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A b s t r a c t  

Coarse grained parallel (CGP) computing models such 
as the coarse grained multicomputer (¢GM), bulk syn- 
chronous parallel (BSP), and LogP models have received 
considerable at tention recently from the parallel com- 
puting community. This paper examines a new applica- 
tion of CGP algorithms, namely in heterogeneous sys- 
tems, and shows that this approach to heterogeneous 
computing has a number of advantages over traditional 
approaches. A hetegerogeneous CGP model of compu- 
tation is defined, and a number of algorithms and basic 
communication operations are developed for this model. 
These algorithms have been implemented in the form of 
a reusable and extendable library which simplifies the 
task of programming heterogeneous systems. Empirical 
results are given which show that this approach per- 
forms very well in practice. 

1 I N T R O D U C T I O N  

Assessing the impact of heterogeneity in parallel com- 
puting systems is becoming increasingly important. In- 
dividuals with limited budgets can now build worksta- 
tion clusters from off-the-shelf processing components 
and interconnection networks [4, 19]. High speed net- 
works are being used to interconnect traditional super- 
computers in order to direct large amounts of comput- 
ing power at Grand Challenge problems [3]. Even tra- 
ditional supercomputers usually consist of a very fast 
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workstation host connected to a number of slower in- 
the-box processors. 

The three situations above, which cover nearly all 
modern parallel computing systems, are all potential ex- 
amples of heterogeneous systems. (Here and throughout 
the remainder of the paper, the term heterogeneous sys- 
tem refers to a system in which processors have differing 
speeds.) In the case of workstations clusters, the pro- 
cessing components may be different because the sys- 
tem was grown incrementally and newly added proces- 
sors are more modern than the originals. In the case of 
supercomputer clusters, the supercomputers may come 
from different manufacturers. Finally, in the case of 
traditional supercomputers, it may be useful to use the 
host processor, particularly for sequentiM portions of 
computations. 

Traditionally, there have been two approaches to 
dealing with the varying processor speeds in such sys- 
tems. The first and simplest approach, which we call the 
ostrich approach is to simply ignore the difference in pro- 
cessor speeds and use standard parallel algorithms. In 
many cases, this leads to the slowest processor becom- 
ing a bottleneck, and effectively reduces performance to 
that of a machine in which all processors are equally 
slow. This can result in decreased performance when 
slow processors are added to a system. 

The second approach, which we cMl the overpar- 
titioning approach is to break the problem into small 
subproblems, so that there are many more subproblems 
than processors, and assign subproblems to processors 
whenever they become idle. This approach also has its 
disadvantages. Decomposing the problem and merging 
the solutions to subproblems is not always easy, nor is 
coordinating the processors, and these tasks have an 
overhead associated with them. Even worse, because 
of the high latency of communications networks, many 
processor cycles are wasted waiting for the network to 
deliver subproblems. In most cases, a healthy dose of 
performance testing, algorithm analysis, and common 
sense is required to determine the opt imum subprob- 
lem size, and this procedure must be repeated when the 
system configuration changes. 

The approach taken in this paper is to modify fast 
parallel algorithms which have been shown to be effi- 
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cleat in homogeneous systems to run efficiently on het- 
erogeneous systems. The class of algorithms we choose 
as our s tar t ing point is the class of coarse grained paral- 
lel (CGP) algorithms. Examples of such algorithms in- 
clude algorithms for the bulk synchronous parallel (BSP) 
[22], Coarse Grained Multicomputer (CGM) [9], and LogP 
[7] models of parallel computation. 

In these models a parallel computer is composed of 
p processors and is being used to solve a problem of size 
n, where typically p << n. The basic communication 
operation is the h-relation, an all-to-all communication 
operation in which no processor is the source or destina- 
tion of more than h words. Algorithms based on these 
models work in supersteps, where a superstep consists 
of local computation,  followed by global communication 
(routing an h-relation). The goal of algorithm design is 
to simultaneously minimize communication and compu- 
tation. 

The heterogeneous networks described above present 
a problem for CGP algorithms, since the slow processors 
in the network become a bottleneck for the computa- 
tion. This is due to the fact tha t  CGP algorithms are de- 
signed to distr ibute computat ion load evenly across pro- 
cessors. However, through careful modifications, these 
algorithms can be made to distr ibute computation load 
according to processor speeds without sacrificing effi- 
ciency. 

This approach has the obvious advantage over the 
ostrich approach that  it balances the computation ac- 
cording to processor speed and therefore improves per- 
formance (Section 7 bears this out  with empirical ev- 
idence). This approach has twoadvan tages  over the 
overpart i t ioning approach. The first is that  it minimizes 
the effects of latency (most of the algorithms described 
in Section 6 perform only a constant number of com- 
munication operations).  The second is that  it doesn' t  
require extensive testing and measurements to deter- 
mine opt imum algorithm parameters.  In fact, the only 
parameters  used by the algorithms are the processor 
speeds. 

The main contributions of this paper are the follow- 
ing: 

1. The definition of a parallel computat ion model 
called HCGM which takes into account varying pro- 
cessor speeds - -The  model is simple enough to be 
easy to use, accurate enough to allow for the devel- 
opment of t ruly efficient algorithms, and portable 
enough to allow these algorithms to run efficiently 
on a wide variety of parallel architectures. 

2. The identification of a number of communica- 
tion pat terns  most commonly used in CGP al- 
gorithms and efficient HCGM aigorithms for their 
implementa t ion- -These  algorithms form the basis 
for t ranslat ing existing CGP algorithms into HCGM 
algorithms. 

3. A number of algorithms for the HCaM mode l - -  
These algorithms are arrived at  by describing ex- 
isting CGM and BSP algorithms in terms of the pre- 
viously mentioned communication patterns. 

4. An implementation of these ideas~The implemen- 
tation consists of a library of the previously men- 
tioned communication patterns and some algo- 
rithms. 

The remainder of the paper is organized as follows: 
Section 2 reviews related work. Section 3 describes the 
CGM model and defines a generalization of this model, 
the Heterogeneous CGM (HCGM). Section 4 examines 
common communication patterns used by CGP algo- 
rithms. Section 5 shows how these patterns can be 
implemented on the HCGM model. Section 6 presents 
a number of algorithms for the HCGM model  based on 
the tlCGM versions of the communication patterns.  Sec- 
tion 7 describes an implementation of these ideas and 
presents some empirical results which validates both  the 
model and the algorithms. Finally, Section 8 summa- 
rizes and suggests directions for future work in this area. 

2 R E L A T E D  W O R K  

The topic of da t a  part i t ioning in heterogeneous sys- 
tems with simple fixed communication pa t te rns  is ad- 
dressed in [6, 18], and semi-automatic methods of choos- 
ing the best partitioning scheme and parameters are de- 
scribed. Methods for the compile time scheduling of 
various types of parallel loops are described in [5}. The 
results in this paper go beyond these in that the prob- 
lems addressed have much less structure than simple 
stencilling operations on 2D grids or uniform parallel 
loops whose communication patterns can be analyzed at 
compile time. In Section 6 algorithms are presented for 
sorting, median finding, and a number of computational 
geometry problems whose communication patterns are 
input dependent. 

Methods for dynamic load balancing such as those 
described in [20, 14, 23] can also be applied to hetero- 
geneous systems. All these methods fall into the over- 
patitioning strategy category. The advantages of our 
strategy over such overpartitioning strategies have been 
described in Section 1. These are the minimization of 
the effects latency and simplicity of the algorithm pa- 
rameters. 

In [25] a mathematical model of a network of work- 
stations is described. In [24], the authors describe a 
stochastic performance prediction methodology for this 
model based on the task graph of the parallel applica- 
tion. Although this model is an accurate predictor of 
performance, it is not clear that the model leads to the 
development of efficient algorithms. In fact, in the ma- 
trix multiplication tests described in [24], a 2 processor 
configuration actually outperforms a 12 processor con- 
figuration. 

An important difference between the model in [25, 
24] and the I~CGM model is that the HCGM model is not 
intended to predict exact running times of parallel al- 
gorithms on parallel machines. Rather, it is designed to 
distinguish between "good" and "bad" algorithms, i.e., 
if the model says that algorithm A is better than algo- 
rithm B, then .4 should perform better than B when im- 
plemented. This makes the HCGM model simpler, which 
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in turn leads to a much simpler algorithms analysis pro- 
cedure. 

3 C G M  A N D  H C G M  

In this section, we review the CGM model introduced 
by Dehne et. al. in [9] and define a generalization of 
this model which we call the rlC(~M. Although we use 
the CGM model as our s tar t ing point, similar modifica- 
tions could be incorporated into the BSP model or LogP 
models. 

A coarse grained multicomputer, CGM(m, p), consists 
of p identical processors, labelled P 0 , . . . ,  Pp-x. These 
processors are interconnected by a communication net- 
work capable of routing an h-relation with h = O ( ~ ) .  
When discussing the performance of a CGM algorithm 
there are 3 items of interest: (1) computat ion time, 
(2) number of supersteps, and (3) restrictions on n, rn, 
and p. As an example, the Sample Sort algorithm in [13] 
uses O(~  log n) computat ion time and ()(1) supersteps 

on a CGM(n,p), where ~ >_ p logn .  1 

A heterogeneous coarse grained rnulticomputer 
HCGM(rn, p, s) consists of p possibly heterogeneous pro- 

p--1 cessors labelled / 9 0 , . . ,  P -1. The value s = S'~ ^ sl • P . Q--,i=v 
represents the total speed of the parallel machlne, where 
sl represents the speed of Pi and is an integer. Each 
processor, Pi, can perform w units of work in w time 

"i 
units For conciseness, we define 8 ma~ ---- max{8i : 0 < 

i _< p -  1} and s mln = min{si : 0 < i < p -  1}, i.e., s m"z 
and s mi" are the speeds of the fastest and slowest pro- 
cessors, respectively. Similarly, p m , , =  P m i n { i : , i = , , ~ . , }  

and p,~i,  = Pmin{ i : s .=s""} ,  i.e., p m ~  is a represen- 
tat ive fastest processor, and P'~'" is a representative 
slowest processor• 

The p processors of an ItCOM(rn, p, s) are intercon- 
nected by a network capable of routing any all-to-all 
communication in which the total  amount of da t a  ex- 
changed is O(m).  However, these communication oper- 
ations incur e penalty in computat ion time. If Pi is the 
source (resp. destination) of O(b) bytes of information, 
then Pi incurs a penal ty in computat ion time of 0 ( ~ ) .  
This represents the local computat ion needed to pack 
(resp. unpack) messages into (resp. from) buffers. For 
example, the computat ion t ime associated with routing 
an h-relation is m a x { ~  : 0 < i < p -  1} = h #m.n • 

Like a CGM algorithm, the performance of an HCGM 
algori thm is measured in terms of local computat ion 
time and the number of supersteps.  Both of these quan- 
tit ies can be functions of n, p, s, and so , . . .  , s p - l .  Ide- 
ally, an HCGM(rn, p , s )  algorithm gives a speedup of s 
when compared to a uniprocessor machine with unit 
speed running the fastest sequential algori thm for the 
same problem. This speedup should be independent of 
the values of so,. • •, s~ - l .  

IWe say  t h a t  a r a n d o m i z e d  a lgor i thm I~as runn ing  t ime 
O ( f ( n ) )  if the  p robab i l i ty  t ha t  the  a l g o r i t h m ' s  runn ing  t ime  ex- 
ceeds c f ( n )  is less t han  or equal  to 1/poly(n) where  poly(n) is 
a po lynomia l  whose  degree  depends  on c. %Ve say tha t  such an 
a lgo r i t hm h,~ runn ing  t ime  O ( f ( r t ) )  with htgh probability. 

We assume tha t  the input to a HCGM(m,p, s) algo- 
r i thm is initially dis tr ibuted in a load balanced man- 
ner, tha t  is, e ach /~  initially holds ~ n  input  elements. 
At this point we note that  the HCO~l(m,p, s) model is 
equivalent to the COM(m,p) model when so = sl  = 
"'" = Sp--1 =I. 

One possible approach to developing HCGM algo- 
rithms directly from BSP and CGM algorithms is to have 
each processor, Pi, simulate s l /gcd(s0  . . . .  , sp-1) vir- 
tual  CGM processors, where gcd ( s0 , . . . , Sp -1 )  denotes 
the greatest common divisor of s o , . . . ,  s p - , .  Although 
this approach leads to perfect load balancing, it has at 
least three problems. 

1. The overheads associated with automatical ly  sim- 
ulating virtual processors can have a significant 
negative impact on real running times. These over- 
heads can be avoided by having implementors code 
the simulation by hand, but  this adds complexity 
to the already difficult task of implementing paral- 
lel algorithms. 

2. In some cases the number of supersteps in a CGM 
algorithm is a function of the number of proces- 
sors, so increasing the number of processors by in- 
troducing vir tual  processors increases the  number 
of supersteps. 

3. Most CGP algorithms require restrictions on n and 
p in order to work efficiently, and increasing p by 
introducing vir tual  processors may violate these re- 
strictions. 

As an example of the difference between an opt imal  
algorithm on the CGM model and the HCGM model, we 
consider the Sample Sort algori thm described in [13]. 
The original Sample Sort algori thm has a running t ime 
of 

/ "- log n \  

on an HCGM(n, p, s), tha t  is, the running t ime is domi- 
nated by the speed of the slowest processor so tha t  the 
running time is the same as if we had p processor each 
with speed sm'". However, if the algori thm could some- 
how be modified so tha t  during each round, each Pi 
received £tn keys then the running t ime would be given 
by 

(~-~- log n 0 :, 
which is opt imal  up to constant  factors, since a single 
processor with unit speed requires O(n  log n) t ime using 
the best sequential algorithm. 

4 C G P  C O M M U N I C A T I O N  P A T T E R N S  

In this section common communication pat terns  used in 
CGP algorithms are discussed. A survey of the litera- 
ture on CGP algorithms reveals tha t  although there are 
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many possible communication patterns available with 
the h-relation, most algorithms can be implemented us- 
ing a small number of well defined communication pat- 
terns. These patterns are listed below. Beside each 
pattern is a reference to some algorithms which use it. 

Pattern 1 (CGM-Preflx-Sum). [10, 9]. Compute 
the prefix sum of a sequence of n elements. Each proces- 
sor locally computes the prefix sum of it's subsequence 
and sends the total sum to P0. P0 computes the pre- 
fix sum of this sequence and sends the ith element of 
this prefix sum to P/. P/ then adds this value to each 
element of the prefix sum computed in the first step to 
obtain the prefix sum of the overall result. 

Pat tern  2 ( C G M - R a n d o m - S a m p l e ) .  [13, 8]. Take 
a small random sample of the input. Each element is 
chosen as a sample element with probabili ty L where 
r <_ ~ is the desired sample size, All the samples are 
then routed to P0. 

Pat tern  3 ( C G M - R a n d o m - A s s i g n ) .  [1, 2, 11]. 
Randomly assign each input element to a processor. 
Each processor places each of its elements into one of p 
buckets with equal probability. The contents of bucket 
i are then routed to P~. 

Pat tern  4 ( C G M - L i n e a r - P a r t i t i o n ) .  [13, 9]. Parti-  
tion the input  in such a way that  each element at  Pi is 
less than each element at  Pj,  for all i < j .  The input is 
sampled using the Sample pattern.  The sample is then 
sorted, and p splitters are chosen at  uniform intervals 
from the sorted sample. Each of the input elements is 
then assigned to one of p buckets depending on which 
pair of split ters it  falls between in the sorted order. Fi- 
nally, the contents of bucket i are routed to Pi. 

Pattern 5 (CGM-Cireulate). This pattern takes 
two ordered lists A and ]3 of size O(n) as input. The 
computation proceeds in p rounds. During each round 
e~ch processor sends and receives some portion of B of 
size ~, and performs some computation on its locally 
stored portions of A and 13. After the p rounds, each 
element of B has been stored in the same processor as 
each element in A during exactly one round. The nature 
of the computation performed in each round may vary, 

I% 6 
but the running time must be of the form O('-~]AiD, 
where Ai is the sublist of A stored at Pi. This pattern, 
which is part of the folklore, is a simple technique that 
can be used to parallelize many sequential algorithms 
with running times of O(n ~) or higher. Examples in- 
clude a p round matrix multiplication algorithm and 
the Floyd-Warshall all pairs shortest path algorithm. 

Fact 1. The communication patterns described above 
can be implemented on a CGM(n,p) with the following 
runnin 9 times and restrictions on n and p. For more 
details the reader is referred to the cited references. 

Pattern i Supersteps Computation Restrictions 

C)(1) 
O(1) 
0(1) 
0(1) 
O(p) 

o(~) 
o(~) 
o(~) 

0(~ fogy) 
n c + l  0(-7--) 

n >  
F - P  

rt  
F -> log n 
rt > log n 

rt > p l o g n  

n > p  

The careful reader may have noticed tha t  sorting, 
which is viewed by many as a basic communication op- 
eration, is not included in the list of communication 
patterns. We also view sorting as a basic communica- 
tion operation, and note tha t  sorting is nothing more 
than a Linear-Part i t ion followed by a local sort. 

5 C O M M U N I C A T I O N  P A T T E R N S  O N  A N  
H C G M  

In this section, modifications to the patterns of Sec- 
tion 4 are given which allow them to run efficiently on 
an IICGM(n,p, s). Recall that the input to an HCGM algo- 
rithm is initially load balanced, that is, each processor, 
Pi, holds ~n elements. The modifications to the pat- 
terns are aimed at maintaining this load balanced state 
as much as possible. 

Pattern 6 (HCGM-Preflx-Sum). To obtain a load 
balanced prefix sum computation we simply have pro- 
cessor pmax (rather than Po) do the work of computing 
the intermediate prefix sum of size p in the second step. 

Pattern 7 (HCGM-Random-Sample). The only 
possible form of load balancing for this pattern is to 
have the sample elements routed to P~*~ (rather than 
P0) so that computations on the sample can be done as 
quickly as possible. 

Pattern 8 (HCGM-Random-Assign). In order to 
include load balancing in this pattern, we need only 
change the probability with which an element is as- 
signed to a bucket. In particular, the probability that 
an element is assigtted to bucket i is given by ~i. In this 
way, the expected number of elements that arrive at Pi 
is "-in. 

Pattern  9 (HCGM-Linear-PartRion). Adding 
load balancing to this pa t te rn  involves changing the 
manner in which the split ters are chosen from the r 
sorted sample keys. Rather  than choosing the split ters 
at uniform intervals, the  split ters are chosen so tha t  
the number of sample keys which fall between spli t ter  
i and splitter i + 1 is ['-trJ. In this way, the expected 
number of input keys which fall between spli t ter  i and 
splitter i + 1 is approximately ~ n .  

Pattern  10 ( H C G M - C i r e u l a t e ) .  This pat tern  can 
be load balanced by dis tr ibut ing A such tha t  Pi stores 
~ n  elements, of A. 

T h e o r e m  1. The communication patterns described 
above can be implemented on an ItCGM(n,p, s) with the 
following running times and restrictions on n, p and s. 

Patt. Supersteps Computation Restrictions 

6 O(1) Q(~)  " '~ ' ,~ > p 
7 0(1)  0 ( ~ )  ""'-"n >__ logn  

t t .  

8 0(1)  0(~. Iogp) "='" n _> log n 
9 0(1) 0(~ logp) ---~n >_ ~ log n 

1o o ( p )  0 ( ~ .  ' ) n >_ s 
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Proof Sketch. Due to space limitations we can only out- 
line the proofs and defer complete proofs to the full ver- 
sion of the paper.  

Par t s  6 and 7 can be seen by observing that  each 
processor, Pi does O(~,n)  work, except for P " ° ' .  In 
Par t  6, P '~ '"  does an addit ional  O(p) C_ O(L~-n )  work. 
In Pa r t  7, p,,a~ does an addit ional O(r)  C ( 9 ( s ~ - n )  
w o r k .  

Par t  8 can be proven using Chernoff bounds to 
show tha t  the number of elements which arrive at Pi 
is O ( ~ n ) .  The  logp factor in the running time comes 
from the fact tha t  a binary search must be used to find 
which processor each element is assigned to. 

Par t  9 can be proven by using Chernoff bounds to 
show that ,  for properly chosen r ,  the number of samples 
in the c ~ n  keys which follow split ter i is greater than 
[~rJ ,  with high probability. Therefore, at most c~,n 
keys are assigned to Pi, with high probability. 

Par t  10 follows from the definition of the circulate 
pa t te rn  since the work done by Pi during a single round 
is O ( - ~ .  ~ n ) .  Over p rounds this becomes O(~nC+l).  

[]  

6 H C G M  A L G O R I T H M S  

In this sec t ion ,  the work on communication pat terns  
finally pays off in that  it  provides a large number of al- 
gori thms for the HCGM model. This is due to the fact 
tha t  many existing CGM and BSP algorithms can be ex- 
pressed solely in terms of commonly occuring communi- 
cation patterns.  Since HCGM versions of these pat terns  
exist, so do HCGM versions of these algorithms. Rather  
than describe all HCGM algorithms in detail,  we refer- 
ence the original C G M  o r  B S P  algorithm on which it is 
based. 

T h e o r e m  2. The following problems can be solved on 
• r a a z  

an HCGM(n,p, s), provided that 7 n  >_ ss~,, logn,  us- 
ing the stated amount of computation time and O(1) 
supersteps: 

1. sorting n keys: " '~ 0 ( 7  log n), 

P. rn priority queue operations on a priority queue of 
size n: O(~- logn) ,  

3. finding the median of n elements: ~)( ~ ). 

4. a number of 2 and 3-dimensional computational ge- 
ometry problems on inputs of size n: ( ) ( ~ l o g n ) ,  
and 

5. computing the medial axis transform of a x/~ × 
image: 0( ~ ). 

Proof Sketch. Due to space l imitations we show only 
how existing algorithms can be expressed in terms of 
common communication pat terns  and defer complete 
proofs to the full version of the paper. 

I. Sorting can be implemented as a Linear-Part i t ion 
followed by a local sort [13]. 

2. The priorit3i queue insertion algori thm in [2] con- 
sists of a Random-Assign followed by repeated in- 
sertions into a local priority queue. The deletion 
algorithm can be implemented by having each pro- 
cessor delete c ~ r n  keys from a local priori ty queue, 
sorting the deleted keys, and reinserting the keys 
with rank > m. 

3. The selection algorithm in [12] can be implemented 
as a random sample, a global sort,  and a prefix 
s u m .  

4. The computat ional  geometry algori thms described 
in [9] use only one communication operation,  global 
sorting. 

5. The medial axis transform algori thm in [10] uses 
only scan (prefix-sum) operations and local com- 
putation. 

O 

Next, we point out  some simple algori thms on ma- 
trices that  are based on the Circulate pat tern .  

T h e o r e m  3. The following problems can be solved on a 
• 3 . . 

HCGM(n2,p, s) using 0 (  ~ ) computat$on tsme and O(p) 
supersteps: multiplication of two n x n matrices, Gaus- 
sian elimination on an n x n matrix, and the all pairs 
shortest path problem on n vertices. 

Proof Sketch. These three problems can be solved using 
the Circulate pattern.  The set A consists of the columns 
of a matr ix  distr ibuted in a load balanced manner.  The  
set B consists of the rows or columns of a mat r ix  dis- 
t r ibuted in p groups of size ~. By circulating the B 
set among the processors, each processor, Pi, sees every 
element of the matrix,  and can solve its subproblem of 
size ~ n  ~ in the s tated time bound. 1"3 

As these two theorems show, a large number of ex- 
isting CGP algorithms can be made into HCGM algo- 
ri thms with minimal effort. Given a l ibrary which in- 
cludes the above communication pat terns,  then litt le 
extra  effort is needed on the par t  of the programmer to 
include support  for heterogeneous systems in her imple- 
mentation. 

7 I M P L E M E N T A T I O N  R E S U L T S  

The algorithms for the communication pa t te rns  de- 
scribed in Section 5 and some of the algori thms in Sec- 
tion 6 have been implemented as par t  of the PLEDA 
library, an ongoing project  whose goal is to supply a 
portable  l ibrary of efficient parallel  da t a  s t ructures  and 
algorithms [16]. This work builds on the LEDA library 
of sequential da t a  structures and algori thms [17]. The 
l ibrary is writ ten in C + +  [21] and uses MPI  [15] for 
message passing. 
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Figure 1: Performance of CGM and HCGM versions of 
Sample Sort. 

Figure 2: Performance of CGM and HCGM versions of 
Floyd-Warshall algorithm 

Timing results are presented for a sorting algorithm, 
which uses the Random-Sample and Linear-Part i t ion 
patterns,  and for the Floyd-Warshall  all pairs shortest 
path algorithm, which is based on the Circulate pat- 
tern. These results were obtained on a dedicated cluster 
of workstations consisting of 16 166MHz Pentium pro- 
cessors interconnected by a 100MHz Ethernet switch, 
running Linux, and using the LAM MPI implementa- 
tion. In order to simulate slow processors, a crippling 
process was launched on those processors in order to re- 
duce their effective speed. Crippling processes do noth- 
ing but spin in a tight loop performing useless calcu- 
lations, effectively reducing the speed of the processor 
to ½ its usual speed. For these tests up to 14 proces- 
sors were used. 2 ]9o through/96 were run at the regular 
speed, while Pr through P,3 were crippled. 

Figure 1 compares the results of using the HCGM 
Linear-Part i t ion algorithm and then sorting locally 
against the results obtained by s tandard Sample Sort 
[13]. The test sorts a list of 2.5 • 106 integers, using the 
LEDA implementat ion of quicksort as the local sorting 
function. In both cases, the input is initially distr ibuted 
in a load balanced manner. It is clear from Figure 1 that  
the HCGM version (labelled "With Load-Balancing") of 
the algori thm performs much bet ter  than the s tandard 
version (labelled "Without  Load-Balancing") when slow 
processors are introduced into the system. 

In order to measure the performance of another class 
of HCGM algorithms we implemented a CGP version 
of the Floyd-Warshall  all pairs shortest path algorithm 
which uses the Circulate pat tern on the columns of the 
adjacency matrix.  The results of running this test with 
n = 1.0.103 are shown in Figure 2. As we would ex- 
pect, the HCGM version of the algorithm performs much 
better .  Wi th  the CGM version it is faster to run the 
applicat ion with 7 fast processors than it is to run it 
with 7 fast processors and 4 slow processors, while with 
the HCGM version the performance improves each time 
a processor is added to the cluster. 

2 O n e  p r o c e s s o r  w a s  n e e d e d  f o r  o t h e r  p u r p o s e s ,  a n d  h a r d w a r e  
p r o b l e m s  p r e v e n t e d  t h e  u s e  o f  t h e  r e m a i n i n g  p r o c e s s o r .  

8 CONCLUSIONS 

The rlCGM model of parallel  computing has been in- 
troduced. This is the first CGP model which takes 
into account the effects of differing processor speeds. 
The HCOM model is simple enough tha t  the  expressions 
derived when analyzing algorithms under the model 
are immediately meaningful, yet  the  model  is powerful 
enough that  it accurately reflects current hardware.  

Even though the ItCGM model is new, Section 6 
shows that  there are many algorithms already available 
for it. The empirical results of Section 7 show tha t  
algorithms under this model perform as well as CGM 
algorithms on homogeneous networks and have the ad- 
vantage of also working on heterogeneous networks. I t  
is worth noting that  the modifications introduced to the 
COM model to produce the itCGM model could also be 
incorporated into the sSP or LogP models. 

The high level communication pat terns  of Section 4 
are also of independent interest,  as they form the basis 
of a high-level l ibrary for implementing coarse grained 
parallel algorithms. This l ibrary should help speed up 
the implementation and testing of coarse grained par- 
allel algorithms as well as applications which use these 
algorithms. Future work in this area includes continuing 
work on the PLEDA library, including keeping the list 
of communication pat terns  up to date  as new CGP al- 
gorithms are developped which use new communication 
patterns. 
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