
Coordinating Autonomous Entities*
Oliver Krone, Fabr ice C h a n t e m a r g u e , Thie r ry Dagaef f

Michael Schumacher , B i a t Hi r sb runner
C o m p u t e r Sc ience D e p a r t m e n t , P A I g r o u p

U n i v e r s i t y o f F r ibou rg , CH-1700 F r ibourg , S w i t z e r l a n d

h t t p : / / w w w - i i u f . u n i f r . c h / p a i

Abstrac t
This paper describes STL, a new coordination model
and corresponding language. STL's power and ex-
pressiveness are shown through a preliminary dis-
tributed implementation of a generic autonomy-
based multi-agent system, which is applied to a col-
lective robotics simulation, thus demonstrating the
appropriateness of STL for developing a generic co-
ordination platform for autonomous agents.

Keywords : Coordination, Distributed Systems,
Autonomous Agents, Collective Robotics.

1 Introduct ion
Coordination constitutes a major scientific domain
of Computer Science. Works coming within Coordi-
nation encompass conceptual and methodological is-
sues as well as implementations in order to efficiently
help expressing and implementing distributed appli-
cations. Autonomous Agents, a discipline of Artifi-
cial Intelligence which enjoys a boom since a couple
of years, embodies inherent distributed applications.
Works coming within Autonomous Agents are in-
tended to capitalize on the co-existence of distributed
entities, and models such as Multi-Agent Systems are
oriented towards interactions, collaborative phenom-
ena and autonomy. We will focus on a generic class
of autonomous agents, from which we draw a typical
application related to collective robotics, in order to
validate our coordination approach.

Today's state of the art parallel programming mod-
els used for implementing general purpose distributed

*This work is financially supported by the Swiss National
Foundation for Scientific Research, grants 21-43558.95 and 21-
47262.96

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is grmued without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title o f the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a lbe.

© 1998 ACM 0-89791-969-6/98/0002 3.50

applications suffer from limitations concerning a clear
separation of the computational part of a parallel ap-
plication and the "glue" that coordinates the over-
all distributed program. Especially these limitations
make a distributed implementation of autonomy-
based multi-agent systems, our target application, a
burdensome task. To study problems related to coor-
dination, Malone [19] introduced a new theory called
Coordination Theory aimed at defining such a "glue".
Principles developed in this theory draw their inspira-
tion not only from computer science, but from other
disciplines, such as organization theory, operations
research, economics, linguistics, biology and psychol-
ogy.

When coordination theory is applied to computer
science, the key issue is managing dependencies
among activities. To formalize and better describe
these interdependencies it is necessary to separate the
two essential parts of a parallel application, namely
computation and coordination [7]. These parts usu-
ally interfere with each other, so that distributed ap-
plications are hard to understand. The research in
this area has focused on the definition of several coor-
dination models and corresponding coordination lan-
guages.

A coordination language is the "linguistic embodi-
ment o/a coordination model" [7] and should be de-
fined orthogonally to a computation language. The
most prominent representative of this class of new
languages is Linda [11] which is based on a tu-
pie space abstraction as the underlying coordination
model. An application of this model has been real-
ized in Piranha [6] (to mention one of the various
applications based on Linda's coordination model)
where Linda's tuple space is used for networked based
load balancing functionality. The PageSpace [9] effort
extends Linda's tuple space onto the World-Wide-
Web and BONITA [20] addresses performance issues
for the implementation of Linda's in and out prim-
itives. Other languages and models are based on
a control oriented approach [2], [18], message pass-
ing paradigms [12], [1], object-oriented techniques
[14], multi-set rewriting schemes [8], [4] or Linear

149

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330560.330663&domain=pdf&date_stamp=1998-02-27

Logic [5].
The rest of this paper is organized as follows. Sec-

tion two describes in detail STL, our coordination
model, and appropriate coordination language. Sec-
tion three is devoted to an illustration of the power
and appropriateness of S T L through a preliminary
implementation of a generic autonomy-based multi-
agent system, applied to a mobile collective robotics
simulation. In the last Section, we draw some con-
clusions about this work and outline future works.

2 Coordinat ion M o d e l of STL
S T L l materializes the separation of concern as it uses
a separate language exclusively reserved for coordina-
tion purposes and provides primitives which are used
in the computat ion language to interact with the en-
tities to be coordinated. It shares many character-
istics with the IWIM [3] model of coordination like
ConCoord [13] or MANIFOLD [2].

The coordination model of S T L comprehends five
building blocks which will now be introduced gradu-
ally:

1. Processes, as a representation of active entities;

2. Blops, as an abstraction and modularization
mechanism for processes and ports;

3. Ports, as the interface of processes/blops to the
external world;

4. Events, a mechanism to react to dynamic state
changes;

5. Connections, as a representation of connected
ports.

According to the general characteristics of what
makes up a coordination model and corresponding
coordination language, these elements are classified
in the following way:

• The Coordination Entities of S T L are the pro-
cesses of the distributed application;

• There are two types of Coordination Media in
STL: events, ports, and connections which en-
able coordination, and blops, the repository in
which coordination takes place;

• The Coordination Laws are defined through the
semantics of the Coordination Tools (the opera-
tions defined in the computat ion language which

* Simple Thread Language. STL is part of the CoLMA
(Coordination Language for Multi-threaded Applications) ef-
fort of the University of Fribourg, which aims at developing
tools for coordination of multi-threaded applications on a clus-
ter of workstations.

work on the port abstraction) and the semantics
of the interactions with the coordination media
by means of events.

Figure 1 gives a first overview of the programming
metaphor on which S T L is based. An S T L applica-
tion consists of a hierarchy of blops in which several
processes run. Processes communicate and coordi-
nate themselves via events and connections. Ports
serve as the communication endpoints for connections
which result in pairs of matched ports.

The reminder of this Section is devoted to a de-
scription of each element.

C5--

Figure 1: The Coordination Model of STL.

2.1 Blop
A blop is an abstraction for an agglomeration of
objects to be coordinated and serves as a separate
name space for port objects, processes, and subordi-
nated blops as well as an encapsulation mechanism
for events.

Blops have the same interface as processes, i.e. a
name and a possibly empty set of static ports, and
can be hierarchically structured. We distinguish the
declaration of a blop from its instantiation, with the
exception of the default meta blop, called world. Im-
plicitly instantiated by the system, this blop serves as
the basic environment in which every other activity is
embedded, i.e. an S T L application runs per default
in this meta blop world.

The creation of a blop is handled in the same way
as the creation of processes (see 2.2). It includes the
initialization of all static processes/blops and ports
defined for this blop and subordinated blops.

2.2 Processes
S T L knows one type of active entity, called a process.
A process in S T L is a typed object , it has a name and
a possibly empty set of static ports. As for blops, the
handling of processes in S T L is done in two steps: (1)
declaration of a process type, and (2) instantiation
and invocation of such a declared process. In addition
to their static ports, processes c a n generate dynamic
ports during their lifetime.

150

Processes in S T L do not know any kind of process
identification, instead a black box process model is
used: a process runs with a set of ports; it does not
have to care about which process information will be
transmitted to or received from.

Processes can be activated from within the coor-
dination language and in the computation language.
In the coordination language this is done through the
instantiation of a process object inside a blop. To
dynamically create new processes the process object
instantiation can be done in the body of an event or
in the computation language directly.

Process termination is implicit: once the function
which implements the process inside the computation
language has terminated, the process disappears from
the blop.

2 . 3 P o r t s

Ports are the interface of processes and blops to
establish connections to other processes/blops, i.e.
communication in S T L is handled via a connection
and therefore over ports. A port has a name and a
set of well defined attributes and belongs either to a
process or a blop. The port name and its attributes
are referred to as the port 's signature. The combi-
nation of port attributes results in a port type. We
distinguish static and dynamic ports. Both static and
dynamic ports are represented in a blop by port sig-
natures. A static port is an interface of a process or
blop defined in the coordination language, whereas a
dynamic port will be created dynamically at runtime
in the computat ion language. However, the type of
the dynamic port, i.e, its attributes must be deter-
mined in the coordination language.

2.3.1 Port At tr ibutes

Pairs of ports must comply with a set of attributes
(see Table 1 for an overview) in order to match. As
an example we explain the communication at t r ibute
in more detail. We provide the three classical com-
munication paradigms: point-to-point stream com-
munication, group and blackboard communication.

For point-to-point stream communication, the da ta
distribution scheme is different. Processes communi-
cate in a stream using the classical message passing
semantics. Messages are tagged and can be received
only once.

For group communication, a set of matched ports
forms a closed group in which data will be trans-
ferred to all members of the group via a broadcast
operation. The group is closed because a process
must be member of the group in order to be able to
send/receive da ta to and from the group. Each single
process connected to such a group receives the infor-

marion in the same way as in point-to-point streams.
For blackboard communication, the information

can be retrieved from the port in a sequence defined
by the process, and information can be retrieved more
than once. Processes can put information onto this
blackboard, read from it, or remove messages from
it.

2.3.2 Bas ic P o r t Types

The combination of different port at tr ibutes yields
to different port types. We have identified the fol-
lowing major port types: point-to-point output port,
(P2P->), point-to-point input port (P2P<-), point-to-
point bi-directional port (P2P<->), groups (Group)
and blackboards (BB). Variants of these types are pos-
sible and can be defined by the user by modifying the
port 's at tr ibutes of Table 1.

P2P:
The classical stream ports. Two matched ports
of this type result in a stream connection with
the following semantics: every send operation on
such a port is non blocking, a receive call blocks
t h e calling process until da ta is available and the
port has an ¢o storage capacity, and matches
to exactly one other port. The orientation at-
tribute defines whether the port is an output port
(P2P->), an input port (P2P<-), or a bidirectional
port (P2P<->).

Group:
A set of Group ports forms the group mecha-
nism of STL. Ports of this type are gathered in a
group and all message send operations are based
on broadcast, tha t is, the message items will al-
ways be transferred to all members of the group.
A closed group semantics is used, processes must
be member of the group in order to distribute
messages in it.

BB:
The BB stands for blackboard and the resulting
connection has a blackboard semantics. In con-
trast to the previous port types, messages on the
blackboard are now persistent objects and pro-
cesses retrieve messages using a symbolic name
and tag.

This multiple blackboard model provides a cer-
tain degree of privacy and encapsulation for com-
municating processes which is not present in the
original Linda model. In order to access the infor-
mation, the process must specify both, a specific
port (to get access to the blackboard) and the
name and tag of the da ta item to retrieve. Mod-
ularity is supported in so far as the blackboards
serve as a private name space for a group of pro-

151

Attribute
Communication
Saturation
Capacity
Msg. Synchronization
Orientation

Example
blackboard, stream, group
saturation=7
capaeizyffi5
synchron, asynchron
in , out, inout

Explanation
Communication structure
Seven other ports may connect; d@fault: 1
Capacity of a port: 5 data items; default: c~
Semantics of message passing model
Direction of data flow

Table 1: Attributes of a port.

cesses which form a software module. Therefore,
each module can independently use the same mes-
sage tuples without interfering with other mod-
ules.

Note a subtle difference to the original Linda
model: processes do not belong to the tuple space
with which they communicate, but are grouped
around, outside the blackboard.

2.3.3 Variations o f the Basic Port Types

Combinations of these basic port types are possible,
for example to define a (l :n) point-to-point type of
style connection, the saturation characteristics of a
P2P port can be augmented to n.

Synchronous communication can be achieved by
changing the type of message synchronization to syn-
chronous, thus yielding in point-to-point synchronous
communication. For l : n this means that the data
producing process blocks until all the n processes
have connected to the port, and have received the
data item.

One can say that the type of Mng.
Synchron iza t ion is "stronger" than the Capacity
attribute, because synchronous communication
implies a capacity of zero. On the other hand, asyn-
chronous communication can be made a little bit
less asynchronous by setting the capacity attribute
to a certain value n to make sure that at least after
n messages the process blocks. However the capacity
attribute is a local relation between the process and
its port.

2.3.4 Port Matching

The matching of ports is defined as a relation between
port signatures. It is not a static relation which can
be determined at compilation time, but depends on
the current state of the port relative to its attributes.
In other words, although the signatures of two ports
may match at compile time they do not match at
runtime because, e.g. the number of communication
partners which may be able to connect to this port
is limited (through the s a t u r a t i o n attribute).

There are five conditions that must be fulfilled in
order for two ports to match: (1) both use the same
communication attribute, (2) both have the same

name, (3) both ports must not be saturated, (4) both
belong to the same level of abstraction, i.e., are visi-
ble within the same hierarchy of blops, and (5) both
belong to different objects (process or blop).

Conceptually the matching of process ports can be
described as follows. When a process is created in a
blop, it creates with its port signature a "potential"
in the current blop where it is embedded. If two com-
patible potentials exist in the blop, and if the condi-
tions (1)-(5) are fulfilled, the connection between the
corresponding ports is established and the potentials
disappear. The notion of compatible potentials in-
troduces a subtype relation on port types, thus per-
mitting the matching of ports whose attribute values
are not necessarily identical.

For blops the scheme works analogously. As for
processes the port represents the blop's interface to
the outside world. For blops this means that "one
side" of the port is visible inside the current blop, and
"the other side" is visible outside, that is, in the blop
where the blop is embedded. The blop creates with
its port signatures a potential in two encapsulated
environments.

Whether two potentials match or not depends on
the communication structure:

• Directed s t ream poin t - to -poin t communica t ion .
Due to the nature of this communication struc-
ture, a "negative" and a corresponding "posi-
tive" potential must exists in the current blop to
form a connection. The negative potential repre-
sents an input port, a positive potential symbol-
izes an output port. To avoid that a port may
consume all potentials in a blop we define that a
port never matches twice to the same potential.

For blops we define that for an input port, the
negative potential is created in the surrounding
blop and the positive potential is created in the
current blop. For output ports the reverse mech-
anism is applied.

• Bi-direct ional c om m un ic a t i on and groups. The
mechanism works analogously to directed stream
point-to-point communication with the differ-
ence that neutral potentials are created. The
communication partners are identified by the

152

Condition on Ports Explanation port name and attributes. For groups this means
that all processes using a compatible group port
type are grouped together. For blops this means
that the group which is otherwise only locally
visible will be exported to the surrounding blop.

• B l a c k b o a r d s . The potentials for such a commu-
nication structure are also neutral and always
present in the blop because the communication
partner is fully determined through the port
specification, especially through the port name
which denotes the blackboard name. The export
mechanism for blackboard ports of blops works
analogously.

To summarize, the potential metaphor in the
model permits to t reat ports homogeneously for both
blops and processes. A single abstraction, the port,
is used to denote various communication structures
in which processes and blops can get involved inter-
changeably.

2.3.5 Stat ic Ports

The creation of static ports and their potentials in
the blop is done automatically upon start-up of a
process or blop. The blop is responsible for matching
ports. Seen from this point of view, a blop performs
a certain activity, upon creation of a new process or
blop it matches as many static ports as possible.

2.3.6 D y n a m i c Por t s

As already stated, dynamic ports will be created in
the computat ion language; they are therefore created
by processes only. Their type must be specified in the
coordination language. The creation of a dynamic
port results in a new potential in the current blop.

2.4 Connections
Connections between processes have either stream se-
mantics, in form of point-to-point communication,
group, or blackboard semantics.

• Point-to-point Stream. 1 : 1, 1 : n, n : 1 and n : m
communication patterns are possible;

• Group. Messages are broadcasted to all mem-
bers of the group;

• Blackboard. Messages are placed on a black-
board used by several processes.

A possible extension of the model would be that
a group or blackboard port is connected to more
than one group or blackboard, just like the ports for
streams. This however would require a wildcard con-
s truct to specify the group or blackboard name in

accessed(p)
unbound(p)
isempty(p)
isfull(p)
msg_handled(p, int n)
less_msg_baadled(p, in~ n)

Port was accessed
No comm. partners
Contains no data
Port is full
n msg. handled
< n msg. handled

Table 2: Conditions on ports, p denotes a port.

the port. Prom the process point of view this can be
achieved by using more ports for each blackboard or
group.

2 . 5 E v e n t s

An event handler may be attached to a condition
which determines when the event will be executed
in the blop. The conditions are related to ports of
processes or blops. Whether an event must be trig-
gered or not will be checked by the system if and
only if da ta flows through the port or a process ac-
cesses it. Otherwise a condition like i sempty would
uninterruptedly trigger events for ports of processes,
because at start-up of the process ports are empty.
The event is handled by an event handler inside the
blop.

After an event has been triggered, a blop is not
tuned anymore to handle subsequent events of the
same type. In order to handle these events again,
the event handling routine must be re-installed. This
is usually done in the event handling routine of the
event currently processed.

The unbound condition on ports permits to con-
struct parallel software pipelines very elegantly. By
attaching an appropriate event handler to an initially
unbound port of a process, a new process can get
created automatically. The mechanism can then be
recursively applied to the new process.

2 . 6 P r i m i t i v e s

S T L is a separate language used in addition to a
given computat ion language, however the coordina-
tion mechanisms must be accessed from within the
computation language. This is done by providing
a set of primitives which enable the interaction be-
tween the computat ion and coordination parts of
the distributed application. We use p o r t _ e x p o r t ()
to dynamically create new ports from within a
process and a set of communication functions to
send and receive da ta via the port. The seman-
tics of communication primitives is dependent on
the port type. For blackboard ports , messages axe
named and tagged on the blackboard and can be
read and /o r removed from it (using g e t () , p u t () ,

153

read() a n d predicates r eadp() , getp() with the
usual semantics) whereas for stream and group ports
messages are only tagged. A message itself is a com-
pound data structure consisting of several basic data
types (i n t , f l o a t , double and the like); sender
and receiver must use the same message format for
message exchange. Dynamic process management
within the computation language is supported by a
create_process () procedure to which a valid pro-
cess type must be supplied. For details see [16].

3 C o o r d i n a t i o n of A u t o n o m o u s
Agents in STL

Works in Autonomous Agents constitute a whole dis-
cipline of Artificial Intelligence, whose description
would be prohibitive to do here; as it is not the
main concern of this paper, only the concepts of Au-
tonomous Agents necessary to understand our imple-
mentation will be presented. More information can
be found in [17] and [22]. We will focus exclusively
on autonomous agents that are considered to be em-
bodied systems, which are designed to fulfill internal
or external goals by their own actions in continuous
long-term interaction with the environment (possibly
unpredictable and dynamical) in which they are sit-
uated.

3 .1 A G e n e r i c M o d e l f o r a n A u -
t o n o m o u s A g e n t s ' S y s t e m

Our generic model is composed of an Environment
and a list of Agents. The Environment encompasses
a list of Cells and a set of Objects which will be ma-
nipulated by the agents. Every Cell contains a list
of Neighbor Cells, which implicitly sets the topology
and a list of on-cell available Objects a at a given
time. This way of encoding the environment allows
the user to cope with any type of topology, be it regu-
lax or not, since for every cell the number of neighbors
can be specified. Note that a cell can contain a re-
gion made up of a set of continuous points, e.g. for
simulating an area with real coordinates rather than
discrete ones.

The architecture of an agent is displayed on Fig-

F i g u r e 2: Architecture of an agent.

Figure 3: Collective robotics application: stacking ob-
jects.

ure 2. An agent possesses some sensors to perceive
the world within which it moves, and some effectors
to act in this world (embodiment). The implementa-
tion of the different modules presented on Figure 2,
namely Perception, State, Actions and Control Algo-
rithm depends on the application and is the user's re-
sponsibility. The Control Algorithm module is partic-
ularly important because it defines the type of auton-
omy [22] of the agent: for instance, a very basic au-
tonomy would consist of randomly choosing the type
of action to take, a more sophisticated one would con-
sist of implementing some learning capabilities, e.g.
by using an adaptive neural network.

3 .2 A T y p i c a l A p p l i c a t i o n

We illustrate with a simulation in the framework of
mobile collective robotics. Agents (an agent simu-
lates the behavior of a real robot) seek for objects
distributed in their environment, and we would like
them to stack all objects, like displayed in Figure 3.
The innovative aspect of our approach rests on a
system integrating autonomous agents, that is, ev-
ery agent in the system has the freedom to act on
a cell (the agent decides by itself which action to
take). This simulation has been already serially im-
plemented, exhibiting the emergence of properties in
the system, such as cooperation yielded by the re-
current interactions of the agents; agents cooperate
to achieve a task without being aware of that. Fur-
ther details about this simulation and outcomes can
be found in [10]. An implementation in a real world
using real mobile robots is currently being developed.

3 .3 C o n s t r a i n t s f o r a D i s t r i b u t e d I m -

p l e m e n t a t i o n

Our very aim is to be able to express our autonomy-
based multi-agent model on a distributed architec-
ture in the most natural way. As the Environment
and the list of Agents will be distributed, we will
need to develop two types of mechanisms: some in

154

order to cope with agents crossing borders between
sub-environments (of course this should be achieved
transparently to the user, it should be part of the
software platform), and others in order to cope with
data consistency (e.g. updating the number of ob-
jects on a cell). We will need some flexible coordina-
tion tools that will not alter every agent's autonomy
and behavior: we will have to dismiss any unneces-
sary dependency.

3 .4 P r e l i m i n a r y I m p l e m e n t a t i o n in
S T L

The Environment is a torus grid with a four connec-
tivity (each cell has four neighbors). Agents comply
rigorously with the model previously introduced (Fig-
ure 2). They sense the environment through their
sensors and act upon their perception at once.

To put to good use distributed systems, the Envi-
ronment is split into sub-environments, each of which
being handled by a blop, as indicated on Figure 4,
thus providing an independent functioning between
sub-environments. Note that blops have to be ar-
ranged in accordance with the topology of the envi-
ronment they implement.

For our implementation we introduce four variants
of the P2P port type, described hereafter. P2P<-*
and P2P->* are identical to P2P<- and P2P-> except
that the saturation attribute is set to 2. P2PI<-N
is an input P2P port capable of matching with N
other P2P-> or P2P->* ports. P2PI->N is an out-
put P2P port capable of matching with N other P2P<-
or P2P<-* ports.

. Q::

.

- I : l w
3----E

3---{
~ N w

3 {
'~m I

Figure 4: Splitting an environment made up of cells into
four blops.

3.4.1 Global S t ruc tu r e

The meta-blop world is composed of an init process,
responsible for the global initialization of the system,
and a set of pre-defined blops, (called se), each one
handling a sub-environment.

The init process has two static ports (of type
P2P->) for every blop to be initialized (Figure 5 illus-

Figure 5: init process and blop se: solid and dotted lines
are introduced just for a purpose of visualization.

trates the connections between the init process and a
blop se). The rSle of the init process is twofold: first,
to create through its cre.Agts port the initial agents
within every blop; secondly, to set up through its
cre_SubEnv port the sub-environment (size, number
of objects, etc.) of every blop.

Blop se: Figure 5 shows the basic organization
of processes within a blop se and their coordination
through ports. Figure 6 diplays the implementation
of se in STL. Two types of processes may be distin-
guished: processes that are part of the multi-agent
coordination platform, namely initAgent and taxi,
and processes that are intrinsic to the application,
viz. subEnv and agent processes.

Ports of a Blop: Each blop has ten static ports:
four P2P->* outflowing direction ports (north_o,
south_o, west_o, east_o) and four P2P<-* inflowin 9 di-
rection ports (north_i, south_i, west_i, east_i), which
are used for agent migration, and two P2P<-* ports,
namely i_Agents and i_SubEnv used respectively for
the creation of the initial agents and for the initial-
ization of the subEnv process.

For the time being, the topology between blops is
set in a static manner, by creating the ports with ap-
propriate names. The four inflowing direction ports
of a blop match with ports of its inner process initA-
gent. The four outflowin# direction ports of a blop
match with ports of its inner process tax/.

in i tAgen t Process , ne t sAgen tEv t Event: The
initAgent process (C++ code in Figure 7) is respon-
sible for the creation. It has two static ports: newAr-
rival and init. The newArrival P2PI<-N port is con-
nected to all inflouring direction ports of the blop
within which it resides. As soon as a value comes
to this port, the initAgent process copies it onto its
init P2PI->N port. In the meantime, the newAgen-
tEvt event (see Figure 6) is triggered and it will create
a new agent process, which through its creation port

blop st(PORTS north_o north.i south_o south.i
west.o west.i east.o east_i
i_SubEnv i_agents,

VALUES name n s w e) {
P2P->* n o r t h _ o (n) ; P2P<-, n o r t h . i (n) ;
P2P->* sou th_o (s) ; P2P<-* s o u t h . i (s) ;
P2P->* west.o(w); P2P<-* west_i(w);
P2P->* east.o(e); P2P<-* east_i(e);
P2P<-* i_SubEnv("INIT-SE-" + name);
P2P<-* i_Agents("INIT-A-" + name);
process initAgent(PORTS newArrival iniZ) {

P2PI<-N newArrival("INIT-A-" + name,
n, s , W, e) ;

P2PI->N init("AGENT-INIT");
}
process agent(PORTS creation req_ans) {

P2P<- creation("AGENT-INIT");
BB req_ans("SUBENV-AGENT");

)
process subEnv(PORTS init in.out to.taxi) {

P2P<- init("INIT-SE-" + name);
BB in.out("SUBENV-AGENT") ;
P2P-> to_taxi("TAXI") ;

)
process taxi(PORTS tNorth tSouth tWest feast

requ) {
P2P-> tNorth(n); P2P-> tSouth(s);
P2P-> tWest(w); P2P-> t E a s t (e) ;
P2P<- requ("TAXI");

}
event newAgentEvt {

create process agent a;
}
create process subEnv env; ~
crea~e process taxi ix;
create process initAgent i;
when accessed(i.nevArrival) then nevAgentEvt;

Figure 6: Implementation of the blop se in STL.-

will read the value that was previously written on
the init port of the initAgent process. Values that
are transmitted feature for instance the state of the
agent to create.

agent Process: This process (C++ code in Fig-
ure 8) has two static ports (req_ans of type BB and
creation of type P2P<-) plus to_taxi a dynamic P2P->
port. As already stated, this process reads on its cre-
ation port some values (its state). All req_ans ports
of the agents are connected to a Blackboard, through
which agents will sense their environment (percep-
tion) and act into it (action), by performing put/get
operations (Linda-like in~out) with appropriate mes-
sages. The type of action depends on the type of
control Algorithm implemented within the agent (see
the architecture of an agent on Figure 2). The to_taxi
port is used to communicate dynamically with the
taxi process in case of migration: the state of the
agent is indeed copied to the taxi process. The de-
cision of migrating is always taken by the subEnv
process.

void initAgent(P2Pl<-N newArrival, P2Pl->N init) {
[ByteTempl<32> state;
I Msg stateTp(state);
[while (TROE) {
[newArrival.get(O, stateTp);

init.put(O, stateTp);
}}

Figure 7: Implementation of initAgent in C++.

[void agent(BB req_ans, P2P<- c r e a t i o n) {
ByteTempl<32> s t a t e , answer;
ByteObject<32> *req;
Msg stateTp(state); // Message
boolean noMigrat ion = TRUE;
c r e a t i o n . g e t (O , s ta teTp) ; / / I n i t i a l i z e
while (noMigrat ion) {

req ffi make . req() : / / P e r c e p t i o n / A c t i o n
Msg requestTp("request", req->id, *req);
req.ans.put(O, requestTp); // Put request
Msg answerTp("answer", req->id, answer);
req.ans.get(O, answerTp); // Get answer
con t ro l (answer) ; / / Cont ro l Algor i thm
state ffi u p d a t e _ s t a t e (a n s w e r) ;
noMigration = miErate.p(answer);

)
P2P-> to_taxi; // For migration
to_taxi.port.export("MIG" + req->id) ;
to.taxi.put(O, stateTp) ; // Transfer state
e x i t (0) ; / / t o t a x i

}

Figure 8: Implementation of agent in C++.

subEnv Process: The subEnv process (C++
code in Figure 9) handles the access to the sub-
environment and is in charge of keeping data con-
sistency. It is also responsible for migrating agents,
which will cross the border of a sub-environment. It
has a static in_out port (of type BB) connected to
the Blackboard and a static P2P-> port to_taxi con-
nected to the taxi process. Once initialized through
its init P2P<- port, the subEnv process builds the sub-
environment. By performing put~get operations with
appropriate tuples, the subEnv process will process
the requests of the agents (e.g. number of objects
on a given cell, move to next cell) and reply to their
requests (e.g. x objects on a given cell, move regis-
tered). When the move of an agent will lead to cross
the border (cell located in another blop), the subEnv
process will first inform the agent it has to migrate
and then inform the taxi process an agent has to be
migrated (the direction the agent has to take will be
transmitted).

The taxi Process: The taxi process (C++ code in
Figure 10) is responsible for migrating agents across
blops. It has four static direction ports (of type
P2P->), which are connected to the four outflowing
direction ports of the blop within which it stands.
When this process receives on its static P2P<- port

156

void subEnv(P2P<- init. BB in_out, P2P-> to_taxi) {
IntTempl id, nbOfA~, myNbOfObj, nbOfCell, pos;
ByteTempl<32> req, *resp;
SubEnv *subenv;
Msg initTp(nbOfAgt, myNbOfObj, nbOfCe11, pos);
iniZ.get(O, initTp);
// Build the sub-environment
subenv = init.env(nbOfAgt, nbOfObj, nbOfCell);
while(TRUE) { // Request-Answer

Msg requestTp("request", id, req);
in_out.get(O, requestTp); // Get request
resp = decide_response(req, subenv);
Msg answerTp("answer °', id, *resp);
in out.put(O, answerTp); // Put answer
if migrateP(res p) { // AEent migrates

Msg migTp(id, CharObject<4>(getDir(req)))~
to_taxi.put(O, migTp); // Inform taxi

}}}

Figure 9: Implementation of subEnv in C++.

void taxi(P2P-> tNorth, P2P-> tSouzh, P2P-> tWest,
P2P-> tEast, P2P<- requ) {

ChazTempl<4> direcZlon;
IntTempl id;
ByteTempl<32> sta~e;
Msg stateTp(state);
Msg init(id, direction);
while(TRUE){

requ.get(O, init); // Init. from subEnv
P2P<- con.Agt;
con_Agt.por~.export("MIG" + id);
con_Agt.get(O, s~ateTp); // Get agent's state
switch (direction) { // Migration

case "N": // Handle directions
tNorth.put(O, stateTp);
break;

}}}

Figure 10: Implementation of ta~ in C++.

requ the direction towards where this agent has to mi-
grate, it will create a dynamic P2P<- port con_Agt in
order to establish with the appropriate agent process
a communication, by means of which it will collect
all the useful information of the agent (state). These
values will then be written on the port correspond-
ing to the direction to take and will be transferred to
the newArrival port of the initAgent process of the
concerned blop inducing the dynamic creation of a
new agent process in the blop, thus materializing the
migration.

4 Conclus ion
In this paper, we presented STL our coordination
model and corresponding language. Although the
coordination model has some similarities with MAN-
IFOLD, ConCoord, Darwin or Linda (in-depth com-
parisons can be found in [21]), it however differs in
several points. Firstly STL allows the user to define
several different port types, yielding to different com-
munication metaphors like generative communication
or point to point message passing. Secondly, by using
a nested description language to specify different hi-
erarchies of coordination spaces, STL's hierarchical
coordination model seems to be more explicit than
the one used in MANIFOLD for example. Blops not
only serve as a sort of coordinator process which con-
trols coordination, but also as a separate name space
for port objects and modularization mechanism for
event handling.

We built a coordination platform based on STL's
coordination model. This first prototype has been de-
veloped on top of the existing PT-PVM platform [15].
A preliminary implementation of a classical collec-
tive robotics simulation illustrated the power of STL
and demonstrated its appropriateness for coordinat-

ing a class of autonomous agents, whose most crit-
ical constraint is the preservation of autonomy by
dismissing coordination mechanisms exclusively em-
bedded for purpose of implementation (unnecessary
dependencies).

As far as the development of a platform for multi-
agent programming is concerned, STL can be seen
as a first starting poip.t STL already includes mech-
anisms which are appropriate for multi-agent pro-
gramming, among which are: (1) the absence of a
central coordinator process, which does not relate to
any type of entity in the multi-agent system; (2) the
notion of ports avoiding any additional coordinator
process; and (3) in despite of (2) the notion of blop
hierarchy which in our case allows us to represent the
encapsulation of the environment and the agents.

The STL coordination model is still to be extended
in order to encompass as many generic coordination
patterns as possible, yielding in STL skeletons at
disposal for general purpose implementations. Fu-
ture works will consist in: (1) improving the model,
such as introducing new user defined attributes for
ports, dynamic ports for blops, data typing for port
types, refining subtyping of ports, and (2) developing
a graphical user interface to facilitate the specifica-
tion of the coordination p ~ t of a distributed appli-
cation.

There are two major outcomes to this work. First,
as autonomous agents' systems are aimed at ad-
dressing problems which are naturally distributed,
our coordination platform provides a user the pos-
sibility to have an actual distributed implementation
and therefore to benefit from the numerous advan-
tages of distributed systems, so that this work is
a step forward in the Autonomous Agents commu-
nity. Secondly, as the generic patterns of coordi-

157

nation for autonomy-based multi-agent implementa-
tions are embedded within the platform, a user can
quite easily develop new applications (e.g. by chang-
ing the type of autonomy of the agents, the type of
environment), insofar they comply with the generic
model.

A c k n o w l e d g e m e n t s

We are grateful to the reviewers who, thanks to their
comments, significantly improved the quality of the
paper.

References
[1] G. Agha, S. Folund WooYoung, and Kim Rajendra

Panwar. Abstraction and Modularity Mechanisms
for Concurrent Computing. IEEE Parallel ~ Dis-
tributed Technology, 1(2):3-14, May 1993.

[2] F. Arbab, I. Herman, and P. Spilling. An Overview
of Manifold and its Implementation. Concurrency:
Practice and Experience, 5(1):23-70, February 1993.

[3] Farhad Arbab. The IWIM Model for Coordination of
Concurrent Activities. In Paolo Ciancarini and Chris
Hankin, editors, First International Conference on
Coordination Models, Languages and Applications,
number 1061 in LNCS. Springer Verlag, April 1996.

[4] J.P. Ban~tre and D. Le M~tayer. Programming by
Multiset Transformation. Communicati.~ns of the
ACM, 36(1):98-111, 1993.

[5] M. Bourgois, J.M. Andreoli, and R. Pareschi. Ex-
tending Objects with Rules, Composition and Con-
currency: the LO Experience. Technical report, Eu-
ropean Computer Industry Research Centre, Mu-
nich, Germany, 1992.

[6] N. Carriero, E. Freeman, D. Gelernter, and
D. Kaminsky. Adaptive Parallelism and Piranha.
IEEE Computer, 28(1), January 1995.

[7] N. Carriero and D. Gelernter. Coordination Lan-
guages and Their Significance. Communications of
the AUM, 35(2):97-107, February 1992.

[8] N. Carriero, D. Gelernter, and L. Zuck. Bauhaus
Linda. In P. Ciancarini, O. Nierstrasz, and
A. Yonezawa, editors, Object-Based Models and
Languages for Concurrent Systems, volume 924 of
Lecture Notes in Computer Science, Berlin, 1995.
Springer Verlag.

[9] P. Ciancarini, A. Knoche, R. Tolksdorf, and Fabio
Vitali. PageSpace: An Architecture to Coordinate
Distributed Applications on the Web. In Proceed-
ings Fifth International World Wide Web Confer-
ence, volume 28 of Computer Networks and ISDN
Systems, 1996.

[10] T. Dagaeff, F. Chantemargne, and B. Hirsbrunner.
Emergence-based Cooperation in a Multi-Agent Sys-
tem. In Proceedings of the Second European Confer-
ence on Cognitive Science (ECCS'97), pages 91-96,
Manchester, U.K., April 9-11 1997.

[11] D. Gelernter. Generative Communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80-112, 1985.

[12] B. Hirshrunner, M. Aguilar, and O. Krone. CoLa: A
Coordination Language for Massive Parallelism. In
Proceedings ACM Symposium on Principles of Dis-
tributed Computing (PODC), Los Angeles, Califor-
nia, August 14-17 1994.

[13] A. A. Holzbacher. A Software Environment for Con-
current Coordinated Programming. In Paolo Cian-
carini and Chris Hankin, editors, First International
Conference on Coordination Models, Languages and
Applications, number 1061 in LNCS. Springer Vet-
lag, April 1996.

[14] T. Kielmann. Designing a Coordination Model for
Open Systems. In Paolo Ciancarini and Chris Han-
kin, editors, First International Conference on Coor-
dination Models, Languages and Applications, num-
ber 1061 in LNCS. Springer Verlag, April 1996.

[15] O. Krone, B. Hirsbrunner, and V. Sunderam. PT-
PVM+: A Portable Platform for Multithreaded
Coordination Languages . Calculateurs Parall~les,
8(2):167-182, 1996.

[16] Oliver Krone. STL and Pt-PVM: Tools and Con-
cepts for Coordination of Multi.threaded Applica-
tions. PhD thesis, University of Fribourg, 1997.

[17] P. Maes. Behavior-Based Artificial Intelligence. In
Proceedings of the Fifteenth Annual Meeting of the
Cognitive Science Society, pages 74-83, Hillsdale,
N J, 1993. Lawrence Erlbanm.

[18] Jeff Magee, Naranker Dulay, and Jeff Kramer. Struc-
turing parallel and distributed program~. Software
Engineering Journal, pages 73-82, March 1993.

[191 T. W. Malone and K. Crowston. The Interdisci-
plinary Study of Coordination. ACM Computing
Surveys, 26(1):87-119, March 1994.

[20] h. Rawston and h. Wood. BONITA: h Set of
Tuple Space primitives for Distributed Coordina-
tion. In R. H. Spragne Jr., editor, Proceedings of
the 30th Hawaii International Conference on Sys-
tem Sciences, volume 1, Wailea, Hawaii, 1997. IEEE.
Minitrack on Coordination Languages, Systems and
Applications.

[21] M. Schumacher, F. Chantemargue, T. Dagaeff,
O. Krone, and B. Hirsbrunner. STL++: A Coordi-
nation Language for Autonomy-based Multi-Agent
Systems. Technical report, Computer Science De-
partment, University of Fribourg, Fribourg, Switzer-
land, March 1998.

[22] T. Ziemke. Adaptive Behavior in autonomous
agents. To appear in Autonomous Agents, Adap-
tive Behaviors and Distributed Simulations'journal,
1997.

158

