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Abstrac t  
This paper describes STL, a new coordination model 
and corresponding language. STL's power and ex- 
pressiveness are shown through a preliminary dis- 
tributed implementation of a generic autonomy- 
based multi-agent system, which is applied to a col- 
lective robotics simulation, thus demonstrating the 
appropriateness of STL for developing a generic co- 
ordination platform for autonomous agents. 
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1 Introduct ion  
Coordination constitutes a major scientific domain 
of Computer Science. Works coming within Coordi- 
nation encompass conceptual and methodological is- 
sues as well as implementations in order to efficiently 
help expressing and implementing distributed appli- 
cations. Autonomous Agents, a discipline of Artifi- 
cial Intelligence which enjoys a boom since a couple 
of years, embodies inherent distributed applications. 
Works coming within Autonomous Agents are in- 
tended to capitalize on the co-existence of distributed 
entities, and models such as Multi-Agent Systems are 
oriented towards interactions, collaborative phenom- 
ena and autonomy. We will focus on a generic class 
of autonomous agents, from which we draw a typical 
application related to collective robotics, in order to 
validate our coordination approach. 

Today's state of the art parallel programming mod- 
els used for implementing general purpose distributed 
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applications suffer from limitations concerning a clear 
separation of the computational part of a parallel ap- 
plication and the "glue" that coordinates the over- 
all distributed program. Especially these limitations 
make a distributed implementation of autonomy- 
based multi-agent systems, our target application, a 
burdensome task. To study problems related to coor- 
dination, Malone [19] introduced a new theory called 
Coordination Theory aimed at defining such a "glue". 
Principles developed in this theory draw their inspira- 
tion not only from computer science, but from other 
disciplines, such as organization theory, operations 
research, economics, linguistics, biology and psychol- 
ogy. 

When coordination theory is applied to computer 
science, the key issue is managing dependencies 
among activities. To formalize and better describe 
these interdependencies it is necessary to separate the 
two essential parts of a parallel application, namely 
computation and coordination [7]. These parts usu- 
ally interfere with each other, so that distributed ap- 
plications are hard to understand. The research in 
this area has focused on the definition of several coor- 
dination models and corresponding coordination lan- 
guages. 

A coordination language is the "linguistic embodi- 
ment o/a coordination model" [7] and should be de- 
fined orthogonally to a computation language. The 
most prominent representative of this class of new 
languages is Linda [11] which is based on a tu- 
pie space abstraction as the underlying coordination 
model. An application of this model has been real- 
ized in Piranha [6] (to mention one of the various 
applications based on Linda's coordination model) 
where Linda's tuple space is used for networked based 
load balancing functionality. The PageSpace [9] effort 
extends Linda's tuple space onto the World-Wide- 
Web and BONITA [20] addresses performance issues 
for the implementation of Linda's in and out  prim- 
itives. Other languages and models are based on 
a control oriented approach [2], [18], message pass- 
ing paradigms [12], [1], object-oriented techniques 
[14], multi-set rewriting schemes [8], [4] or Linear 
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Logic [5]. 
The rest of this paper is organized as follows. Sec- 

tion two describes in detail STL,  our coordination 
model, and appropriate coordination language. Sec- 
tion three is devoted to an illustration of the power 
and appropriateness of S T L  through a preliminary 
implementation of a generic autonomy-based multi- 
agent system, applied to a mobile collective robotics 
simulation. In the last Section, we draw some con- 
clusions about this work and outline future works. 

2 Coordinat ion  M o d e l  of  STL 
S T L  l materializes the separation of concern as it uses 
a separate language exclusively reserved for coordina- 
tion purposes and provides primitives which are used 
in the computat ion language to interact with the en- 
tities to be coordinated. It shares many character- 
istics with the IWIM [3] model of coordination like 
ConCoord [13] or MANIFOLD [2]. 

The coordination model of S T L  comprehends five 
building blocks which will now be introduced gradu- 
ally: 

1. Processes, as a representation of active entities; 

2. Blops, as an abstraction and modularization 
mechanism for processes and ports; 

3. Ports, as the interface of processes/blops to the 
external world; 

4. Events, a mechanism to react to dynamic state 
changes; 

5. Connections, as a representation of connected 
ports. 

According to the general characteristics of what  
makes up a coordination model and corresponding 
coordination language, these elements are classified 
in the following way: 

• The  Coordination Entities of S T L  are the pro- 
cesses of the distributed application; 

• There  are two types of Coordination Media in 
STL:  events, ports, and connections which en- 
able coordination, and blops, the repository in 
which coordination takes place; 

• The Coordination Laws are defined through the 
semantics of the Coordination Tools (the opera- 
tions defined in the computat ion language which 

* Simple Thread Language. STL is part of the CoLMA 
(Coordination Language for Multi-threaded Applications) ef- 
fort of the University of Fribourg, which aims at developing 
tools for coordination of multi-threaded applications on a clus- 
ter of workstations. 

work on the port  abstraction) and the semantics 
of the interactions with the coordination media 
by means of events. 

Figure 1 gives a first overview of the programming 
metaphor on which S T L  is based. An S T L  applica- 
tion consists of a hierarchy of blops in which several 
processes run. Processes communicate and coordi- 
nate themselves via events and connections. Ports 
serve as the communication endpoints for connections 
which result in pairs of matched ports. 

The reminder of this Section is devoted to a de- 
scription of each element. 

C5--  

Figure  1: The Coordination Model of STL. 

2.1 Blop 
A blop is an abstraction for an agglomeration of 
objects to be coordinated and serves as a separate 
name space for port  objects, processes, and subordi- 
nated blops as well as an encapsulation mechanism 
for events. 

Blops have the same interface as processes, i.e. a 
name and a possibly empty set of static ports,  and 
can be hierarchically structured. We distinguish the 
declaration of a blop from its instantiation, with the 
exception of the default meta  blop, called world. Im- 
plicitly instantiated by the system, this blop serves as 
the basic environment in which every other activity is 
embedded, i.e. an S T L  application runs per default 
in this meta  blop world. 

The creation of a blop is handled in the same way 
as the creation of processes (see 2.2). It includes the 
initialization of all static processes/blops and ports 
defined for this blop and subordinated blops. 

2.2 Processes 
S T L  knows one type of active entity, called a process. 
A process in S T L  is a typed object ,  it has a name and 
a possibly empty set of static ports. As for blops, the 
handling of processes in S T L  is done in two steps: (1) 
declaration of a process type, and (2) instantiation 
and invocation of such a declared process. In addition 
to their static ports,  processes c a n  generate dynamic 
ports during their lifetime. 
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Processes in S T L  do not know any kind of process 
identification, instead a black box process model is 
used: a process runs with a set of ports; it does not 
have to care about  which process information will be 
transmitted to or received from. 

Processes can be activated from within the coor- 
dination language and in the computation language. 
In the coordination language this is done through the 
instantiation of a process object inside a blop. To 
dynamically create new processes the process object 
instantiation can be done in the body of an event or 
in the computation language directly. 

Process termination is implicit: once the function 
which implements the process inside the computation 
language has terminated, the process disappears from 
the blop. 

2 . 3  P o r t s  

Ports are the interface of processes and blops to 
establish connections to other processes/blops, i.e. 
communication in S T L  is handled via a connection 
and therefore over ports. A port  has a name and a 
set of well defined attributes and belongs either to a 
process or a blop. The port  name and its attributes 
are referred to as the port 's  signature. The combi- 
nation of port  attributes results in a port  type. We 
distinguish static and dynamic ports. Both static and 
dynamic ports are represented in a blop by port  sig- 
natures. A static port is an interface of a process or 
blop defined in the coordination language, whereas a 
dynamic port  will be created dynamically at runtime 
in the computat ion language. However, the type of 
the dynamic port,  i.e, its attributes must be deter- 
mined in the coordination language. 

2.3.1 Port  At tr ibutes  

Pairs of ports must comply with a set of attributes 
(see Table 1 for an overview) in order to match. As 
an example we explain the communication at t r ibute 
in more detail. We provide the three classical com- 
munication paradigms: point-to-point stream com- 
munication, group and blackboard communication. 

For point-to-point stream communication, the da ta  
distribution scheme is different. Processes communi- 
cate in a stream using the classical message passing 
semantics. Messages are tagged and can be received 
only once. 

For group communication, a set of matched ports 
forms a closed group in which data  will be trans- 
ferred to all members of the group via a broadcast 
operation. The group is closed because a process 
must be member of the group in order to be able to 
send/receive da ta  to and from the group. Each single 
process connected to such a group receives the infor- 

marion in the same way as in point-to-point streams. 
For blackboard communication, the information 

can be retrieved from the port  in a sequence defined 
by the process, and information can be retrieved more 
than once. Processes can put  information onto this 
blackboard, read from it, or remove messages from 
it. 

2.3.2 Bas ic  P o r t  Types  

The combination of different port  at tr ibutes yields 
to different port  types. We have identified the fol- 
lowing major port  types: point-to-point output  port,  
(P2P->), point-to-point input port  (P2P<-), point-to- 
point bi-directional port  (P2P<->), groups (Group) 
and blackboards (BB). Variants of these types are pos- 
sible and can be defined by the user by modifying the 
port 's  at tr ibutes of Table 1. 

P2P: 
The classical stream ports. Two matched ports 
of this type result in a stream connection with 
the following semantics: every send operation on 
such a port  is non blocking, a receive call blocks 
t h e  calling process until da ta  is available and the 
port has an ¢o storage capacity, and matches 
to exactly one other port.  The  orientation at- 
tribute defines whether the port  is an output  port  
(P2P->), an input port  (P2P<-), or a bidirectional 
port  (P2P<->). 

Group: 
A set of Group ports forms the group mecha- 
nism of STL.  Ports  of this type are gathered in a 
group and all message send operations are based 
on broadcast, tha t  is, the message items will al- 
ways be transferred to all members of the group. 
A closed group semantics is used, processes must 
be member of the group in order to distribute 
messages in it. 

BB: 
The BB stands for blackboard and the resulting 
connection has a blackboard semantics. In con- 
trast  to the previous port  types, messages on the 
blackboard are now persistent objects and pro- 
cesses retrieve messages using a symbolic name 
and tag. 

This multiple blackboard model provides a cer- 
tain degree of privacy and encapsulation for com- 
municating processes which is not present in the 
original Linda model. In order to access the infor- 
mation, the process must specify both,  a specific 
port  (to get access to the blackboard) and the 
name and tag of the da ta  item to retrieve. Mod- 
ularity is supported in so far as the blackboards 
serve as a private name space for a group of pro- 
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Attribute 
Communication 
Saturation 
Capacity 
Msg. Synchronization 
Orientation 

Example 
blackboard, stream, group 
saturation=7 
capaeizyffi5 
synchron, asynchron 
in ,  out,  inout 

Explanation 
Communication structure 
Seven other ports may connect; d@fault: 1 
Capacity of a port: 5 data items; default: c~ 
Semantics of message passing model 
Direction of data flow 

Table 1: Attributes of a port. 

cesses which form a software module. Therefore, 
each module can independently use the same mes- 
sage tuples without interfering with other mod- 
ules. 

Note a subtle difference to the original Linda 
model: processes do not belong to the tuple space 
with which they communicate, but are grouped 
around, outside the blackboard. 

2.3.3 Variations o f  the Basic Port  Types  

Combinations of these basic port types are possible, 
for example to define a ( l :n)  point-to-point type of 
style connection, the saturation characteristics of a 
P2P port can be augmented to n. 

Synchronous communication can be achieved by 
changing the type of message synchronization to syn- 
chronous, thus yielding in point-to-point synchronous 
communication. For l : n  this means that the data 
producing process blocks until all the n processes 
have connected to the port, and have received the 
data item. 

One can say that the type of Mng. 
Synchron iza t ion  is "stronger" than the Capacity 
attribute, because synchronous communication 
implies a capacity of zero. On the other hand, asyn- 
chronous communication can be made a little bit 
less asynchronous by setting the capacity attribute 
to a certain value n to make sure that at least after 
n messages the process blocks. However the capacity 
attribute is a local relation between the process and 
its port. 

2.3.4 Port  Matching  

The matching of ports is defined as a relation between 
port signatures. It is not a static relation which can 
be determined at compilation time, but depends on 
the current state of the port relative to its attributes. 
In other words, although the signatures of two ports 
may match at compile time they do not match at 
runtime because, e.g. the number of communication 
partners which may be able to connect to this port 
is limited (through the s a t u r a t i o n  attribute). 

There are five conditions that must be fulfilled in 
order for two ports to match: (1) both use the same 
communication attribute, (2) both have the same 

name, (3) both ports must not be saturated, (4) both 
belong to the same level of abstraction, i.e., are visi- 
ble within the same hierarchy of blops, and (5) both 
belong to different objects (process or blop). 

Conceptually the matching of process ports can be 
described as follows. When a process is created in a 
blop, it creates with its port signature a "potential" 
in the current blop where it is embedded. If two com- 
patible potentials exist in the blop, and if the condi- 
tions (1)-(5) are fulfilled, the connection between the 
corresponding ports is established and the potentials 
disappear. The notion of compatible potentials in- 
troduces a subtype relation on port types, thus per- 
mitting the matching of ports whose attribute values 
are not necessarily identical. 

For blops the scheme works analogously. As for 
processes the port represents the blop's interface to 
the outside world. For blops this means that "one 
side" of the port is visible inside the current blop, and 
"the other side" is visible outside, that is, in the blop 
where the blop is embedded. The blop creates with 
its port signatures a potential in two encapsulated 
environments. 

Whether two potentials match or not depends on 
the communication structure: 

• Directed s t ream poin t - to -poin t  communica t ion .  
Due to the nature of this communication struc- 
ture, a "negative" and a corresponding "posi- 
tive" potential must exists in the current blop to 
form a connection. The negative potential repre- 
sents an input port, a positive potential symbol- 
izes an output port. To avoid that a port may 
consume all potentials in a blop we define that a 
port never matches twice to the same potential. 

For blops we define that for an input port, the 
negative potential is created in the surrounding 
blop and the positive potential is created in the 
current blop. For output ports the reverse mech- 
anism is applied. 

• Bi-direct ional  c om m un ic a t i on  and groups. The 
mechanism works analogously to directed stream 
point-to-point communication with the differ- 
ence that neutral potentials are created. The 
communication partners are identified by the 
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Condition on Ports Explanation port  name and attributes. For groups this means 
that  all processes using a compatible group port 
type are grouped together. For blops this means 
that  the group which is otherwise only locally 
visible will be exported to the surrounding blop. 

• B l a c k b o a r d s .  The potentials for such a commu- 
nication structure are also neutral and always 
present in the blop because the communication 
partner  is fully determined through the port 
specification, especially through the port name 
which denotes the blackboard name. The export 
mechanism for blackboard ports of blops works 
analogously. 

To summarize, the potential metaphor in the 
model permits to t reat  ports homogeneously for both 
blops and processes. A single abstraction, the port,  
is used to denote various communication structures 
in which processes and blops can get involved inter- 
changeably. 

2.3.5 Stat ic  Ports  

The creation of static ports and their potentials in 
the blop is done automatically upon start-up of a 
process or blop. The blop is responsible for matching 
ports. Seen from this point of view, a blop performs 
a certain activity, upon creation of a new process or 
blop it matches as many static ports as possible. 

2.3.6 D y n a m i c  Por t s  

As already stated, dynamic ports will be created in 
the computat ion language; they are therefore created 
by processes only. Their  type must be specified in the 
coordination language. The creation of a dynamic 
port  results in a new potential in the current blop. 

2.4 Connections 
Connections between processes have either stream se- 
mantics, in form of point-to-point communication, 
group, or blackboard semantics. 

• Point-to-point  Stream. 1 : 1, 1 : n, n : 1 and n : m 
communication patterns are possible; 

• Group. Messages are broadcasted to all mem- 
bers of the group; 

• Blackboard. Messages are placed on a black- 
board used by several processes. 

A possible extension of the model would be that 
a group or blackboard port  is connected to more 
than one group or blackboard, just  like the ports for 
streams. This however would require a wildcard con- 
s truct  to specify the group or blackboard name in 

accessed(p) 
unbound(p) 
isempty(p) 
isfull(p) 
msg_handled(p, int n) 
less_msg_baadled(p, in~ n) 

Port was accessed 
No comm. partners 
Contains no data 
Port is full 
n msg. handled 
< n msg. handled 

Table  2: Conditions on ports, p denotes a port. 

the port. Prom the process point of view this can be 
achieved by using more ports for each blackboard or 
group. 

2 . 5  E v e n t s  

An event handler may be attached to a condition 
which determines when the event will be executed 
in the blop. The conditions are related to ports of 
processes or blops. Whether  an event must  be trig- 
gered or not will be checked by the system if and 
only if da ta  flows through the port  or a process ac- 
cesses it. Otherwise a condition like i sempty  would 
uninterruptedly trigger events for ports of processes, 
because at start-up of the process ports are empty. 
The event is handled by an event handler inside the 
blop. 

After an event has been triggered, a blop is not 
tuned anymore to handle subsequent events of the 
same type. In order to handle these events again, 
the event handling routine must be re-installed. This 
is usually done in the event handling routine of the 
event currently processed. 

The unbound condition on ports permits to con- 
struct parallel software pipelines very elegantly. By 
attaching an appropriate event handler to an initially 
unbound port  of a process, a new process can get 
created automatically. The  mechanism can then be 
recursively applied to the new process. 

2 . 6  P r i m i t i v e s  

S T L  is a separate language used in addition to a 
given computat ion language, however the coordina- 
tion mechanisms must be accessed from within the 
computation language. This is done by providing 
a set of primitives which enable the interaction be- 
tween the computat ion and coordination parts of 
the distributed application. We use p o r t _ e x p o r t ( )  
to dynamically create new ports from within a 
process and a set of communication functions to 
send and receive da ta  via the port.  The  seman- 
tics of communication primitives is dependent  on 
the port  type. For blackboard ports ,  messages axe 
named and tagged on the blackboard and can be 
read and /o r  removed from it (using g e t ( ) ,  p u t ( ) ,  
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read()  a n d  predicates r eadp( ) ,  getp()  with the 
usual semantics) whereas for stream and group ports 
messages are only tagged. A message itself is a com- 
pound data structure consisting of several basic data 
types ( i n t ,  f l o a t ,  double and the like); sender 
and receiver must use the same message format for 
message exchange. Dynamic process management 
within the computation language is supported by a 
create_process  () procedure to which a valid pro- 
cess type must be supplied. For details see [16]. 

3 C o o r d i n a t i o n  of  A u t o n o m o u s  
Agents in STL 

Works in Autonomous Agents constitute a whole dis- 
cipline of Artificial Intelligence, whose description 
would be prohibitive to do here; as it is not the 
main concern of this paper, only the concepts of Au- 
tonomous Agents necessary to understand our imple- 
mentation will be presented. More information can 
be found in [17] and [22]. We will focus exclusively 
on autonomous agents that are considered to be em- 
bodied systems, which are designed to fulfill internal 
or external goals by their own actions in continuous 
long-term interaction with the environment (possibly 
unpredictable and dynamical) in which they are sit- 
uated. 

3 .1  A G e n e r i c  M o d e l  f o r  a n  A u -  
t o n o m o u s  A g e n t s '  S y s t e m  

Our generic model is composed of an Environment 
and a list of Agents. The Environment encompasses 
a list of Cells and a set of Objects which will be ma- 
nipulated by the agents. Every Cell contains a list 
of Neighbor Cells, which implicitly sets the topology 
and a list of on-cell available Objects a at a given 
time. This way of encoding the environment allows 
the user to cope with any type of topology, be it regu- 
lax or not, since for every cell the number of neighbors 
can be specified. Note that a cell can contain a re- 
gion made up of a set of continuous points, e.g. for 
simulating an area with real coordinates rather than 
discrete ones. 

The architecture of an agent is displayed on Fig- 

F i g u r e  2: Architecture of an agent. 

Figure 3: Collective robotics application: stacking ob- 
jects. 

ure 2. An agent possesses some sensors to perceive 
the world within which it moves, and some effectors 
to act in this world (embodiment). The implementa- 
tion of the different modules presented on Figure 2, 
namely Perception, State, Actions and Control Algo- 
rithm depends on the application and is the user's re- 
sponsibility. The Control Algorithm module is partic- 
ularly important because it defines the type of auton- 
omy [22] of the agent: for instance, a very basic au- 
tonomy would consist of randomly choosing the type 
of action to take, a more sophisticated one would con- 
sist of implementing some learning capabilities, e.g. 
by using an adaptive neural network. 

3 .2  A T y p i c a l  A p p l i c a t i o n  

We illustrate with a simulation in the framework of 
mobile collective robotics. Agents (an agent simu- 
lates the behavior of a real robot) seek for objects 
distributed in their environment, and we would like 
them to stack all objects, like displayed in Figure 3. 
The innovative aspect of our approach rests on a 
system integrating autonomous agents, that is, ev- 
ery agent in the system has the freedom to act on 
a cell (the agent decides by itself which action to 
take). This simulation has been already serially im- 
plemented, exhibiting the emergence of properties in 
the system, such as cooperation yielded by the re- 
current interactions of the agents; agents cooperate 
to achieve a task without being aware of that. Fur- 
ther details about this simulation and outcomes can 
be found in [10]. An implementation in a real world 
using real mobile robots is currently being developed. 

3 .3  C o n s t r a i n t s  f o r  a D i s t r i b u t e d  I m -  

p l e m e n t a t i o n  

Our very aim is to be able to express our autonomy- 
based multi-agent model on a distributed architec- 
ture in the most natural way. As the Environment 
and the list of Agents will be distributed, we will 
need to develop two types of mechanisms: some in 
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order to cope with agents crossing borders between 
sub-environments (of course this should be achieved 
transparently to the user, it should be part of the 
software platform), and others in order to cope with 
data consistency (e.g. updating the number of ob- 
jects on a cell). We will need some flexible coordina- 
tion tools that will not alter every agent's autonomy 
and behavior: we will have to dismiss any unneces- 
sary dependency. 

3 .4  P r e l i m i n a r y  I m p l e m e n t a t i o n  in  
S T L  

The Environment is a torus grid with a four connec- 
tivity (each cell has four neighbors). Agents comply 
rigorously with the model previously introduced (Fig- 
ure 2). They sense the environment through their 
sensors and act upon their perception at once. 

To put to good use distributed systems, the Envi- 
ronment is split into sub-environments, each of which 
being handled by a blop, as indicated on Figure 4, 
thus providing an independent functioning between 
sub-environments. Note that blops have to be ar- 
ranged in accordance with the topology of the envi- 
ronment they implement. 

For our implementation we introduce four variants 
of the P2P port type, described hereafter. P2P<-* 
and P2P->* are identical to P2P<- and P2P-> except 
that the saturation attribute is set to 2. P2PI<-N 
is an input P2P port capable of matching with N 
other P2P-> or P2P->* ports. P2PI->N is an out- 
put P2P port capable of matching with N other P2P<- 
or P2P<-* ports. 

. . . . . . . .  Q:: 

. . . . . . . . .  

- I : l w  
3----E 

3---{ 
~ N w  

3 ........ { 
'~m I 

Figure 4: Splitting an environment made up of cells into 
four blops. 

3.4.1 Global  S t ruc tu r e  

The meta-blop world is composed of an init process, 
responsible for the global initialization of the system, 
and a set of pre-defined blops, (called se), each one 
handling a sub-environment. 

The init process has two static ports (of type 
P2P->) for every blop to be initialized (Figure 5 illus- 

Figure 5: init process and blop se: solid and dotted lines 
are introduced just for a purpose of visualization. 

trates the connections between the init process and a 
blop se). The rSle of the init process is twofold: first, 
to create through its cre.Agts port the initial agents 
within every blop; secondly, to set up through its 
cre_SubEnv port the sub-environment (size, number 
of objects, etc.) of every blop. 

Blop se: Figure 5 shows the basic organization 
of processes within a blop se and their coordination 
through ports. Figure 6 diplays the implementation 
of se in STL. Two types of processes may be distin- 
guished: processes that  are part of the multi-agent 
coordination platform, namely initAgent and taxi, 
and processes that are intrinsic to the application, 
viz. subEnv and agent processes. 

Ports of a Blop: Each blop has ten static ports: 
four P2P->* outflowing direction ports (north_o, 
south_o, west_o, east_o) and four P2P<-* inflowin 9 di- 
rection ports (north_i, south_i, west_i, east_i), which 
are used for agent migration, and two P2P<-* ports, 
namely i_Agents and i_SubEnv used respectively for 
the creation of the initial agents and for the initial- 
ization of the subEnv process. 

For the time being, the topology between blops is 
set in a static manner, by creating the ports with ap- 
propriate names. The four inflowing direction ports 
of a blop match with ports of its inner process initA- 
gent. The four outflowin# direction ports of a blop 
match with ports of its inner process tax/. 

in i tAgen t  Process ,  ne t sAgen tEv t  Event:  The 
initAgent process (C++ code in Figure 7) is respon- 
sible for the creation. It has two static ports: newAr- 
rival and init. The newArrival P2PI<-N port is con- 
nected to all inflouring direction ports of the blop 
within which it resides. As soon as a value comes 
to this port, the initAgent process copies it onto its 
init P2PI->N port. In the meantime, the newAgen- 
tEvt event (see Figure 6) is triggered and it will create 
a new agent process, which through its creation port 



blop st(PORTS north_o north.i south_o south.i 
west.o west.i east.o east_i 
i_SubEnv i_agents, 

VALUES name n s w e) { 
P2P->* n o r t h _ o ( n ) ;  P2P<-, n o r t h . i ( n ) ;  
P2P->* sou th_o ( s ) ;  P2P<-* s o u t h . i ( s ) ;  
P2P->* west.o(w); P2P<-* west_i(w); 
P2P->* east.o(e); P2P<-* east_i(e); 
P2P<-* i_SubEnv("INIT-SE-" + name); 
P2P<-* i_Agents("INIT-A-" + name); 
process initAgent(PORTS newArrival iniZ) { 

P2PI<-N newArrival("INIT-A-" + name, 
n, s ,  W, e ) ;  

P2PI->N init("AGENT-INIT"); 
} 
process agent(PORTS creation req_ans) { 

P2P<- creation("AGENT-INIT"); 
BB req_ans("SUBENV-AGENT"); 

) 
process subEnv(PORTS init in.out to.taxi) { 

P2P<- init("INIT-SE-" + name); 
BB in.out("SUBENV-AGENT") ; 
P2P-> to_taxi("TAXI") ; 

) 
process taxi(PORTS tNorth tSouth tWest feast 

requ) { 
P2P-> tNorth(n); P2P-> tSouth(s); 
P2P-> tWest(w); P2P-> t E a s t ( e ) ;  
P2P<- requ("TAXI"); 

} 
event  newAgentEvt { 

create process agent a; 
} 
create process subEnv env; ~ 
crea~e process taxi ix; 
create process initAgent i; 
when accessed(i.nevArrival) then nevAgentEvt; 

Figure 6: Implementation of the blop se in STL.- 

will read the value that was previously written on 
the init port of the initAgent process. Values that 
are transmitted feature for instance the state of the 
agent to create. 

agent Process:  This process (C++ code in Fig- 
ure 8) has two static ports (req_ans of type BB and 
creation of type P2P<-) plus to_taxi a dynamic P2P-> 
port. As already stated, this process reads on its cre- 
ation port some values (its state). All req_ans ports 
of the agents are connected to a Blackboard, through 
which agents will sense their environment (percep- 
tion) and act into it (action), by performing put/get 
operations (Linda-like in~out) with appropriate mes- 
sages. The type of action depends on the type of 
control Algorithm implemented within the agent (see 
the architecture of an agent on Figure 2). The to_taxi 
port is used to communicate dynamically with the 
taxi process in case of migration: the state of the 
agent is indeed copied to the taxi process. The de- 
cision of migrating is always taken by the subEnv 
process. 

void initAgent(P2Pl<-N newArrival, P2Pl->N init) { 
[ ByteTempl<32> state; 
I Msg stateTp(state); 
[ while (TROE) { 
[ newArrival.get(O, stateTp); 

init.put(O, stateTp); 
}} 

Figure 7: Implementation of initAgent in C++. 

[void agent(BB req_ans,  P2P<- c r e a t i o n )  { 
ByteTempl<32> s t a t e ,  answer; 
ByteObject<32> *req; 
Msg stateTp(state); // Message 
boolean noMigrat ion = TRUE; 
c r e a t i o n . g e t ( O ,  s ta teTp)  ; / /  I n i t i a l i z e  
while (noMigrat ion)  { 

req ffi make . req() :  / /  P e r c e p t i o n / A c t i o n  
Msg requestTp("request", req->id, *req); 
req.ans.put(O, requestTp); // Put request 
Msg answerTp("answer", req->id, answer); 
req.ans.get(O, answerTp); // Get answer 
con t ro l ( answer ) ;  / /  Cont ro l  Algor i thm 
state ffi u p d a t e _ s t a t e ( a n s w e r ) ;  
noMigration = miErate.p(answer); 

) 
P2P-> to_taxi; // For migration 
to_taxi.port.export("MIG" + req->id) ; 
to.taxi.put(O, stateTp) ; // Transfer state 
e x i t ( 0 ) ;  / /  t o  t a x i  

} 

Figure 8: Implementation of agent in C++. 

subEnv Process:  The subEnv process (C++ 
code in Figure 9) handles the access to the sub- 
environment and is in charge of keeping data con- 
sistency. It is also responsible for migrating agents, 
which will cross the border of a sub-environment. It 
has a static in_out port (of type BB) connected to 
the Blackboard and a static P2P-> port to_taxi con- 
nected to the taxi process. Once initialized through 
its init P2P<- port, the subEnv process builds the sub- 
environment. By performing put~get operations with 
appropriate tuples, the subEnv process will process 
the requests of the agents (e.g. number of objects 
on a given cell, move to next cell) and reply to their 
requests (e.g. x objects on a given cell, move regis- 
tered). When the move of an agent will lead to cross 
the border (cell located in another blop), the subEnv 
process will first inform the agent it has to migrate 
and then inform the taxi process an agent has to be 
migrated (the direction the agent has to take will be 
transmitted). 

The  taxi  Process:  The taxi process (C++ code in 
Figure 10) is responsible for migrating agents across 
blops. It has four static direction ports (of type 
P2P->), which are connected to the four outflowing 
direction ports of the blop within which it stands. 
When this process receives on its static P2P<- port 
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void subEnv(P2P<- init. BB in_out, P2P-> to_taxi) { 
IntTempl id, nbOfA~, myNbOfObj, nbOfCell, pos; 
ByteTempl<32> req, *resp; 
SubEnv *subenv; 
Msg initTp(nbOfAgt, myNbOfObj, nbOfCe11, pos); 
iniZ.get(O, initTp); 
// Build the sub-environment 
subenv = init.env(nbOfAgt, nbOfObj, nbOfCell); 
while(TRUE) { // Request-Answer 

Msg requestTp("request", id, req); 
in_out.get(O, requestTp); // Get request 
resp = decide_response(req, subenv); 
Msg answerTp("answer °', id, *resp); 
in out.put(O, answerTp); // Put answer 
if migrateP(res p) { // AEent migrates 

Msg migTp(id, CharObject<4>(getDir(req)))~ 
to_taxi.put(O, migTp); // Inform taxi 

}}} 

Figure 9: Implementation of subEnv in C++. 

void taxi(P2P-> tNorth,  P2P-> tSouzh, P2P-> tWest, 
P2P-> tEast, P2P<- requ) { 

ChazTempl<4> direcZlon; 
IntTempl id;  
ByteTempl<32> sta~e; 
Msg stateTp(state); 
Msg init(id, direction); 
while(TRUE){ 

requ.get(O, init); // Init. from subEnv 
P2P<- con.Agt; 
con_Agt.por~.export("MIG" + id); 
con_Agt.get(O, s~ateTp); // Get agent's state 
switch (direction) { // Migration 

case "N": // Handle directions 
tNorth.put(O, stateTp); 
break; 

}}} 

Figure 10: Implementation of ta~ in C++. 

requ the direction towards where this agent has to mi- 
grate, it will create a dynamic P2P<- port con_Agt in 
order to establish with the appropriate agent process 
a communication, by means of which it will collect 
all the useful information of the agent (state). These 
values will then be written on the port correspond- 
ing to the direction to take and will be transferred to 
the newArrival port of the initAgent process of the 
concerned blop inducing the dynamic creation of a 
new agent process in the blop, thus materializing the 
migration. 

4 Conclus ion  
In this paper, we presented STL our coordination 
model and corresponding language. Although the 
coordination model has some similarities with MAN- 
IFOLD, ConCoord, Darwin or Linda (in-depth com- 
parisons can be found in [21]), it however differs in 
several points. Firstly STL allows the user to define 
several different port types, yielding to different com- 
munication metaphors like generative communication 
or point to point message passing. Secondly, by using 
a nested description language to specify different hi- 
erarchies of coordination spaces, STL's hierarchical 
coordination model seems to be more explicit than 
the one used in MANIFOLD for example. Blops not 
only serve as a sort of coordinator process which con- 
trols coordination, but also as a separate name space 
for port objects and modularization mechanism for 
event handling. 

We built a coordination platform based on STL's 
coordination model. This first prototype has been de- 
veloped on top of the existing PT-PVM platform [15]. 
A preliminary implementation of a classical collec- 
tive robotics simulation illustrated the power of STL 
and demonstrated its appropriateness for coordinat- 

ing a class of autonomous agents, whose most crit- 
ical constraint is the preservation of autonomy by 
dismissing coordination mechanisms exclusively em- 
bedded for purpose of implementation (unnecessary 
dependencies). 

As far as the development of a platform for multi- 
agent programming is concerned, STL can be seen 
as a first starting poip.t STL already includes mech- 
anisms which are appropriate for multi-agent pro- 
gramming, among which are: (1) the absence of a 
central coordinator process, which does not relate to 
any type of entity in the multi-agent system; (2) the 
notion of ports avoiding any additional coordinator 
process; and (3) in despite of (2) the notion of blop 
hierarchy which in our case allows us to represent the 
encapsulation of the environment and the agents. 

The STL coordination model is still to be extended 
in order to encompass as many generic coordination 
patterns as possible, yielding in STL skeletons at 
disposal for general purpose implementations. Fu- 
ture works will consist in: (1) improving the model, 
such as introducing new user defined attributes for 
ports, dynamic ports for blops, data typing for port 
types, refining subtyping of ports, and (2) developing 
a graphical user interface to facilitate the specifica- 
tion of the coordination p ~ t  of a distributed appli- 
cation. 

There are two major outcomes to this work. First, 
as autonomous agents' systems are aimed at ad- 
dressing problems which are naturally distributed, 
our coordination platform provides a user the pos- 
sibility to have an actual distributed implementation 
and therefore to benefit from the numerous advan- 
tages of distributed systems, so that this work is 
a step forward in the Autonomous Agents commu- 
nity. Secondly, as the generic patterns of coordi- 
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nation for autonomy-based multi-agent implementa- 
tions are embedded within the platform, a user can 
quite easily develop new applications (e.g. by chang- 
ing the type of autonomy of the agents, the type of 
environment), insofar they comply with the generic 
model. 
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