
SAGNet: Structure-aware Generative Network for 3D-Shape Modeling

ZHIJIE WU, Shenzhen University
XIANG WANG, Shenzhen University
DI LIN, Shenzhen University
DANI LISCHINSKI, The Hebrew University of Jerusalem
DANIEL COHEN-OR, Shenzhen University and Tel Aviv University
HUI HUANG∗, Shenzhen University

Fig. 1. Our generative model jointly analyzes the structure and geometry of shapes, encoding them into a single latent code. The highlighted triplets above
demonstrate that, in this joint latent space, pairs of nearby points represent models that are close to each other in both geometry and structure, while stepping
away from the pair introduces differences in either geometry, or structure, or both. Note that all the shapes shown here are voxel-based, and the bounding
boxes of their parts are hidden on purpose for a clearer visualization.

We present SAGNet, a structure-aware generative model for 3D shapes.
Given a set of segmented objects of a certain class, the geometry of their
parts and the pairwise relationships between them (the structure) are jointly
learned and embedded in a latent space by an autoencoder. The encoder
intertwines the geometry and structure features into a single latent code,
while the decoder disentangles the features and reconstructs the geometry
and structure of the 3D model. Our autoencoder consists of two branches,
one for the structure and one for the geometry. The key idea is that during
the analysis, the two branches exchange information between them, thereby
learning the dependencies between structure and geometry and encoding
two augmented features, which are then fused into a single latent code.
This explicit intertwining of information enables separately controlling

∗Corresponding author: Hui Huang (hhzhiyan@gmail.com)

Authors’ addresses: ZhijieWu, Shenzhen University; XiangWang, Shenzhen University;
Di Lin, Shenzhen University; Dani Lischinski, The Hebrew University of Jerusalem;
Daniel Cohen-Or, Shenzhen University and Tel Aviv University; Hui Huang, College of
Computer Science & Software Engineering, Shenzhen University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/7-ART91 $15.00
https://doi.org/10.1145/3306346.3322956

the geometry and the structure of the generated models. We evaluate the
performance of our method and conduct an ablation study. We explicitly
show that encoding of shapes accounts for both similarities in structure and
geometry. A variety of quality results generated by SAGNet are presented.
The data and code are at https://github.com/zhijieW-94/SAGNet.

CCS Concepts: • Computing methodologies → Computer graphics;
Shape modeling; Shape analysis.

Additional Key Words and Phrases: geometric modeling, shape analysis,
data-driven synthesis, generative network, variational autoencoder

ACM Reference Format:
Zhijie Wu, Xiang Wang, Di Lin, Dani Lischinski, Daniel Cohen-Or, and Hui
Huang. 2019. SAGNet: Structure-aware Generative Network for 3D-Shape
Modeling. ACM Trans. Graph. 38, 4, Article 91 (July 2019), 14 pages. https:
//doi.org/10.1145/3306346.3322956

1 INTRODUCTION
Modeling of 3D shapes is a central problem in computer graphics.
In recent years more attention has been given to structure-aware
modeling techniques, where the relations among parts are carefully
considered. Analyzing the structure provides a high-level under-
standing of the shape, and it goes beyond the low-level analysis of
the local geometry [Mitra et al. 2014]. The structure of a shape can
be inferred from a single instance, but analyzing a family of shapes
that share some similar structural characteristics can yield a much

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

ar
X

iv
:1

80
8.

03
98

1v
4

 [
cs

.G
R

]
 1

4
N

ov
 2

01
9

https://doi.org/10.1145/3306346.3322956
https://github.com/zhijieW-94/SAGNet
https://doi.org/10.1145/3306346.3322956
https://doi.org/10.1145/3306346.3322956

91:2 • Z. Wu, X. Wang, D. Lin, D. Lischinski, D. Cohen-Or, and H. Huang

Fig. 2. Overview of SAGNet. Given 3D shapes as training data, the network has traditional 3D convolutional and fully-connected layers to extract visual
features for shape parts. The network is equipped with GRU-based encoder and attention component, which jointly analyzes the geometry and structural
information of shapes. All the information are provided for the 2-way VAE, which offers the generative power to the network. Our network eventually decodes
the geometry and structural information to generate 3D shapes.

more powerful representation [Fish et al. 2014]. However, such an
analysis is challenging, since structure and geometry are often inter-
dependent, exhibiting complex relations and dependencies that are
not easy to model directly.

Our work is motivated by recent advances in the competence of
neural networks in analyzing data. We present a generative network
that analyzes and encodes latent relationships between structure
and geometry in a class of (man-made) shapes. Our framework lever-
ages the parts of 3D shapes to learn discriminative representations.
For a given set of shapes, structure is already implicitly represented
in their geometric models, however, geometric and structural infor-
mation is entangled together in a manner that does not provide a
way to control each of them separately. Thus, instead of performing
unsupervised training with geometric models of entire objects, we
use a weakly supervised training strategy, where we provide the
geometry as a collection of separate parts and the structure as pairs
of their bounding boxes [Li et al. 2017; Mitra et al. 2014].
The high-level concept of our structure-aware generative net-

work (SAGNet) is illustrated in Fig. 1. Nowadays, there are growing
datasets of segmented shapes, such as [Mo et al. 2018; Yi et al. 2016],
and thus our network is trained using a set of shapes segmented
into parts in order to leverage this readily available semantic in-
formation. All of the shapes are consistently oriented, and their
parts are labeled. The geometry of each part is provided as a voxel
map and the structure is provided as a list of the bounding boxes,
one for each part. Note that nothing is assumed about the rela-
tionships between the parts, thus the structure of the shape is not
specified explicitly. To jointly analyze the geometry and structure
information of 3D shapes, we learn a latent space that encodes the
relationship among all information into a code. In contrast to the
conventional approaches that use a single code to implicitly repre-
sent all of the information, our latent code explicitly models their
dependencies. Specifically, we exchange the geometry and structure
information at two different stages. Before merging all the infor-
mation, we model their dependencies to capture the lower-level
information and build the joint structure-geometry latent space.
The learned latent space eventually benefits the reconstruction of
both geometry and structure information. Moreover, the weak su-
pervision allows to independently control geometry and structure
when synthesizing new models.

As demonstrated in Fig. 1, nearby points in the joint latent space
correspond to shapes that are similar to each other in both geometry
and structure, while taking a step away introduces differences in
geometry, structure, or both. Such latent space supports separate
control of geometry and structure, and operations such as shape
interpolation and completion.
The key novel component of our network is the exchange of

data between the structure and geometry branches that takes place
during the joint analysis stage. Previous attempts in developing
generative neural networks for 3D shapes, included adversarial
networks based on voxels or point representations of the geome-
try [Choy et al. 2016; Girdhar et al. 2016; Wu et al. 2015; Yan et al.
2016], or structure-based approaches [Li et al. 2017; Zou et al. 2017].
These methods do not leverage the power of a joint analysis of ge-
ometry and structure. In this paper, we develop a novel architecture
for joint analysis of geometry and structure information, which is
necessary to address this challenging and difficult task. In particular,
we focus on relationships between parts, which helps in learning the
joint latent space. We show that our generative network generates
plausible structure-aware shapes that adhere to the characteristics
of the learned class. We also demonstrate that our approach sup-
ports inferring the geometry from structure and vise-versa, enabling
applications such as shape completion, and constrained modeling.

2 RELATED WORK
In recent years there have been efforts to leverage the success of deep
neural networks to develop generative models of 3D shapes. Wu et
al. [2015] develop a neural framework based on deep belief network
to synthesize novel samples. Later, Wu et al. [2016] model the distri-
bution of voxels of 3D objects using an adversarial approach. Their
model can take a random noise as input and generate a voxel grid
as output. The latent representation that they learn supports simple
arithmetic and interpolation operations on the latent codes. Girdhar
et al. [2016] embed voxel maps of shapes and their corresponding
images in a shared latent space, making it possible to predicts a
voxel map from a single 2D image. More advanced 3D generative
voxel-based models are presented [Gwak et al. 2017; Tatarchenko
et al. 2017; Yan et al. 2016]. Achlioptas et al. [2017] introduce a
generative adversarial network (GAN) in the latent space for point
clouds. Nash et al. [2017] present a generative model based on a

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

SAGNet: Structure-aware Generative Network for 3D-Shape Modeling • 91:3

variational autoencoder (VAE) [Kingma and Welling 2014]. Yang
et al. [2018] apply a deformation-based approach to reconstruct
point clouds. Sinha et al. [2017] generate surfaces using deep neural
networks, while Schor et al. [2018] propose to synthesize unseen
shapes via part synthesis and composition.
In our approach, we also employ a VAE to generate new shapes

and use regular 3D voxel maps to represent their geometry. However,
we represent each part using its own voxel map. Differently from
the previous works above, we use recurrent neural networks (RNNs)
to analyze the data. RNNs are widely used in generative models to
analyze and generate novel sequences. For example, van den Oord et
al. [2016] regard natural images as sequences and generate images
row by row, pixel by pixel. Rezende et al. [2016] develop a novel
model based on DRAW [Gregor et al. 2015], which can reconstruct
3D structures from 2D images. Zou et al. [2017] use an RNN decoder
to generate shape primitives step by step from given depth images.
Our architecture consists of several RNNs and an RNN-based

2-way VAE that learns a generative representation for 3D shapes.
Unlike prior part-based generative models [Alhashim et al. 2014;
Huang et al. 2015; Wang et al. 2018], we consider geometry and
structure jointly, where the challenge is to learn a joint distribution
of signals from different domains with neural networks [Liu et al.
2017; Liu and Tuzel 2016]. Other examples of methods that learn a
joint distribution include Choy et al. [2016], who use 3D-R2N2 to
build a joint distribution to reconstruct 3D voxel maps from images.
Also, Li et al. [2015] get a joint embedding of images and 3D shapes
via CNN purification. Tulsiani et al. [2017] learn complex shapes
with the mapping from voxel maps to corresponding primitives.

Relationships among entities, or spatial layouts of objects, are
known to be useful for understanding visual information. Some pre-
vious works explore the physical relationship [Jia et al. 2013; Zheng
et al. 2015], while others [Socher et al. 2012, 2011] use a recursive
structure, and a recursive autoencoder, to capture the relationship
by iteratively collapsing edges of a graph to yield a hierarchy. Li
et al. [2017] adapt such recursive structures, and present a genera-
tive neural network model for the 3D structures of shapes, which
can capture the structural information of different shapes within a
class. Unlike us, they do not jointly consider the geometry domain
and its corresponding structure domain, and they do not learn the
dependencies between the geometries of different parts in an object.

3 STRUCTURE-AWARE GENERATIVE NETWORK
The main idea of our method is to analyze and generate shapes by
jointly considering their structure and geometry, learning them and
their inter-relations. To demonstrate the importance of learning
these inter-relations, consider a synthetic example of tenon-mortise
joints in Fig. 3. In this class of two-part shapes, the location and
shape of the cavity inside the blue part is completely determined
by the relative position and the shape of the red one. Thus, if the
relation between the relative position of the parts and their geometry
is not learned well by the network, it is unlikely that the network
would succeed in generating the blue parts with a correctly sized
and placed cavity. See also Fig. 11 for the comparison of our SAGNet
with state-of-the-art methods on this dataset.

Fig. 3. A class of two-part shapes shown above (often called as tenon-mortise
joints) represent eight different connectivities, where each pair indicates
one connection mode and the red part fits tightly into the cavity of blue
part. Thus, it is challenging to infer the geometry of the blue part from its
bounding box only, unless the relation to the red part is accurately learned.
We take it as a training dataset; see results in Fig. 11.

Following the conventional setting of GRASS [Li et al. 2017] and
the survey of Mitra et al. [2014], we define the structure based on a
coarse segmentation instead of a fine annotation. To leverage the
available semantic information and reduce the training complexity,
our model is trained on a set of segmented and consistently oriented
shapes. Each shape is represented with k parts, where each part
consists of a bounding box that contains a voxel map representing
the part geometry. We represent the shape structure as the set of
all K = k × (k − 1)/2 pairwise spatial relationships between the k
parts [Mitra et al. 2014]. Thus, a shape is represented by two series
(i) k voxel maps, and (ii) K pairs of axis-aligned bounding boxes,
where each pair is represented by 2 × 6 coordinates. The first three
coordinates specify the center of a box and the last three elements
specify its length, width and height. The actual number of parts for
a given class may be smaller than k , in which case the missing parts
are represented using zeros. The ordering of the shape parts within
the same class is consistent, as this makes the training easier. Note
that the voxel map in each bounding box is processed independently.
Thus, the overlap between the voxel grids of different parts does not
affect the final output. The part order is uniform for each category
of shapes, providing a consistent order for structure features. With
this consistency, we build a correspondence between the structure
features and different parts. It allows to associate (k-1) 6D candidate
bounding boxes with one part. We average the (k-1) intermediate
vectors for the final output of a bounding box.

Fig. 2 shows an overview of our architecture. Generally speaking,
it is a two-branch autoencoder. The network takes two streams of
input: one is a series of k voxel maps (the upper branch in the figure),
and the other is a series of K pairwise spatial relationships, repre-
sented by pairs of bounding boxes (the lower branch). The geometry
stream is analyzed by convolutional layers, and fed into an RNN
component that analyzes the series of the resulting k features. The
structural stream is analyzed by fully-connected layers and fed into
an RNN that analyzes the series ofK pairwise relation features. Each
of these RNN units is implemented using a Gated Recurrent Unit
(GRU) [Cho et al. 2014]. Compared to other variants of recurrent
neural networks (e.g., LSTM), GRU has fewer gates, but enables

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

91:4 • Z. Wu, X. Wang, D. Lin, D. Lischinski, D. Cohen-Or, and H. Huang

storing and filtering information with its internal memory. This alle-
viates the gradient vanishing problem during the network training.
Furthermore, GRU has fewer learnable parameters, thereby achiev-
ing greater flexibility in a more principled training framework [Cho
et al. 2014; Chung et al. 2014].
The outputs of these two GRUs are then fed into modules that

exchange information between the geometry and structure streams.
The exchange of information is weighted by the influence of the
respective data. This is commonly called “attention”: In the Geom-
etry Attention module, the geometric features are given attention
by their k − 1 related structural features. Likewise, in the Structure
Attention module, each structure feature is given attention by its
two geometry features. Each attention module yields a deep fea-
ture, one representing the geometry and one for the structure. After
few iterations, the pairwise relation representations will contain
global context and have strong ability to model complex structural
dependencies in shapes. More details are provided in Section 4.
These two deep features are next fed into a 2-way VAE, which

accepts two inputs (one from each branch), rather than one. The
purpose of the 2-way VAE is to combine and and fuse the two
features representing the geometry and the structure into a single
vector, thereby embedding them in a joint latent space. On the
output end, the 2-way VAE produces two features, associated with
the two streams, which are fed into two corresponding branches
with two decoders that generate the output streams.

The architecture of the 2-way VAE is depicted in Fig. 4. First, the
two input feature streams are fed into corresponding GRU units
whose goal is to collapse each feature stream into a single feature
vector of size 1 × 512. The two resulting features are next fed into
another GRU encoder, which fuses them into a single latent code.
This latent code represents the coordinates of the shape in the
joint embedding space. The fused features represent the shapes,
encapsulating their geometries and structures. In other words, the
fused features are structure-aware since they encode the geometry
and structure information, as well as the relation between them. The
decoding end of the 2-way VAE exactly mirrors the encoding end,
and consists of GRU decoders that split the features into two streams,
which are then decoded into geometric and structural series.

Note that information from the geometry and structure streams is
exchanged in two stages of the pipeline. First, during their analysis,
using the Geometry and Structure attention modules, and then in
the 2-Way VAE, where the two streams collapsed and fused.
To show the importance of the inclusion of GRUs and attention

modules, we perform an ablation study on three simpler baselines,
illustrated in Fig. 5, respectively. These three baseline networks use
simpler schemes to analyze the geometry and structure informa-
tion. For a fair comparison, we only change the key component of
one baseline model and keep other settings fixed. The first called
No-attention baseline is defined by removing the attention compo-
nent to disable the information exchange between the geometry
and structure branches of SAGNet, as shown in the top left corner.
The second baseline named No-GRU is defined by removing the
GRUs from both of these branches, as shown in the top right corner.
Note that the name No-GRU means that there is no GRUs in the
auto-encoder but there are still GRUs in 2-way VAE. The removal
of the GRUs, effectively disables the modeling of the information

×512K

×512k×512k
1×512

1×512 1×512

×512K1×512 1×512

GRU
Decoder

GRU
Decoder

GRU
Encoder

GRU
Decoder

Latent
Code

GRU
Encoder

GRU
Encoder

Fig. 4. Architecture of 2-Way VAE. Our VAE has internal GRU encoders,
which takes input as the geometry and structural information analyzed by
the attention component. To generate a 3D shape, the encoders output a
latent code that is processed by the internal GRU-decoders of the VAE.

propagation between parts. The third variant is the Concatenation
baseline, built by replacing the six GRUs in the 2-way VAE with
fully-connected layers and concatenation (abbr. concat) operation,
as shown in the bottom row. This replacement is used to indicate
that GRU is a better choice to fuse features as it is good at capturing
dependencies between parts.

4 IMPLEMENTATION
In this section, we describe the implementation of our approach and
the training of our model in more detail.

4.1 Two-Branch Autoencoder
Fig. 2 shows the two-branch autoencoder, whose upper branch
is intended for processing the geometry, while the lower branch
processes the structure. The geometry branch consists of five 3D
convolutional layers on the encoder side, accepting a series of k
(32 × 32 × 32) voxel maps as input. The 3D convolutional layers
down-sample the voxel maps by a ratio of 16 and are followed by a
fully-connected layer to compute k 512D features. In parallel, the
structure branch has a fully-connected layer to process K pairs of
bounding boxes, producing K 512D features.
The features output by the encoder are fed into two different

GRUs. These GRUs account for the relationships between parts in
terms of geometry and structure, exchange information between
them using the Geometry and Structure Attention components, and
eventually output the k 512D features and K 512D features to the
2-Way VAE. Finally, the decoder echoes the encoder with five 3D
deconvolutional layers that transform latent features back into voxel
maps. It also has a fully-connected layer to regress latent features
to k bounding boxes for all parts.

4.2 Geometry and Structure Attention Component
The geometry and structure attention components are used to ex-
change the information between the upper and lower branches. The
attention components are implemented with two fully-connected
layers [Xu et al. 2017]. We formulate the information exchanged
between the the upper and lower branches as:

mt+1
i =

∑
j,i

f ([hti ,h
t
i, j])h

t
i, j , (1)

mt+1
i, j = f ([hti, j ,h

t
i])h

t
i + f ([hti, j ,h

t
j])h

t
j , (2)

wheremt+1
i andmt+1

i, j are the feedback messages for updating the
hidden state of the upper- and lower-branch GRUs, respectively.
hti ∈ R512 is a geometry feature for the i-th part, which is produced

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

SAGNet: Structure-aware Generative Network for 3D-Shape Modeling • 91:5

Fig. 5. The architectures of three ablation study baseline models. The top left diagram denotes the No-attention baseline model. The top right diagram
corresponds to No-GRU baseline model. The diagram that lies at bottom indicates the baseline model of Concatenation.

by the upper-branch GRU. hti, j is the structure feature between the
i-th and j-th parts, which is produced by the lower-branch GRU
(see Fig. 2). t indicates the t-th iteration of GRUs. f represents
fully-connected sigmoid-activated layers. To simplify notations, we
denote all full-connected layers as f .

The feedback messagemt+1
i is computed as follows. For the i-th

object part, we concatenate hti with a structure feature hti, j , feeding
them to a fully-connected layer with sigmoid activation function.
The outcome feature of the fully-connected layer weights the struc-
ture feature hti, j , attending to the relevant components of hti, j that
can be employed by the upper-branch GRU to update the geometric
feature ht+1i . The messagemt+1

i, j is computed by two terms. Using
the structural feature hti, j , the first term models the attention of the
geometry feature hti , while the second term attends to the geometry
feature htj . Eq. (2) summarizes the geometry information of the i-th
and j-th parts for updating their structural feature ht+1i, j .
Using the messages defined in Eq. (1) and (2), we exchange the

features representing the geometry and structure information be-
tween the two branches of SAGNet, as shown in Fig. 2. It is crucial
to generate accurate 3D object models, which rely on the joint in-
formation of geometry and structure. We omit the superscript t
in the last iteration of GRUs, denoting the geometry feature as hi
for the i-th part and the structural feature hi, j for the i-th and j-th
parts. The resulting geometry and structural features are fed into
the 2-way VAE, which is elaborated below.

4.3 2-Way VAE
The 2-way VAE also has an encoder-decoder architecture, which
focuses on learning the dependencies between the geometry and
structural features of a shape. As shown in Fig. 4, the 2-way VAE
has an internal encoder, which consists of three GRUs. One GRU

takes a sequence of geometry features Hд = {hi |i = 1, ...,k} (i.e.,
the k 512D features) as input. A second GRU processes the sequence
of structural features Hs = {hi, j |i = 1, ...,k, j >= i} (i.e., the K
512D features). Each of these two GRUs encodes its input feature
sequence into a single 512D feature as:

hд = G
e
д(Hд), hs = Ge

s (Hs), (3)

where Ge
д and Ge

s represent GRUs. Thus, hд ,hs ∈ R512 encodes the
global geometry and structural information of all parts, respectively.
Since different shapes in the analyzed family may consist of dif-

ferent subsets of the k parts, in order to reconstruct such shapes it
is necessary to provide a part mask c ∈ Rk . Each element of c is a
binary variable that indicates the presence (1) or absence (0) of a part.
Using the part mask c together with the geometry and structural
features hд and hs , we produce a new joint feature hv ∈ R512 as:

hv = G
e
v (f ([hд , c]), f ([hs , c])), (4)

whereGe
v is a third GRU in the encoder of the 2-way VAE. The new

feature hv passes through an extra fully-connected layer to yield
two 512D vectors, which are the mean and standard deviation of a
Gaussian distribution. We then generate a random variable n ∈ R512
to produce a latent vector z ∈ R512 as:

z = µ + σn, (5)

where µ and σ represent the mean and standard deviation.
The 2-way VAE also has an internal decoder that processes the

latent vector z. Again, the decoder has three GRUs. Following the
decoding procedure of [Bowman et al. 2016; Roberts et al. 2017], z
is input to a GRU that outputs two 512D features. One 512D feature
is fed to a decoder GRU to generate k 512D geometry features, and
another 512D feature is used by another decoder GRU to produce
K 512D structural features. Finally, the geometry and structural
features are further processed by the decoder of our two-branch

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

91:6 • Z. Wu, X. Wang, D. Lin, D. Lischinski, D. Cohen-Or, and H. Huang

Fig. 6. The generation results of G2L [Wang et al. 2018] (top row), GRASS [Li et al. 2017] (middle row) and SAGNet (bottom row). Compared to SAGNet, G2L
often generates coarser and less-structured shapes while the voxel grids of GRASS may lose geometric details and thus are less visually appealing.

autoencoder to produce voxel maps and corresponding bounding
boxes for all parts, as already explained earlier.

4.4 Network Training
The training of SAGNet includes two phases. In the first phase, we
use a reconstruction loss to guide the training of the whole two-
branch autoencoder. The first phase warms up the network training,
avoiding the posterior collapse problem of the VAE [Bowman et al.
2016; Shen et al. 2018]. In the second phase, we keep the reconstruc-
tion loss for the two-branch autoencoder, while adding a KL loss
and feature regularization for the training of our 2-way VAE. We
detail the two phases below.
In the first phase, we define the training objective function as:

Lf = −Eqϕ (z |v,b,c)[loд(pφ (v,b |z, c))], (6)

where v and b denote the voxel maps and bounding boxes. c is the
part mask that indicates the presence/absence of parts. z is the latent
feature produced in the 2-way VAE. The distribution qϕ (z |v,b, c)
is output by the encoder part of 2-way VAE, and the distribution
pφ (v,b |z, c) is output by our two-branch autoencoder. The objective
function Lf penalizes the reconstruction loss of the voxel maps and
bounding boxes using the latent vector z.

In the second phase, we define the training objective as:

Ls = Lf + λLKL + ηR, (7)

where
LKL = KL(qϕ (z |x ,y, c)| |pϕ (z |c)), (8)

R =
k∑
i=1

| |h′i − hi | |22 +
k∑
i=1

k∑
j=i+1

| |h′i, j − hi, j | |22 , (9)

wherepϕ (z |c) is a standard Gaussian distribution as prior,h′i denotes
the i-th part’s geometry feature, and h′i, j denotes the structural
feature of the i-th and j-th parts. Both h′i and h

′
i, j are produced by

the 2-way VAE. During the second phase, we gradually increase

Table 1. Classes and numbers of objects and parts in our shape dataset.
The class of tenon-mortise joints is synthesized to evaluate the necessity
of joint analysis of geometry and structure. 10000 joints are generated for
training to enhance the data diversity and thus prevent from overfitting.

class joint airplane chair guitar lamp motor

objects 10000 1605 1384 779 1000 202
parts 2 6 7 3 4 5

the factors λ and η in a linear manner from 0 to 0.8 within 60000
iterations, which provides SAGNet its generation power.

We use the TensorFlow platform [Abadi et al. 2016] to construct
SAGNet. All the parameters are randomly initialized and optimized
by the standard SGD solver. The network is trained with a learning
rate of 0.001 for 70000 mini-batches, using a mini-batch size of 10.

5 RESULTS AND EVALUATION
In addition to the synthetic example of tenon-mortise joints (Fig. 3),
we also evaluate SAGNet using the data collected by Yi et al. [2016]
and Kae et al. [2013], which contain part-labeled 3D shapes. There
are five classes of objects, including airplane, chair, guitar, lamp
and motor; see class and object details in Table 1. Note that, since
some of the original training shapes are noisy and segmented or
labeled incorrectly, we re-segment the problematic parts manually,
and then use these consolidated shape parts to generate voxel maps
and bounding boxes as our input.
We compare our SAGNet to state-of-the-art methods, e.g., the

most recent G2L [Wang et al. 2018] and GRASS [Li et al. 2017].
We employ G2L code package provided by the authors to generate
their results. In GRASS the structure and geometry are processed at
different stages and only the training codes to synthesize bounding
boxes have been released. To closely follow the description of Li et
al. [2017] and perform a fair comparison, we adapt the implemen-
tation to our training data by recursively merging the parts into
one root vector, using the same classic strategy proposed by Socher

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

SAGNet: Structure-aware Generative Network for 3D-Shape Modeling • 91:7

Fig. 7. For each generated sample in the top row, we retrieve the 3-nearest neighbors in the training data. It may be seen that the generated shapes are original.

Fig. 8. The left- and right-most shapes are randomly selected and paired
from the training data. Their latent codes are then linearly interpolated to
create three intermediate latent codes that are used to generate the shapes
shown in the three middle columns.

et al. [2011]. We then develop the geometry synthesis module by
setting up an auto-encoder architecture and transformation module
as applied in GRASS. Both methods are retrained using their original
hyperparameters to generate the results reported here.

5.1 Shape Generation
We train a SAGNet model for each class of objects. Using the trained
network, we can generate object shapes that are represented by
voxel maps and bounding boxes for each of their parts. To generate
an object shape, we first sample a 512D latent code from a standard
Gaussian distribution, using Eq. (5) that generates the latent code

with the internal encoder of 2-way VAE. Next, we input the sampled
latent code to the decoder of 2-way VAE, computing the voxel maps
and bounding boxes of all parts. Please refer to our supplementary
material for a gallery of generated shapes by SAGNet and its ablation
variants. For each part of a generated shape, there is an associated
voxel map and a bounding box.

A set of shapes generated by G2L, GRASS and SAGNet are shown
in Fig. 6 row-by-row for a qualitative comparison. As may be seen,
compared to SAGNet, the generated results of G2L are coarser and
less structured. As for GRASS, since it processes geometry and struc-
ture in two separate stages, although the generated shape structures
are visually satisfactory, their corresponding voxel grids often have
artifacts with geometric detail loss. Notably, our experiments show
that even when GRASS is fed with part label information following
the classic strategy [Socher et al. 2011], it still produces less satis-
factory results compared to SAGNet. The reason is that, given the
part labels, SAGNet is able to model the part relationships better,
successfully allowing the semantic dependency of labels to better
enhance each part’s geometry and structure representations.

The generative network creates novel parts for the shapes, which
are different from the given training data. To show the generative
power of SAGNet, we compare the generated shapes with the train-
ing data. For a generated shape, we retrieve its 3-nearest neighbors
in the training data, where the distance between two shapes is the
sum of Chamfer distances between corresponding parts [Achlioptas
et al. 2017]. As may be seen in Fig. 7, the generated shapes are origi-
nal, and exhibit various differences from their nearest neighbors.
The distances between two shapes are defined based on their

bounding boxes and voxel maps. Given the bounding boxes, we
compute and sum the Euclidean distances between the correspond-
ing parts of two shapes. In the voxel maps of a shape, we employ
the 3D coordinates of the associated bounding boxes to compute
the point cloud for representing each occupied voxel. For each voxel
of a shape, we compute the Euclidean distance to the nearest voxel
of another shape. All the distances between voxels are summed
to form a Chamfer distance. The Euclidean distance of bounding
boxes and Chamfer distance of point clouds are summed again as
the overall distance between two shapes.

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

91:8 • Z. Wu, X. Wang, D. Lin, D. Lischinski, D. Cohen-Or, and H. Huang

Table 2. Comparisons between SAGNet and baselines and existing models on quantitative scores over five classes of man-made shapes. In this table, Completion
indicates the shape completion level. G2S and S2G denote geometry-to-structure mapping and structure-to-geometry mapping, respectively. The MMD and
COV scores are computed following [Achlioptas et al. 2017]. The smaller MMD score indicates the generated results have better fidelity. The higher COV
score shows that one model can generate more diverse results. Our SAGNet achieves the best results in most cases. It demonstrates that the joint analysis of
geometry and structure improves the generative quality in terms of fidelity and diversity.

Dataset Models MMD-CD COV-CD MMD-EMD COV-EMD Completion G2S S2G

Chair

SAGNet 0.0024 0.751 0.0608 0.743 0.0600 0.0581 0.0258
No-attention 0.0025 0.750 0.0612 0.760 0.0618 0.0579 0.0271
No-GRU 0.0025 0.705 0.0620 0.746 0.0625 0.061 0.0264

Concatenation 0.0029 0.665 0.0640 0.690 0.0645 0.0652 0.0356
G2L 0.0034 0.837 0.0682 0.834 - - -

GRASS 0.0030 0.460 0.0744 0.445 - - -

Airplane

SAGNet 0.0003 0.852 0.0247 0.889 0.0240 0.0265 0.0051
No-attention 0.0004 0.823 0.0252 0.854 0.0239 0.0269 0.0051
No-GRU 0.0005 0.782 0.0259 0.796 0.0269 0.0282 0.0053

Concatenation 0.0005 0.826 0.0255 0.845 0.028 0.032 0.012
G2L 0.0014 0.713 0.0310 0.797 - - -

GRASS 0.0015 0.321 0.0472 0.328 - - -

Lamp

SAGNet 0.0020 0.883 0.0563 0.874 0.0649 0.0824 0.0140
No-attention 0.0022 0.876 0.0580 0.886 0.0674 0.0853 0.0141
No-GRU 0.0022 0.869 0.0584 0.860 0.0650 0.0832 0.0161

Concatenation 0.0025 0.827 0.0583 0.828 0.0795 0.0924 0.0331
G2L 0.0024 0.851 0.0510 0.873 - - -

GRASS 0.0026 0.747 0.0591 0.764 - - -

Guitar

SAGNet 0.0004 0.905 0.0300 0.906 0.0066 0.0238 0.0038
No-attention 0.0004 0.902 0.0303 0.919 0.0067 0.0242 0.0039
No-GRU 0.0004 0.901 0.0303 0.911 0.0067 0.0237 0.0039

Concatenation 0.0005 0.877 0.0303 0.892 0.0277 0.0324 0.013
G2L 0.0100 0.569 0.0721 0.614 - - -

GRASS 0.0007 0.551 0.0357 0.6573 - - -

Motor

SAGNet 0.0006 1.0 0.0336 1.0 0.0056 0.0350 0.0090
No-attention 0.0007 1.0 0.0339 0.995 0.0058 0.0365 0.0092
No-GRU 0.0007 1.0 0.0336 1.0 0.0059 0.0365 0.0094

Concatenation 0.0008 0.995 0.0346 0.995 0.0207 0.038 0.022
G2L 0.0007 0.995 0.0237 0.995 - - -

GRASS 0.0027 0.505 0.0573 0.599 - - -

We conjecture that SAGNet combines the existing patterns of the
training data, creating new patterns for the generated shapes. To
verify this, we select two different shapes in the same class from
the training set. Their voxel maps and bounding boxes of parts are
fed into SAGNet, which outputs two latent vectors corresponding
to the given input shapes. Then we perform linear interpolation
using the two latent vectors. By controlling the interpolation rate,
we compute the latent code of novel shapes, which can be regarded
as the combination of the training data. The interpolated latent
code is input to the decoder of 2-way VAE for generating voxel

maps and bounding boxes of the interpolated shape. We show the
randomly paired training shapes in left- and right-most columns
of Fig. 8, and the generated shapes in middle columns based on the
computed latent vectors. A smooth transition from one training
shape to another can be built with our SAGNet.
We have also shown that vectors sampled from the latent space

correspond to object shapes. Here, we further investigate the proper-
ties of the latent space. For better visualization, we retrain SAGNet
by modifying the dimension of the latent space to two [Nash and

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

SAGNet: Structure-aware Generative Network for 3D-Shape Modeling • 91:9

Fig. 9. We measure the symmetry scores for legs of chairs generated by SAGNet, or baselines, or existing models. Along the horizontal axis, we set different
thresholds for the scores. Along the vertical axis, we provide the percentage of shapes, which have smaller scores than the given thresholds.

Fig. 10. We measure the centroid-to-plane distances for each airplane generated by SAGNet, or baselines, or existing models. The centroid-to-plane distances
are computed using the fore- and back-wings of airplanes. Along the horizontal axis, we provide different thresholds for the distances. Along the vertical axis,
we provide the percentage of shapes, which have smaller distances than the given thresholds.

Williams 2017]. This allows us to show and compare the latent vec-
tors in a 2D Euclidean space. We find that similar shapes appear to
be close in the 2D latent space, forming apparent clusters, as shown
in Fig. 1. This demonstrates that SAGNet builds a proper relation-
ship between the shapes and latent vectors, which is important for
the shape generation task.
To evaluate the generative quality of all the models, we apply

the MMD (Minimum Matching Distance) and COV (Coverage) met-
rics [Achlioptas et al. 2017] on the generated shapes. These two
metrics are used to evaluate the fidelity and diversity of a gener-
ative model, respectively. Note that, since one generated sample
can be affected by parts from different training shapes, we evaluate
MMD and COV with parts. To compute the COV score, we list all
the generated parts, and match to the closest parts in the training
data. Then we pick shapes which these matched parts belong to
and calculate the fraction of the picked shapes to the shapes in
training data as the COV score. A higher coverage score indicates
a better diversity and that the generated samples receive patterns
from more training shapes. To evaluate the fidelity, we enumerate
all parts within one training shape and match each part to the cor-
responding generated one with the minimum distance. Then we
compute the mean distance of these parts as the matching score of
one shape. Finally we average the matching scores of all shapes as
the MMD score. A lower MMD score indicates that the generation

quality of the model is better. Note that both MMD and COV can be
computed using either the CD (Chamfer Distance) or EMD (Earth
Mover Distance).

To make a fair comparison with G2L, we upsample its generated
(32 × 32 × 32) voxel maps into k (32 × 32 × 32) voxel maps and 6D
bounding boxes to make it have the same data representation as
SAGNet. Then we compute point clouds based on the processed
voxel maps and bounding boxes. In testing stage, we generate 1000
shapes to compute for each object class of data. As carefully evalu-
ated in Table 2, SAGNet achieves the best results in most cases.

5.2 Learning the Geometry-Structure Relationships
Symmetry Analysis. We conduct a part symmetry analysis to

evaluate the quality of generated results produced by SAGNet, or
baselines, or existing models. Given a generated shape, there are
pairs of parts, e.g., the legs of chairs and the wings of airplanes,
that are supposed to be symmetric; see Fig. 9. We compute the
symmetry score for these parts. Specifically, here we focus on the
legs of chairs. We perform a mirror reflection of one leg to another.
To measure how similar the legs are after the reflection, we use the
distance defined in Section 5.1 as the score. The model that yields
lower scores performs better. In Fig. 9, we randomly select 1000
training shapes, computing their scores. We provide the percentage
of shapes having lower scores than the given thresholds. We find

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

91:10 • Z. Wu, X. Wang, D. Lin, D. Lischinski, D. Cohen-Or, and H. Huang

Fig. 11. Cavity analysis and comparison on the synthetic tenon-mortise joints. We present two generated joint shapes by SAGNet, G2L and GRASS models,
respectively, in the right. In the left, along the horizontal axis, we provide different thresholds for the fitting accuracy R . Along the vertical axis, we provide the
percentage of shapes, which have better fitting accuracy than the given thresholds.

Table 3. Comparisons between SAGNet and baselines and existing models on quantitative scores over synthetic tenon-mortise joints. The results include
overlapping score and 3D Inception Score. For both Rover and Inception Score, the bigger value is better. SAGNet achieves the best results. In contrast, since
GRASS processes geometry and structure separately, its overlapping and Inception scores are much lower. Similarly, G2L does not model the relationship
between geometry and structure explicitly and so achieves worse results. Please note that G2L has the lowest Ro due to its voxel-based representation.

Scores on Synthetic Data
SAGNet No-attention No-GRU Concatenation G2L GRASS Training data

Ro 0.291 0.343 0.301 0.307 0.086 0.554 0.0
Re 0.585 0.593 0.544 0.321 0.298 0.683 1.0

Rover = Re − Ro 0.294 0.250 0.243 0.013 0.211 0.129 1.0
Inception Score 6.26 6.01 5.95 5.32 5.44 1.95 7.98

that the training shapes generally have lower scores, showing strong
symmetric property.
For each model, we randomly collect 1000 generated chairs and

compute their symmetry scores. In Fig. 9, we report the scores of
SAGNet and other models. SAGNet results in lower scores than
those of baselines and existing models, which demonstrates that it
can better learn the symmetric property of shapes.

Coplanarity Analysis. Similarly to symmetry, many objects ex-
hibit coplanarity of parts; see Fig. 10. Here we use the wings (i.e., two
fore-wings and two back-wings) of airplanes, measuring their copla-
narity to show the quality of the generated shapes. We compute a
centroid for each wing of a generated airplane with the correspond-
ing bounding box. Then we use the centroids of two fore-wings and
the left back-wing to determine a plane in 3D space. We then com-
pute the Euclidean distance from the centroid of the right back-wing
to that plane. Smaller distances imply a better coplanarity property.
We select 1000 airplanes from the training data, and compute the
centroid-to-plane distance for each airplane. In Fig. 10, we report
the percentage of training shapes having smaller distances than
given thresholds. The training shapes shows high coplanarity.
We also report the generative models’ performances in terms of

coplanarity. We randomly generate 1000 airplanes using each model,
and compute the centroid-to-plane distance for each airplane. In
Fig. 10, we show that SAGNet produces shapes having better copla-
narity property than shapes produced by most other models. Note
that GRASS only employs structure information, which is easy to

learn, and thus slightly outperforms SAGNet. But our approach
accounts for the complex learning of dependencies between struc-
ture and geometry, yielding more significant improvement on more
challenging generation cases.

Cavity Analysis. In order to explicitly show the ability to process
and learn the relationship between geometry and structure, we
synthesize a dataset as in Fig. 3 to train our neural network. Each
tenon-mortise joint consists of two parts. One part, in blue, has a
cavity into which the second part, in red, exactly fits. There are eight
different connection modes according to how one part interacts
with the other. The geometry of the blue, non-convex part is hard
to infer just from its bounding box. Only by learning the geometry-
structure relationships between the two parts, it is possible to infer
the geometry of the non-convex part. The same must hold in order
for the generated convex part to exactly fit the cavity.

We use 10000 such synthetic example shapes to train our frame-
work. Next, we randomly generate 1000 test samples with the trained
network and measure how well the convex parts fit into the cav-
ity of the non-convex ones. To quantitatively measure the fitting
accuracy, we calculate, Ro (Re), the portion of occupancy(empty)
voxels of the non-convex part that are overlapped with occupancy
voxels of the convex part. With smaller Ro , there are less occupancy
voxels wrongly placed in the convex part. A larger Re means that
the convex part fits the cavity of the non-convex part better. Then
the score R = 1 − (Re − Ro) is used to measure how well a gener-
ated sample satisfies the dependency. The smaller R indicates better

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

SAGNet: Structure-aware Generative Network for 3D-Shape Modeling • 91:11

fitting status between the two parts. Similar to compute MMD and
COV, we upsample the generated (32 × 32 × 32) voxel maps of G2L
into k (32 × 32 × 32) voxel maps and 6D bounding boxes to make
it have the same data representation as SAGNet. We then compare
G2L with other models over R. Fig. 11 shows the performance of
each model.

Besides the Overlapping Score, we introduce Inception Score [Sali-
mans et al. 2016] to further evaluate. Since each tenon-mortise joint
can be labeled based on their own connection modes, we are able
to train a canonical classifier for them to calculate the 3D Incep-
tion Score. The Inception Score was first proposed by Salimans et
al. [2016], which is developed to measure the variety and quality of
the generated shape set here. In this paper, SO-Net [Li et al. 2018] is
applied as the classifier. Note that to train this classifier, we should
first turn all the training examples with corresponding voxel maps
and bounding boxes into point clouds. Besides the 3D coordinates,
each point has a label to indicate it belongs to the convex part or
non-convex part. At inference stage, we first input all the generated
point clouds with their corresponding point labels. Then we com-
pute the confidence of this classifier and variance of the generated
classes in a similar manner to G2L [Wang et al. 2018]. Note that the
shape labels indicate which connection mode one shape belongs
to while the point labels refer to that one point is attached to the
convex part or non-convex part.
In Table 3, we list the exact 3D Inception Score and Overlapping

Score produced by SAGNet and baselines and existing models. SAG-
Net achieves the best performance and significantly outperforms
other models thanks to its power of jointly considering the relations
between geometry and structure.

5.3 Geometry-Structure Mapping
Jointly analyzing the geometry and structural information learns
their interdependency. Given geometry information only, a gen-
erative model that captures the dependency better is supposed to
provide a reasonable inference of the structural information, and
vice-versa. Thus we conduct a bidirectional mapping between the
geometry and structural information to examine whether SAGNet
learns the dependency well; see, e.g., Figs. 12 and 13.
We take all the training data from each class to test the models.

Given the voxel maps of all parts only, we randomly initialize the
corresponding bounding boxes. Then the voxel maps and bounding
boxes are input to the two-branch autoencoder, generating a new
set of voxel maps and bounding boxes, which are fed back into the
autoencoder. This is repeated for 300 iterations in order to converge
to a marginal distribution [Nash and Williams 2017; Rezende et al.
2014].We compute the Euclidean distance between the ground-truth
and generated bounding boxes for each object. The distances for
different objects are averaged and listed in Table 2; check the entry
of G2S. We follow a similar procedure to map bounding boxes to
voxel maps. The voxel maps are randomly initialized and input to
the two-branch autoencoder for 300 iterations. We compute the
Chamfer distance using the ground-truth and generated voxel maps,
averaging the distances for different object; check the entry of S2G.
Clearly, SAGNet outperforms all the three baselines, indicating

Fig. 12. Visual comparison of geometry-to-structure mapping results.

that it can effectively exchange information to better capture the
dependencies between geometry and structure.

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

91:12 • Z. Wu, X. Wang, D. Lin, D. Lischinski, D. Cohen-Or, and H. Huang

Fig. 13. Visual comparison of structure-to-geometry mapping results.

5.4 Shape Completion
We further conduct a shape completion task to evaluate the models.
Given an object with missing parts, the models should complete

Fig. 14. Visual comparison of shape completion results.

these parts by inferring their voxel maps and corresponding bound-
ing boxes. It requires the models to learn the underlying relationship
between parts effectively. Given an object, the missing parts are
randomly initialized with voxel maps and bounding boxes that are

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

SAGNet: Structure-aware Generative Network for 3D-Shape Modeling • 91:13

Fig. 15. Failure examples of SAGNet. Due to the noise and large variation
within our training dataset and the learning limitation in current geometry-
structure representation, the generated shapes may suffer from disjoint and
incompatible parts, geometric detail loss and structure damage.

input to the two-branch autoencoder. We follow a similar comple-
tion process in [Nash and Williams 2017; Rezende et al. 2014]. The
voxel maps and bounding boxes of the missing parts are output
by the autoencoder and fed back into it again for 300 iterations to
produce the final completion result.

For each class, we take the training data as ground-truth. For each
object, we remove some of their parts. The objects with missing
parts are then input into SAGNet and baseline models, respectively.
To measure the quality of completion, we compute the distance
(Section 5.1) between the ground-truth parts and the corresponding
generated parts. The distances for different objects are averaged.
Again, lower score is better. We report the scores of SAGNet and
three baseline models in Table 2. In general, SAGNet achieves lower
scores than the baseline models. This is because SAGNet is better
equipped to exploit the relationship between parts. In Fig. 14, we
compare our shape completion results with the baseline models.
SAGNet completes the missing parts with better visual details.

5.5 Failure Examples
In Fig. 15, we provide some examples of failures generated by SAG-
Net. Note that high-dimensional voxel maps contribute very com-
plex patterns, increasing the difficulty for learning the representa-
tions for 3D shapes. The learning process inevitably loses geometric
and structural details, and the VAE in the proposedmodel has limited
ability to generate fine-grained features. Similarly, without explicit
constraints on the structure definition, the parts of some generated

shapes might be disjoint and incompatible to each other on different
scales. There is currently no guarantee that all generated shapes are
of high quality.

6 CONCLUSIONS AND FUTURE WORK
We have presented a network that allows generating 3D shapes with
separate control over their geometry and structure. We use weak
supervision, in the form of a semantically segmented training set,
in order to learn the implicit dependencies between the geometry
of parts and their spatial arrangement. More specifically, we have
explicitly demonstrated that the geometry generated in one bound-
ing box, representing one part, is aware of the geometry generated
in another bounding box. Since the learned pairwise relationships
among the different parts reflect the structure of the shape, we refer
to our generative model as structure-aware.

It should be noted that our two-branch autoencoder has similari-
ties with conditional autoencoders in the sense that it encodes infor-
mation coming from two sources. However, here the two branches
learn to extract and intertwine geometry and structure features.
This opens up more possibilities for future research. One is to learn
other properties in parallel using two separate branches, and inter-
twine them by a two-way autoencoder. For example, one branch
could learn the style of an object and encode it in a feature, while
the other branch learns the geometry, and fuse these two features
together. Another direction is the development of a k-way autoen-
coder (with k > 2), where k properties are learned in parallel using
k interconnected branches. The challenge is then to create or collect
proper datasets to weakly supervise the learning.

The current training data assumes the objects are segmented into
semantic parts. The generative model that we presented does not
fully exploit the potential of such data. One can learn more about the
geometry of the parts themselves, possibly by employing part-level
generators that could potentially generate finer details.

In the future, we would like to further explore the fusion of geom-
etry and structure information for 3D shape generation. Currently,
we use a fixed numbers of parts that a 3D shape might have, losing
the flexibility for modeling various 3D shapes. On the other hand,
allowing too many parts may increase the complexity of the learn-
ing process. There is still considerable room for improvement of
the 3D shape generation quality. In another line, we will explore
full representation learning to capture more complex geometry and
structure details. It may help in extending the idea of joint analysis
of geometry and structure to other types of data, e.g., point clouds
and meshes.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments. This work was
supported in parts by National 973 Program (2015CB352501), NSFC
(61761146002, 61861130365, 61702338), Guangdong Science and
Technology Program (2015A030312015), Shenzhen Innovation Pro-
gram (KQJSCX20170727101233642), LHTD (20170003), ISF (2366/16),
ISF-NSFC Joint Research Program (2472/17), and the National Engi-
neering Laboratory for Big Data System Computing Technology.

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

91:14 • Z. Wu, X. Wang, D. Lin, D. Lischinski, D. Cohen-Or, and H. Huang

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016.
TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16. 265–
283.

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. 2017. Learn-
ing Representations and Generative Models for 3D Point Clouds. arXiv preprint
arXiv:1707.02392 (2017).

Ibraheem Alhashim, Honghua Li, Kai Xu, Junjie Cao, Rui Ma, and Hao Zhang. 2014.
Topology-varying 3D shape creation via structural blending. ACMTrans. on Graphics
33 (2014), 158:1–158:10.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and
Samy Bengio. 2016. Generating Sentences from a Continuous Space. In Proceedings
of The 20th SIGNLL Conference on Computational Natural Language Learning. 10–21.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014.
On the Properties of Neural Machine Translation: Encoder–Decoder Approaches.
(2014), 103–111.

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 2016.
3D-R2N2: A unified approach for single and multi-view 3D object reconstruction.
In Proc. Euro. Conf. on Computer Vision. 628–644.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555 (2014).

Noa Fish, Melinos Averkiou, Oliver van Kaick, Olga Sorkine-Hornung, Daniel Cohen-Or,
and Niloy J. Mitra. 2014. Meta-representation of Shape Families. ACM Trans. on
Graphics (Proc. of SIGGRAPH) 33, 4 (2014), 34:1–34:11.

Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016. Learning a
predictable and generative vector representation for objects. In Proc. Euro. Conf. on
Computer Vision. 484–499.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra.
2015. DRAW: A recurrent neural network for image generation. (2015), 1462–1471.

JunYoung Gwak, Christopher B Choy, Manmohan Chandraker, Animesh Garg, and Sil-
vio Savarese. 2017. Weakly supervised 3d reconstruction with adversarial constraint.
In 3D Vision (3DV), 2017 International Conference on. IEEE, 263–272.

Haibin Huang, Evangelos Kalogerakis, and Benjamin M. Marlin. 2015. Analysis and
synthesis of 3D shape families via deep-learned generative models of surfaces.
Computer Graphics Forum 34 (2015), 25–38.

Zhaoyin Jia, Andrew Gallagher, Ashutosh Saxena, and Tsuhan Chen. 2013. 3D-based
reasoning with blocks, support, and stability. In Proc. IEEE Conf. on Computer Vision
& Pattern Recognition. 1–8.

Andrew Kae, Kihyuk Sohn, Honglak Lee, and Erik Learned-Miller. 2013. Augmenting
CRFs with Boltzmann machine shape priors for image labeling. In Proc. IEEE Conf.
on Computer Vision & Pattern Recognition. 2019–2026.

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding variational bayes. In Proc.
Int. Conf. on Learning Representations.

Jiaxin Li, Ben M Chen, and Gim Hee Lee. 2018. So-net: Self-organizing network for
point cloud analysis. In Proc. IEEE Conf. on Computer Vision & Pattern Recognition.
9397–9406.

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas.
2017. GRASS: Generative Recursive Autoencoders for Shape Structures. ACM Trans.
on Graphics (Proc. of SIGGRAPH) 36, 4 (2017), 52:1–52:14.

Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and Leonidas J
Guibas. 2015. Joint embeddings of shapes and images via CNN image purification.
ACM Trans. on Graphics (Proc. of SIGGRAPH Asia) 34, 6 (2015), 234:1–234:12.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. 2017. Unsupervised image-to-image
translation networks. In Proc. Int. Conf. on Neural Information Processing Systems.
700–708.

Ming-Yu Liu and Oncel Tuzel. 2016. Coupled generative adversarial networks. In Proc.
Int. Conf. on Neural Information Processing Systems. 469–477.

Niloy J. Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, Vladimir Kim, and Qi-
Xing Huang. 2014. Structure-aware Shape Processing. In ACM SIGGRAPH Courses.
13:1–13:21.

Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and
Hao Su. 2018. PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical
Part-level 3D Object Understanding. arXiv preprint arXiv:1812.02713 (2018).

Charlie Nash and Chris KI Williams. 2017. The shape variational autoencoder: A deep
generative model of part-segmented 3D objects. In Computer Graphics Forum, Vol. 36.
1–12.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016. Pixel recurrent
neural networks. (2016), 1747–1756.

Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jader-
berg, and Nicolas Heess. 2016. Unsupervised learning of 3D structure from images.
In Proc. Int. Conf. on Neural Information Processing Systems. 4996–5004.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic back-
propagation and approximate inference in deep generative models. (2014), 1278–
1286.

Adam Roberts, Jesse Engel, and Douglas Eck. 2017. Hierarchical variational autoen-
coders for music. (2017).

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. 2016. Improved techniques for training gans. In Proc. Int. Conf. on Neural
Information Processing Systems. 2234–2242.

Nadav Schor, Oren Katzir, Hao Zhang, and Daniel Cohen-Or. 2018. Learning to Generate
the" Unseen" via Part Synthesis and Composition. arXiv preprint arXiv:1811.07441
(2018).

Xiaoyu Shen, Hui Su, Shuzi Niu, and Vera Demberg. 2018. Improving Variational
Encoder-Decoders in Dialogue Generation. (2018).

Ayan Sinha, Asim Unmesh, Qi-Xing Huang, and Karthik Ramani. 2017. SurfNet: Gen-
erating 3D Shape Surfaces Using Deep Residual Networks. Proc. IEEE Conf. on
Computer Vision & Pattern Recognition (2017), 791–800.

Richard Socher, Brody Huval, Bharath Bath, Christopher D Manning, and Andrew Y
Ng. 2012. Convolutional-recursive deep learning for 3D object classification. In Proc.
Int. Conf. on Neural Information Processing Systems. 656–664.

Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. 2011. Parsing natural
scenes and natural language with recursive neural networks. In Proc. Int. Conf. on
Machine Learning. 129–136.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017. Octree Generating
Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs.
Proc. Int. Conf. on Computer Vision (2017), 2107–2115.

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik.
2017. Learning Shape Abstractions by Assembling Volumetric Primitives. Proc. IEEE
Conf. on Computer Vision & Pattern Recognition (2017), 1466–1474.

Hao Wang, Nadav Schor, Ruizhen Hu, Haibin Huang, Daniel Cohen-Or, and Hui Huang.
2018. Global-to-Local Generative Model for 3D Shapes. ACM Trans. on Graphics
(Proc. of SIGGRAPH Asia) 37, 6 (2018), 214:1–214:10.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016.
Learning a probabilistic latent space of object shapes via 3D generative-adversarial
modeling. In Proc. Int. Conf. on Neural Information Processing Systems. 82–90.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3D shapenets: A deep representation for volumetric
shapes. In Proc. IEEE Conf. on Computer Vision & Pattern Recognition. 1912–1920.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. 2017. Scene graph generation
by iterative message passing. In Proc. IEEE Conf. on Computer Vision & Pattern
Recognition, Vol. 2. 3097–3106.

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. 2016. Perspec-
tive transformer nets: Learning single-view 3D object reconstruction without 3d
supervision. In Proc. Int. Conf. on Neural Information Processing Systems. 1696–1704.

Yaoqing Yang, Cheng Feng, Yiru Shen, and Dong Tian. 2018. FoldingNet: Point Cloud
Auto-encoder via Deep Grid Deformation. In Proc. IEEE Conf. on Computer Vision &
Pattern Recognition. 206–215.

Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, Leonidas Guibas, et al. 2016. A scalable active framework
for region annotation in 3D shape collections. ACM Trans. on Graphics (Proc. of
SIGGRAPH Asia) 35, 6 (2016), 210:1–210:12.

Bo Zheng, Yibiao Zhao, Joey Yu, Katsushi Ikeuchi, and Song-Chun Zhu. 2015. Scene
understanding by reasoning stability and safety. Int. J. Computer Vision 112, 2 (2015),
221–238.

Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 2017. 3D-
PRNN: Generating shape primitives with recurrent neural networks. In Proc. Int.
Conf. on Computer Vision. 900–909.

ACM Trans. Graph., Vol. 38, No. 4, Article 91. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Structure-aware Generative Network
	4 Implementation
	4.1 Two-Branch Autoencoder
	4.2 Geometry and Structure Attention Component
	4.3 2-Way VAE
	4.4 Network Training

	5 Results and Evaluation
	5.1 Shape Generation
	5.2 Learning the Geometry-Structure Relationships
	5.3 Geometry-Structure Mapping
	5.4 Shape Completion
	5.5 Failure Examples

	6 Conclusions and Future Work
	References

