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Abstract—In this paper an optical router node with
multiple wavelengths is considered. We introduce
revenue for successful transmission and study the
ensuing revenue maximization problem. We present
an efficient and accurate heuristic procedure for solv-
ing the NP-hard revenue maximization problem and
investigate the advantage offered by having multiple
wavelengths.

Index Terms—optical routing, optical node, rev-
enue, optimization, multiple wavelengths

I. Introduction

In the last decades, optical fibers have emerged as the
dominant transport medium in communication networks,
because they offer major advantages over copper cables:
huge bandwidth, extremely low losses and an extra
dimension, viz., a choice of wavelengths (wavelength
division multiplexing). Multiple wavelengths are to be
used in order to enable the packet routing at various
planes in the network (each at a specific wavelength);
by including wavelength conversion, packets can be
transferred between these planes, and thus congestion
points can be circumvented. To handle packets at the
IP layer would imply lots of packet conversions from
optical to electronic, do the IP processing in the electrical
domain, and then convert back to optical. The O/E-IP
processing-E/O conversions introduce relatively signifi-
cant time delays, which means extra latency. Such extra
latency can seriously reduce the network throughput for
interactive high-speed communication between users. All-
optical routing in the nodes, as proposed and studied in
this paper, is valuable to minimize the latencies.

Optical routing also offers substantial challenges [6],
[8]. Photons cannot be stored easily, and hence buffering
of optical packets is different from buffering in conven-
tional communication systems. When photons need to be
buffered, they are sent into a local fiber loop, which thus
provides a small discrete delay to the photons without
displacing or losing them. Packets can be inserted into
and extracted from the fiber loop by means of a cross/bar
switch. If after a loop completion the photon still cannot
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be transmitted, then it could again be sent into the fiber
loop, or be considered as lost. Such optical nodes are to
be used in an all-optical packet-routing network, having
multiple hops.

In [1] we modeled a single-wavelength optical routing
node as a queueing system with a single server (the
wavelength) and N stations – the N ports of the routing
node. We assumed that each successful transmission
of a packet ("customer") brings a certain profit. Our
aim in [1] was to maximize the router performance by
maximizing that profit. As a communication system
typically works in frame time, we demanded that the
time it takes the server to complete one cycle of the N

stations is a given constant C. We then wanted to assign
fixed amounts of time V1, . . . , VN to the visit periods
(also called service windows) of the stations, such that
∑N

i=1 Vi = C −
∑N

i=1 Si, where Si is the time to switch to
station i ∈ {1, 2, . . . , N}. We introduced the probability
pi(Vi) that a packet in a retrial loop of station i retries
during visit period Vi, and the probability qi(Vi) that a
packet is dropped when it fails to retry during Vi. Under
reasonable assumptions on those retry and drop probabil-
ities, the revenue optimization problem in [1] was shown
to be a separable concave optimization problem – a well-
studied type of optimization problem that allows for an
efficient and insightful algorithm (RANK; cf. [5]) that
yields the optimal solution.

Our goals in the present paper are (i) to investigate
the advantage offered by having multiple wavelengths,
and (ii) to formulate and solve the revenue optimization
problem for an optical routing node with multiple wave-
lengths. We shall show that the advantage, in terms of
revenues, is very significant (in particular, to go from
one to two wavelengths). While solving the revenue opti-
mization problem for multiple wavelengths is an NP-hard
problem, we develop a heuristic that works very well.
Our numerical results give insight into the sensitivity of
various parameters and modeling assumptions.

The paper is organized as follows. Section II presents
a detailed description of the optical routing node model.
The revenue maximization problem, that amounts to a
resource allocation problem (assigning stations to wave-
lengths and assigning visit times to stations), is discussed
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in Section III. Numerical examples are shown in Sec-
tion IV. Section V contains conclusions and suggestions
for further research.

II. Optical routing node model

Consider a K-wavelength optical routing node with
N ports (stations) to route packets and with retrial loops
to store packets. We represent it by a queueing model
with K servers which visit N queues. We shall assume
that there is a fixed assignment of stations to servers
(how to do that assignment is part of our optimization
problem), in which each server always serves a fixed set
of stations.
The customers: Packets (also called customers in
queueing terminology) of type j, j = 1, · · · , M , arrive
at station i, i = 1, · · · , N , according to independent
Poisson processes with rate λij , for all i, j. We allow
several customer types because there can be several types
of data at each port. If at the time of packet arrival the
station is being served, then the packet is instantaneously
transmitted; else it enters a retrial loop. We assume the
retrial time to be random, because delay loops of various
lengths may be used. If, at the time of retrial, the station
is not in service then the packet again goes into a retrial
loop and this process continues.
The servers: The servers go through cycles of fixed
length C (the frame time). In each cycle a server visits
each of its assigned stations once, for a fixed period
of time Vi for station i. A visit to i is preceded by a
deterministic switchover (setup) time Si of the server.
During Vi, there may be two types of arrivals: (i)
newly arriving packets, and (ii) packets which were in
a retrial loop; we assume the latter retry during Vi

with probability pi(Vi). In view of the huge available
bandwidth, we assume the server serves all these packets
(new arrivals + retrials) instantaneously, i.e., whenever a
station is being served, any packet which arrives at it or
retries, is transmitted immediately. Hence for practical
purposes the service times are negligible. At the end of
the visit of station i each packet which still resides in
a retrial loop of i is dropped with probability qi(Vi).
Hence the probability that a packet in a retrial loop
of station i leaves the system, either served during a
visit at station i or dropped after a visit of station i,
is ri(Vi) := pi(Vi) + qi(Vi) − pi(Vi)qi(Vi).
Revenue: Every served customer generates a profit and
every lost customer incurs a loss to the system. Our goal
is to assign stations to servers, and subsequently visit
times within a frame time C to stations, such that the
revenue of the system is maximized. Assume that:

• a customer of type j served at station i gives a profit
γij (depending both on the type of packet and the
type of source).

• a customer of type j dropped at station i causes
a penalty θij . Indeed, the server has an obligation
to meet the contract it has with each source. If the
server fails to meet this contract it incurs a penalty:

loss of packets/reputation/further contracts. One
could also view Θi :=

∑

j λijθij as contract costs
of the service provider per time unit, and Γi :=
∑

j λij(γij + θij) as the maximum revenue that can
subsequently be earned back by successfully serving
customers.

For K = 1 wavelength (cf. also [1] where that case was
studied), the mean earnings per cycle are

∑

j

λijγij

[

(C − Vi)
pi(Vi)

ri(Vi)
+ Vi

]

,

and the mean costs per cycle are

∑

j

λijθij

[

(C − Vi)(1 −
pi(Vi)

ri(Vi)
)

]

,

yielding the following net revenue for station i per cycle:

Ri(Vi) = Mi(Vi) − CΘi,

where for all i = 1, . . . , N ,

Mi(Vi) := Γi

[

(C − Vi)
pi(Vi)

ri(Vi)
+ Vi

]

. (1)

In the next section we present an algorithm to allocate
the stations to different wavelengths such that each
wavelength has a set of stations to serve; subsequently
the visit periods are chosen such that the revenue for
each wavelength is maximized.

III. Resource allocation

In this section we propose a procedure for solving
the revenue maximization problem that was globally
described in Section II. For each wavelength k, we have
C =

∑

i∈Pk
(Si + Vi) where Pk represents the set of all

stations served by wavelength k. Note that if there is only
one station being served by a wavelength, then there is no
switchover involved. In that case, Vi = C where i is the
only element of Pk. Further we denote the set of stations
which are each served by one complete wavelength as
P and the set of stations which are not served by any
wavelength as Q.

We now define the optimization problem REVENUE
which produces maximum revenue via an optimal allo-



cation of stations to wavelengths and visit periods to
stations. REVENUE

max

N
∑

i=1

Mi(Vi)

subject to
N

∑

i=1

[(Si + Vi)xik + Viyik] = C, ∀ k = 1, 2, · · · , K,

K
∑

k=1

[xik + yik] ≤ 1, ∀ i = 1, 2, · · · , N,

N
∑

i=1

xik + N

N
∑

i=1

yik ≤ N, ∀ k,

xik, yik ∈ {0, 1} and 0 ≤ Vi ≤ C, ∀ i, k.

Here Mi(Vi) is given in Eq. (1). xik = 1 if station i is
served by wavelength k, but station i is not the only one
being served by it, and is 0 otherwise, yik = 1 if station i

is the only station being served by wavelength k, and is 0
otherwise. This is stated in the third condition where if
for a wavelength k some yik = 1 then no other station can
be served on it. The second condition states that each
station i can only be served by at most one wavelength.
The first and last conditions are system properties, and
they state that the allocation per wavelength should be
equal to its capacity C and the visit period cannot be neg-
ative or more than the total cycle time of one wavelength.
This problem is a non-linear mixed integer programming
problem. Under certain realistic assumptions regarding
the system parameters (see also [1]), we can reduce
the objective function of this maximization problem to
separable concave terms; however, the occurrence of the
integers xik, yik prevents us from using the RANK algo-
rithm [5] that was used in [1]. The so-called BALANCE
problem, which is NP-complete [4], is a special case of
REVENUE. Hence REVENUE is an NP-hard problem;
below we propose a heuristic to solve REVENUE. We
argue that this heuristic should produce results which
are close to optimal, and we provide numerical results in
Section IV to support that claim.

The idea behind our approach is the following. In
Step 1 we do as if there is only one wavelength, but a
frame time of length KC. We use the RANK algorithm
to get an optimal choice of the visit periods Ṽi for such
a situation. That should already give a quite good first
estimate of the visit periods. In Step 2 we use those Ṽi

values to assign stations to wavelengths. This is done
such that each of the K wavelengths gets roughly the
same

∑

(Si + Ṽi) – which hence should be close to
C. Finally, in Step 3, with those K allocations we use
RANK again, but now for K separate single-wavelength
problems. Below we provide the details of these three
steps.

Step 1: We first define the following optimization
problem.

ONE

max
∑

i

Mi(Ṽi)

subject to
∑

i

Ṽi = KC −
∑

i

Si,

and 0 ≤ Ṽi ≤ C − Si, ∀i.

The solution of this optimization problem gives us
the values of Ṽi required by each station to give the
maximum revenue, subject to the condition that the
maximum amount of resource available is KC. The
upper bound on Ṽi is included because a station cannot
be served by more than one wavelength. Note that Mi(Ṽi)
is the same as given in Eq. (1).

We solve the (separable, concave) optimization
problem ONE using RANK, and we thus obtain values
of Ṽi. Every station i which has Si + Ṽi = C, is allocated
to a single wavelength. These stations belong to the
set P and as described at the start of this section, all
stations belonging to this set have their visit periods
equal to the cycle time C. Further, all the stations
with Ṽi = 0 belong to the set Q. These stations will
not be allocated to any wavelength, and as mentioned
earlier they will have zero visit period. By renumbering,
we may assume that the stations in Q are the highest
numbered stations, immediately preceded by the
stations in P. Also assume that the latter N(P) stations
are assigned to the N(P) highest numbered wavelengths.

We now turn to our procedure for assigning stations to
wavelengths (Step 2) and subsequently determining the
exact visit periods (Step 3).

Step 2: Take the values of Si + Ṽi for the first
N − N(P + Q) stations (i.e., those not in P

or Q). Sort these values in descending order, say
S1 + Ṽ1 ≥ S2 + Ṽ2 ≥ · · · ≥ SN−N(P+Q) + ṼN−N(P+Q).
Then allocate those stations to the first K − N(P)
wavelengths following the so-called Longest Processing

Time first (LPT) rule. This amounts to first assigning
stations 1, . . . , K−N(P) to wavelengths 1, . . . , K−N(P);
and subsequently assigning each of the remaining
stations, one by one in descending order of their values,
to that wavelength for which the sum of the already
assigned values is the smallest. This procedure is
continued until all stations have been assigned.

Remark. The idea to use LPT comes from
multiprocessor scheduling. Consider a set of N tasks
which have to be served on K parallel servers. The
service of a task on a server, once started, cannot be
interrupted. In multiprocessor scheduling the goal often
is to minimize the makespan, i.e., the time until all



tasks are completed. This is an NP-hard problem. The
makespan minimization problem can be reformulated
in the terminology of bin-packing, where it amounts
to finding the smallest common capacity of the bins,
sufficient to pack all N pieces. Many heuristics have
been developed for solving the bin-packing or makespan
minimization problem; see, e.g., [3]. LPT is a simple
and accurate heuristic procedure. It is intuitively clear
that assigning tasks in decreasing order of size should
work well when K and N are not too small: because
the smallest tasks are assigned last, it is likely that
all makespans are close to each other. See [7] for a
probabilistic analysis of various bin-packing heuristics,
and [2] for a probabilistic analysis of LPT list scheduling.

Step 3: Now that we have assigned all stations to a
wavelength, we still need to determine the visit periods
for those stations that use wavelengths 1, . . . , K − N(P),
because the extended visit periods Si + Ṽi of the stations
that are assigned to a particular wavelength do not
exactly sum up to C. For this we solve optimization
problem TWO, for k = 1, . . . , K − N(P):

TWO

max
∑

i∈Pk

Mi(Vi)

subject to
∑

i∈Pk

Vi = C −
∑

i∈Pk

Si,

and Vi ≥ 0, ∀i ∈ Pk.

The solution of this optimization problem gives us
the values of Vi required by each station allocated
to wavelength k, subject to the maximum amount
of resource available at that wavelength. We thus
obtain new extended visit periods Si + Vi for stations
1, . . . , N − N(P + Q).

Remark. If, in Step 2, a station i∗ is the only one
being assigned to a wavelength, then we do not run TWO
for it but take Vi∗ = C.

This concludes the description of the heuristic proce-
dure. In the next section we shall investigate its accuracy.
Its computational complexity is low. The optimization
problems ONE and TWO are concave separable with
linear constraints and can be solved in polynomial time;
and we use ONE once, TWO at most K times. We also
use LPT once. Further, we need to sort the extended
visit periods in Step 2 once.

IV. Numerical examples

In this section we present a few numerical examples
to illustrate various properties of our system. For all the
examples in this section we assume that the probability
of retrial and drop probability for a station i are given
by pi(Vi) = 1 − e−νiVi and qi(Vi) = e−µiVi . Further,
the revenue of a station i is equal to Mi(Vi) as given
in Eq. (1).

Example 1:

We first consider a toy example with K = 2 wave-
lengths and either N = 3 or N = 4 stations, for
which all possible assignments allocating all stations to a
wavelength are listed. For each station i, the parameters
νi and µi are equal to 0.5. The switchover times Si = 0.2
for each station i and cycle time C = 2. Finally, Γi = i,
for each station i. The allocation of stations to different
wavelengths is shown, along with the corresponding visit
period (obtained by using TWO) and the revenue ob-
tained by the system. Note that an allocation 0 implies
that the station was not allocated to any wavelength.

TABLE I: 3 station system

Allocation Visit Period Revenue
[1 1 2] [0.48 1.12 2.00] 10.11

[1 2 1] [0.28 2.00 1.32] 9.81
[2 1 1] [2.00 0.61 0.99] 8.65

TABLE II: 4 station system

Allocation Visit Period Revenue
[0 1 1 2] [0.00 0.61 0.99 2.00] 14.65

[1 2 2 1] [0.14 0.61 0.99 1.46] 14.25
[1 2 1 2] [0.28 0.48 1.32 1.12] 14.03
[1 1 2 2] [0.48 1.12 0.67 0.93] 13.34
[1 1 1 2] [0.00 0.61 0.99 2.00] 14.65
[1 1 2 1] [0.00 0.48 2.00 1.12] 14.22
[1 2 1 1] [0.00 2.00 0.67 0.93] 13.23
[2 1 1 1] [2.00 0.00 0.67 0.93] 11.23

In Tables I and II the values given by our procedure
described in the previous section are printed boldface.
We observe that in both cases our procedure gives the
best allocation.

Example 2:

In this example we compare the results obtained using
our procedure with the results obtained by randomly
allocating wavelengths to different stations and then
optimizing the visit periods at each wavelength. We show
numerical results for five different cases for a system
with N = 16 stations, K = 4 wavelengths and frame
time C = 8. In each of the first four cases, we vary one
parameter while keeping all the other constant and in the
last case we use random system parameters; the Γi are
uniformly distributed on (0, 8); the νi and µi on (0, 1),
and the Si on (0, 0.4).

We take 10000 independent allocations of wavelengths
in two different ways, (i) and (ii). In (i) we allocate
stations in such a way that each wavelength gets at
most 4 stations, whereas in (ii) there is no restriction
on the number of stations allocated to a wavelength.
In both cases we subsequently use TWO. For both (i)
and (ii) we show the maximum, the average and the
minimum obtained revenue among the 10000 cases and
the percentage of allocations which generated a revenue
above the value generated using our algorithm.



TABLE III: Varying Γi

Maximum Average Minimum Percent
(i) 475.72 468.89 454.24 1.46
(ii) 475.50 441.36 300.33 0.24

Algorithm 474.51

Γi = 0.5 ∗ i, νi = 0.5, µi = 0.5 and S = 0.2.

TABLE IV: Varying νi

Maximum Average Minimum Percent
(i) 387.29 384.58 381.94 9.89
(ii) 387.14 358.36 224.93 0.87

Algorithm 385.65

Γi = 4, νi = 0.05 ∗ i, µi = 0.5 and S = 0.2.

TABLE V: Varying µi

Maximum Average Minimum Percent
(i) 413.19 413.15 412.98 0.00
(ii) 413.19 377.54 231.52 0.00

Algorithm 413.19

Γi = 4, νi = 0.5, µi = 0.05 ∗ i and S = 0.2.

TABLE VI: Varying Si

Maximum Average Minimum Percent
(i) 398.81 398.06 395.60 0.05
(ii) 398.79 351.53 181.94 0.00

Algorithm 398.81

Γi = 4, νi = 0.5, µi = 0.5 and S = 0.05 ∗ i.

TABLE VII: Completely Random

Maximum Average Minimum Percent
(i) 360.85 355.23 338.07 4.56
(ii) 360.83 338.14 231.45 0.62

Algorithm 359.93

Γi ∼ U(0, 8), νi ∼ U(0, 1), µi ∼ U(0, 1), and Si ∼
U(0, 0.4)

Tables III-VII suggest that a random assignment of
stations to wavelengths, but still using TWO to subse-
quently choose Vi, is much worse than the assignment of
our algorithm. However, the symmetric assignment, in
which each of the four wavelengths serves (at most) four
out of the 16 stations, and for which the visit times are
calculated using TWO, yields results that are typically
quite close to the values obtained using our algorithm
(and in a few cases even better).

Example 3:

In this example we study which effect increasing the
number K of wavelengths has on the revenue of the sys-
tem. We take the allocation obtained using the procedure
of Section III. For each K we take N = 16 stations,
Si = µi = νi = 0.05 ∗ i, Γi = 0.5 ∗ i and C = 8.

We observe that increasing the number of wavelengths
increases the revenue obtained and also the number
of stations served. However, the marginal increment
decreases with an addition of each wavelength. In this

TABLE VIII: Varying the number of wavelengths

K Revenue # of stations served
1 170.54 3
2 322.62 8
3 400.97 11
4 452.88 13
5 480.40 14
6 499.60 14
7 517.23 15
8 525.21 15
16 544.00 16

example the change from K = 1 to K = 2 almost
doubles the revenue and more than doubles the number
of stations served, whereas the change from K = 7 to
K = 8 increases the revenue by less than two percent
(and the number of stations served does not change). In
the case of K = 16, the revenue equals C∗

∑16
i=1 Γi = 544.

The system operator can choose an optimal number of
wavelengths so as to maximize its utility. This observa-
tion may be of interest in networks where traffic is highly
variable and the cost of running extra resources is high.

Example 4:

In this example we consider a system with N = 16 sta-
tions, K = 4 wavelengths, frame time C = 8 and
switchover period from each station Si = 0.2, for all
i = 1, . . . , N . We show three different cases, each of
which has one of Γi, νi, and µi different for all stations,
the other two parameters being equal for all stations. In
these numerical experiments we study how the procedure
described in Section III allocates resources depending
on each factor, and develop insight into the influence of
these factors on the system performance. In Table IX, we
mention the wavelength to which each station is assigned,
the visit period each station receives and the revenue
each station gives, for the three cases.

From Table IX(a) we see that in general Γi > Γj does
not imply Vi > Vj , but when i and j are allocated to
the same wavelength this implication appears to be true.
Also, if the value of Γi is very low, then – even though
our procedure allocates that station to a wavelength –
it may not receive any service (equivalent to not being
allocated).

In Table IX(b) we see that in general, within a wave-
length, stations with lower νi receive higher Vi. This
happens because the system tries to allocate longer
visit periods to stations with low retrial rates so as to
maximize the number of customers it can serve. However,
if νi is very low (see station 1), then the system, subject
to limited resources, might not allocate any resource to
that station.

From Table IX(c) one can generally observe that the
stations with higher drop probability, i.e., lower µi, re-
ceive higher visit periods to have fewer losses. Also, like
in the previous case the difference in revenue generated
from each station is not big.



TABLE IX: Visit period allocation and corresponding revenue obtained

Station
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Total

Allocation Visit Revenue
0 0.00 0.00
0 0.00 0.00
3 0.93 6.54
4 1.22 10.68
4 1.45 14.89
3 1.67 19.27
2 2.16 24.96
1 2.25 28.90
1 2.34 32.89
2 2.46 37.00
3 2.20 39.45
4 2.23 43.23
4 2.30 47.24
3 2.40 51.49
2 2.78 57.03
1 2.81 60.94

29.20 474.51

Allocation Visit Revenue
0 0.00 0.00
1 3.35 26.05
2 2.33 22.33
3 2.18 23.09
4 2.07 23.83
4 1.97 24.37
3 1.88 24.80
2 1.83 25.30
1 2.16 28.02
4 1.69 25.85
3 1.64 26.09
2 1.60 26.42
1 1.89 28.59
3 1.50 26.76
4 1.47 26.96
2 1.44 27.19

29.00 385.65

Allocation Visit Revenue
3 1.85 22.76
4 1.86 23.36
2 1.87 23.94
1 1.87 24.48
3 1.86 24.90
4 1.85 25.29
2 1.84 25.66
1 1.83 26.01
1 1.82 26.32
3 1.80 26.56
2 1.78 26.81
4 1.76 27.03
4 1.73 27.23
2 1.71 27.43
3 1.69 27.62
1 1.68 27.79

28.80 413.19

(a) Γi = 0.5 ∗ i, νi = 0.5 and µi = 0.5. (b) Γi = 4, νi = 0.05 ∗ i and µi = 0.5. (c) Γi = 4, νi = 0.5 and µi = 0.05 ∗ i.

Three final observations: 1. The spread in visit periods
is small in IX(c) compared to those in IX(a) and IX(b).
This suggests that the factor µi is less important than
the factors νi and Γi in the solution of this problem.
2. Our procedure often results in a more or less even
spread of revenues among stations if Γi are equal. This
suggests that the procedure makes the system reasonably
fair, i.e., tries to provide the best service to each station.
3. Even though the revenues obtained from stations with
different retrial rates and drop probabilities are similar,
the resources required by these stations are different. For
a lower retrial rate and/or higher drop probability, a
longer visit period is required to give similar revenue.
This is a techno-economic trade-off to consider while
designing the router.

V. Conclusions and suggestions for further

research

To understand the behaviour and study the perfor-
mance of future optical networks, we have considered
a revenue optimization problem for a multiple wave-
length optical routing node. This is a mixed integer
non-linear programming problem and hence extremely
time-consuming to solve even for a small number of
wavelengths. Since one would like to solve this revenue
optimization problem quite frequently, we have devel-
oped an efficient and near-optimal heuristic procedure for
(i) assigning stations to wavelengths and subsequently
(ii) assigning visit times to stations within a fixed frame
time.

Several topics for further research suggest themselves.
Firstly, one might consider variants of the proposed
heuristic procedure. For example, a consequence of the
use of LPT is that, for each wavelength, one has a sum
of assigned Si + Vi that is not exactly equal to C. We
subsequently used TWO to make final choices for the
visit periods Vi. Instead, one could simply scale all Vi,
that belong to one and the same wavelength, by the same
factor α such that

∑

(Si + αVi) = C. Secondly, it could

be interesting to relax two modeling assumptions, viz., to
take the finiteness of the fiber loops into account more
explicitly, and to remove the assumption of negligible
service times. Thirdly, one could consider completely dif-
ferent ways of assigning stations to wavelengths, allowing
for example that the same station uses more than one
wavelength. Finally, it would be worthwhile to study the
trade-off between using more wavelengths and investing
in a higher number of fiber loop buffers - which can be
translated into a lower drop probability, in terms of node
throughput and economics.
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