
FAST RECALL OF REUSABLE FUZZY PLANS USING ACYCLIC
DIRECTED GRAPH MEMORY

Moataz Ahmed*, Ernesto Damiani**, and David Rine***

" SONEX Enterprises, Inc., 9990 Lee Highway, Fairfax, VA 22030, USA. E-mail: moataz.ahmed@sonexent.com
"" Universit5 di Milano, Polo Didattico e di Ricerca di Crema, Italia. E-mail: edamiani@crema.unimi.it

"*" Computer Science Dept., George Mason Univesity, Fiarfax, VA 22030, USA. E-mail: drine@cs.gmu.edu

KEY WORDS: Planning, Similarity Metrics, Plan
Reuse, Autonomous Real-Time System.

A B S T R A C T

A planning capability is one of the important features
that autonomous real-time systems must have. Fuzzy-
based planning is more appropriate for planing in real-
time dynamic environments such as vehicle navigation
and patient monitoring. Planning in such environments
needs to be performed as quickly as possible. Planning
can be made quicker by reusing portions of similar previ-
ous plan segments to efficiently derive a new plan.
Planning problems, then, include at least two sub-
problems. First, the problem of efficiently and effec-
tively generating a plan from scratch. Second, the prob-
lem of efficiently and effectively retrieving a plan suit-
able to be reused and then repairing it to fit the new situa-
tion. This paper presents a memory structure as well as
fuzzy-based similarity metric for efficiently and effec-
tively retrieving plans specified using fuzzy logic lin-
guistic variables. In the paper, an acyclic directed graph
(ADG) model is proposed for memory, such that each
node represents an intermediate step in the execution of
plans that are represented by other nodes connected to it.
Examples of similarity measures computations are pre-
sented.

I. INTRODUCTION

The ability to act appropriately in dynamic environ-
ments is critical to the survival of all living creatures. A
long standing problem in the field of automated reason-
ing is that of designing systems which can describe a set
of actions (plan) that can be expected to allow the system
to reach a desired goal. Ideally, the set of actions so pro-
duced is then passed on to a robot, a manufacturing sys-
tem, or some other form of effector, which can follow the
plan and produce the desired output.

Within the artificial intelligence community, there
exist a number of competing paradigms for planning.
This paper is concerned with one of these paradigms:

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies ate not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, renuires prior snecific aermission and/or a fee. ~ 7

case-based planning. In this paper, we present a case-
based planner architecture that can effectively and effi-
ciently uses its old experiences (plans). The paper em-
phasizes on plans storage and retrieval aspects.

2. BACKGROUND

2.1. Planning Systems

The problem of generating a sequence of actions to ac-
complish a goal is referred to as planning. Normally,
each action has a set of pre-conditions which must be
satisfied before the action can be applied, and a set of
post-conditions which will be true after the action execu-
tion. A planning problem is characterized by an initial
state and goal statement. A state is a collection of char-
acteristics of an object that is sufficiently detailed to
uniquely determine the new characteristics of the object
that will result after an action. The initial state descrip-
tion tells the planning system the way the worm is "right
now". The goal statement tells the planning system the
conditions which must be satisfied when the plan has
been executed. The world in which the planning takes
place is often called the application domain. We will
sometimes refer to the goal statement as simply the goal.
A plan is an organized collection of actions. A plan is
said to be a solution to a given problem if it is applicable
in the problem's initial state, and if after plan execution,
the goal is true. A plan is applicable if all the precondi-
tions of any action, within the plan, are satisfied before
applying that action. In many planning systems, a goal
may be transformed into a set of other, usually simpler,
goals called subgoals.

Knowledge-based planners are class of AI problem
solving systems that are broadly characterized by the fact
that they apply a domain knowledge to search heuristi-
cally through a space of possible actions to find a se-
quence of actions that will achieve a goal. A brief over-
view on the principal paradigms for knowledge-base
planning. Examples of such paradigms found within the
AI community can be found in Lehner [7].

2.2. Intelligent Agents

In the last few years, there has emerged and explosion of
interest in the development of intelligent agents (IAs)
[11, [71, [101. Although the term intelligent agent does

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330560.330702&domain=pdf&date_stamp=1998-02-27

not have a precise or agreed upon definition, IAs usually
refer to robust programs that communicate with other
entities to gather information and make decisions. A
multi-agent system (MAS) can be thought as: "...several
autonomous intelligent agents which coexist and may
collaborate with other agents in a common world. Each
agent may accomplish its own tasks or cooperate with
other agents to perform a personal or global task." [3].

given desired objectives of the autonomous system, the
Planning Agent sets a method (a plan) that efficiently
and effectively uses available resources to achieve the
desired objectives. The Planning Agent transforms ob-
jectives, together with a perception of the world, into a
course of action which is expected to achieve these ob-
jectives.

Different types of agents may compose the MAS,
each of them having different reasoning capabilities on
his or others' actions and beliefs. Three bi'oad classes of
agents are [9]:

• Reactive agent: It reacts to messages from other
agents and can not reason about his or others' be-
liefs and actions. It acts on pre-defined plans and
can send messages to other agents.

• Intentional agent: It can reason about the agent's
beliefs and actions, create plans and execute them.
It can not reason about others' beliefs and actions.

• Social agent: An intentional agent with explicit
models of other agents and the capability to main-
tain these models. It can adapt and plan the agent's
actions with respect to others' plans and actions.

2.3. Autonomous Real-Time Systems

Designing a system for totally autonomous operation is
a difficult task which encompasses several aspects such
as planning, sensory-motor controlling, and adapting.
A major advantage of using fuzzy logic for designing
totally autonomous systems is that fuzzy logic can allow
different problem solving techniques to cooperate and
exchange information to solve a global task. For exam-
ple, in autonomous vehicles domain, fuzzy logic allows
automated planning techniques to cooperate with fuzzy
logic control techniques [8] to drive a vehicle from one
location to another.

Ahmed and Rine [21 have introduced a fuzzy.based
framework for designing totally autonomous real-time
systems. In this fuzzy-based framework, a state of the
application domain is represented by predicates with
associated values in a form of fuzzy sets (as opposed to
the TRUE and FALSE crisp values). Each predicate de-
scribes some property in the application domain in its
present state. Each predicate may or may not have argu-
ments. For example the predicate SPEED(R) with one
argument R represents the speed of the object R.

The fuzzy-based framework is based on cooperative
intelligent agents that communicate through a common
blackboard. The framework is comprised of four intelli-
gent agents. These agents are: 1) Perception Agent, 2)
Planning Agent, 3) Control Agent, and 4) Identification
Agent .

The Perception Agent is concerned with understand-
ing the world (application domain) where the autono-
mous system operates. According to the given available
resources to the autonomous system, and according to the 2 7 3

Figure 1. Agent-Based Framework for Designing Totally
Autonomous Real-Time Systems.

As in Command, Control, Communication, and Intelli-
gence (C~I) systems [5], the Planning Agent operates in
two modes, corresponding respectively to the prepara-
tory. and execution phases of a mission:

* Mission planning: Searching for and selecting a
plan which is expected to achieve the objectives.

• Effectiveness monitoring: Continually reassessing
the suitability of the promulgated plan.

On the other hand, the Control Agent transforms the
required course of action (i.e., plan), together with a per-
ception of the world, into resource manipulation orders
such that the actual resource activity complies with the
required resource activity. As one can see, the Control
Agent is also a planner.

The purpose of the Identification Agent is to continu-
ally identify the behavior of the resources controlled by
the system. This continuos identification process allows
the Planning Agent and the Control Agent to continu-
ously adapt their plans in order to accommodate unpre-
dictable environment changes, whether these changes
arise within the resources or external to them. The Man-
aging Agent works as a managing unit (scheduler), for
example for concurrency control.

2.4. Case-Based Planning

This paradigm is founded on the recognition that an ef-
fective planner does not enter a planning problem from
scratch. The planner will usually have a store of template
plans or historical cases from which a planner can re-
trieve plans that have worked in similar situations.

Real-time performance requires that the system re-
spond before the environment can change substantially.
Planning in real-time dynamic environments such as
vehicle navigation and patient monitoring has to be
continuos and needs to be performed as quickly as possi-
ble. Planning can be made quicker by reusing portions of
similar previous plan segments to efficiently derive a
new plan. For continuous quick planning, Ahmed and
Rine [2] have introduced an architecture for a case-based
planner (see Figure 2). This architecture is a modified
version of the architecture proposed by Hammond [4].

this process is the well known fact that the use of
appropriate subgoals can greatly reduce the amount
of search necessary to solve a problem [6]. It is of-
ten the case that given a collection of subgoals,
previously satisfied subgoals must be violated in or-
der to make further progress towards the main goal
regardless of the solution order. Such a collection of
subgoals are called non-serializable. The reason
that human problem solvers establish and solve
these subgoals is that they know what sequence of
operators to apply to solve the next subgoal while
not violating already satisfied subgoals. Such a se-
quence of primitive operators is called a macro op-
erator. Progress toward the solution in this context
is getting to a state from which the problem solver
knows macro operators that will achieve the next
subgoal.
R e u s a b i l i t y m e t r i c s - are measurable characteristics
that can be used to measure the reusability of plans.
As an example of a reusability metric is the plan co-
hesion.

Figure 2. Case-Based Planner Architecture.

The following is a description of the major elements of
the Case-Based Planner architecture:

• R e t r i e v e r - R e s p o n s i b l e for searching for past prob-
lem-solution pairs in the memory. The Retriever
searches for a past case that is similar to the new
case using similarity metrics. A similarity metric is
a measurable characteristic that can be used to decide
how similar two planning problems are.

• M o d i f i e r - Responsible for modifying the solution
which has been retrieved from the memory by in-
stantiating the solution parameters with the new
problem parameters. In case the degree of similarity
is not 100%, some error may arise while solving the
new problem.

• R e p a i r e r - is responsible for fixing the error using
any other planning technique.

• S t o r e r - Responsible for storing successful plans
into the memory for future planning. It is also re-
sponsible for assuring that the memory is not over-
whelmed by an ever-increasing number of stored
plans. For the stored plans to be reused efficiently
and effectively, the Storer generalizes, abstracts,
and measures the reusability of plans before storing
them into the memory.

• A b s t r a c t i o n ro les - are rules extracted from an ab-
straction model or abstraction relationships of the
application domain. They are used to abstract the
successful plans.

• G e n e r a l i z a t i o n ru les - are rules extracted from the
object submodel of the domain model of the applica-
tion domain. They are used to generalize the ab-
stracted successful plans.

• M a c r o o p e r a t o r e x t r a c t o r - is the process of re-
engineering a successful plan details (which consti-
tute the subplans in the abstract space) so that they

3. PROBLEM STATEMENT

Key to case-base planning techniques is remembering.
Remembering has two parts: integrating problem-
solution pairs into memory when they happen and recall-
ing them in appropriate situations later on. The problem
addressed in this paper is concerned with the memory
structure of the problem-solution pairs, and the similar-
ity metrics that are used by the Retriever to find in mem-
ory the problems that are similar to the new problem.

4. THE MEMORY STRUCTURE

A plan can be recursively defined in a B a c k u s Naur F o r m

(B N F) as follows:

<PLAN> :: = <ACTION> I
<PLAN> <ACTION> I
<ACTION> <PLAN>

<ACTION> ::=Any of the available actions in the
application domain.

Plan I Plan 5

Actio~n 4 Action 5

Figure 3. ADG Memory: An Example.

A plan can be stored in a form of a tree structure. How-
ever, since some actions, some plans, or some portions
of plans are included in more than one plan, we propose
an a c y c l i c d i r e c t e d g r a p h (ADG) model for problem-
solution pairs memory, such that each node represents an

can work as macro operators. The rationale b e h i n d 2 7 4

intermediate step in the execution of plans that are repre-
sented by other nodes connected to it.

One can look at a plan, which is a sequence of ac-
tions, as a macro that has its own pre-conditions and
post-conditions. The pre-conditions of a plan is ex-
tracted from its initial state. These pre-conditions are the
set of predicates that appear in the initial state and used
during the plan execution. Hence, plans in memory can
be treated exactly the same way as actions. Plans as well
as actions are stored as shown in Figure 4. Plan-ID is
either the plan or the action identifier. Pre-Conditions
and Post-Conditions are represented in unquantified
predicates of the first-order predicate logic.

that each predicates have an associated value in a form of
fuzzy sets F~ Two sets of predicates (e.g.. OS and NS)
may have the same predicate (e.g., SPEED(R)), while the
fuzzy sets that represent the predicate in each one of the
sets may be different. For instance, the fuzzy set F, os that
represents SPEED(R) in OS may be different than the
fuzzy set F,.Ns that represents SPEED(R) in NS.

[x+l.ti(l .x), VPi~(ORj~NI)
PSMj, =

t O, V P, ~ (ORj - Nl)

x + la, (1 - x),
PSMji= { O,

VP~ ~ (OSj c~NS)

t,'P~ ~ (OSj - NS) ~(NS - 0~)

+ - P l a n - I D
P r e - C o n d i t i o n s

P o s t - C o n d i t i o n s

Figure 4. ADG Memory Structure.

The notation used in Figure 4 is the Object Modeling
Technique (OMT) notation. The "0" symbol denotes an

aggregation (part-of) of relation, The "¢ ' symbol de-
notes "many (zero or more)" class.

5. S I M I L A R I T Y M E T R I C S

Let OR be the set of all predicates that appear in the pre-
conditions of an old problem-solution pair. Let OS be .
the set of all predicates that appear in the post-
conditions of an old problem-solution pair. Let NI be the
set of all predicates that alSpear in the initial state of the
new problem. Let NS be the set of all predicates that
appear in the goal statement of a new problem.

in order to use the proposed metric, each past prob-
lem-solution pair is indexed by the corresponding pre-
conditions predicates and post-conditions predicates.
Each predicate is assigned an hnportance value (IV) in the
interval [0,1]. This value, that can be modified by a
feedback mechanism, expresses how much the predicate
is important for the overall execution of the plan. When
a new problem is presented to the system in terms of its
initial state's predicates and goal statement predicates.
the system looks for old problem-solution pairs that
have high similarity with the new problem. Intuitively,
we require that

OR ~ NI. and

OS = NS.

For each old problem-solution pair PSi in the memory, a
predicate similarity measure PSM, for each predicate P,

ORj. P, ~ OSj. and P, ~ NS is calculated as follows. Note
that P, represents the predicate (e.g. SPEED (R)). Recall

where x ~ [0, l] is a constant, and /4 is the maximum
degree of membership that belongs to the fuzzy set that
is the result of the fuzzy intersection Fi.s~ c~ Fi.s2. For g

(OR~ tn Nl), SI = ORj andS2 = NL ForP, ~ (OS~ t~ NS), $1
= OSj and $2 = NS. x is used to differentiate between the
case in which P, ¢ ((OR~ ~ Nl) ~ (OSj ~ NS)) and t~ = O,

and the case in which P~ ~ ((ORj - NI) ~(OSj - NS) ~ (NS -
Os~)). x may be adjusted according to the performance.
Note that each predicate has arguments. The intersection
used here is based on instantiation. For example, we may
find SPEED(OI) in OS and SPEED(LI) in/VS. The predi-
cate belongs to the intersection if O l can be instantiated
(replaced) with L1 according to the object model of the
domain model.

The overall similarity measure SMj between the new
problem and the old problem-solution pair PS~ is calcu-
lated as follows:

iv, PSMj,
i

= m a x ,R EIv,
i

where PR is the possible permutations to map the argu-
ments of the predicates. The system does a permutation
to map the arguments of the new problem initial state and
the new problem goal statem6nt with the arguments of
the old-problem preconditions and the old problem goal-
statement. The combination that gives the maximum
value is used and such a value represents the overall simi-
larity measure between the two problems.

6. I L L U S T R A T I V E EXAMPLE

Using fuzzy logic, states of the application domain can
be described by fuzzy sets. Examples of such fuzzy sets
in autonomous vehicles domain are: SPEED(OIL
DISTANCE(OI,02), ICY_ROAD, etc. Where
SPEED(object) gives the speed of an object as a fuzzy set,
DISTANCE(objectl , object2)gives the distance between
two objects as a fuzzy set, ICY_ROAD is a fuzzy set that
represents how icy the road is. It may be the case that the
vehicle can have access to an accurate measure of its
speed, i.e., it can have its Speed as a crisp value. How-
ever, this is not ,, " when t~ing ~:estimate the speed of

other objects. This is an advantage of using fuzzy sets to
represent the predicates that describe the state of the
world as opposed to using crisp predicates (e.g., predi-
cates of the first-order predicate logic).

As an illustrative example of a similarity measure
computation, consider the following:

Old problem-solution pair in memory:

* Pre-conditions:
Predicate1(03,02), Predicate2(02,01), Predi-
cate3(O l, 04), Predicate4(05), Predicate5(06)

• Post-conditions:
Predicatel(Ol,02), Predicate2(02,03), Predi-
cate3(03, 04)

New problem:

• Initial State:
Predicatel(L1,L2), Predicate2(L2,L3), Predi-
cate3(L3, L4), Predicate4(L5), Predicate6(L7)

• Goal Statement:
Predicatel(L1,L2), Predicate2(L2,L3), Predi-
cate3(L3,L4)

Assume that the values (fuzzy sets) of the predicates :
Predicate1, Predicate2, and Predicate3 are the same in
both the OR and NI, and OS and NS. This implies that # =
1 for those predicates. Then, using the following instan-
tiation: LI/OI, L2/02, L3/03, and L4/04, we get PSM =
1 for Predicate1, Predicate2, and Predicate3 in OS and NS.
On the other hand, we get PSM -- 0 for Predicate1, Predi.
cate2, and Predicate3 in OR and NI. Assume that values
for Predicate4 in both OR and NI are as shown in Figure
5.

&
gA N I O R

O * 15fi'" °*° °" °'* " "*°" i ~ ~ °''" *'*'°

P o s s i b l e V a l u e s for P r e d i c a t e 4
v

Figure 5. Values of Predicate4 in both N! and OR.

Figure 5 shows that the fuzzy intersection has a maxi-
mum degree of membership/.t = 0.5. Assume that x = 0.5,
then for Predicate4 (with L5/05 instantiation), PSM =
0.5 * 0.5 * 0.5 = 0.75. On the other hand, Predicate5 has
a PSM = 0.0 (there is no match). This imply that the
overall SM = (6.75/!1) = O.61. Note that the instantia-
tion (LI/OI, L2/02, L3/04, L4/04, and L5/05) gives the
maximum SM which is 0.61.

7. C o n c l u s i o n

This paper has described a mechanism for retrieval of
reusable fuzzy-based plans in a repository storing sue-

cessful problem-solution pairs. The proposed method is
based on a memory structure that has a form of acyclic
directed graph (ADG), and a reusability metric that meas-
ures how close the new problem and an already exist ing
problem-solution pair are.

Future works will focus on conducting experimental
case studies to give a feeling of how the proposed method
is performing. Future work will also investigate the ef-
fect of changing the value of x on the performance. It
will also investigate the effect of assigning a constant
value y ~ [0, 1] to any two predicates P,, Pj ~ (OR - NI) or

P,, Pj~ (OS-NS) ~(NS- OS), but P~ and P, have the same
name. Example of such P, and Pj is Predicate1(03, 02) i n
OR and Predicatel(L1, L2) in NI in the illustrative exam-
pie. above.

8. R E F E R E N C E S

[1] ACM (1994). Special Issue of Communications of
the ACM on Intelligent Agents. July.

[2] Ahmed, M., and Rine D., (1997). "A Reusable Intel-
ligent Autopilot: A Framework", Accepted for publi-
cation, International Journal of Applied Software
Technology (IJAST).

[3] Demazeau, Y., and Muller, J. (1989). "Decentralized
Artificial Intelligence." In Proceedings of the First
European Workshop on Modeling Autonomous
Agents in Multi-Agent World, North-Holland,
August.

[4] Hammond, K. J. (1989). Case-Based Planning.
Academic Press, Inc.

[5] Hams, C.J. and White, I. (eds.), (1987). Advances
in Command, Control & Communication Systems.
Peter Pererinus Ltd., London, United Kingdom.

[6] Korf. R. E., (1990). "Planning as Search: A Quanti-
tative Approach." In Readings in PLANNING, J. Al-
len, J. Hendler, and A. Tate (EDS.), Morgan Kauf-
mann Publishers, Inc.

[7] Lehner, P. E. (1996). An Introduction to Knowl-
edge-Based Planning Paradigms and Approaches.
George Mason University.

[8] Mamdani, E.H. (1993). "Twenty years of fuzzy con-
trol: experiences gained and lessons learnt." In
1993 IEEE International Conference on Fuzzy Sys-
tems (San Francisco, CA, March 28-April 1). IEEE,
Piscataway. N.J., pp.339-344;

[9] Moulin, B.. and Cloutier, L. (1994). "'Collaborative
work based on multiagent architectures: A methodo-
logical perspective." In Soft Computing: Fuzzy
Logic, Neural Networks, and Distributed Artificial
Intelligence. Prentice Hall.

[10] Wooldridge, M., and Jennings, N. (eds). (1995).
Intelligent Agents. Springer-Verlag.

276

