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A B S T R A C T  

A planning capability is one of the important features 
that autonomous real-time systems must have. Fuzzy- 
based planning is more appropriate for planing in real- 
time dynamic environments such as vehicle navigation 
and patient monitoring. Planning in such environments 
needs to be performed as quickly as possible. Planning 
can be made quicker by reusing portions of similar previ- 
ous plan segments to efficiently derive a new plan. 
Planning problems, then, include at least two sub- 
problems. First, the problem of efficiently and effec- 
tively generating a plan from scratch. Second, the prob- 
lem of efficiently and effectively retrieving a plan suit- 
able to be reused and then repairing it to fit the new situa- 
tion. This paper presents a memory structure as well as 
fuzzy-based similarity metric for efficiently and effec- 
tively retrieving plans specified using fuzzy logic lin- 
guistic variables. In the paper, an acyclic directed graph 
(ADG) model is proposed for memory, such that each 
node represents an intermediate step in the execution of 
plans that are represented by other nodes connected to it. 
Examples of similarity measures computations are pre- 
sented. 

I. INTRODUCTION 

The ability to act appropriately in dynamic environ- 
ments is critical to the survival of all living creatures. A 
long standing problem in the field of automated reason- 
ing is that of designing systems which can describe a set 
of actions (plan) that can be expected to allow the system 
to reach a desired goal. Ideally, the set of actions so pro- 
duced is then passed on to a robot, a manufacturing sys- 
tem, or some other form of effector, which can follow the 
plan and produce the desired output. 

Within the artificial intelligence community, there 
exist a number of competing paradigms for planning. 
This paper is concerned with one of these paradigms: 
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case-based planning. In this paper, we present a case- 
based planner architecture that can effectively and effi- 
ciently uses its old experiences (plans). The paper em- 
phasizes on plans storage and retrieval aspects. 

2. BACKGROUND 

2.1. Planning Systems 

The problem of generating a sequence of actions to ac- 
complish a goal is referred to as planning. Normally, 
each action has a set of pre-conditions which must be 
satisfied before the action can be applied, and a set of 
post-conditions which will be true after the action execu- 
tion. A planning problem is characterized by an initial 
state and goal statement. A state is a collection of char- 
acteristics of an object that is sufficiently detailed to 
uniquely determine the new characteristics of the object 
that will result after an action. The initial state descrip- 
tion tells the planning system the way the worm is "right 
now". The goal statement tells the planning system the 
conditions which must be satisfied when the plan has 
been executed. The world in which the planning takes 
place is often called the application domain. We will 
sometimes refer to the goal statement as simply the goal. 
A plan is an organized collection of actions. A plan is 
said to be a solution to a given problem if it is applicable 
in the problem's initial state, and if after plan execution, 
the goal is true. A plan is applicable if all the precondi- 
tions of any action, within the plan, are satisfied before 
applying that action. In many planning systems, a goal 
may be transformed into a set of other, usually simpler, 
goals called subgoals. 

Knowledge-based planners are class of AI problem 
solving systems that are broadly characterized by the fact 
that they apply a domain knowledge to search heuristi- 
cally through a space of possible actions to find a se- 
quence of actions that will achieve a goal. A brief over- 
view on the principal paradigms for knowledge-base 
planning. Examples of such paradigms found within the 
AI community can be found in Lehner [7]. 

2.2. Intelligent Agents 

In the last few years, there has emerged and explosion of 
interest in the development of intelligent agents (IAs) 
[11, [71, [101. Although the term intelligent agent does 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330560.330702&domain=pdf&date_stamp=1998-02-27


not have a precise or agreed upon definition, IAs usually 
refer to robust programs that communicate with other 
entities to gather information and make decisions. A 
multi-agent system (MAS) can be thought as: "...several 
autonomous intelligent agents which coexist and may 
collaborate with other agents in a common world. Each 
agent may accomplish its own tasks or cooperate with 
other agents to perform a personal or global task." [3]. 

given desired objectives of the autonomous system, the 
Planning Agent sets a method (a plan) that efficiently 
and effectively uses available resources to achieve the 
desired objectives. The Planning Agent transforms ob- 
jectives, together with a perception of the world, into a 
course of action which is expected to achieve these ob- 
jectives. 

Different types of agents may compose the MAS, 
each of them having different reasoning capabilities on 
his or others' actions and beliefs. Three bi'oad classes of 
agents are [9]: 

• Reactive agent: It reacts to messages from other 
agents and can not reason about his or others' be- 
liefs and actions. It acts on pre-defined plans and 
can send messages to other agents. 

• Intentional agent: It can reason about the agent's 
beliefs and actions, create plans and execute them. 
It can not reason about others' beliefs and actions. 

• Social agent: An intentional agent with explicit 
models of other agents and the capability to main- 
tain these models. It can adapt and plan the agent's 
actions with respect to others' plans and actions. 

2.3. Autonomous Real-Time Systems 

Designing a system for totally autonomous operation is 
a difficult task which encompasses several aspects such 
as planning, sensory-motor controlling, and adapting. 
A major advantage of using fuzzy logic for designing 
totally autonomous systems is that fuzzy logic can allow 
different problem solving techniques to cooperate and 
exchange information to solve a global task. For exam- 
ple, in autonomous vehicles domain, fuzzy logic allows 
automated planning techniques to cooperate with fuzzy 
logic control techniques [8] to drive a vehicle from one 
location to another. 

Ahmed and Rine [21 have introduced a fuzzy.based 
framework for designing totally autonomous real-time 
systems. In this fuzzy-based framework, a state of the 
application domain is represented by predicates with 
associated values in a form of fuzzy sets (as opposed to 
the TRUE and FALSE crisp values). Each predicate de- 
scribes some property in the application domain in its 
present state. Each predicate may or may not have argu- 
ments. For example the predicate SPEED(R) with one 
argument R represents the speed of the object R. 

The fuzzy-based framework is based on cooperative 
intelligent agents that communicate through a common 
blackboard. The framework is comprised of four intelli- 
gent agents. These agents are: 1) Perception Agent,  2) 
Planning Agent, 3) Control Agent,  and 4) Identification 
Agent .  

The Perception Agent is concerned with understand- 
ing the world (application domain) where the autono- 
mous system operates. According to the given available 
resources to the autonomous system, and according to the 2 7 3 

Figure 1. Agent-Based Framework for Designing Totally 
Autonomous Real-Time Systems. 

As in Command, Control, Communication, and Intelli- 
gence (C~I) systems [5], the Planning Agent operates in 
two modes, corresponding respectively to the prepara- 
tory. and execution phases of a mission: 

* Mission planning: Searching for and selecting a 
plan which is expected to achieve the objectives. 

• Effectiveness monitoring: Continually reassessing 
the suitability of the promulgated plan. 

On the other hand, the Control Agent transforms the 
required course of action (i.e., plan), together with a per- 
ception of the world, into resource manipulation orders 
such that the actual resource activity complies with the 
required resource activity. As one can see, the Control 
Agent is also a planner. 

The purpose of the Identification Agent is to continu- 
ally identify the behavior of the resources controlled by 
the system. This continuos identification process allows 
the Planning Agent and the Control Agent to continu- 
ously adapt their plans in order to accommodate unpre- 
dictable environment changes, whether these changes 
arise within the resources or external to them. The Man- 
aging Agent works as a managing unit (scheduler), for 
example for concurrency control. 

2.4. Case-Based Planning 

This paradigm is founded on the recognition that an ef- 
fective planner does not enter a planning problem from 
scratch. The planner will usually have a store of template 
plans or historical cases from which a planner can re- 
trieve plans that have worked in similar situations. 



Real-time performance requires that the system re- 
spond before the environment can change substantially. 
Planning in real-time dynamic environments such as 
vehicle navigation and patient monitoring has to be 
continuos and needs to be performed as quickly as possi- 
ble. Planning can be made quicker by reusing portions of 
similar previous plan segments to efficiently derive a 
new plan. For continuous quick planning, Ahmed and 
Rine [2] have introduced an architecture for a case-based 
planner (see Figure 2). This architecture is a modified 
version of the architecture proposed by Hammond [4]. 

this process is the well known fact that the use of 
appropriate subgoals can greatly reduce the amount 
of search necessary to solve a problem [6]. It is of- 
ten the case that given a collection of subgoals, 
previously satisfied subgoals must be violated in or- 
der to make further progress towards the main goal 
regardless of the solution order. Such a collection of 
subgoals are called non-serializable. The reason 
that human problem solvers establish and solve 
these subgoals is that they know what sequence of 
operators to apply to solve the next subgoal while 
not violating already satisfied subgoals. Such a se- 
quence of primitive operators is called a macro op- 
erator. Progress toward the solution in this context 
is getting to a state from which the problem solver 
knows macro operators that will achieve the next 
subgoal. 
R e u s a b i l i t y  m e t r i c s  - are measurable characteristics 
that can be used to measure the reusability of plans. 
As an example of a reusability metric is the plan co- 
hesion. 

Figure 2. Case-Based Planner Architecture. 

The following is a description of the major elements of 
the Case-Based Planner architecture: 

• R e t r i e v e r -  R e s p o n s i b l e  for searching for past prob- 
lem-solution pairs in the memory. The Retriever 
searches for a past case that is similar to the new 
case using similarity metrics. A similarity metric is 
a measurable characteristic that can be used to decide 
how similar two planning problems are. 

• M o d i f i e r -  Responsible for modifying the solution 
which has been retrieved from the memory by in- 
stantiating the solution parameters with the new 
problem parameters. In case the degree of similarity 
is not 100%, some error may arise while solving the 
new problem. 

• R e p a i r e r  - is responsible for fixing the error using 
any other planning technique. 

• S t o r e r -  Responsible for storing successful plans 
into the memory for future planning. It is also re- 
sponsible for assuring that the memory is not over- 
whelmed by an ever-increasing number of stored 
plans. For the stored plans to be reused efficiently 
and effectively, the Storer generalizes, abstracts, 
and measures the reusability of plans before storing 
them into the memory. 

• A b s t r a c t i o n  ro les  - are rules extracted from an ab- 
straction model or abstraction relationships of the 
application domain. They are used to abstract the 
successful plans. 

• G e n e r a l i z a t i o n  ru les  - are rules extracted from the 
object submodel of the domain model of the applica- 
tion domain. They are used to generalize the ab- 
stracted successful plans. 

• M a c r o  o p e r a t o r  e x t r a c t o r  - is the process of re- 
engineering a successful plan details (which consti- 
tute the subplans in the abstract space) so that they 

3. PROBLEM STATEMENT 

Key to case-base planning techniques is remembering. 
Remembering has two parts: integrating problem- 
solution pairs into memory when they happen and recall- 
ing them in appropriate situations later on. The problem 
addressed in this paper is concerned with the memory 
structure of the problem-solution pairs, and the similar- 
ity metrics that are used by the Retriever to find in mem- 
ory the problems that are similar to the new problem. 

4. THE MEMORY STRUCTURE 

A plan can be recursively defined in a B a c k u s  Naur  F o r m  

( B N F )  as follows: 

<PLAN> :: = <ACTION> I 
<PLAN> <ACTION> I 
<ACTION> <PLAN> 

<ACTION> ::=Any of the available actions in the 
application domain. 

Plan I Plan 5 

Actio~n 4 Action 5 

Figure 3. ADG Memory: An Example. 

A plan can be stored in a form of a tree structure. How- 
ever, since some actions, some plans, or some portions 
of plans are included in more than one plan, we propose 
an a c y c l i c  d i r e c t e d  g r a p h  (ADG) model for problem- 
solution pairs memory, such that each node represents an 

can work as macro operators. The rationale b e h i n d 2 7 4  



intermediate step in the execution of plans that are repre- 
sented by other nodes connected to it. 

One can look at a plan, which is a sequence of ac- 
tions, as a macro that has its own pre-conditions and 
post-conditions. The pre-conditions of a plan is ex- 
tracted from its initial state. These pre-conditions are the 
set of predicates that appear in the initial state and used 
during the plan execution. Hence, plans in memory can 
be treated exactly the same way as actions. Plans as well 
as actions are stored as shown in Figure 4. Plan-ID is 
either the plan or the action identifier. Pre-Conditions 
and Post-Conditions are represented in unquantified 
predicates of the first-order predicate logic. 

that each predicates have an associated value in a form of 
fuzzy sets F~ Two sets of predicates (e.g.. OS and NS) 
may have the same predicate (e.g., SPEED(R)), while the 
fuzzy sets that represent the predicate in each one of the 
sets may be different. For instance, the fuzzy set F, os that 
represents SPEED(R) in OS may be different than the 
fuzzy set F,.Ns that represents SPEED(R) in NS. 

[ x+l.ti(l .x), VPi~(ORj~NI)  
PSMj, = 

t O, V P,  ~ (ORj  - Nl )  

x + la, (1 - x), 
PSMji= { O, 

VP~ ~ (OSj c~NS) 

t,'P~ ~ (OSj - NS) ~(NS - 0~) 

+ - P l a n - I D  
P r e - C o n d i t i o n s  

P o s t - C o n d i t i o n s  

Figure 4. ADG Memory Structure. 

The notation used in Figure 4 is the Object Modeling 
Technique (OMT) notation. The "0" symbol denotes an 

aggregation (part-of) of relation, The "¢ '  symbol de- 
notes "many (zero or more)" class. 

5. S I M I L A R I T Y  M E T R I C S  

Let OR be the set of all predicates that appear in the pre- 
conditions of an old problem-solution pair. Let OS be .  
the set of all predicates that appear in the post- 
conditions of an old problem-solution pair. Let NI be the 
set of all predicates that alSpear in the initial state of the 
new problem. Let NS be the set of all predicates that 
appear in the goal statement of a new problem. 

in order to use the proposed metric, each past prob- 
lem-solution pair is indexed by the corresponding pre- 
conditions predicates and post-conditions predicates. 
Each predicate is assigned an hnportance value (IV) in the 
interval [0,1]. This value, that can be modified by a 
feedback mechanism, expresses how much the predicate 
is important for the overall execution of the plan. When 
a new problem is presented to the system in terms of its 
initial state's predicates and goal statement predicates. 
the system looks for old problem-solution pairs that 
have high similarity with the new problem. Intuitively, 
we require that 

OR ~ NI. and 

OS = NS. 

For each old problem-solution pair PSi in the memory, a 
predicate similarity measure PSM, for each predicate P, 

ORj. P, ~ OSj. and P, ~ NS is calculated as follows. Note 
that P, represents the predicate (e.g. SPEED (R)). Recall 

where x ~ [0, l] is a constant, and /4 is the maximum 
degree of membership that belongs to the fuzzy set that 
is the result of the fuzzy intersection Fi.s~ c~ Fi.s2. For g 

(OR~ tn Nl), SI = ORj andS2 = NL ForP, ~ (OS~ t~ NS), $1 
= OSj and $2 = NS. x is used to differentiate between the 
case in which P, ¢ ((OR~ ~ Nl) ~ (OSj ~ NS)) and t~ = O, 

and the case in which P~ ~ ((ORj - NI) ~(OSj  - NS) ~ (NS - 
Os~)). x may be adjusted according to the performance. 
Note that each predicate has arguments. The intersection 
used here is based on instantiation. For example, we may 
find SPEED(OI) in OS and SPEED(LI) in/VS. The predi- 
cate belongs to the intersection if O l  can be instantiated 
(replaced) with L1 according to the object model of the 
domain model. 

The overall similarity measure SMj between the new 
problem and the old problem-solution pair PS~ is calcu- 
lated as follows: 

iv, PSMj, 
i 

= m a x  ,R EIv,  
i 

where PR is the possible permutations to map the argu- 
ments of the predicates. The system does a permutation 
to map the arguments of the new problem initial state and 
the new problem goal statem6nt with the arguments of 
the old-problem preconditions and the old problem goal- 
statement. The combination that gives the maximum 
value is used and such a value represents the overall simi- 
larity measure between the two problems. 

6. I L L U S T R A T I V E  EXAMPLE 

Using fuzzy logic, states of the application domain can 
be described by fuzzy sets. Examples of such fuzzy sets 
in autonomous vehicles domain are: SPEED(OIL 
DISTANCE(OI,02),  ICY_ROAD, etc. Where 
SPEED(object) gives the speed of an object as a fuzzy set, 
DISTANCE(objectl ,  object2)gives  the distance between 
two objects as a fuzzy set, ICY_ROAD is a fuzzy set that 
represents how icy the road is. It may be the case that the 
vehicle can have access to an accurate measure of its 
speed, i.e., it can have its Speed as a crisp value. How- 
ever, this is not ,, " when t~ing ~:estimate the speed of 



other objects. This is an advantage of using fuzzy sets to 
represent the predicates that describe the state of the 
world as opposed to using crisp predicates (e.g., predi- 
cates of the first-order predicate logic). 

As an illustrative example of a similarity measure 
computation, consider the following: 

Old problem-solution pair in memory: 

* Pre-conditions: 
Predicate1(03,02), Predicate2(02,01), Predi- 
cate3( O l, 04 ), Predicate4(05), Predicate5(06) 

• Post-conditions: 
Predicatel(Ol,02), Predicate2(02,03), Predi- 
cate3(03, 04) 

New problem: 

• Initial State: 
Predicatel(L1,L2), Predicate2(L2,L3), Predi- 
cate3(L3, L4), Predicate4(L5), Predicate6(L7) 

• Goal Statement: 
Predicatel(L1,L2), Predicate2(L2,L3), Predi- 
cate3(L3,L4) 

Assume that the values (fuzzy sets) of the predicates : 
Predicate1, Predicate2, and Predicate3 are the same in 
both the OR and NI, and OS and NS. This implies that # = 
1 for those predicates. Then, using the following instan- 
tiation: LI/OI, L2/02, L3/03, and L4/04, we get PSM = 
1 for Predicate1, Predicate2, and Predicate3 in OS and NS. 
On the other hand, we get PSM -- 0 for Predicate1, Predi. 
cate2, and Predicate3 in OR and NI. Assume that values 
for Predicate4 in both OR and NI are as shown in Figure 
5. 

& 
gA N I  O R  

O * 15fi'" °*° °" °'* " "*°" .... i ~  ~ °''" *'*'° 

P o s s i b l e  V a l u e s  for  P r e d i c a t e 4  
v 

Figure 5. Values of Predicate4 in both N! and OR. 

Figure 5 shows that the fuzzy intersection has a maxi- 
mum degree of membership/.t = 0.5. Assume that x = 0.5, 
then for Predicate4 (with L5/05 instantiation), PSM = 
0.5 * 0.5 * 0.5 = 0.75. On the other hand, Predicate5 has 
a PSM = 0.0 (there is no match). This imply that the 
overall SM = (6.75/!1) = O.61. Note that the instantia- 
tion (LI/OI, L2/02, L3/04, L4/04, and L5/05) gives the 
maximum SM which is 0.61. 

7. C o n c l u s i o n  

This paper has described a mechanism for retrieval of 
reusable fuzzy-based plans in a repository storing sue- 

cessful problem-solution pairs. The proposed method is 
based on a memory structure that has a form of acyclic 
directed graph (ADG), and a reusability metric that meas- 
ures how close the new problem and an already exist ing 
problem-solution pair are. 

Future works will focus on conducting experimental 
case studies to give a feeling of how the proposed method 
is performing. Future work will also investigate the ef- 
fect of changing the value of x on the performance. It 
will also investigate the effect of assigning a constant 
value y ~ [0, 1] to any two predicates P,, Pj ~ (OR - NI) or 

P,, Pj~ (OS-NS) ~(NS-  OS), but P~ and P, have the same 
name. Example of such P, and Pj is Predicate1(03, 02) i n 
OR and Predicatel(L1, L2) in NI in the illustrative exam- 
pie. above. 
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