
The Selfish Gene Algorithm:
a new Evolutionary Optimization Strategy

Fulvio CORNO, Matteo SONZAREORDA, Giovanni SQUILLERO
PolitecnicodiTonno, DipartimentodiAutomaticaeln~rmatica, Torino, haly

http://www_cad.polito.it/

{corno, sonza, squillero}@polito.it

Keywords: Genetic Algorithm, Selfish Gene

Abstract. This paper proposes a new general approach for
optimization algorithms in the Evolutionary Computation
field. The approach is inspired by the Selfish Gene theory, an
interpretation of the Darwinian theory given by the biologist
Richard Dawkins, in which the basic element of evolution is
the gene, rather than the individual. The paper defines the
Selfish Gene Algorithm, which implements such a view of
the evolution mechanism. We tested the approach by imple-
menting a Selfish Gene Algorithm on a case study, and we
found better results than those provided by a Genetic Algo-
rithm on the same problem and with the same fitness func-
tion.

I. Introduction

The field of Evolutionary Computation is based on search
and optimization algorithms that were inspired by the bio-
logical model of Natural Selection. Several different algo-
rithmic paradigms, among which we find Genetic Algo-
rithms, Genetic Programming, and Evolutionary Program-
ming. were proposed after the Darwinian theory. Their un-
derlying common assumption is the existence of a population
of individuals that strive for survival and for reproduction.
Under this assumption, the basic unit of evolution is the indi.
vidual, and the goal of the algorithm is to find an individual
of maximal fitness.

The work of the biologist R. Dawkins [Dawk89] has put
evolution in a different perspective, where the fundat~ntal
unit of evolution is the gene, rather than the individual. This
view is not in contrast with classical Darwinism, but provides
an alternative interpretation key, that is formalized by the
Selfish Gene Theory. in this theory, individual genes strive

~ermission to make digital/hard copy of all or pan of this work tbr personal or
:lassroom use is granted without tee provided that copies are not made or
listributed lbr profit or commercial adwmtage, the copyright notice, the title of the
~ublication and its date appear, and notice is given that copying is by permission of
%CM. Inc. To copy othetnvise, to republish, to post on servers or to redistribute to
ists. requires prior specific permission and/or a fee.

"O 1998 ACM 0-89791-969-6/9g/0002 3.50

for their appearance in the genotype of individuals, whereby
individuals themselves are nothing more than vehicles Csur-
vival machines" in Dawkins' terminology) that allow genes
to reproduce. In a population, the important aspect is not the
fitness of various individuals, since they are mortal, and their
good qualities will be lost with their death. Genes, on the
other hand, are immortal, in the sense that a given fragment
of chromosome can replicate itself to the offspring of an in-
dividual, and therefore it survives its death. Genes are se-
lected by evolution on the basis of their ability to reproduce
and spread in the population: the population itself can there-
fore be seen as a pool of genes, Due to the shuffling of genes
that takes place during sexual reproduction, good genes are
those that give higher reproduction probabilities to the indi-
viduals they contribute to build, when combined with the
other genes.

The goal of this paper is to apply the shift of paradigm
brought by the Selfish Gene Theory to the field of algo-
rithmic optimization, and to develop a new approach in
Evolutionary Algorithms, whose focus is on the fitness of
genes, rather than of individuals. To give credit to Dawkins
theory, we call this approach Selfish Gene Algorithm (SG).
Starting from the Selfish Gene hypothesis, we develop a gen-
eral framework in which to write optimization algorithms.
Although the Selfish Gene theory is biologically equivalent
to classical Darwinism, we expect SG to behave differendy
than Genetic Algorithms (GAs), due to a different focus of
the optimization algorithm.

Following the Selfish Gene theory, the SG, as presented
in this paper, neither relies on any crossover operator, nor
needs to model a particular population. Instead, it works on a
Virtual Population, which models the gene pool concept via
statistical measures. Each potential solution is encoded as a
genotype, where each locus can be occupied by one of sev-
eral possible alleles, in the SG, different alleles fight to be
present in a specific locus. The success of each allele is rep-
resented by its frequency in the Virtual Population and it is
related to its goodness, but the frequency does not represent
the fitness. Fitness calculation is performed at the phenotypic
level, considering the full genome.

To verify the feasibility of the approach, we implemented
a SG engine and we ran it on a test problem, the 0/I Multiple
Knapsack Problem. The comparison of the results with those

349

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330560.330838&domain=pdf&date_stamp=1998-02-27

obtained by means of a Genetic Algorithm shows definite
advantages for our approach.

This paper is organized as follows: Section 2 briefly
summarizes the biological Selfish Gene theory, and Section 3
describes in detail the Selfish Gene Algorithm. A case study
problem is described in Section 4, together with the relevant
experimental results. Section 5 concludes the paper.

2. Summary of the Selfish Gene Theory
In 1976 English biologist Richard Dawkins wrote a book

called The Selfish Gene [Dawk89], initially regarded as a
work of radical extremism, followed in 1982 by The Ex-
tended Phenotype [Dawk82]. In these works he proposed a
new theory for considering the Darwinian natural selection
mechanism. Dawkins himself is a net-Darwinist and he
claims that his theory "is Darwin's theory, but expressed in a
way that Darwin did not choose". He considers his own work
"a logical outgrowth of orthodox net-Darwinism, expressed
as nobel image".

Darwin's natural selection is based on the concept of sur-
vival of the fittest. The usual point of view is to consider the
individual as the entity that can be more or lessfit to survive.
For instance, an individual can have a longer neck and, for
this reason, can have more chances to survive in the world.
This point of view leads to interpretation problems when
trying to define exactly who or what is surviving.

if we follow Dawkins" claims [Dawk89], obviously, the
individual itself does not survive. An individual only lasts for
a while when we are looking at the whole evolution process.
We can claim that the individual does not survive, but the
genome of the individual is able to replicate itself into subse-
quent generations. Anyway, we should remember that all
individuals are unique and sexual reproduction is not repli-
cation. Children are. in most cases, only half of one parent,
grandchildren are only a quarter, and so on. A few genera-
tions later, the most an individual can hope for is a large
number of descendants, each of whom bears only a tiny por-
tion of him. Individuals are not stable things: they are fleet-
ing. Genomes too are shuffled into oblivion, like hands of
cards soon after they are dealt.

Rather than focusing on the individual organism, Dawk-
ins proposes to focus on the genes, or, to be more precise, on
little portions of the chromosome that he decided to call
genes. Using the metaphor of the cards, we can say that ge-
nomes are jumbled up, but the cards themselves survive the
shuffling. The cards are the genes, and the genes are not de-
stroyed by any crossover, they merely change partners and
march on.

The survival of the fittest is a battle fought by genes, not
individuals. Only genes can be more or less suited to survive.
because only genes can survive in the evolution. Individuals
are simply vehicles, made up from the blind cooperation of
different genes. If a gene is able to produce a useful charac-
teristic, for instance a longer neck, individuals with such gene
in their genome will have more opportunity to have offspring,
thus such a gene will have a higher probability to be spread
in the world.

The most interesting fact is that gene cooperation is
blind. A gene is blind: it is not conscious, nor has it any idea
about the genome it is part of. A gene can be a good gene or
a bad gene, depending on other genes. For instance the gene
causing the longer neck can be useful for a giraffe and poten-
tially deadly for other animals, but the gene does not care
about the animal it is in. Natural selection cares. Natural
selection combines genes into fit genomes, without the need
of any global information about individuals. Relations be-
tween genes caused, for instance, by pleiotropy and polygeny
are implicitly considered by natural selection.

3. The Selfish Gene Algorithm
Dawkins' theory can be reflected from biology to com-

puter science, and it leads to interesting applications in the
field of Evolutionary Computation. Our goal is not to discuss
the Selfish Gene Theory as a biology theory, but to use the
concepts elaborated by Dawkins for developing a new kind of
optimization algorithm.

3.1. Algor i thm Defini t ion

3.1.1. The Vir tua l Popu la t ion

Traditional Genetic Algorithms rely on the concept of
population. A population is a set of individuals; each of them
has associated a fitness value, which measures the goodness
of the individual. Time is divided into discrete steps, called
generations. At each generation some new individuals are
generated through crossover operators and some are dis-
carded. The choice of which individuals are used for per-
forming reproduction usually depends on their flmess. Usu-
ally, a mechanism called elitism is used to preserve best indi-
viduals through generations, giving them a sort of unnatural
longevity, or even immortality.

For the Selfish Gene theory individuals are not so im-
portant, and the population is seen as just a store of genetic
material. In this view, the Selfish Gene Algorithm does not
consider and explicit population, and does not enumerate the
individuals belonging to it. Rather, it uses an abstract model,
called Virtual Population (VP), where the number of indi-
viduals, and their specific identity, are not of interest, and
therefore are not specified nor stored. The VP aims at mod-
eling the gene pool concept defined by Dawkins. For imple-
mentation purposes, we resort to a statistical approximation
of the VP, by modeling and evolving some of its statistical
parameters, described in what follows.

The evolution of the VP proceeds by an unspecified kind
of sexual reproduction of its individuals. Since individuals
are not explicitly listed, but implicitly represented, the SG
models reproduction through its effects on the statistical pa-
rameters that model the VP.

As with other Evolutionary Algorithms, in SG an indi-
vidual is represented by its genome. To avoid confusion, for
each gene we will explicitly distinguish between its location
in the genome (the locus) and the value appearing at that
locus (the allele). Let g be the number of loci into the ge-

350

home; each locus L~ (i=l...g) into the genome can be occu-
pied by ni different gene values, called alleles. The alleles
that can occupy locus L~ are denoted with aij (f~-l...ni) and
are collectively represented as a vector A~ --- (a~t, a,~ ai.i).

In the VP, due to the number of possible combinations,
genomes tend to be unique, but some alleles might be more
frequent than others. In the SG, the success of an allele is
measured by the frequency with which it appears in the VP.
Let pq be the marginal probability for aq, which conceptually
represents the statistical frequency of the allele aq in locus L~
within the whole VP, regardless of the alleles found in other
loci. Marginal probabilities of alleles in Ai for locus L~ are
collected in the vector P~ = (p~, p,~ p~.~). The VP can
therefore be statistically characterized by all marginal prob-
ability vectors P = (P~, P: P~). Please note that P is not a
matrix, because the number of alleles for each locus n~ can be
different.

genome SG()
{

genome B, G~, G2 ;
initialize all Pij to !/n~ ;
B =select_individual() ; /* best */
do (

G: = select_individual() ;

G2 = select_individual() ;
/ " tournament */
if (fitness(Gl) > fitness(G2))
(

reward alleles(G1) ;
penalize_alleles (G2) ;
if (fitness(Gl) > fitness(B))

B = GI ; /" update best "/
} else {

reward_alleles(G2) ;
penalyze_alleles(G:) ;
if (fitness(G2) > fitness(B))

B=G~;
}

} while(Steady_state()==FALSE) ;
return B ;

}

Figure %: the Selfish Ge,e AlSont/~.

Although a better statistical characterization of the VP is
possible, for instance by taking into account joint probabili-
ties, for the purpose of this paper a first-order approximation
suffices.

3.1.2. Evolution Mechanism

The SO does not rely on a crossover operator; in fact, re.
production is performed implicitly and there is no crossover
operator at all. in the SG (whose pseudo-code is shown in
Figure !) the VP evolves through a mechanism called tour-
nament. Because there is no explicit definition of individuals
in the VP, an individual is generated only when needed for
competing in a tournament, and it is discarded immediately
after. Two individuals are randomly selected from the VP,
according to the allele frequencies in P, and they are collated

using a competition. In the competition, the fimess function
for the two individuals is evaluated at the phenotypic level,
and the one ~ t h higher fitness is considered to be the win-
net,

We assume that this trial occurs many times in the popu-
lation, and after each competition the winner has the oppor-
tunity to reproduce itself, while the loser can not generate any
offspring. The result is that all alleles belonging to the winner
slightly increase their frequency in their respective loci in the
VP at the expense of those belonging to the loser. The effect
of sexual reproduction is implicitly modeled by the fact that
the rewarded genes will be selected together with other al-
leles, in other loci, different from the ones belonging to the
former winner: genes are shuffled and are combined in many
different ways. In order to form a winning individual, the best
value of each allele depends on the selection probabilities of
other alleles in the genome, thus building a form of blind
cooperation between genes. With this mechanism, alleles of
the winner increase their selection probability, forming a
positive feedback that drives a fast algorithmic convergence.

genome selec~_individual()
(

genome H ;
for (each locus i = l-g)

if (random_number(0, l) < Pm)
/* mutation "/

H[i] = random_allele(l, n~);
else

/" use probability P~ "/

H[i] = select_allele(Pi);
return H ;

}

Figure 2: Individual S e ~ i o .

Individual selection is further detailed in Figure 2, where
an individual H is built by choosing which allele a~j to put in
each locus L, using the probability reported in P. To intro-
duce further variability, a mutation can occur with a prob-
ability p,~, in which case the mutated allele is chosen in a
completely random way.

reward_genes(genom~ H)
{

for (each locus i = l-g)

l

penalize_genes (genome H)
(

for (each locus i = l-g)

Pi.H[t! = Pt.H~t] - E~ ;
)

Figure 3: Virtual Population Update

The update of the probabilities pq according to the out-
come of the tournament is performed by procedures r e -
ward_genes and penalyze_genes, detailed in Fig-

351

ure 3. where a constant e, is added/s0btracted' to the relevant
marginal probabilities for locus Li. The value of % determines
the entity of the positive feedback, and therefore the balance
between a fast convergence towards a local optimum and a
broader exploration of the search space. Usually, all & are set
to the same value £.

The algorithm is iterated until some stopping condition is
reached. The function s~eady_s~a ~e tests whether the VP
evolution has reached a steady state, the steady state is de-
fined as a state in which, for each locus Li, there exists an
allele a/j whose probability is over a given threshold p, (usual
p, values are around 0.95).

Vi : maxj(al./) > p, (1)

When the condition (I) is met, all individuals modeled by
the VP are very similar and the VP is not likely to evolve any
more (individuals extracted with select_individual function
can never be identical, because the mutation probability al-
ways preserves a little variability).

3.2. The S G in O p t i m i z a t i o n P r o b l e m s

At the beginning of the evolution process, all alleles be.
ing equally probable, the SG makes the VP randomly drift,
until an allele slightly increases its marginal probability.
When the given allele increases its frequency, suddenly some
other allele becomes more or less desired and the positive
feedback becomes effective. Ideally, the SG during the ran-
dom drift selects a local optimum, and the VP quickly
evolves toward such a target.

To understand how the positive feedback is triggered, we
can consider an allele a, tjl.that produces a good fimess only
when allele a,. A is present m locus Lj. If allele aiaj, randomly
increases its f~quencv, then individtials with all~fe a, . will

" 1"1
more likely win tournaments and allele a,~j will increase his

• ' .I .
frequency too. Posittve feedback would qutckly dnve the VP
towards a local optimum that includes both alleles a,t. q and
a,~ 2. The convergence speed can be tuned using parameters
e,: a high value will make the VP moving quickly towards the
first good solution it finds, while a very small value will
make the VP float for a longer time before choosing which
local optimum to select as a target.

Figure 4 shows the behavior of the fitness in a typical run
of the SG, as a function of the number of evaluations (calls to
the fimess function). In the first calls, many random indi-
viduals are being evaluated, and their fimess is quite low. At
this point, some trend casually emerges, and the SG focuses
its search towards improving the solution in a hill-climbing
fashion. The SG is actually different from a pure hill-
climbing approach, since it keeps evaluating different neigh-
borhood of different solutions: this can be seen by the "thick-
ness" of the curve. The last phase of the search starts where
the local minimum has been approached, and small variations
are attempted to improve it slightly. The curve thickness

I .
m the implementation, care needs to b¢ taken to avoid any prob-

ability to become negative.

reduces, to indicate ihat the variance of alleles in the gene
pool is decreasing. This situation is indicated [Dawk89] as an
evolutionary stable strategy, where small variations over the
current set of individuals worsen their fitness, so that "mu-
tants" can not invade the population. It is important to notice
that this three-phase behavior is completely a consequence of
evolution, and the SG is not aware of this behavior.

The behavior of the SG resembles, in this respect, that of
simulated annealing: at the beginning it explores points of
the solutions space that can be very far from each other; dur-
ing the evolution process in each locus Li one marginal prob-
ability will tend to 1, while the others will decrease to 0.
Thus the explored points of the solution space will become
closer and closer. Ideally, when all vectors Pi contain exactly
one pi/= 1, selected individuals differ only for the mutation
effects.

The SG also resembles a hillclimber. GAs have the pow-
erful ability to preserve potentially useful genetic material
included in individuals that are not the fittest. On the con-
trary, the SG tends to discard all alleles that do no lead to the
local optimum selected as a target. As in biological evolution
[Dawk96], the path followed by the SG is always sloping
upward. In fact, we expect that the SG is not suited to solve
problems specifically designed to be difficult for hillclimbers,
such as Holland's Royal Road Function [Hoi1931 [Jone93].

random dn f t hi l l -cl imbing local ul lprovet t~nt

A.

!

o l c.all* to ,J~ f i m ~ a fu t t cuo .

Figure 4: Typical SG behavior

For this reason, in order to guarantee sufficient explora-
tion of the solution space, the SG should be iterated, in a
multi-start fashion, to let it visit different local opdma. At
each iteration, a different random seed is used, the value of
all £, are slightly reduced and all probabilities are set again to
their initial values. Figure 5 reports a pseudo-code for the
overall multi-start environment in which the SG is expected
to be used. The algorithm is usually iterated until some stop-
ping condition, related to the available computational re.
sources (e.g., max CPU time or number of fitness function
evaluations), is met.

352

3.3. Algorithm Summary

Given the above definitions, the implementation of a SG
for a given optimization problem is composed of the follow-
ing steps:

• definition of the encoding of the solutions as ge-
homes: this step is analogous to the one required
for Genetic Algorithms. The main constraint, in this
phase, is to be able to identify a ? n o r / t h e number
of loci g and the possible n~ vah, es for the alleles
for each locus. Variable-length encoding schemes
(where either g or the n / s are not constant) have
not been yet analyzed.

• definition of a fitness function, based on the
evaluation of the goodness of a given individual.
This function is exactly the same as in GA, where
the evaluation takes place at the phenotypic level,
after a decoding phase. Thanks to the tournament
mechanism, no linearization is needed in SG.

• definition of the parameters driving the evolution:
the positive feedback factors el (experiments show
that the optimal values do not depend on the num-
ber of alleles n~ in each locus, and are usually set to
a value in the range 10"*+10:); the mutation prob-
ability p,,, (usually set to llg [B~ick93]); the steady-
state threshold p, (good values are typically over
O.95).

• implementation of the algorithm, where the prob-
abilities P are evolved according to the proposed
scheme. Memory allocation is related to this data
structure, only, since no population needs to be
stored. CPU time for the SG is mainly due to the
procedure select_individual, which is often
negligible with respect to the fitness computation.

genome mu!tistart_SG()
{

genome best, las~ ;

bes~ -- SG() ;
while(stopping condition()==FALSE}
{

decrease all(£~) ;
last = SG() ;
if(fitness(last)>fitness(best))

best = last ;
}

return best ;
}

Figure 5: The SG in a multi-start environment

4. Case Study: The 0/1 Multiple Knapsack
Problem

To evaluate the effectiveness of the Selfish Gene Algo-
rithm in solving combinatorial optimization problems, we
applied the general framework to a case study, and compared
the SG performance with other published results. We chose
the 0/I multiple knapsack problem.

4.1, Problem definition

In the single.constroint 0/1 knapsack problem, we are
given a knapsack of capacity C and N objects. Each object
has a weight wi and a benefit (or profit) bi (i=l...bO. The
optimization goal is to fill the knapsack with the set of ob-
jects that yield the maximum benefit. In other words, we aim
at finding a vector X = (xt, x2 xt~) where x/¢ {0, I }, such
that ~=l..,t~ w~xi < C and for which ~=t...N b~x~ is maximum.
This is known to be a NP-complete problem and the partition
problem can be polynomially transformed into it [GaJo79],
and effective approximations have been developed for ob-
taining near-optimum solutions [MaTe90].

The 0/1 multiple knapsack problem consists of M differ-
ent knapsacks of capacities Ci CM and N objects, each of
which has a benefit bi. Unlike the single-constraint version,
in which the weights of the objects are fixed, the i ~ object
weights wi) when it is considered for inclusion in the f t knap-
sack of capacity Cj. Once more, we are interested in finding a
vector X = (xt, xz xN) that guarantees that no knapsack is
overfilled: V j ¢ [I . . .M] : ~=L.t~wl]xl < C], and that yields
the maximum benefit ~,i=L,Nbix~. This problem is also
known as the zero.one integer programming problem
[GaJo79], and as the 0-1 linear programming problem
[MaTe90].

The problem can be thought as a resource allocation
problem, where we have M resources (the knapsacks) and N
objects. Each resource has its own budget (capacity), and w,j
represents the consumption of resource j by object i. Each
object consumes a bit of all reources and we are interested in
maximizing the profit, while working with a certain budget.

4.2. Prototypical implementation

A prototypical implementation of the SG has been devel-
oped. and amounts to about 500 ANSI C code lines. The
prototype is able to evolve a generic VP with variable length
list of alleles for each locus, and to implement the multi-start
environment described in Section 3.2. In this prototypical
implementation, the Ei do not vary during the SG, but only
across multi-start iterations.

This generic prototype has been used to solve the 0/1
multiple knapsack problem. The following sub-section details
the definition of the SG, according to the general scheme of
Section 3.3.

4.2.1. SG for the 0/1 Multiple Knapsack Problem

The adopted encoding is the most "natural one," where
the genome is directly derived from the structure of the solu-
tions X = (xt, x2 xN):

• definition of the encoding: the genome is a list of N
loci (g=N). where each locus represents an object:
two alleles are possible for each locus, stating
whether the object is included in all the M knap-
sacks. Therefore we have ni=2 for all loci L, with
a,t="present" and a,~="absent".

• definition of the fitness function: the fitness rune-

353

- i ̧ : i n • / ' :

tion used in the SG is the same presented in
[KBHe94]. Infeasible strings are allowed in the VP
and a penalty term [RPLH89] is added to their fit-
ness: the farther away from feasibility the string is,
the higher the penalty term is. The fitness we adopt
is:

f(X) = Z i=l...N bixi" max(o i} s (2)

where s is the number of objec:s that overfill at
least one knapsack.
definition of the values of parameters: according to
the general guidelines, we chose %=0.01 for all i,
and reduced it by a factor of 30% at each multi-start
iteration. The probabilities are p~,=llg=l/N and
pp-0.99.

Ixobli~ imtw~c~ S~
' ~ } N I M I traxinlJm avera~e~ best l CPU{,~ I
FLEI 1 I0 L 20J 2.13~ 2.123.60, 2,13S ~2.~3
HPI [41 281 3.418 3.404.00i 3.404 116.9(3

! 4 i ~ i 3,.1~ ~,,~.4oi ~.1~" re.47
PB1]... 41 27] 3.09(: 3.076.00i. 3.07E 112,7,

' 291 96.I68 91,6(~0.70~ 91.935 12:)0.18
~s~ i " 101 201 Z l~ 2.1z~01. ~.,~ 61:7~

2Ol ~ i 77~ rr6.00~ 776! 14.ca
t=,w !3o! ~+ ':<~ 1,o.-.-.-~.so~ 1,o~1
P~2 1 10l 10i 8'7.061 , 87,,.061.001 87.0611

4.015.(X)1 PEf3 '. 101 151 4,01~
I~-'T4 ; I01 20i 6,I~:~

~ . ~
0.3~

4,015 t 0.TE
11.6~ 6.120.00~ 6,120!

l~-r5 i 10/ 281 ~2.4(X 12.4~O0! 124001 $.8~
10,6181 12S.IE 10.6(37.501 PE'r6 ', 5t 39, ~0:61E

PET7 5i 501 16.53; 16.519.90!
~ N T 0 1 30J 60; 7.77:, 7.769.40 i 7,772! 131.21
SENTC~: 30~ 60; 8,72:; e.712.90: 8,722! 22S.I~
WI~INGI' 2i 281 14127,81 141276.~1
WE~N~ ~ 2i ~ I~0.E m0.~00,
W~ING3, 2i 281 ~.677' ~542.~0 95.6771

119.337 0(3: 119.337 i 4.4,~ NEINC.~ I 21 ~I 119.337

N1EINC.~ ; 21 28i 130.623 130.545.00! 130,623i 48.96
NEING7 2! !05 i 1.095.445 1.(~.5.316.2O~ 1.096.4451 4tl.55

~ I,~01 ! 51 30 ~ 4.554 4.564 0~: 4.SS41 1.88
,~E~Sa-I~ s' 3o: 4.s~ ,.536 oe. 4.5~.. ! lO.~
,'¢EISH03" S! 301 4JTS 4J~S.(:X~ 4 . H S i i5.03
¢v'EtSH0~ S, 30! 4 .~ 4,561.00 4.5611 1.18
I N E I S I ~ - 5!~ 30! 4.514 4.514.001 4.5141 2.3~
,NEISH06: 51 40~ 5,557 S.555.50~
~tE~07i 51 ~Oi 5.567 5.567.001

5.603,80 i
5246.¢01
6 .~ .~ !
$.643.001
6.~'.~1

6.~-~.~1
r.,,~.oo!
7288.7OI

I ~ . ~ 0 o i

s.ssr I r3.s~
5,5o"71 17,91
S.60E 73.~
5.2~ 6.0~
6,~0~ 18.40
s.r,~ ~ .~
'6,33~ ,3.74
6,1~ 23.&
6.9541 25.67

r2ee I i~.91
e.6zz! ~

~,w~ i s , o t s2~
¢,~1SH101 S ,S0! 6,336
,'~EISHll I s ~1 5,643
~s~121 s ~t 6.336
~E~S~,3| 'S ' 6.,S
~EI~H141 S e01 6.954
~,~Is i s eo[7 ~
~m~161 s!. ~1 r2ea

~'~':i 7o! 9 ~
~s.191 s{ 7o! r.~e
wms~o, s ~I 9.4.~
wE~S~-=~t s 9.074

wEtsi-~41 s 8o l IO22C
wE~sP~.si s eOl 9.936

~ls~71 sj" ~i 9,019
I V I E l ~ i 5 901 9.492

9.579.30' 9,5801 126.(~
z.r~eooi 7.696i 17.91
9.4so.0oL 9.45oI 53.0~
9.074.00! 9.074 15.0G
8.922.30! 8,947 318.63
8.326.70~ 8,344~ 253.7~

m217~o i ms, o! z~.~
9,935.601 9,9391 173.73
9,583.40 9,58,4 T66.1."
9.819 00; " 9,8~91 ,M.9~
9,485.101 9.46~9t 217.6~
9.4~3 60~ 9,410! 197.4(

~1.191,! 287.7';,
WEISH2St ' S 901 9 .41C

WEiSH~I SI g0i 11,191 11.i8900;

Tab le I: Experimental results

4.3. E x p e r i m e n t a l e v a l u a t i o n

We performed two different evaluations of the SG algo-
rithm: first, we ran our algorithm on a standard set of bench-
marks; then, we compared the SG results with those of a GA
solving the same problem.

4.3.1. Benchmarks results

The SG was evaluated on 55 test problems that are taken
from the literature [Beas90]; problems range from 10 to 105
objects and from 2 to 30 knapsacks. Results are summarized
in Table 1, whose left hand side (problem instance) reports
the name of the problem, its size in terms of N and M, and the
known maximum benefit that can be obtained.

For each test problem, a total of 10 runs of the multi-start
procedure were executed, In each run, the stopping condition
in multistart_SG was set to evaluate up to 200,0t30 ge-
nomes (i.e., individuals), unless the known optimum is
reached before. All experiments were performed on a Sun
SPARC Station 5/110 with 64 Mbytes of memory. The right
hand side of Table 1 (SG-") reports the average benefit and the
best benefit value obtained by the SG over all 10 runs, and
the average CPU time required for each run, In many cases
the SG was able to reach the optimum solution in all 10 runs,
and the average value is exactly equals to the best one.

4.3.2. C o m p a r i s o n with a GA

We compared the SG algorithm with a GA {KBHe94]
able to solve the 0/! multiple knapsack problem without any
problem-specific knowledge. Test conditions reported in
{KBHe941 are: 100 runs for each problem, a limit of 100,000
fitness evaluations for the first 7 problems and 200,000
evaluations for the last 2 problems. For the sake of compari-
son, we adopted exactly the same test conditions.

proUe~ i ,nmance
name ma~mum
knap~S 4,0m!
kr~L:~ 6,1201
'knap28 12,400~
iknap39 10,618
map50 16,537
~r lo l -60 7,772
sento2-60 8,722
~r<jT- t 0~ ~,095.445
weincjS- 10S 624,319

[Ket-~4]

4,012.70 83
6,102.30 33

12,374.70 33
t0,536.90 4
16.378.(X~ 1
7,626.0¢ E
8,~5.0~

¢
613,383.00 i, E

1,093,897.0(:

GA

4,015.00! ~0C
6.119.90 9~

12,4~0.00 10{:
10,594.43 2:
16,493.59 11
7,763.79j 5~
8,7~9.72 2~

1,095.310.42
62o,22s.97. (

Table 2: Comparison with [KBHe94]

Table 2 summarizes the results of the experiments. The
first two columns (problem instance) report the name of the
problem, taken from [KBHe941, and the max/mum obtainable
benefit. The following groups of columns report the results
archived by [KBHe94] and by the SG, respectively. We show
the average profit obtained over all 100 runs and, in the col-
unto #max, the number of times the best solution is reached.

3 5 4

Figure 6 plots the average profit as a percentage of the maxi-
mum profit.

Results show that the SG always produces a better result
than [KBHe9,~]. Moreover, in [KBHe94] for solving the last
problem the authors needed to heuristically bias the random
initial population, while on the contrary for the SG no modi-
fication of any kind was required.

5. Conclusions

This paper proposes a novel optimization approach, the
Selfish Gene Algorithm, inspired by the biological Selfish
Gene Theory. The algorithm evolves a Virtual Population, in
which alleles compete for appearance in their respective lo-
cus in the genotype. Competition is carried on at the pheno-
typic level by evaluating the fitness of one-shot individuals.

Figure 6: Graphical surnmar 3' of comparison with [KBHe94]

The proposed approach is quite general, and relies mainly
on the definition of a suitable encoding for genomes, and on
a fitness function. If we compare the Selfish Gene Algorithm
with Genetic Algorithms. we can claim that SG are easier to
implement, have a smaller number of parameters to tune. do
not rely on crossover operators, and are able to find more
quickly optimal solutions. On the other hand, they tend to
explore a smaller region of the search space, so they need to
be inserted in some multi-start-like framework.

We claim that the Selfish Gene Algorithm is an interest-
ing approach to be investigated as an optirruzation algorithm.
as it compares favorably with other optimization approaches.
More work is needed, and is currently being carried on by the
authors, to clearly identify the subset of problems to which it
is best applicable, and to evaluate the sensitivity to the vari-
ous parameters.

6. References

[B~ck93] T. B~ick, Optimal Mutation Rates in Genetic
Search, Proc. 5 'h International Conference on Genetic
Algorithms and their Applications, 1993

[Beas90] J. E. Beasley, OR-Library: Distributing Test
Problems by Electronic Mail, Journal of Operational
Research Society, 410 1):1069-1072, 1990. All the files
in OR-Library are available via anonymous ftp from
mscmga, ms. ic. ac. uk

[Dawk82] R. Dawkins, "The Extended Phenotype", Oxford:
W. H. Freeman, 1982

[Dawk89] R. Dawkins, "The Selfish Gene - new edition",
Oxford University Press, 1989

[Dawk96] R. Dawkins, "Climbing Mount Improbable",
W.W.Norton, New York and Viking Penguin, London,
1996

[GaJo79] M. R. Garey, D. S. Johnson, "Computers and
Intractability: A Guide to the Theory of NP-
Completeness", W. H. Freeman and Company, San
Francisco, 1979

[Hol193]J. H. Holland, Royal Road functions, lnternet Ge-
netic Algorithm Digest, vol. 7, issue 22, August, 1993

[Jone93]T. Jones, A Description of Holland's Royal Road
Function, Proc. 5 'h international Conference on Genetic
Algorithm, 1993

[KBHe94] S. Khuri, T. Back, J. H¢itkOtter, The Zero/One
Multiple Knapsack Problem and Genetic Algorithms,
Proc. ACM Symposium on Applied Computation
(5AC'94), 1994

[MaTo90] S. Martello, P. Toth, "Knapsack Problems: Algo-
rithms and Computer Implementations", John Wiley &
Sons, England 1990

[RPLH891 J. T. Richardson, M. R. Palmer, G. Liepins, M.
Hilliard, Some Guidelines for Genetic Algorithms with
Penalty Function, Proc. 3 fa International Conference on
Genetic Algorithm, 1989

355

