
COARSE GRAINED PARALLEL COMPUTING ON
HETEROGENEOUS SYSTEMS*

Pat Morin
Carleton University School of Computer Science

1125 Colonel By Dr.
Ottawa, Canada

K1S 5B6
email: rnorin@scs.carleton.ca

K e y w o r d s : parallel algorithms, heterogeneous
computing, coarse grained multicomputer, bulk syn-
chronous" parallel

A b s t r a c t

Coarse grained parallel (CGP) computing models such
as the coarse grained multicomputer (¢GM), bulk syn-
chronous parallel (BSP), and LogP models have received
considerable at tention recently from the parallel com-
puting community. This paper examines a new applica-
tion of CGP algorithms, namely in heterogeneous sys-
tems, and shows that this approach to heterogeneous
computing has a number of advantages over traditional
approaches. A hetegerogeneous CGP model of compu-
tation is defined, and a number of algorithms and basic
communication operations are developed for this model.
These algorithms have been implemented in the form of
a reusable and extendable library which simplifies the
task of programming heterogeneous systems. Empirical
results are given which show that this approach per-
forms very well in practice.

1 I N T R O D U C T I O N

Assessing the impact of heterogeneity in parallel com-
puting systems is becoming increasingly important. In-
dividuals with limited budgets can now build worksta-
tion clusters from off-the-shelf processing components
and interconnection networks [4, 19]. High speed net-
works are being used to interconnect traditional super-
computers in order to direct large amounts of comput-
ing power at Grand Challenge problems [3]. Even tra-
ditional supercomputers usually consist of a very fast

*The author received funding from the Natural Science and
Engineering Research Council of Canada. Part of the work was
done while the author was a visitor at theHeinz-Nixdorf Institute
at the University of Paderborn,

Permissmn to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed tbr profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, inc. To copy other.vise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a l~e.

© 1998 ACM 0-89791-969-6/98/0002 3.50

workstation host connected to a number of slower in-
the-box processors.

The three situations above, which cover nearly all
modern parallel computing systems, are all potential ex-
amples of heterogeneous systems. (Here and throughout
the remainder of the paper, the term heterogeneous sys-
tem refers to a system in which processors have differing
speeds.) In the case of workstations clusters, the pro-
cessing components may be different because the sys-
tem was grown incrementally and newly added proces-
sors are more modern than the originals. In the case of
supercomputer clusters, the supercomputers may come
from different manufacturers. Finally, in the case of
traditional supercomputers, it may be useful to use the
host processor, particularly for sequentiM portions of
computations.

Traditionally, there have been two approaches to
dealing with the varying processor speeds in such sys-
tems. The first and simplest approach, which we call the
ostrich approach is to simply ignore the difference in pro-
cessor speeds and use standard parallel algorithms. In
many cases, this leads to the slowest processor becom-
ing a bottleneck, and effectively reduces performance to
that of a machine in which all processors are equally
slow. This can result in decreased performance when
slow processors are added to a system.

The second approach, which we cMl the overpar-
titioning approach is to break the problem into small
subproblems, so that there are many more subproblems
than processors, and assign subproblems to processors
whenever they become idle. This approach also has its
disadvantages. Decomposing the problem and merging
the solutions to subproblems is not always easy, nor is
coordinating the processors, and these tasks have an
overhead associated with them. Even worse, because
of the high latency of communications networks, many
processor cycles are wasted waiting for the network to
deliver subproblems. In most cases, a healthy dose of
performance testing, algorithm analysis, and common
sense is required to determine the opt imum subprob-
lem size, and this procedure must be repeated when the
system configuration changes.

The approach taken in this paper is to modify fast
parallel algorithms which have been shown to be effi-

628

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330560.331004&domain=pdf&date_stamp=1998-02-27

cleat in homogeneous systems to run efficiently on het-
erogeneous systems. The class of algorithms we choose
as our s tar t ing point is the class of coarse grained paral-
lel (CGP) algorithms. Examples of such algorithms in-
clude algorithms for the bulk synchronous parallel (BSP)
[22], Coarse Grained Multicomputer (CGM) [9], and LogP
[7] models of parallel computation.

In these models a parallel computer is composed of
p processors and is being used to solve a problem of size
n, where typically p << n. The basic communication
operation is the h-relation, an all-to-all communication
operation in which no processor is the source or destina-
tion of more than h words. Algorithms based on these
models work in supersteps, where a superstep consists
of local computation, followed by global communication
(routing an h-relation). The goal of algorithm design is
to simultaneously minimize communication and compu-
tation.

The heterogeneous networks described above present
a problem for CGP algorithms, since the slow processors
in the network become a bottleneck for the computa-
tion. This is due to the fact tha t CGP algorithms are de-
signed to distr ibute computat ion load evenly across pro-
cessors. However, through careful modifications, these
algorithms can be made to distr ibute computation load
according to processor speeds without sacrificing effi-
ciency.

This approach has the obvious advantage over the
ostrich approach that it balances the computation ac-
cording to processor speed and therefore improves per-
formance (Section 7 bears this out with empirical ev-
idence). This approach has twoadvan tages over the
overpart i t ioning approach. The first is that it minimizes
the effects of latency (most of the algorithms described
in Section 6 perform only a constant number of com-
munication operations). The second is that it doesn' t
require extensive testing and measurements to deter-
mine opt imum algorithm parameters. In fact, the only
parameters used by the algorithms are the processor
speeds.

The main contributions of this paper are the follow-
ing:

1. The definition of a parallel computat ion model
called HCGM which takes into account varying pro-
cessor speeds - -The model is simple enough to be
easy to use, accurate enough to allow for the devel-
opment of t ruly efficient algorithms, and portable
enough to allow these algorithms to run efficiently
on a wide variety of parallel architectures.

2. The identification of a number of communica-
tion pat terns most commonly used in CGP al-
gorithms and efficient HCGM aigorithms for their
implementa t ion- -These algorithms form the basis
for t ranslat ing existing CGP algorithms into HCGM
algorithms.

3. A number of algorithms for the HCaM mode l - -
These algorithms are arrived at by describing ex-
isting CGM and BSP algorithms in terms of the pre-
viously mentioned communication patterns.

4. An implementation of these ideas~The implemen-
tation consists of a library of the previously men-
tioned communication patterns and some algo-
rithms.

The remainder of the paper is organized as follows:
Section 2 reviews related work. Section 3 describes the
CGM model and defines a generalization of this model,
the Heterogeneous CGM (HCGM). Section 4 examines
common communication patterns used by CGP algo-
rithms. Section 5 shows how these patterns can be
implemented on the HCGM model. Section 6 presents
a number of algorithms for the HCGM model based on
the tlCGM versions of the communication patterns. Sec-
tion 7 describes an implementation of these ideas and
presents some empirical results which validates both the
model and the algorithms. Finally, Section 8 summa-
rizes and suggests directions for future work in this area.

2 R E L A T E D W O R K

The topic of da t a part i t ioning in heterogeneous sys-
tems with simple fixed communication pa t te rns is ad-
dressed in [6, 18], and semi-automatic methods of choos-
ing the best partitioning scheme and parameters are de-
scribed. Methods for the compile time scheduling of
various types of parallel loops are described in [5}. The
results in this paper go beyond these in that the prob-
lems addressed have much less structure than simple
stencilling operations on 2D grids or uniform parallel
loops whose communication patterns can be analyzed at
compile time. In Section 6 algorithms are presented for
sorting, median finding, and a number of computational
geometry problems whose communication patterns are
input dependent.

Methods for dynamic load balancing such as those
described in [20, 14, 23] can also be applied to hetero-
geneous systems. All these methods fall into the over-
patitioning strategy category. The advantages of our
strategy over such overpartitioning strategies have been
described in Section 1. These are the minimization of
the effects latency and simplicity of the algorithm pa-
rameters.

In [25] a mathematical model of a network of work-
stations is described. In [24], the authors describe a
stochastic performance prediction methodology for this
model based on the task graph of the parallel applica-
tion. Although this model is an accurate predictor of
performance, it is not clear that the model leads to the
development of efficient algorithms. In fact, in the ma-
trix multiplication tests described in [24], a 2 processor
configuration actually outperforms a 12 processor con-
figuration.

An important difference between the model in [25,
24] and the I~CGM model is that the HCGM model is not
intended to predict exact running times of parallel al-
gorithms on parallel machines. Rather, it is designed to
distinguish between "good" and "bad" algorithms, i.e.,
if the model says that algorithm A is better than algo-
rithm B, then .4 should perform better than B when im-
plemented. This makes the HCGM model simpler, which

629

in turn leads to a much simpler algorithms analysis pro-
cedure.

3 C G M A N D H C G M

In this section, we review the CGM model introduced
by Dehne et. al. in [9] and define a generalization of
this model which we call the rlC(~M. Although we use
the CGM model as our s tar t ing point, similar modifica-
tions could be incorporated into the BSP model or LogP
models.

A coarse grained multicomputer, CGM(m, p), consists
of p identical processors, labelled P 0 , . . . , Pp-x. These
processors are interconnected by a communication net-
work capable of routing an h-relation with h = O (~) .
When discussing the performance of a CGM algorithm
there are 3 items of interest: (1) computat ion time,
(2) number of supersteps, and (3) restrictions on n, rn,
and p. As an example, the Sample Sort algorithm in [13]
uses O(~ log n) computat ion time and ()(1) supersteps

on a CGM(n,p), where ~ >_ p logn . 1

A heterogeneous coarse grained rnulticomputer
HCGM(rn, p, s) consists of p possibly heterogeneous pro-

p--1 cessors labelled / 9 0 , . . , P -1. The value s = S'~ ^ sl • P . Q--,i=v
represents the total speed of the parallel machlne, where
sl represents the speed of Pi and is an integer. Each
processor, Pi, can perform w units of work in w time

"i
units For conciseness, we define 8 ma~ ---- max{8i : 0 <

i _< p - 1} and s mln = min{si : 0 < i < p - 1}, i.e., s m"z
and s mi" are the speeds of the fastest and slowest pro-
cessors, respectively. Similarly, p m , , = P m i n { i : , i = , , ~ . , }

and p,~i, = Pmin{ i : s .=s""} , i.e., p m ~ is a represen-
tat ive fastest processor, and P'~'" is a representative
slowest processor•

The p processors of an ItCOM(rn, p, s) are intercon-
nected by a network capable of routing any all-to-all
communication in which the total amount of da t a ex-
changed is O(m). However, these communication oper-
ations incur e penalty in computat ion time. If Pi is the
source (resp. destination) of O(b) bytes of information,
then Pi incurs a penal ty in computat ion time of 0 (~) .
This represents the local computat ion needed to pack
(resp. unpack) messages into (resp. from) buffers. For
example, the computat ion t ime associated with routing
an h-relation is m a x { ~ : 0 < i < p - 1} = h #m.n •

Like a CGM algorithm, the performance of an HCGM
algori thm is measured in terms of local computat ion
time and the number of supersteps. Both of these quan-
tit ies can be functions of n, p, s, and so , . . . , s p - l . Ide-
ally, an HCGM(rn, p , s) algorithm gives a speedup of s
when compared to a uniprocessor machine with unit
speed running the fastest sequential algori thm for the
same problem. This speedup should be independent of
the values of so,. • •, s~ - l .

IWe say t h a t a r a n d o m i z e d a lgor i thm I~as runn ing t ime
O (f (n)) if the p robab i l i ty t ha t the a l g o r i t h m ' s runn ing t ime ex-
ceeds c f (n) is less t han or equal to 1/poly(n) where poly(n) is
a po lynomia l whose degree depends on c. %Ve say tha t such an
a lgo r i t hm h,~ runn ing t ime O (f (r t)) with htgh probability.

We assume tha t the input to a HCGM(m,p, s) algo-
r i thm is initially dis tr ibuted in a load balanced man-
ner, tha t is, e ach /~ initially holds ~ n input elements.
At this point we note that the HCO~l(m,p, s) model is
equivalent to the COM(m,p) model when so = sl =
"'" = Sp--1 =I.

One possible approach to developing HCGM algo-
rithms directly from BSP and CGM algorithms is to have
each processor, Pi, simulate s l /gcd(s0 , sp-1) vir-
tual CGM processors, where gcd (s0 , . . . , Sp -1) denotes
the greatest common divisor of s o , . . . , s p - , . Although
this approach leads to perfect load balancing, it has at
least three problems.

1. The overheads associated with automatical ly sim-
ulating virtual processors can have a significant
negative impact on real running times. These over-
heads can be avoided by having implementors code
the simulation by hand, but this adds complexity
to the already difficult task of implementing paral-
lel algorithms.

2. In some cases the number of supersteps in a CGM
algorithm is a function of the number of proces-
sors, so increasing the number of processors by in-
troducing vir tual processors increases the number
of supersteps.

3. Most CGP algorithms require restrictions on n and
p in order to work efficiently, and increasing p by
introducing vir tual processors may violate these re-
strictions.

As an example of the difference between an opt imal
algorithm on the CGM model and the HCGM model, we
consider the Sample Sort algori thm described in [13].
The original Sample Sort algori thm has a running t ime
of

/ "- log n \

on an HCGM(n, p, s), tha t is, the running t ime is domi-
nated by the speed of the slowest processor so tha t the
running time is the same as if we had p processor each
with speed sm'". However, if the algori thm could some-
how be modified so tha t during each round, each Pi
received £tn keys then the running t ime would be given
by

(~-~- log n 0 :,
which is opt imal up to constant factors, since a single
processor with unit speed requires O(n log n) t ime using
the best sequential algorithm.

4 C G P C O M M U N I C A T I O N P A T T E R N S

In this section common communication pat terns used in
CGP algorithms are discussed. A survey of the litera-
ture on CGP algorithms reveals tha t although there are

630

many possible communication patterns available with
the h-relation, most algorithms can be implemented us-
ing a small number of well defined communication pat-
terns. These patterns are listed below. Beside each
pattern is a reference to some algorithms which use it.

Pattern 1 (CGM-Preflx-Sum). [10, 9]. Compute
the prefix sum of a sequence of n elements. Each proces-
sor locally computes the prefix sum of it's subsequence
and sends the total sum to P0. P0 computes the pre-
fix sum of this sequence and sends the ith element of
this prefix sum to P/. P/ then adds this value to each
element of the prefix sum computed in the first step to
obtain the prefix sum of the overall result.

Pat tern 2 (C G M - R a n d o m - S a m p l e) . [13, 8]. Take
a small random sample of the input. Each element is
chosen as a sample element with probabili ty L where
r <_ ~ is the desired sample size, All the samples are
then routed to P0.

Pat tern 3 (C G M - R a n d o m - A s s i g n) . [1, 2, 11].
Randomly assign each input element to a processor.
Each processor places each of its elements into one of p
buckets with equal probability. The contents of bucket
i are then routed to P~.

Pat tern 4 (C G M - L i n e a r - P a r t i t i o n) . [13, 9]. Parti-
tion the input in such a way that each element at Pi is
less than each element at Pj, for all i < j . The input is
sampled using the Sample pattern. The sample is then
sorted, and p splitters are chosen at uniform intervals
from the sorted sample. Each of the input elements is
then assigned to one of p buckets depending on which
pair of split ters it falls between in the sorted order. Fi-
nally, the contents of bucket i are routed to Pi.

Pattern 5 (CGM-Cireulate). This pattern takes
two ordered lists A and]3 of size O(n) as input. The
computation proceeds in p rounds. During each round
e~ch processor sends and receives some portion of B of
size ~, and performs some computation on its locally
stored portions of A and 13. After the p rounds, each
element of B has been stored in the same processor as
each element in A during exactly one round. The nature
of the computation performed in each round may vary,

I% 6
but the running time must be of the form O('-~]AiD,
where Ai is the sublist of A stored at Pi. This pattern,
which is part of the folklore, is a simple technique that
can be used to parallelize many sequential algorithms
with running times of O(n ~) or higher. Examples in-
clude a p round matrix multiplication algorithm and
the Floyd-Warshall all pairs shortest path algorithm.

Fact 1. The communication patterns described above
can be implemented on a CGM(n,p) with the following
runnin 9 times and restrictions on n and p. For more
details the reader is referred to the cited references.

Pattern i Supersteps Computation Restrictions

C)(1)
O(1)
0(1)
0(1)
O(p)

o(~)
o(~)
o(~)

0(~ fogy)
n c + l 0(-7--)

n >
F - P

rt
F -> log n
rt > log n

rt > p l o g n

n > p

The careful reader may have noticed tha t sorting,
which is viewed by many as a basic communication op-
eration, is not included in the list of communication
patterns. We also view sorting as a basic communica-
tion operation, and note tha t sorting is nothing more
than a Linear-Part i t ion followed by a local sort.

5 C O M M U N I C A T I O N P A T T E R N S O N A N
H C G M

In this section, modifications to the patterns of Sec-
tion 4 are given which allow them to run efficiently on
an IICGM(n,p, s). Recall that the input to an HCGM algo-
rithm is initially load balanced, that is, each processor,
Pi, holds ~n elements. The modifications to the pat-
terns are aimed at maintaining this load balanced state
as much as possible.

Pattern 6 (HCGM-Preflx-Sum). To obtain a load
balanced prefix sum computation we simply have pro-
cessor pmax (rather than Po) do the work of computing
the intermediate prefix sum of size p in the second step.

Pattern 7 (HCGM-Random-Sample). The only
possible form of load balancing for this pattern is to
have the sample elements routed to P~*~ (rather than
P0) so that computations on the sample can be done as
quickly as possible.

Pattern 8 (HCGM-Random-Assign). In order to
include load balancing in this pattern, we need only
change the probability with which an element is as-
signed to a bucket. In particular, the probability that
an element is assigtted to bucket i is given by ~i. In this
way, the expected number of elements that arrive at Pi
is "-in.

Pattern 9 (HCGM-Linear-PartRion). Adding
load balancing to this pa t te rn involves changing the
manner in which the split ters are chosen from the r
sorted sample keys. Rather than choosing the split ters
at uniform intervals, the split ters are chosen so tha t
the number of sample keys which fall between spli t ter
i and splitter i + 1 is ['-trJ. In this way, the expected
number of input keys which fall between spli t ter i and
splitter i + 1 is approximately ~ n .

Pattern 10 (H C G M - C i r e u l a t e) . This pat tern can
be load balanced by dis tr ibut ing A such tha t Pi stores
~ n elements, of A.

T h e o r e m 1. The communication patterns described
above can be implemented on an ItCGM(n,p, s) with the
following running times and restrictions on n, p and s.

Patt. Supersteps Computation Restrictions

6 O(1) Q(~) " '~ ' ,~ > p
7 0(1) 0 (~) ""'-"n >__ logn

t t .

8 0(1) 0(~. Iogp) "='" n _> log n
9 0(1) 0(~ logp) ---~n >_ ~ log n

1o o (p) 0 (~ . ') n >_ s

631

Proof Sketch. Due to space limitations we can only out-
line the proofs and defer complete proofs to the full ver-
sion of the paper.

Par t s 6 and 7 can be seen by observing that each
processor, Pi does O(~,n) work, except for P " ° ' . In
Par t 6, P '~ '" does an addit ional O(p) C_ O(L~-n) work.
In Pa r t 7, p,,a~ does an addit ional O(r) C (9 (s ~ - n)
w o r k .

Par t 8 can be proven using Chernoff bounds to
show tha t the number of elements which arrive at Pi
is O (~ n) . The logp factor in the running time comes
from the fact tha t a binary search must be used to find
which processor each element is assigned to.

Par t 9 can be proven by using Chernoff bounds to
show that , for properly chosen r , the number of samples
in the c ~ n keys which follow split ter i is greater than
[~rJ , with high probability. Therefore, at most c~,n
keys are assigned to Pi, with high probability.

Par t 10 follows from the definition of the circulate
pa t te rn since the work done by Pi during a single round
is O (- ~ . ~ n) . Over p rounds this becomes O(~nC+l).

[]

6 H C G M A L G O R I T H M S

In this sec t ion , the work on communication pat terns
finally pays off in that it provides a large number of al-
gori thms for the HCGM model. This is due to the fact
tha t many existing CGM and BSP algorithms can be ex-
pressed solely in terms of commonly occuring communi-
cation patterns. Since HCGM versions of these pat terns
exist, so do HCGM versions of these algorithms. Rather
than describe all HCGM algorithms in detail, we refer-
ence the original C G M o r B S P algorithm on which it is
based.

T h e o r e m 2. The following problems can be solved on
• r a a z

an HCGM(n,p, s), provided that 7 n >_ ss~,, logn, us-
ing the stated amount of computation time and O(1)
supersteps:

1. sorting n keys: " '~ 0 (7 log n),

P. rn priority queue operations on a priority queue of
size n: O(~- logn) ,

3. finding the median of n elements: ~)(~).

4. a number of 2 and 3-dimensional computational ge-
ometry problems on inputs of size n: () (~ l o g n) ,
and

5. computing the medial axis transform of a x/~ ×
image: 0(~).

Proof Sketch. Due to space l imitations we show only
how existing algorithms can be expressed in terms of
common communication pat terns and defer complete
proofs to the full version of the paper.

I. Sorting can be implemented as a Linear-Part i t ion
followed by a local sort [13].

2. The priorit3i queue insertion algori thm in [2] con-
sists of a Random-Assign followed by repeated in-
sertions into a local priority queue. The deletion
algorithm can be implemented by having each pro-
cessor delete c ~ r n keys from a local priori ty queue,
sorting the deleted keys, and reinserting the keys
with rank > m.

3. The selection algorithm in [12] can be implemented
as a random sample, a global sort, and a prefix
s u m .

4. The computat ional geometry algori thms described
in [9] use only one communication operation, global
sorting.

5. The medial axis transform algori thm in [10] uses
only scan (prefix-sum) operations and local com-
putation.

O

Next, we point out some simple algori thms on ma-
trices that are based on the Circulate pat tern .

T h e o r e m 3. The following problems can be solved on a
• 3 . .

HCGM(n2,p, s) using 0 (~) computat$on tsme and O(p)
supersteps: multiplication of two n x n matrices, Gaus-
sian elimination on an n x n matrix, and the all pairs
shortest path problem on n vertices.

Proof Sketch. These three problems can be solved using
the Circulate pattern. The set A consists of the columns
of a matr ix distr ibuted in a load balanced manner. The
set B consists of the rows or columns of a mat r ix dis-
t r ibuted in p groups of size ~. By circulating the B
set among the processors, each processor, Pi, sees every
element of the matrix, and can solve its subproblem of
size ~ n ~ in the s tated time bound. 1"3

As these two theorems show, a large number of ex-
isting CGP algorithms can be made into HCGM algo-
ri thms with minimal effort. Given a l ibrary which in-
cludes the above communication pat terns, then litt le
extra effort is needed on the par t of the programmer to
include support for heterogeneous systems in her imple-
mentation.

7 I M P L E M E N T A T I O N R E S U L T S

The algorithms for the communication pa t te rns de-
scribed in Section 5 and some of the algori thms in Sec-
tion 6 have been implemented as par t of the PLEDA
library, an ongoing project whose goal is to supply a
portable l ibrary of efficient parallel da t a s t ructures and
algorithms [16]. This work builds on the LEDA library
of sequential da t a structures and algori thms [17]. The
l ibrary is writ ten in C + + [21] and uses MPI [15] for
message passing.

632

~ . / . / " ~ ' ~ ' ' ~

l

1
t ~

t ~

~ l i | i i ,.
4 5 S ? S S I0 I! 12 13

Figure 1: Performance of CGM and HCGM versions of
Sample Sort.

Figure 2: Performance of CGM and HCGM versions of
Floyd-Warshall algorithm

Timing results are presented for a sorting algorithm,
which uses the Random-Sample and Linear-Part i t ion
patterns, and for the Floyd-Warshall all pairs shortest
path algorithm, which is based on the Circulate pat-
tern. These results were obtained on a dedicated cluster
of workstations consisting of 16 166MHz Pentium pro-
cessors interconnected by a 100MHz Ethernet switch,
running Linux, and using the LAM MPI implementa-
tion. In order to simulate slow processors, a crippling
process was launched on those processors in order to re-
duce their effective speed. Crippling processes do noth-
ing but spin in a tight loop performing useless calcu-
lations, effectively reducing the speed of the processor
to ½ its usual speed. For these tests up to 14 proces-
sors were used. 2]9o through/96 were run at the regular
speed, while Pr through P,3 were crippled.

Figure 1 compares the results of using the HCGM
Linear-Part i t ion algorithm and then sorting locally
against the results obtained by s tandard Sample Sort
[13]. The test sorts a list of 2.5 • 106 integers, using the
LEDA implementat ion of quicksort as the local sorting
function. In both cases, the input is initially distr ibuted
in a load balanced manner. It is clear from Figure 1 that
the HCGM version (labelled "With Load-Balancing") of
the algori thm performs much bet ter than the s tandard
version (labelled "Without Load-Balancing") when slow
processors are introduced into the system.

In order to measure the performance of another class
of HCGM algorithms we implemented a CGP version
of the Floyd-Warshall all pairs shortest path algorithm
which uses the Circulate pat tern on the columns of the
adjacency matrix. The results of running this test with
n = 1.0.103 are shown in Figure 2. As we would ex-
pect, the HCGM version of the algorithm performs much
better . Wi th the CGM version it is faster to run the
applicat ion with 7 fast processors than it is to run it
with 7 fast processors and 4 slow processors, while with
the HCGM version the performance improves each time
a processor is added to the cluster.

2 O n e p r o c e s s o r w a s n e e d e d f o r o t h e r p u r p o s e s , a n d h a r d w a r e
p r o b l e m s p r e v e n t e d t h e u s e o f t h e r e m a i n i n g p r o c e s s o r .

8 CONCLUSIONS

The rlCGM model of parallel computing has been in-
troduced. This is the first CGP model which takes
into account the effects of differing processor speeds.
The HCOM model is simple enough tha t the expressions
derived when analyzing algorithms under the model
are immediately meaningful, yet the model is powerful
enough that it accurately reflects current hardware.

Even though the ItCGM model is new, Section 6
shows that there are many algorithms already available
for it. The empirical results of Section 7 show tha t
algorithms under this model perform as well as CGM
algorithms on homogeneous networks and have the ad-
vantage of also working on heterogeneous networks. I t
is worth noting that the modifications introduced to the
COM model to produce the itCGM model could also be
incorporated into the sSP or LogP models.

The high level communication pat terns of Section 4
are also of independent interest, as they form the basis
of a high-level l ibrary for implementing coarse grained
parallel algorithms. This l ibrary should help speed up
the implementation and testing of coarse grained par-
allel algorithms as well as applications which use these
algorithms. Future work in this area includes continuing
work on the PLEDA library, including keeping the list
of communication pat terns up to date as new CGP al-
gorithms are developped which use new communication
patterns.

ACKNOWLEDGEMENTS

The author would like to thank Silvia G6tz,
Anil Maheshwari, Ben Juurlink and J6 rgSack for
several helpful discussions, and for having read and
commented on earlier versions of this paper.

R e f e r e n c e s

[1] D. Bader, D. Hellman, and J. J~J~. Parallel algo-
rithms for personalized communicat ion and sort-

633

ing with an experimental study. In Proceedings of
ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 211-222, 1996.

[2] A. B~umker, W. Dittrich, F. Meyer auf def Heide,
and I. Rieping. Realistic parallel algorithms: Pri-
ority queue operations and selection for the BSP*
model. In Proceedings of Euro-Par '96, pages 27-
29, 1996.

[3] A. Beguelin, J. Dongarra, A. Geist, B. Manchek,
and V. Sunderam. Solving computational grand
challenges using a network of heterogeneous super-
computers. In Proceedings of the Fifth SIAM Con-
ference on Parallel Processing for Scientific Com-
puting, pages 596-601, 1991.

[4] A. L. Cheung and A. P. Reeves. High performance
computing on a cluster of workstations. In Proceed-
ings of 1st International Symposium on High Per-
formance Distributed Computing, pages 152-160,
1992.

[5] M. Cierniak, W. Li, and M. J. Zaki. Loop schedul-
ing for heterogeneity. In Proceedings of 4th In-
ternational Symposium on High Performance Dis-
tributed Computing, 1995.

[6] P. E. Crandall and M. J. Quinn. A decomposition
advisory system for heterogeneous data-parallel
processing. In Proceedings of 3rd International
Symposium on High Performance Distributed Com-
puting, pages 114-121, 1994.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Snatos, R. Subramonian, and T. yon
Eicken. LogP: Towards a realistic model of parallel
computation. In A CM Symposium on Principles
and Practices of Parallel Programming, pages 1-
12, 1993.

[8] F. Dehne, X. Deng, P. Dymond, A. Fabri, and
A. Kokhar. A randomized parallel 3d convex hull
algorithm for coarse grained multicomputers. In
Proceedings of ACM Symposium on Parallel Algo-
rithms and Architectures, pages 27-33, 1995.

[9] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable
parallel computational geometry for coarse grained
multicomputers. In Proceedings of A CM Sympo-
sium on Computational Geometry, pages 298-307,
1993.

[10] A. Ferreira and S. Ub6da. Computing the medial
axis transform with 8 scan operations. In IEEE In-
ternational Conference on Image Processing, 1995.

[11] A. V. Gerbessiotis and C. J. Siniolakis. Determin-
istic sorting and randomized median finding on the
BSP model. In Proceedings of A CM Symposium on
Parallel Algorithms and Architectures, 1996.

[12] A. V. Gerbessiotis and C. J. Siniolakis. Selection
on the bulk-synchronous parallel model with appli-
cations to priority queues. In Proceedings of the In-
ternational Conference on Parallel and Distributed
Processing Techniques and Applications ~PDPTA
'96), 1996.

[15]

[161

[171

[18]

[13] A. V. Gerbessiotis and L. Valiant. Direct bulk-
synchronous parallel algorithms. In 3rd Scandina-
vian Workshop on Algorithm Theory, pages 1-18,
1992.

[14] E. P. Markatos and T. J. LeBlanc. Using processor
affinity in loop scheduling on shared-memory mul-
tiprocessors. IEEE Transactions on Parallel and
Distributed Systems, 5(4):379-400, April 1994.

Message Passing Interface Forum. MPI: A Message
Passing Interface Standard, 1995.

P. Morin. The PLEDA User's Guide. Carleton
University, 1.0 edition, 1997.

S. N~iher. The LEDA manual. Technical Report
MPI-I-93-109, Max-Planck Institut fiir Informatik,
1993.

N. Nedeljkovid and M. J. Quinn. Data parallel
programming on a network of heterogeneous work-
stations. Concurrency: Practice and Experience,
5(4):257-268, June 1993.

[19] M. V. Nibhanupudi, C. D. Norton, and B. K. Szy-
manski. Plasma simulation on networks of work-
stations using the bulk-synchronous parallel model.
In International Conference on Parallel and Dis-
tributed Techniques and Applications, 1995.

[20] S. Orlando and R. Perego. A template for non-
uniform parallel loops based on dynamic schedul-
ing and prefetching techniques. In Proceedings of
the lOth ACM International Conference on Super-
computing, 1996.

[21] B. Stroustrup. The C-l-+ Programming Language.
Addison Wesley, 3rd edition, 1997.

[22] L. Valiant. A bridging model for parallel compu-
tation. Communications of the ACM, 33:103-111,
1990.

[23] M. H. Willebeck-LeMair and A. P. Reeves. Strate-
gies for dynamic load balancing on highly par-
allel computers. IEEE Transactions on Parallel
and Distributed Systems, 4(9):979-993, September
1993.

[24] Y. Yan, X. Zhang, and Y. Song. An effective and
practical performance prediction model for par-
allel computing on non-dedicated heterogeneous
NOW. Journal of Parallel and Distributed Com-
puting, 38(1):63-80, 1996.

[25] X. Zhang and Y. Yam Modeling and characterizing
parallel computing performance on heterogeneous
networks of workstations. In Proceedings of the 7th
IEEE Symposium on Parallel and Distributed Pro-
cessing, pages 25-34, 1995.

634

