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ABSTRACT
Mining pools in Proof-of-Work cryptocurrencies allow miners to
pool their computational resources as a means of reducing pay-
out variance. In Ethereum, uncle blocks are valid Proof-of-Work
solutions which do not become the head of the blockchain, yet
yield rewards if later referenced by main chain blocks. Mining pool
operators are faced with the non-trivial task of fairly distributing
rewards for both block types among pool participants.

Inspired by empirical observations, we formally reconstruct a
Sybil attack exploiting the uncle block distribution policy in a queue-
based mining pool. To ensure fairness of the queue-based payout
scheme, we propose a mitigation. We examine the effectiveness of
the attack strategy under the current and the proposed policy via a
discrete-event simulation. Our findings show that the observed at-
tack can indeed be obviated by altering the current reward scheme.
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1 INTRODUCTION
As the first decentralised cryptocurrency, Bitcoin [14] has success-
fully demonstrated how incentive mechanisms can be applied to
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reach agreement in a dynamically changing set of pseudonymous
and mutually distrusting participants. The underlying consensus
protocol, termed Nakamoto consensus, builds on a random leader
election process where participating nodes are required to invest
computational power in solving cryptographically hard, memory-
less and non-invertible puzzles. The latter is referred to as Proof-
of-Work (PoW). The process of searching for solution candidates is
termed mining, with participating nodes being referred to as min-
ers. Each miner that generates a valid solution to the PoW puzzle
becomes the leader and is allowed to determine the set of uncon-
firmed transactions. These are then appended in a data structure
referred to as a block to the blockchain, a publicly accessible and
immutable distributed ledger. The PoW is a partial pre-image attack
on SHA256 in Bitcoin, where generating a valid solution via brute-
forcing is hard, while verifying a hash against a pre-image is easy.
To incentivise honest participation and compensate miners for the
computational effort invested, the leader is rewarded a predefined
amount of newly minted units of the underlying cryptocurrency.

Unlike Bitcoin, Ethereum [2], the cryptocurrency with the sec-
ond highest market capitalisation1, has substantially faster block
generation intervals. This results in the more frequent occurrence
of so-called forks, where multiple blocks/PoW solutions are gen-
erated around the same time and compete for becoming the head
of the chain. To incentivise miners whose blocks did not become
part of the main chain to extend the head of the main chain in-
stead of working on their fork, Ethereum introduced the notion
of uncle blocks. Instead of restricting the ancestors of a block to
one, Ethereum follows an inclusive approach [12] where main chain
miners can reference uncle blocks. For each such referenced uncle
block, additional rewards are distributed to both the main chain
miner and the creator of the uncle block.

Due to the memorylessness of PoW puzzle, the number of so-
lutions found per time interval follows a Poisson process. Hence,
miners collude to form mining pools with the aim of reducing the
variance of received payouts. In a mining pool, participants jointly
work towards finding PoW solutions and share the earned revenue
according to some reward distribution policy. Usually, such organi-
sations are run by a single operator, who maintains the necessary
infrastructure, monitors the contribution of each miner and deter-
mines how and where the computational power of the pool is to

1https://coinmarketcap.com. Accessed: 09-30-2018
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be employed. In order to track the amount of work performed by
miners in a pool, operators ask miners to submit shares. These are
PoW solutions with a lower difficulty than for the network. Based
on the number of shares a miner submits over a specific time period,
the miner’s hash rate can be derived. Hash rate refers to the number
of unique attempted PoW solutions generated over a period of time.

Mining pools not only embody a form of centralisation within a
decentralised network [7, 9], but are also faced with the non-trivial
task of fair reward distribution. In Ethereummining pools, the latter
problem also extends to the distribution of uncle block rewards,
which is the focus of this paper. As a result, several different reward
payout schemes have been implemented by mining pool operators,
further examined in [11, 13, 15, 16].

In this paper, we focus on mining pools that employ a queue-
based reward payout scheme. We show how an adversary may
leverage this uncle reward distribution mechanism in order to in-
crease her expected payouts. Additionally, we discuss an observed
reward-increasing strategy employed by a miner in a queue-based
mining pool and reconstruct the observed attack via a discrete-
event simulation to examine the effect on the mining pool. We also
propose a modification to the studied uncle reward distribution
policy, which would obviate reward-increasing strategies rooted in
the former.

The remainder of this paper is structured as follows. Section 2
provides a more detailed overview of reward allocation in Ethereum
and of mining pool reward schemes. In Section 3, we show and
discuss the existence of reward-increasing opportunities in the
uncle reward distribution mechanism of a queue-based mining
pool. Section 4 proposes a mitigation policy. We examine the effects
of the reconstructed attack in Section 5, prior to concluding in
Section 6.

2 BACKGROUND
2.1 Block Rewards in Ethereum
In Ethereum, each full block is currently rewarded with a static
reward of 3 ETH2, and any fees paid by users for transactions in-
cluded in the block. Block arrival times follow a Poisson distribution
with the rate parameter λ = H

D , where H is the network’s total
hash rate and D the network difficulty of the PoW. In Bitcoin, the
PoW difficulty is adjusted every two weeks to maintain a target
block generation interval of 10 minutes. In Ethereum the difficulty
is adjusted dynamically after every block while the target block
interval amounts to approximately only 15 seconds [2].

Multiple PoW solutions found roughly around the same time
can create two (or more) parallel competing branches in the un-
derlying blockchain due to network latency [5, 6]. Eventually, the
branch supported by the majority of the computational power in
the network becomes the main chain, i.e. the sequence of blocks
accumulating the most PoW effort since the genesis block. All other
branches are discarded and receive no rewards. To achieve a faster
convergence to a single chain, Ethereum leverages a reward scheme
for forked blocks, similar to the notion of inclusive blockchain proto-
cols [12]. Miners of main chain blocks can reference forked blocks,
which are then referred to as uncle blocks. Each referenced uncle

2ETH is the underlying unit of exchange in Ethereum

block results in an additional reward being distributed to both the
main chain miner and its creator. Participants mining on conflicting
branches are hence incentivised to rejoin the main chain, as they
are guaranteed reimbursement for otherwise wasted computational
effort.

Each block included in the main chain can reference up to two
uncle blocks and receive a small reward of 1

32 of a full block reward
per referenced uncle. However, the reward paid to the miner of each
referenced uncle block varies. The reward diminishes depending on
how distant of an ancestor the uncle block is relative to the main
chain block it was referenced by. An uncle block is rewarded for
being up to six generations away from the included block. Hence,
the reward is computed as

U = (Un + 8 − Bn ) ·
B

8
, (1)

where U is the uncle block reward, Un the uncle block number,
Bn the number of the block included in the main chain, and B the
reward for a full block [3].

2.2 Mining Pool Reward Schemes
Mining pools allow individual miners to reduce their payout vari-
ance by pooling together their computational resources with other
miners. Computational effort of a miner is tracked via the submis-
sion of shares, where each share has a probability d

D of being a
valid solution to the network PoW, with d being the share difficulty.
Over the years, mining pools have introduced a range of innova-
tive reward schemes, the majority of which have been formally
examined by Rosenfeld [15]. In the following subsections we briefly
compare some of these existing schemes.

2.2.1 Proportional Payout Scheme. In this simple scheme, a miner
is rewarded proportionally to the number of shares submitted in the
time interval between two blocks found by the pool. Consequently,
a block reward B is split between the N miners in the pool based
on their respective number of shares submitted. Rosenfeld [15]
shows this reward scheme to be susceptible to various forms of
manipulation.

2.2.2 Pay-Per-Last-N -Shares. The Pay-Per-Last-N-Shares
(PPLNS) scheme distributes a reward proportional to the last N
shares that have been submitted. Resilience advantages of PPLNS
are more closely examined by Rosenfeld [15].

2.2.3 Queue-based Payout Scheme. Ethpool3 was the first Ethereum
mining pool to introduce a queue-based reward scheme. Under such
a reward scheme, miners accumulate credits for each share submit-
ted to the pool operator. Each time a full block is mined by the
pool, the block reward is allocated to the miner in the pool with
the highest accumulated credit balance. The top miner then has
her credit balance reset to the difference between her own and the
second highest credit balance in the pool.

2.3 Mining Pool Attacks
Whilemining pools are intended to benefit pool participants through
a more steady payout stream, they are subject to different types

3https://ethpool.org
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of attacks. Previous research [4, 13] has shown that block with-
holding attacks, whereby a malicious miner withholds blocks from
the pool, yet still receives a reward from the pool operator for her
overall performed work, can cause mining pools to suffer tremen-
dous financial losses. Vasek, Thornton and Moore [17] have shown
how mining pools are negatively affected by Distributed Denial of
Service (DDoS) attacks. Laszka, Johnson and Grossklags [10] have
examined game-theoretic aspects of attacks between mining pools.

Primarily, adversaries will try to increase their own expected
payouts at the cost of other miners by exploiting vulnerabilities of
the underlying reward scheme. With regards to the queue-based
payout scheme, different attack strategies aimed at exploiting the
non-uniform credit resetmechanism have been identified. Zamyatin
et al. [18] propose attack scenarios following real-world observa-
tions in Ethpool, whereby an adversary may strategically donate
her computational power to other miners in the pool in order to
manipulate the queue constellation with the aim of receiving larger
credit differences. These attacks were further studied by Holland et
al. [8]. However, the aforementioned attacks, both explicitly focus
on the non-uniform credit reset mechanism and ignore any poten-
tial vulnerabilities stemming from the uncle reward distribution
policy of the pool.

3 ATTACK DESCRIPTION, OBSERVATION
AND RECONSTRUCTION

We propose a Sybil attack that leverages the reward-increasing
opportunities under a scheme of random distribution of uncle block
rewards. According to this scheme, uncle block rewards are dis-
tributed randomly among miners in the pool without accounting
for differences in the work performed. The selected miner receives
the full uncle block reward. For instance, a miner with 2 GH/s has
the same chance of receiving a found uncle block as a miner with
10 MH/s.

The attack entails the division of hashing power between a set
of smaller miners and the deliberate increase of the pool uncle
rate. We introduce the notion of uncle traps. These describe miners
with conspicuously small hash rates that serve the sole purpose of
increasing the likelihood of receiving uncle block rewards in the
aforementioned scheme.

We define a fair pool, where fairness refers to the expected
reward of an individual miner being proportional to the shares
submitted to the pool by that miner in relation to the total shares
submitted to the pool. We use the notion of a round as the time
interval between two blocks found by the pool – these may be uncle
blocks or full blocks.

3.1 Attack Modelling
3.1.1 Definitions. Define D as the network difficulty and B and
U as the block and uncle block rewards, respectively. The fairness
assumption means that a miner with hash rate h, mining in a pool
of N miners, where the total hash rate of the participating miners
is

H =
N∑
i=1

hi , i = 1, . . . ,N ,

and the expected duration of a round tR is equal to

E[tR] =
D

H
,

should have an expected reward per round of

E[R] =
h · E[tR]

D
· E[RP ] =

h

H
· E[RP ] , (2)

where E[RP ] is the expected reward of the pool.

3.1.2 Attack Model. The total number of miners in the pool is
defined as N , consisting of the miner i and all other miners, denoted
NO . Each miner can earn a reward by either being at the top of
the queue when a block is found, i.e. having the highest number
of accumulated credits, or by receiving an uncle reward. Define p
as the network probability of finding an uncle block in each round
and (1 − p) as the probability of finding a regular block. From the
pool fairness (2), we know that the individual miner i will receive
an expected reward from full blocks of

E[RB] =
hi
H

· (1 − p) · B . (3)

Additionally, uncle blocks are distributed randomly between the
miners, adding an expected reward from uncle blocks of

E[RU ] =
1

NO + 1
· p ·U . (4)

We now consider a scenario where a miner in the pool, defined as
the attacker has a hash rate of hA. The attacker controls a number
of miners, denoted NA, where NA refers to all miners controlled by
the attacker, including uncle traps. The expected reward function
from full blocks remains unaltered for the attacker. However, the
expected uncle block reward changes due to the introduction of
uncle traps. The expected reward from uncle blocks is now

E[RU ] =
NA

NO + NA
· p ·U , (5)

per round. Numerical examples of Equation 5 can be found in
Appendix A (Figure 7). Combining the two possible sources of
reward from (3) and (5), we find the attacker’s total expected reward
as

E[RA] =
hA
H

· (1 − p) · B +
NA

NO + NA
· p ·U . (6)

Hence, an attacker could substantially increase her expected
reward, by dividing her mining power between a large number of
smaller miners, thereby creating uncle traps. In Ethereum, addi-
tional addresses can be created at no financial cost, making this
strategy feasible in practice. However, in order to be recognised by
the pool operator, a minimum hashing power has to be maintained,
imposing a lower limit on the divisibility of computational power.

In addition to splitting hashing power, an attacker can increase
her reward by intentionally increasing the pool’s uncle rate. This
can be achieved by withholding a full block from the pool operator
until some other miner has found a block and only then submitting
it. The probability of event F that the attacker finds a block in any
given round is

P(F ) =
hA
H
. (7)
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For a proportion of some long period of time, the attacker will
be at the top of the queue. This proportion P TOP is found to be

P TOP =
E[RB]

B
. (8)

Conversely, the proportion of time the attacker is not at the top
of the queue is P TOP = (1−P TOP ). To pursue the outlined strategy,
the attacker will withhold blocks, unless she is at the top of the
queue. Hence, she will only force an uncle block, if she finds a block
and is not top of the queue. The number of blocks I the attacker
finds over time periodT , consisting ofT /t rounds of duration t , for
which she is not top of the queue is equal to the expected maximum
number of intentional uncle blocks. We find the expected value of
I to be

E[I ] = (1 − P TOP ) · P(F ) ·
T

t
.

From Equations (7) and (8) we find the expected number of
intentional uncle blocks as

E[I ] =
hA
H

−
hA

2

H2 · (1 − p) ·
T

t
.

Therefore an adversary has two levers to exploit the random
uncle block reward distribution scheme. Firstly, she may split her
hashing power between multiple miners to increase the likelihood
of receiving an uncle block. Secondly, she can intentionally increase
the pool uncle rate, increasing the total number of uncle blocks she
can attempt to gather.

3.2 Attack Execution
We now proceed to reconstruct the observed attack step by step.

(1) An attacker generates NA Ethereum addresses, where NA−1
will be the number of uncle traps

(2) The attacker iterates over the generated uncle trap addresses
and computes s shares per address. We assume s = 1 for
simplicity, although the actual number may be higher in
reality.

(3) Each time a generated share is the valid solution to the net-
work’s PoW puzzle:
• If one of the attacker’s miners is at the top of the queue,
publish block to pool instantly.

• Else, withhold the block until another block is found in the
network, then publish to the pool, generating an uncle.

Additionally, the attacker maintains one larger miner in the pool.
For that miner, she follows the behaviour outlined in (3) above.
Hence, she will force uncle blocks if none of her miners are at the
top of the queue and immediately publish the block otherwise.

3.3 Real World Observations
Historic observations about the state of Ethpool suggest that there
has been at least one occasion where a large miner did pursue the
aforementioned reward-increasing behaviour over a longer period
of time [1]. It was observed that a swarm of 7 500 miners with
conspicuously small hash rates, reportedly ranging from 2 MH4 per
second to 6MH/s, were mining in the pool, all of which were orches-
trated by the same adversary5. We shall refer to this pseudonymous

41 Megahash = 106 hashes
5miner address: 0x7dE44b1F1527486a16FF586eF301B6b62dA6aC11

beneficiary account as the attacker. Even though it is not possible
to retrieve historic hash rate information for Ethpool participants,
it was possible to verify that the aforementioned adversary was a
major beneficiary of the rewards collected by the observed family
of smaller miners during the period of mid-May to mid-July 2018
by tracing payments on the Ethereum blockchain. We extracted
the addresses of all recipients of uncle and full block rewards from
Ethpool for the two month period and checked if any of these ad-
dresses made a transaction to the attacker. Over the course of this
period, we found that the attacker managed to receive 19.14% of
the total uncle blocks found by Ethpool spread across a set of 148
unique miners participating in the pool. Figure 1 displays the total

Figure 1: The uncle blocks the attacker received between
midMay andmid July 2018 in Ethpool compared to all uncle
blocks found by the pool during that period.

number of uncle blocks found per day by Ethpool over the stated
time period and compares it to the share of uncle blocks received
by the attacker. The attacker’s share of the total received uncle
block rewards is substantially higher compared to her 5.55% share
of the total full blocks mined by the pool throughout the same time
period.

For the examined time period, the average total hash rate of the
Ethereum network was 276.16 TH/s6. During that time, Ethpool
found 1.54% of the total number of blocks found by the network
and thus Ethpool’s overall hash rate at that time was approximately
4.24 TH/s. Hence, from the attacker’s share of the total number
of full blocks mined by Ethpool, we know that the attacker also
accounted for approximately 5.55% of the pool’s total hash rate,
or 185.74 GH/s7. A total of 7 500 miners with an average hash
rate of approximately 4 MH/s per miner, operated by the attacker,
would require 30 additional GH/s, invested in uncle traps. These
derivations are in line with the observations concerning uncle
blocks shown in Figure 1, which presumably reflect the performance
of the uncle traps harvesting the uncle block rewards. An overview
61 Terahash = 1012 hashes
71 Gigahash = 109 hashes
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of the total reward distribution of the attacker may be found in
Appendix A (Figure 5).

Figure 2: The uncle rate of the Ethereum network compared
to the uncle rate of Ethpool between mid May and mid July
2018.

A further interesting observation lies in the uncle rate of Ethpool
compared to the network’s uncle rate for the examined time period,
as shown in Figure 2. With an average uncle rate of 22.92%, the pool
lies slightly above the network’s rate of 19.52%. Ethpool’s uncle
rate standard deviation of 0.1090 notably exceeds the network’s
uncle rate standard deviation of 0.0245. This is explained by the
deliberate increase of the uncle rate by the attacker, as described
above.

4 PROPOSED MITIGATION
Apart from the general challenge of random number generation
in a publicly verifiable manner, the main problem of the studied
uncle reward policy lies in not accounting for hash rate differences
between miners in a pool. Distributing uncle blocks following the
same single queue-based scheme as for full blocks would lower the
expected reward of mining in the pool below that of solo mining
and does thus not serve as a mitigation. Our proposed solution
to the problem entails a hash rate-weighted random allocation of
uncle blocks to participating miners. Let the probability of receiving
an uncle block reward be hi

H for each miner i , where hi is the hash
rate of that miner and H is the total hash rate of the pool. As in a
PPLNS scheme, miner hash rates hi are computed as hi = si

S , where
S is a large number – e.g. a multiple of the network difficulty – and
si are the shares submitted by a miner i over the period of S shares.
Further, we define hA as the total hash rate of the attacker. The
attacker’s expected reward per round from receiving uncle blocks,
when dividing her hashing power between NA miners will then be

E[RU ] =

NA∑
i=1

hi
H

· p ·U . (9)

From Equations (9) and (3), we find the attacker’s total expected
reward as

E[RA] =
hA
H

· (1 − p) · B +
hA
H

· p ·U

=
hA
H

((1 − p) · B + p ·U )

By introducing a hash rate-weighted allocation of uncle block
rewards, we eliminate the number of miners NA – operated by the
attacker – from the expected reward function. Hence, an attacker is
no longer able to increase her profit function from dividing hashing
power between many miners and fair uncle block distribution is
assured. It should be noted that this mitigation does not preclude
the deliberate increase of a pool’s uncle rate.

5 DISCRETE-EVENT SIMULATION OF UNCLE
TRAPS

In this section we use a discrete-event simulation to examine the
effectiveness of the reconstructed attack strategy. We compare the
performance of an attacker between different simulated mining
pool scenarios.

5.1 Simulation Set Up
We simulate a queue-based mining pool for a duration of 200 000
blocks using a discrete-event simulator developed in C++. All sim-
ulations were executed on an Ubuntu server with an AMD EPYC
7401P processor. For the constant uncle rate, the average uncle
rate of the network during the observed attack in Ethpool, namely
0.195235, is taken. Additionally, we assume static network and share
difficulties of 200 trillion and 3.6 billion, respectively. The total com-
putational power of Ethpool during the observed attack was equal
to approx. 4.24 TH/s, yet the exact hash rate distribution remains
unknown. However, Zamyatin et al. [18] show that the hash rates
in Ethpool resemble a log-normal distribution. Hence, we construct
a mining pool by sampling from a log normal distribution for the
hash rates of the pool participants until the overall pool size is
equal to approx. 4.24 TH/s, including the prespecified hash rate
of the attacker. The distribution of sampled miners can be seen in
Appendix A (Figure 6).

We examine three specific scenarios. The first scenario is a ref-
erence scenario referred to as Honest, which represents regular
mining under a queue-based payout scheme, absent any attack
strategy. In this reference scenario, the attacker employs her full
computational power of 215.73 GH/s for a single account. For the
second scenario, calledAttack, we simulate the reconstructed attack.
In this scenario, the attacker deploys 185.73 GH/s from one account
and intentionally increases the uncle rate as outlined in Section 3.
Additionally, the attacker spreads a total of 30 GH/s equally across
7 500 uncle traps she controls. Lastly, we simulate the same attack
behaviour under the hash rate-weighted uncle block reward distri-
bution policy we proposed in the previous section. We refer to the
third simulated mining scenario as the Mitigation case.

5.2 Simulation Results
To evaluate the performance of the attacker in the three distinct
mining pool scenarios, we focus on the number of full and uncle
blocks mined and rewarded. Additionally we assess the success of
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Table 1: Simulation results for a honest mining pool sce-
nario and an attack scenario with uncle traps.

Scenarios
Honest Attack Mitigation

Full
Blocks

Mined 8 126 329 329
Rewarded 8 065 6 651 6 651
Ratio 0.9925 20.2158 20.2158

Uncle
Blocks

Mined 1 968 9 785 9 785
Rewarded 72 43 865 2 353
Ratio 0.0366 4.4829 0.2405

Reward per
invested MH
(ETH×10−8)

1.2075 4.6812 1.1921

the attacker by examining the reward per invested MH in ETH. We
can compute the former as

Reward per invested MH =
(B · br ) + (U · ur )

(TS · d)/1 000 000
, (10)

where for a given minermi , TS is the total number of shares sub-
mitted, br the total number of full blocks received by a miner, and
ur the total number of uncle blocks received by a miner.

5.2.1 Honest Scenario. For the Honest scenario, Table 1 shows that
the attacker was rewarded for a substantially lower number of uncle
blocks relative to the number of uncles she mined. Assuming the
average uncle block reward was 1.6875 ETH8, this would amount
to a total loss of 3 199.5 ETH, or 684 213.01 USD9 for the attacker
compared to mining solo. Based on the uncle rate of 19.52%, the
block duration of 200 000 blocks, as well as on the constructed pool
consisting of 498 miners, the expected number of uncles rewarded
per miner regardless of hash rate is 76.31. This shows how large
miners with above average hash rates in the pool are inherently at
a disadvantage, compared to mining solo, due to the uncle block
reward distribution.

5.2.2 Attack Scenario. In the Attack scenario, the attacker mined a
significantly lower number of full blocks, a logical consequence of
the uncle rate spiking. The uncle traps have resulted in 43 865 uncle
blocks being rewarded to the attacker, an increase by a factor of
609.24 relative to the number of received uncle blocks in the Honest
scenario. The attacker was rewarded 34 080 uncle blocks more than
she actually mined. When assessing the overall performance of the
attacker, it can be seen that the attacker was able to increase her
reward per invested MH by a factor of 3.88 from 1.2075× 10−8 ETH
to 4.6812 × 10−8 ETH overall.

8the average of the possible uncle block rewards
9with an ETH price of 213.85 USD. www.coinmarketcap.com. Accessed: 10-03-2018

5.2.3 Mitigation Scenario. For the Mitigation case, the attacker
received only 5.36% of the uncle block rewards she received in
the Attack scenario. This is in line with our formal evaluation of
the reward scheme in Section 4. The number of uncles received
is still substantially higher than for the Honest scenario. However,
the attacker was rewarded 17.53% fewer full blocks, due to the
continued use of the uncle rate spiking strategy. Overall, the reward
per invested MH is the lowest for the Mitigation case, being slightly
lower than for the Honest scenario.

5.3 Other Interesting Observations
Given that the attack strategy under the current uncle block reward
distribution policy proved to be very profitable, we investigate its
effect on other pool participants. The top plot of Figure 3 displays
the reward distribution for full and uncle blocks among miners of
different hash rates over the course of 200 000 blocks, absent any
attack strategy. The bottom plot shows the block distribution for
the uncle trap attack scenario. When comparing these two plots,
one can see in the attack scenario (bottom) that the majority of
uncle block rewards are being absorbed by miners of very small size
(red line), the uncle traps. The high drop in uncle reward density
for medium and large sized miners can be explained by the altered
hash rate distribution for the pool under the presence of uncle traps
(Appendix A Figure 6), which absorbed 43 860 uncle block rewards.

Figure 3: Small miners (red line in bottom plot) absorbing
the uncle block rewards in the Attack scenario, compared to
the Honest case (top).

The effect of uncle traps on the performance of all pool partic-
ipants can also be seen by comparing the performance of miners
based on their computational efforts, as shown in Figure 4. As the
current uncle reward distribution mechanism does not account for
differences in hash rates, miners of different hash rates are affected
equally negatively. This is different from the previously studied
attacks described in Section 2.3. Hence, an adversary orchestrating
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an uncle trap attack can not only increase her own reward, but also
harms the pool participants as a collective.

Figure 4: Number of full and uncle blocks awarded tominers
based on hashrate (MH/s) on a logarithmic scale in a pool
with no uncle traps (top) and with uncle traps (bottom) for
200 000 blocks.

6 CONCLUSION AND FUTUREWORK
Building on anomalies observed in Ethpool data, we have evaluated
a Sybil attack strategy, devised to exploit a system of random uncle
block reward distribution in a queue-base mining pool. By formally
reconstructing the observed attack, we have identified two levers
that an attacker can employ to increase her reward. In a discrete-
event simulation, we have further demonstrated the effectiveness
of the aforementioned attack strategy. We show that the significant
negative effect of an uncle trap attack on mining pool participants
can be mitigated by accounting for hash rate differences in the uncle
block reward policy. Hence, we recommend an altered distribution
mechanism, whereby the likelihood of a miner receiving the full
uncle reward should be directly proportional to the hash rate of a
miner. Such a scheme would work towards ensuring pool fairness
and obviate the use of the outlined Sybil attack strategy.

A further investigation into the overall fairness of queue-based
mining pools including a game-theoretic evaluation of mining pool
equilibria under different attack scenarios could be a fruitful avenue
for further research. A formal exploration of schemes tomitigate the
deliberate increase in a mining pool’s uncle rate could further help
devising fair reward distribution policies. Formal verification of
reward schemes would help to increase transparency and guarantee
fairness with respect to reward allocation.
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A SUPPLEMENTARY FIGURES

Figure 5: The number of uncle blocks the attacker received
per day relative to the total number of blocks she received
per day in Ethpool between mid May to mid July 2018.

Figure 6: The miner distribution in a mining pool with no
uncle traps (top) opposed to with uncle traps (bottom).

Figure 7: The attacker’s expected reward per round as a func-
tion of the number of uncle traps employed.

B VARIABLES AND SYMBOLS
Symbol Description

D Network difficulty
d Share difficulty
B Full block reward
U Uncle block reward
H Aggregate hash rate of the mining pool
hA Hash rate of the attacker
S A large number, e.g. a multiple of the network difficulty
si Shares submitted by a miner i over a period of S shares
p Probability of the pool finding an uncle block in a given

round
(1 − p) Probability of the pool finding a full block in a given round
PTOP Proportion of time the attacker is at the top of the queue
PTOP Proportion of time the attacker is not at the top of the queue
E[RP ] Expected reward for the total pool per round
E[RA] Expected reward for the attacker per round
E[tR] Expected duration of a round
E[RU ] Expected reward from uncle blocks per round
Un Uncle block number
Bn Block number
N Total number of miners in the pool
NO Number of miners in the pool not controlled by the attacker
NA Number of miners in the pool controlled by the attacker
I Number of intentional uncle blocks forced by the attacker
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