
acmqueue | november-december 2018 1

Dear KV,
My team and I are selecting a new server platform for our
project and trying to decide whether we need more cores
or higher-frequency CPUs, which seems to be the main
tradeoff to make on current server systems. Our system
is deployed on the highest-end systems and, therefore, the
highest-frequency systems we could buy two years ago.
We run these systems at 100 percent CPU utilization at all
times. Our deployment does not consume a lot of memory,
just a lot of CPU cycles, and so we’re again leaning toward
buying the latest, top-of-the-line servers from our vendor.
We’ve looked at refactoring some of our software, but
from a cost perspective, expensive servers are cheaper
than expensive programmer time, which is being used
to add new features, rather than reworking old code. In
your opinion, what is more important in modern systems:
frequency or core count?

Richly Served

Dear Served,
I really wish I knew who your vendor is, so I could get a cut
of this incredibly lucrative pie. As the highest-end servers
currently enjoy a massive markup, your salesperson
probably has a biological mishap every time you call.

The short answer to your question about frequency
vs. core count is, “You tell me.” It seems as if you’ve

Know Your Algorithms
Stop using
hardware to
solve software
problems.

1 of 6 TEXT
ONLY

who is
KV?

I

click for video

kode vicious

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3305263.3310152&domain=pdf&date_stamp=2018-12-01

acmqueue | november-december 2018 2

spent little or no time trying to understand your own
workload and have simply fallen for the modern fallacy
of “newer will make it better.” Even apart from the end of
frequency scaling, it has rarely been the case that just
adding more oomph to a system is the best way to improve
performance. The true keys to improving performance are
measurement and an understanding of algorithms.

Knowing that your CPU is in use 100 percent of the
time doesn’t tell you much about the overall system other
than it’s busy, but busy with what? Maybe it’s sitting in a
tight loop, or some clown added a bunch of delay loops
during testing that are no longer necessary. Until you
profile your system, you have no idea why the CPU is busy.
All systems provide some form of profiling so that you
can track down where the bottlenecks are, and it’s your
responsibility to apply these tools before you spend money
on brand new hardware—especially given how wacky new
hardware has been in the past five years, particularly as a
result of NUMA (non-uniform memory access) and all the
crazy security mitigations that have sapped the life out of
modern systems to deal with Spectre and the like. There
are days when KV longs for the simplicity of a slow, eight-
bit microprocessor, something one could understand by
looking at the stream of assembly flying by. But those days
are over, and, honestly, no one wants to look at cats on a
Commodore 64, so it’s just not a workable solution for the
modern Internet.

Since I’ve talked about measurement before, let’s talk
now about the importance of algorithms. Algorithms are
at the heart of what we as software engineers do, even
though this fact is often hidden from us by libraries and

2 of 6

Ikode vicious

acmqueue | november-december 2018 3

well-traveled APIs. The theory, it seems, is that hiding
algorithmic complexity from programmers can make them
more productive. If I can stack boxes on top of boxes—like
little Lego bricks—to get my job done, then I don’t need to
understand what’s inside the boxes, only how to hook them
together. The box-stacking model breaks down when one
or more of the boxes turns out to be your bottleneck. Then
you’ll have to open the box and understand what’s inside,
which, hopefully, doesn’t look like poisonous black goo.

A nuanced understanding of algorithms takes many
years, but there are good references, such as Donald
Knuth’s series, The Art of Computer Programming, which
can help you along the way. The simplest way to start
thinking about your algorithm is the number of operations
required per unit of input. In undergraduate computer
science, this is often taught by comparing searching and
sorting algorithms. Imagine that you want to find a piece
of data in an array. You know the value you want to find
but not where to find it. A naive first approach would be
to start from element 0 and then compare your target
value to each of the elements in turn. In the best case, your
target value is present at element 0, in which case you’ve
executed a very small number of instructions, perhaps only
one or two. The worst-case scenario is that your target
element does not exist at all in the array and you will have
executed many instructions—one comparison for every
element of the array—only to find that the answer to your
search is empty. This is called a linear search.

For many data structures and algorithms, we want to
know the best, worst, and average number of operations
it takes to achieve our goal. For searching an array,

3 of 6

I

T
he simplest
way to start
thinking
about your
algorithm

is the number
of operations
required per
unit of input.

kode vicious

acmqueue | november-december 2018 4

best is 1, worst is N (the size of the array), and average
is somewhere in the middle. If the data you are storing
and searching is very small—a few kilobytes—then an
array is likely your best choice. This is because even the
worst-case search time is only a few thousand operations,
and on any modern processor, that’s not going to take a
long time. Also, arrays are very simple to work with and
understand. It is only when the size of the data set grows
into megabytes or larger that it makes sense to pick an
algorithm that, while it might be more complex, is able to
provide a better average number of operations.

One example might be to pick a hash table that has an
average search time of one operation and a worst search
time of N—again the number of elements in the table.
Hash tables are more complex to implement than arrays,
but that complexity may be worth the shorter search
time if, indeed, searching is what your system does most
often. There are data structures and search algorithms
that have been developed over the past 30 years with
varying performance characteristics, and the list is too
long, tedious, and boring to address in depth here. The main
considerations are how long does it take, in the best, worst,
and average cases, to
1. Add an element to the data structure (insertion time),
2. Remove an element,
3. Find an element.

Personally, I never bother with the best case, because
I always expect that, on average, everything will be
worst case. If you’re lucky, there is already a good
implementation of the data structure and algorithm you
need in a different box from the one you’re using now, and

4 of 6

Ikode vicious

acmqueue | november-december 2018 5

instead of having to open the
box and see the goo, you can
choose the better box and move
on to the next bottleneck. No
matter what you’re doing when
optimizing code, better choice
of algorithms nearly always
trumps higher frequency or
core count.

In the end, it comes back to
measurement driving algorithm
selection, followed by more
measurement, followed by
more refinement. Or you can
just open your wallet and keep
paying for supposedly faster
hardware that never delivers

what you think you paid for. If you go the latter route,
please contact KV so we can set up a vendor relationship,
which will go directly to pay my bar tab.

KV
Kode Vicious, known to mere mortals as George V. Neville-
Neil, works on networking and operating-system code for
fun and profit. He also teaches courses on various subjects
related to programming. His areas of interest are code
spelunking, operating systems, and rewriting your bad code
(OK, maybe not that last one). He earned his bachelor’s
degree in computer science at Northeastern University in
Boston, Massachusetts, and is a member of ACM, the Usenix
Association, and IEEE. Neville-Neil is the co-author with

5 of 6

I

Related articles

3 KV the Loudmouth
To buy or to build, that is the question.
https://queue.acm.org/detail.cfm?id=1255426

3 10 Optimizations on Linear Search
The operations side of the story
Thomas A. Limoncelli
https://queue.acm.org/detail.cfm?id=2984631

3 Computing without Processors
Heterogeneous systems allow us to target
our programming to the appropriate
environment.
Satnam Singh
https://queue.acm.org/detail.cfm?id=2000516

kode vicious

https://queue.acm.org/detail.cfm?id=1255426
https://queue.acm.org/detail.cfm?id=2984631
https://queue.acm.org/detail.cfm?id=2000516

acmqueue | november-december 2018 6

Marshall Kirk McKusick and Robert N. M. Watson of The
Design and Implementation of the FreeBSD Operating
System (second edition). He is an avid bicyclist and traveler
who currently lives in New York City.
Copyright © 2018 held by owner/author. Publication rights licensed to ACM.

6 of 6

I

SHAPE THE FUTURE OF COMPUTING!

We’re more than computational theorists,
database managers, UX mavens, coders and

developers. We’re on a mission to solve
tomorrow. ACM gives us the resources, the
access and the tools to invent the future.

Join ACM today at acm.org/join

BE CREATIVE. STAY CONNECTED. KEEP INVENTING.

kode vicious

