One design choice may have one
word containing all the template values for one CeNN array. For one template operation, 10Nb

bits are needed for Nb -bit precision weight (including nine template values and a bias). For this
option, if N CeNN arrays have distinct sets of templates (i.e., in the convolution layer), then N
accesses will be required. However, if N CeNN arrays have the same templates (i.e., in the ReLU
and pooling layers), then only one access is required. To reduce the number of accesses, two or
more 10Nb -bit words may be accessed in one cycle by using either more read ports or longer SRAM
words. After SRAM cell data are read, they are used to control how an OTA is power gated, which
in turn realizes different weight values.

5.5 ADC and Hardware for FC Layers

Each CeNN is connected to an ADC to convert analog data to a digital representation whenever
necessary, e.g., for FC layer computations (i.e., the last layer in Figure 2 computation). FC layers
typically require computing the dot product of two large vectors. Such operations are not
well-suited for CeNNs with limited kernel size. Hence, a CPU, GPU, or other hardware should

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:16 Q. Lou et al.

be employed. In the benchmarking efforts to be discussed in Section 6, combinations of digital
adders, multipliers, and registers (i.e., ASICs) are used. For simplicity, ripple carry adders and
array multipliers are employed in our simulations. Both inputs and weights are Nb bits (where Nb

refers the to the precision of CeNN). We also assume that the weights for the FC layer are stored
in SRAM. The result of the multiplication is 2Nb bits, while an additional Nb bits are used to store
the final results of this layer to avoid overflow. Thus, there are 3Nb bits at the output. That said,
alternative network designs as shown in Section 4.2 can eliminate this layer.

6 EVALUATION

We now evaluate the architectures, networks, and algorithms described above to determine
(i) whether or not CeNN-friendly CoNNs are competitive with respect to existing architectures
and algorithms that address the same dataset and, (ii) if so, what elements of the CeNN design
space lead to superior application-level FOM (e.g., energy and delay per classification and accu-
racy). While our CeNN architecture can be applied to different datasets, we specifically compare
our approach to other efforts in the context of the MNIST and CIFAR-10 dataset given the wealth
of comparison points available.

6.1 Simulation Setup

Components of the CeNN-based architecture are evaluated via SPICE simulation using the Arizona
State University Predictive Technology Model (ASU PTM) for high-performance MOSFET devices
at the 32nm technology node [65]. We use CACTI 7 [3] to estimate the delay and energy needed for
SRAM accesses with the same technology node. The size of SRAM is set as 16KB to retain reason-
able access time/energy, while also accommodating all templates for the proposed networks. The
SRAM can be scaled if necessary to accommodate all the weights in larger networks. In our SRAM
design, each wordline contains 10N bitlines, so that all weights needed for one CeNN operation
can be read from SRAM only once. The analog memory is also scaled to the same technology node.

Though the architecture itself can realize any number of bits, we assume 4-bit and 8-bit pre-
cision in our evaluation. Four-bit results help to inform the energy efficiency of our design with
reasonable application-level classification accuracy, while 8-bit designs generally do not sacrifice
accuracy when compared with 32-bit floating point representation. We use four CeNNs that cor-
respond to four feature maps in the networks described in Section 4 for evaluation. However, the
number of CeNNs could be changed as a tradeoff between processing time and area/power, as dis-
cussed in Algorithm 1 in Section 5.1. We take the trained model from TensorFlow, and perform
inference computations in a MATLAB based infrastructure with both feature maps and weights
quantized to 4 bits or 8 bits to predict accuracy.

The supply voltage is set to 1 V, and the ratio of the current mirrors in the OTAs is set to 2 to save
power in the first stage of OTA. For different precision requirements, the same OTA schematic is
used with different transistor sizes and bias currents. The multiple OTA design in Section 5.2 could
be used to represent different number of bits for weights. These OTAs are reprogrammed in each
step. Here, for each OTA, we convert the signal-to-noise ratio (SNR) of OTA to bit precision using
the methods in Reference [27] to represent different number of bits for feature maps. Compared
to the 4-bit designs, the 8-bit designs increase the bias current by 7.5× and increase the transistor
width by 4× to increase the SNR of the circuit from 32.1dB to 50.6dB. Thus, the delay increases by
4.3× due to the change of bias conditions and increase of transistor size (i.e., parasitic capacitance
increases), and the power increases by 7.5× as the bias current increases. Theдm ’s of an OTA can be
selected to tradeoff processing speed and power. Here, we use four OTAs with дm values 12μA/V,
24μA/V, 48μA/V, and 96μA/V to realize 4-bit templates (i.e., weights). In the 8-bit design, larger
granularity is used, and дm values are set to 0.75μA/V, 1.5μA/V, 3μA/V, 6μA/V, 12μA/V, 24μA/V,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:17

48μA/V, and 96μA/V. We assume state-of-the-art ADC designs [60, 62] to estimate the delay and
energy of analog to digital conversion needed before the FC layer in the network in Figure 2. We
assume each CeNN is associated with an ADC to convert analog data to digital representation.

We employ the same device model to benchmark analog memory arrays. We first determine the
capacitance and size of pass transistors based on the methods in Reference [7]. The capacitance is
Cmem = 55f F and the width of the transistor is 180nm. We use a minimum length of 30nm. Then,
memory write time is determined by the resistance of pass transistorTpass and the capacitorCmem .
The memory read time is determined by the analog signal through the read buffer. We use SPICE to
measure the delay of the analog memories. Per simulations, each memory write and read requires
124ps and 253ps, respectively.

To satisfy the precision requirements, we also study the robustness of our architecture by eval-
uating the PVT condition with four corner cases (FF 80°C, SS −40°C, FS 27°C, SF 27°C). We also
apply a 5% variation on the supply voltage to study the impact to the OTA in the CeNN cell, which
is the essential computational element in our design. Since the дm of the OTAs in CeNN cell rep-
resents the template values in the CeNN operations, we evaluated the дm variations in the OTA
design in these corner cases in the PVT condition study. We specifically focus on the OTA with
the largest дm value in our design, since the variation of that OTA will have the largest impact
on the multiplication results. Our simulation results show that in the worst corner case, the error
of the circuit still satisfies the precision requirements. Regarding parasitic capacitance, we have
not yet completed a layout of the architecture and cannot precisely model the impact of parasitic
capacitance. However, (1) parasitic capacitances within a cell are smaller than the cell capacitance
Ccell shown in Figure 5(b), and (2) we assume a CeNN has only local connections with radius of 1
(i.e., to implement 3×3 kernels). Thus, we expect the interconnect parasitic capacitance to be small
as a given cell is only connected to its immediate neighbors.

6.2 Evaluation of the CeNN Based Architecture

We initially use the 4-bit CeNN design as an example to show how we evaluate the accuracy, delay,
and energy of our CeNN architecture for performing CoNN computations. We use MNIST as the
benchmarking dataset, and the network in Figure 2 and the network in Figure 3 with different
configurations (summarized in Table 1) are used for evaluation. Eight-bit results are also presented
here.

We first measure the energy and delay associated with each layer of a CeNN-friendly CoNN
for the 4-bit design. Table 3 summaries the delay and energy for each layer for the networks in
Figure 2 and Figure 3. Per Table 3, the energy for each layer in the network in Figure 3 decreases
with subsequent layers as data are down-sampled, and only a subset of cells in a CeNN are used for
the computation. However, delay remains constant (for each layer) as all computations in CeNN
cells occur in parallel. (The network in Figure 3 has a higher latency than the network in Figure 2
in the CeNN components due to the fact that more layers are employed to properly downscale the
image, i.e., more template operations are required.) We use the MATLAB framework to quantize
the weights and inputs to 4 bits in the inference stage and classification accuracies for each design
are shown in Table 4. We find that for all cases, the accuracy decreases about 2% for each design
compared with the 32-bit floating point design shown in Table 1, due to the reduced precision of
input and weights for our simple network.

We next consider the impact of the ADCs and the FC layer. The delay and energy for an ADC
can be approximated based on a 28nm SAR ADCs design from Reference [60]. The total time and
energy to port all analog data to the digital domain for the network in Figure 2 are 166.7ns and
3,834pJ, respectively (using time multiplexing). For the FC layer, we first use the uniform beyond-
CMOS benchmarking (BCB) methodology [45] to estimate the delay and energy for a full adder

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:18 Q. Lou et al.

Table 3. Delay and Energy for Each CeNN Layer

Network in Figure 2 Network in Figure 3
Layer Delay (ns) Energy (pJ) Delay (ns) Energy (pJ)

Conv. 1 5.3 626 5.3 626
ReLU1 10.7 536 10.7 536

Pooling1 85.5 4,290 85.5 3,398
Conv. 2 42.8 2,827 42.8 981
ReLU2 10.7 410 10.7 186

Pooling2 85.5 3277 85.5 1489
Conv. 3 — — 42.8 519
ReLU3 — — 10.7 115

Pooling3 — — 85.5 921
Conv. 4 — — 53.4 582

ADC + FC 291.1 7,875 — —
Total 531.6 19,841 432.9 9,353

Table 4. Accuracy, Delay and Energy with 4-bit CeNN Architecture Design

Network in Figure 2 Network in Figure 3
Approach Accuracy Delay Energy Accuracy Delay Energy
Baseline 96.5% 532ns 19.8nJ 96.0% 433ns 9.4nJ
Average 95.7% 372ns 12.5nJ 94.3% 192ns 4.4nJ
Pooling (1.4×) (1.5×) (2.2×) (2.1×)

Nonlinear 92.9% 357ns 12.0nJ 91.5% 116ns 3.4nJ
operation (1.5×) (1.7×) (3.7×) (2.8×)

as well as the register for storing temporary data during the computation. Then, we estimate the
delay of multiplication and addition operations by counting the number of full adders in the critical
path of the multiplier and adder. The energy per operation is estimated by the summation of all full
adder operations and loading/storing data during computation. The energy and delay overhead due
to the interconnect parasitics is also taken into account by using the BCB methodology. Overall, the
delay and energy of the FC layer are 124.4ns and 4,041pJ, and they contribute 23% and 20% to the
total delay and energy per classification for the network in Figure 2 (including ADCs), respectively.

Though the network in Figure 3 (with no FC layer) requires additional layers to properly down-
scale the image, the delay is still 19% lower than the network in Figure 2. Additionally, the network
in Figure 3 requires 2.1× less energy per classification due to downsampling. However, the accu-
racy for the network in Figure 3 is 0.5% lower than that in Figure 2.

To evaluate the impact of different approaches for pooling operations, as well as how non-linear
template operations impact energy, delay, and accuracy, we apply each design alternative to the
networks in Figures 2 and 3. Results are summarized in Table 4. The numbers in parenthesis refer to
the comparison between the alternative approach with the baseline (i.e., the network in Figures 2
and 3 with maximum pooling and linear templates). By using average pooling, the delay/energy is
reduced by 1.4×/1.5× and 2.2×/2.1× for the networks in Figures 2 and 3, respectively—as 16 CeNN
steps are reduced to 1 step. The accuracy is reduced by 0.8% for the network in Figure 2 and 1.7%
for the network in Figure 3, respectively. Designs with non-linear templates lead to reductions in
delay/energy of 1.5×/1.7× and 3.7×/2.8× for the networks in Figures 2 and 3, respectively—as both

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:19

Table 5. Accuracy, Delay, and Energy with 8-bit CeNN Architecture Design

Network in Figure 2 Network in Figure 3
Approach Accuracy Delay Energy Accuracy Delay Energy
Baseline 98.0% 1442ns 104.9nJ 97.8% 1828ns 56.6nJ

Average pooling 97.5% 773ns 49.9nJ 97.4% 819ns 23.0nJ
Nonlinear operation 95.4% 710ns 46.2nJ 94.2% 490ns 23.6nJ

ReLU and pooling operations are reduced to a single step. However, the accuracy drops by 3.6%
and 4.5%, respectively, following the same trend as the floating point precision.

It is obvious that the accuracy drops for 4-bit designs (in Table 4) compared with 32-bit floating
point designs (in Table 1). Meanwhile, there is evidence that the 8-bit precision for many networks
usually do not sacrifice accuracy compared with 32-bit floating point design and are widely used
in the state-of-the-art training and inference engine [24]. Therefore, we also evaluate accuracy,
delay, and energy for our 8-bit CeNN design using the same method above to show the tradeoffs.
In this design, we use OTAs with an SNR equivalent to 8-bit precision. The weights are also set
to 8 bits. We use a different design [26] to evaluate ADC overhead to reflect converting analog
signals to 8-bit digital signals. The inputs and weights of the digital FC layer are also set to 8 bits.
The results are summarized in Table 5. As expected, the delay and energy both increase compared
to the 4-bit design by 2.0–4.2× and 3.8–7.5× depending on the specific designs, but the accuracy
approaches that of 32-bit floating point data. In this design, the delay and energy of network in
Figure 3 increase more than that of the network in Figure 2. The computations of the network
in Figure 3 is mostly in the analog domain, while the computations in the network in Figure 2
use both analog and digital circuits. As the number of bit increases, the delay and energy for
computations associated with analog circuits increase generally faster than the delay and energy
for computations associated with digital circuits.

6.3 Comparison to Other MNIST Implementations

It now begs the question as to how our CeNN-based approach compares to other accelerator ar-
chitectures and algorithms that have been developed to address classification problems such as
MNIST. Since the computations in our designs are mostly performed in analog domain, we first
compare our work with a recent logic-in-memory analog implementation that addresses the same
problem [5]. We compare the delay and energy of convolution layers here. As Reference [5] only re-
ports the throughput and energy efficiency for the first two convolutional layers in LeNet-5, using
7-bit inputs and 1-bit weights, we also use the throughput and energy efficiency for convolution
layers in our baseline network design for fair comparison. The comparison results are shown in
Table 6. Our CeNN design demonstrates 10.3× EDP improvements over those in Reference [5]. At
the application level, we still obtain better classification accuracy (96.5% v.s. 96%). However, since
Reference [5] does not include the data for FC layer, they do not have the complete EDP data on
MNIST. Hence, we do not include the implementation in Reference [5], the benchmarking plot
(Figure 7), to be discussed.

We next consider a state-of-the-art digital DNN engine presented in Reference [59] with 28nm
technology node for the MNIST dataset at iso-accuracy with our CeNN based design. We scale the
design in Reference [59] from 28nm to 32nm for a fair comparison using the method described in
Reference [49]. The work in Reference [59] assumes an multilayer perception (MLP) network with
8-bit feature maps and weights, varying the different network sizes. Among these different net-
works, we find three implementations that match the accuracy of our three designs. Their network
sizes are 784×16 × 16 × 16×10, 784×32 × 32 × 32×10, and 784×64 × 64 × 64×10, with accuracy of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:20 Q. Lou et al.

Table 6. Detailed Comparison to Analog Implementation [5] for MNIST Dataset

Precision of Precision of

Approach feature maps weights Efficiency Energy Efficiency Technology Accuracy

CeNN-based approach 4 bits 4 bits 251 GOPS 12.3 TOPS/W 32nm 96.5%

Logic-in-memory analog circuit [5] 7 bits 1 bit 10.7 GOPS 28.1 TOPS/W 65nm 96%

Table 7. Detailed Comparison to DNN Engine [59] for MNIST Dataset

Comparison Approach Accuracy Bits Delay (ns) Energy (nJ) EDP (nJ-ns)

Comparison 1
CeNN—Network in Figure 3, baseline 96.03% 4 372 9.0 4.6 × 103

DNN engine [59] 95.41% 8 1,001 39.9 4.0 × 104

Comparison 2
CeNN—Network in Figure 2, baseline 96.5% 4 532 19.8 1.1 × 104

DNN engine [59] 97.0% 8 1,478 72.5 1.0 × 105

Comparison 3
CeNN—Network in Figure 3, avg. pooling 95.41% 8 810 230 1.9 × 105

DNN engine [59] 97.58% 8 2,692 145 3.9 × 105

95.41%, 97.0%, and 97.58%, respectively. Meanwhile, our three designs are (i) network in Figure 3,
baseline with 4-bit precision (accuracy to be 96.03%); (ii) network in Figure 2, baseline with 4-
bit precision (96.5% accuracy); and (iii) network in Figure 3, average pooling with 8-bit precision
(97.41% accuracy). We compare FOMs including energy and delay at iso-accuracy for these designs.

From Table 7, we can find that in our implementation, the EDP and energy efficiency are 2.1–
8.7× and 6–27× better, respectively, than the DNN engine [59]. The 8-bit CeNN based design is not
as efficient as the 4-bit design with respect to energy efficiency—compared with the DNN engine
due to the fact that analog circuits have worse area/delay/energy compared with digital circuits
in higher precision. Here, our delay and energy data are based on simulations, while the data for
DNN engine is based on the measurement. Therefore, some discrepancy may exist. However, in
general, with the CeNN approach, (i) high parallelism can be achieved in terms of multiplications
and additions in the CeNN-based architecture, (ii) the network exploits local analog memory for
fast processing, and (iii) accessing feature maps in the analog domain is faster than accessing the
digital weights in the digital domain. Thus, the weight stationary approach is used. That said,
once the weights are read from the SRAM (i.e., all the cells are configured), all the computations
associated with the weights are performed. The weights do not need to be read from SRAM again.
Therefore, the total weight access time is minimized. Since there are still unused OTAs in our
design, it may be further optimized to reduce the delay and energy.

We also compare our work with a wider range of implementations, including custom ASIC
chips [8, 41, 50, 59], neural processing units [18], spiking neural networks [14, 28, 42], crossbar
implementations [57], and CPU/GPU-based solutions of the DropConnect approach [58] (the most
accurate approach for MNIST to date; data are measured via i7-5820K, 32GB DDR3 with Nvidia
Titan). Figure 7 plots the EDP vs. misclassification rate for all these approaches. To make a fair
comparison, we again scale all delay/energy data to the 32nm technology node using the ITRS
data based on Reference [49].

Note that the comparison is shown in the log scale, additional uncertainties (interconnects par-
asitics, clocking, control circuits) should not change the overall trend shown in Figure 7 as the EDP
of these elements would not be orders of magnitude larger [45]. Our approach has significantly
lower EDP compared with other approaches with comparable classification accuracy. Among our
designs, higher EDPs are generally correlated with higher accuracy. We draw a Pareto frontier line
(the green line in Figure 7 according to the product of misclassification rate and the EDP. In our

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:21

Fig. 7. Benchmarking results for CeNN-friendly CoNNs as well as other algorithms and architectures for

the MNIST digit classification problem.

Table 8. Accuracy, Delay, and Energy for Different Noise Levels

CeNN-friendly AlexNet CeNN-friendly AlexNet CeNN-friendly AlexNet

Approach C96-C256-C384-C384-C256 C64-C128-C256-C256-C128 C64-C128-C128-C128-C64

Accuracy 83.9% 82.2% 80.8%

Delay (μs) 311 106 47

Energy (μJ) 497 169 75

designs, several datapoints are on the Pareto frontier. Specifically, for the 4-bit design, the network
in Figure 3 with maximum pooling and linear templates, and the network in Figure 3 with average
pooling and linear templates are on the Pareto frontier, while for the 8-bit design, the network in
Figure 2 with average pooling linear templates are on the Pareto frontier in the plot. We should add
that the EDP values of some of the implementations [8, 41, 50, 59] in Figure 7 are obtained from
actual measurements, while others are from simulation. Therefore, some discrepancy may exist.

6.4 Evaluation of Larger Networks

In Section 6.3, we discussed a comprehensive comparison using the MNIST problem as the con-
text. However, networks for MNIST are relatively simple. In this subsection, we also compare our
CeNN design with other implementations that target larger networks, i.e., we compare with other
accelerators that solve the CIFAR-10 problem.

For the CIFAR-10 dataset, images with size 32×32 are used. We also use CeNNs with the same
size to enable parallel processing. The evaluation setup is the same as in Section 6.1. We use the
networks discussed in Section 4.3 and summarize our results in Table 8. Here, we use 4-bit design
to maximize the energy efficiency, and the accuracy is close to 32 floating point accuracy (given
in Table 2).

We compare our approach with a large number of implementations available that solve the
CIFAR-10 problem. The benchmarking plot is shown in Figure 8. The implementation includes IBM

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:22 Q. Lou et al.

Fig. 8. Benchmarking results for CeNN-friendly CoNNs as well as other algorithms and architectures for

the CIFAR-10 classification problem.

Table 9. Detailed Comparison to NPU [18] for the CIFAR-10 Dataset

Approach Technology node Accuracy Bits Delay (μs) Energy (μJ) EDP (μJ -μs)

CeNN-based approach 32nm 80.8% 4 47 75 3,525

NPU [18] 32nm 80.5% 8 485 32 15,332

TrueNorth [14], Fourier transform approach [38], NPU [18], Eyeriss [8], a mixed-signal approach
[4], and the CPU and GPU data reported in Reference [44]. We also draw a Pareto frontier line based
on the product of misclassification rate and EDP of the data points collected in Figure 8. From the
plot, one of our CeNN datapoint (C64-C128-C128-C128-C64) lands on the Pareto frontier.

We also make an iso-accuracy comparison with the NPU data point shown in the plot. We
selected a datapoint from our design with similar accuracy to the design in NPU. The detailed
comparison is shown in Table 9. Not only is the accuracy of our CeNN design 0.3% better than the
NPU approach, but also our design achieves 4.3× EDP compared with the NPU approach. Note
that the NPU data are also simulation results.

To articulate our evaluation, we also discuss the differences between our work and other analog
accelerators, i.e., ISAAC [53] and RedEye [39] here. Our work differs from ISAAC and RedEye in
the following aspects.

(1) Different computation elements are used. ISAAC uses a crossbar architecture, where mul-
tiplication and summation are carried out via analog voltage, conductance, and current,
and signals are accumulated horizontally in the crossbar rows within the chip. RedEye
uses tunable capacitors as computation units. Our approach uses CeNN cells as the base
element, where multiplications and partial sum calculations are performed using OTAs
within each CeNN cell.

(2) Different dataflows are used. ISAAC uses an in-memory computation architecture, where
memristors are used for both storing the weights and performing computation. In RedEye,
column-based computation elements are used, and data are passed vertically. In our CeNN
architecture, the memory and the computation units are separated. OTAs are used for
multiplication while analog memories are used to store intermediate results.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

A Mixed Signal Architecture for Convolutional Neural Networks 19:23

Fig. 9. Ideal I-V characteristics and actual characteristics for OTA design.

Table 10. Classification Accuracy for MNIST When Actual I-V Characteristics

Are Included in Training/Inference

Original Inference with Training & inference
Network type network actual I-V with actual I-V

Network in Figure 2, linear templates, max pooling 98.1% 96.5% 97.9%

Network in Figure 3, linear templates, max pooling 97.8% 95.8% 97.6%

(3) The requirements on devices are different. In ISAAC, memristors are required to perform
the logic-in-memory computation. In RedEye, conventional CMOS is used for benchmark-
ing. While we also assume conventional CMOS for benchmarking activities in this article,
our work is compatible with other emerging devices as well (e.g., many emerging devices
have been considered in the context of CeNN implementations per Reference [48]).

6.5 Training with Actual I-V Characteristics

In Section 6.2, we show that by leveraging the 8-bit representation, the accuracy does not decrease
much compared with the 32-bit floating point representation. However, another source of error
comes from the actual I-V characteristics of an OTA. For example, in Figure 9, when the difference
of two inputs, (Vin+ −Vin−), of the OTA is larger than 0.2V, the mismatch between the actual
and ideal I-V characteristics becomes more severe. This behavior could potentially decrease the
accuracy.

To study the impact, we include the mismatch described above into the inference stage. We
use the actual I-V characteristics of an OTA obtained from SPICE simulation, and build a look-up
table. We then embed the table into the MATLAB based CeNN simulator in the inference stage.
That is, whenever an OTA operation is required, results for the OTA are read from the lookup table,
instead of by direct matrix multiplication. Simulations of the networks in Figures 2 and 3 suggest
that by including the actual I-V characteristics in the network, the accuracy decreases from 98.1%
and 96.5% to 96.8% and 95.8%, respectively.

However, this accuracy decrease can be largely compensated by leveraging the I-V characteris-
tics in the training stage. We use the same look-up table, and plug it into the forward path of the
training stage of the network in the TensorFlow framework. By considering the I-V characteristics
during training, the accuracy increases and become close to the ideal accuracy. The results are
summarized in Table 10. We can see that by using the actual I-V characteristics in the training
stage, the accuracy only decreases 0.2% when compared with the original network for the baseline
design for network in Figure 2 and network in Figure 3. This approach should be applicable for
other non-ideal circuit behaviors.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

19:24 Q. Lou et al.

Whether individualized training might be needed is still an open question. However, the existing
literature suggests that some PVT variations and noise in the circuit may not greatly impact appli-
cation level accuracy for both MOSFETs and emerging devices (e.g., see References [39, 64]); thus
individualized training would not be needed. Researchers have also investigated on-chip training
given device variations (e.g., see References [46, 63]), and reasonable application level accuracy
results are indeed obtained. Essentially, at present, there are no firm conclusions about whether
individualized training will be required. We will also study this in our future work.

7 CONCLUSIONS AND DISCUSSIONS

This article presents a mixed-signal architecture for hardware implementation of convolutional
neural networks. The architecture is based on an analog CeNN realization. We demonstrate the
use of CeNN to realize different layers of CoNN, and the design of CeNN-friendly CoNNs. We
present tradeoffs for each CeNN-based design and compare our approaches with various other
existing accelerators to illustrate the benefits for the MNIST and CIFAR-10 problem as case stud-
ies. Our results show that the CeNN-based approach can lead to superior performance while re-
taining reasonable accuracy. Specifically, 8.7× EDP for the MNIST problem and 4.3× EDP for the
CIFAR-10 problem are obtained in iso-accuracy comparison, when comparing with state-of-the-art
approaches.

Our architecture targets were originally/primarily for edge devices. Network sizes for edge de-
vices (e.g., MobileNet [20], SqueezeNet [21], etc.) are usually much smaller than AlexNet. Thus,
AlexNet for CIFAR-10 dataset should be sufficient to illustrate how our approach can be applied
to larger networks and how our approach compares other existing works. Furthermore, these net-
works also only have kernel sizes 3 × 3 or 1 × 1, which are suitable for our CeNN computations.
We expect that the network model deployed in edge devices should be smaller than our CeNN
friendly AlexNet. Thus, our CeNN architecture should be able to process all tasks that could be
reasonably processed by IoT devices efficiently. As future work, we will study other larger network
topologies to further ensure that reasonable classification accuracies could be obtained (i.e., when
compared to published work) and will also consider the CeNN approach with respect to metrics
such as energy and delay in the context of these networks.

We will also continue evaluating what benefits machine-learning/computer vision applications
can get from analog computation with both MOSFETs and emerging devices.

REFERENCES

[1] [n.d.]. Official site of the Toshiba SPS 02 Smart Photosensor. Retrieved from http://www.toshiba-teli.co.jp/en/

products/industrial/sps/sps.htm.

[2] [n.d.]. Software Library for Cellular Wave Computing Engines in an era of kilo-processor chips Version 3.1. Retrieved

November 29, 2016 from http://cnn-technology.itk.ppke.hu/Template_library_v3.1.pdf.

[3] Rajeev Balasubramonian, et al. 2017. CACTI 7: New tools for interconnect exploration in innovative off-chip memo-

ries. Trans. Arch. Code Optim. 14, 2 (2017).

[4] Daniel Bankman, et al. 2018. An always-on 3.8 μJ 86% CIFAR-10 mixed-signal binary CNN processor with all memory

on chip in 28nm CMOS. In Proceedings of the International Solid-State Circuits Conference (ISSCC’18). 222–224.

[5] Avishek Biswas, et al. 2018. Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-

power CNN-Based machine learning applications. In Proceedings of the International Solid-State Circuits Conference

(ISSCC’18). 31.1.

[6] Y-Lan Boureau, et al. 2010. A theoretical analysis of feature pooling in visual recognition. In Proceedings of the Inter-

national Conference on Machine Learning (ICML’10). 111–118.

[7] R. Carmona-Galan, et al. 1999. An 0.5 μm CMOS analog random access memory chip for TeraOPS speed multimedia

video processing. IEEE Trans. Multimedia 1, 2 (1999), 121–135.

[8] Yu-Hsin Chen, et al. 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural net-

works. J. Solid State Chem. 52, 1 (2017), 127–138.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

http://www.toshiba-teli.co.jp/en/products/industrial/sps/sps.htm
http://www.toshiba-teli.co.jp/en/products/industrial/sps/sps.htm
http://cnn-technology.itk.ppke.hu/Template_library_v3.1.pdf

A Mixed Signal Architecture for Convolutional Neural Networks 19:25

[9] Eric Y. Chou, et al. 1997. VLSI design of optimization and image processing cellular neural networks. IEEE Trans. Circ.

Syst. I 44, 1 (1997), 12–20.

[10] Leon O. Chua and Tamas Roska. 2002. Cellular Neural Networks and Visual Computing: Foundations and Applications.

Cambridge University Press.

[11] Leon O. Chua and Lin Yang. 1988. Cellular neural networks: Applications. IEEE Trans. Circ. Syst. 35, 10 (1988), 1273–

1290.

[12] George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. 2013. Improving deep neural networks for LVCSR using

rectified linear units and dropout. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and

Signal Processing. IEEE, 8609–8613.

[13] Jia Deng, et al. 2009. Imagenet: A large-scale hierarchical image database. Comput. Vis. Pattern Recogn. (2009), 248–255.

[14] Steve Esser, et al. 2015. Backpropagation for energy-efficient neuromorphic computing. In Proceedings of the Annual

Conference on Neural Information Processing Systems (NIPS’15). 1117–1125.

[15] Christian Szegedy, et al. 2015. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition.

[16] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recurrent neural

networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’13).

6645–6649.

[17] Song Han, et al. 2016. EIE: Efficient inference engine on compressed deep neural network. Proceedings of the Interna-

tional Symposium on Computer Architecture (ISCA’16).

[18] Soheil Hashemi, et al. 2017. Understanding the impact of precision quantization on the accuracy and energy of neural

networks. In Proceedings of the Annual Conference on Design, Automation, and Test in Europe (DATE’17). 1474–9.

[19] Andras Horvath, et al. 2017. Cellular neural network friendly convolutional neural networks CNNs with CNNs. In

Proceedings of the Annual Conference on Design, Automation, and Test in Europe (DATE’17). 145–150.

[20] Andrew G. Howard, et al. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications.

arXiv preprint 1704.04861 (2017).

[21] Forrest Iandola, et al. 2016. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size.

arXiv preprint (2016).

[22] Jesus E. Molinar-Solis, et al. 2007. Programmable CMOS CNN cell based on floating-gate inverter unit. The Journal

of VLSI Signal Processing Systems for Signal, Image, and Video Technology. 49, 1 (2007), 207–2016.

[23] Nicola Jones. 2017. Machine learning tapped to improve climate forecasts. Nature 548, 7668 (2017), 379–380.

[24] Norman P. Jouppi, et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the

International Symposium on Computer Architecture (ISCA’17).

[25] Min-Joo Kang and Je-Won Kang. 2016. Intrusion detection system using deep neural network for in-vehicle network

security. PloS One 11, 6 (2016), e0155781.

[26] John P. Keane, et al. 2017. 16.5 An 8GS/s time-interleaved SAR ADC with unresolved decision detection achieving

58dBFS noise and 4GHz bandwidth in 28nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Con-

ference (ISSCC’17) (2017), 284–285.

[27] Walt Kester. 2009. Understand SINAD, ENOB, SNR, THD, THD+ N, and SFDR so you don’t get lost in the noise floor.

MT-003 Tutorial (2009).

[28] J. K. Kim, et al. 2015. A 640M pixel/s 3.65mW sparse event-driven neuromorphic object recognition processor with

on-chip learning. In VLSI Circuits. 50–51.

[29] Kwanho Kim, Seungjin Lee, Joo-Young Kim, Minsu Kim, and Hoi-Jun Yoo. 2009. A 125 GOPS 583 mW network-on-

chip based parallel processor with bio-inspired visual attention engine. IEEE J. Solid-State Circ. 44, 1 (2009), 136–147.

[30] D. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.6980 (2014).

[31] Matej Kristan, et al. 2017. The visual object tracking vot2013 challenge results. In Proceedings of the IEEE International

Conference on Computer Vision Workshops. 1949–1972.

[32] Alex Krizhevsky, et al. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the

Annual Conference on Neural Information Processing Systems (NIPS’12). 1097–1105.

[33] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features from tiny images. Technical Report,

University of Toronto).

[34] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444.

[35] Yann Lecun, Leon Bottou, Yoshua Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recog-

nition. Proc. IEEE 86, 11 (Nov. 1998), 2278–2324.

[36] Yann LeCun, Corinna Cortes, and C. J. Burges. 2010. MNIST handwritten digit database. AT&T Labs [Online]. Re-

trieved from http://yann.lecun.com/exdb/mnist.

[37] Lei Wang, et al. 1998. Time multiplexed color image processing based on a CNN with cell-state outputs. IEEE Trans.

VLSI 6, 2 (1998), 314–322.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

http://yann.lecun.com/exdb/mnist

19:26 Q. Lou et al.

[38] Siyu Liao, et al. 2017. Energy-efficient, high-performance, highly-compressed deep neural network design using

block-circulant matrices. In Proceedings of the 36th International Conference on Computer-Aided Design. 458–465.

[39] Robert LiKamWa, et al. 2016. RedEye: Analog ConvNet image sensor architecture for continuous mobile vision. ACM

SIGARCH Comput. Arch. 6, 1 (2016).

[40] Qiuwen Lou, et al. 2015. TFET-based operational transconductance amplifier design for CNN systems. In Proceedings

of the ACM Great Lakes Symposium on VLSI (GLSVLSI’15). 277–282.

[41] Bert Moons, et al. 2016. A 0.3-2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets. In VLSI

Circuits. 1–2.

[42] Hesham Mostafa, et al. 2017. Fast classification using sparsely active spiking networks. In Proceedings of the Interna-

tional Symposium on Circuits and Systems (ISCAS’17). 1–4.

[43] Ihab Nahlus, et al. 2014. Energy-efficient dot product computation using a switched analog circuit architecture. In

Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED’14). 315–318.

[44] Leibin Ni, et al. 2017. An energy-efficient digital ReRAM-crossbar-based CNN with bitwise parallelism using block-

circulant matrices. IEEE J. Explor. Solid-State Comput. Devices Circ. 3 (2017), 37–46.

[45] D. E. Nikonov, et al. 2015. Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J.

Explor. Solid-State Comput. Dev. Circ. 1 (2015), 3–11.

[46] Xiaochen Peng Pai-Yu Chen and Shimeng Yu. 2017. NeuroSim+: An integrated device-to-algorithm framework for

benchmarking synaptic devices and array architectures. In 2017 IEEE International Electron Devices Meeting (IEDM).

IEEE, 6–1.

[47] Indranil Palit, et al. 2015. Analytically modeling power and performance of a CNN system. In Proceedings of the

IEEE-International Conference on Control, Automation and Diagnosis (ICCAD’15). 186–193.

[48] Chenyun Pan and Azad Naeemi. 2016. Non-Boolean computing benchmarking for beyond-CMOS devices based on

cellular neural network. IEEE J. Explor. Solid-State Comput. Dev. Circ. 2 (2016), 36–43.

[49] Robert Perricone, et al. 2016. Can beyond-CMOS devices illuminate dark silicon? In Proceedings of the Annual Con-

ference on Design, Automation, and Test in Europe (DATE’16). 13–18.

[50] Brandon Reagen, et al. 2016. Minerva: Enabling low-power, highly-accurate deep neural network accelerators. In

Proceedings of the International Symposium on Computer Architecture (ISCA’16). 267–278.

[51] Angel Rodríguez-Vázquez, et al. 2004. ACE16k: The third generation of mixed-signal SIMD-CNN ACE chips toward

VSoCs. IEEE TCAS I: Regul. Pap. 51, 5 (2004), 851–863.

[52] Tamas Roska and Leon O. Chua. 1993. The CNN universal machine: An analogic array computer. IEEE Trans. Circ.

Syst. II 40, 3 (1993), 163–173.

[53] Ali. Shafiee, et al. 2016. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in cross-

bars. In ACM SIGARCH Computer Architecture (2016), 14–26.

[54] David Silver, et al. 2017. Mastering the game of go without human knowledge. Nature 550, 7676 (2017), 354.

[55] Karen Simonyan, et al. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint

(2014), 1409.1556.

[56] Vivienne Sze, et al. 2017. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE, Vol. 105.

2295–2329.

[57] Tianqi Tang, et al. 2017. Binary convolutional neural network on RRAM. In Proceedings of the Asia and South Pacific

Design Automation Conference (ASPDAC’17). 782–787.

[58] L. Wan, et al. 2013. Regularization of neural networks using dropconnect. In International Conference on Machine

Learning (ICML’13). 105–1066.

[59] P. N. Whatmough, et al. 2017. A 28 nm SoC with a 1.2GHz 568nJ/prediction sparse deep-neural-network engine with

0.1 timing error rate tolerance for IoT applications. In Proceedings of the International Solid-State Circuits Conference

(ISSCC’17). 242–243.

[60] Benwei Xu, et al. 2016. A 23mW 24GS/s 6b time-interleaved hybrid two-step ADC in 28 nm CMOS. In VLSI Circuits.

IEEE, 1–2.

[61] Xiaowei Xu, et al. 2017. Edge segmentation: Empowering mobile telemedicine with compressed cellular neural net-

works. In Proceedings of the 36th International Conference on Computer-Aided Design. 880–887.

[62] Y. Xu, et al. 2014. A 7-bit 40 MS/s single-ended asynchronous SAR ADC in 65 nm CMOS. Analog Integr. Circ. Sign.

Process. 80, 349 (2014).

[63] Peng Yao, et al. 2017. Face classification using electronic synapses. Nat. Commun. 8 (2017), 15199.

[64] Shimeng Yu, et al. 2013. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with

tolerance to device variation. Adv. Mater. 25, 12 (2013), 1774–1779.

[65] Wei Zhao, et al. 2006. New generation of predictive technology model for sub-45 nm early design exploration. IEEE

Trans. Electr. Dev. 53, 11 (2006), 2816–2823.

Received July 2018; revised November 2018; accepted January 2019

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 19. Pub. date: March 2019.

