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Fig. 1. Our technique for casting extremely complex shapes up to (a) objects made up of multiple entangled pieces. (b) We design a cut layout in the mold 
volume, which is defined by a parting surface membrane (blue) and a set of additional membranes to enforce moldability (red). (c) We assemble a composite 
mold made up of a hard plastic shell and a soft silicone part, and then fabricate the given object using liquid casting techniques. 

We propose a novel technique for the automatic design of molds to cast 
highly complex shapes. The technique generates composite, two-piece molds. 
Each mold piece is made up of a hard plastic shell and a flexible silicone 
part. Thanks to the thin, soft, and smartly shaped silicone part, which is 
kept in place by a hard plastic shell, we can cast objects of unprecedented 
complexity. An innovative algorithm based on a volumetric analysis defines 
the layout of the internal cuts in the silicone mold part. Our approach can 
robustly handle thin protruding features and intertwined topologies that 
have caused previous methods to fail. We compare our results with state of 
the art techniques, and we demonstrate the casting of shapes with extremely 
complex geometry. 
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1 INTRODUCTION 
Casting is a well-established manufacturing technique with many 
appealing properties: a wide range of materials, such as concrete, 
plaster, plastic resins, or edibles (e.g., chocolate) can be used, and 
re-usable molds reduce production costs, while allowing for the 
efficient reproduction of multiple copies. However, the geometric 
complexity of shapes that are fabricable by casting is much more 
limited in comparison to 3D printing, and a significant amount of 
effort has to be invested to design moldable shapes and the mold 
itself. 

Recently, a new generation of computational design algorithms 
have been introduced to support the creation of re-usable molds 
[Alderighi et al. 2018; Herholz et al. 2015; Malomo et al. 2016; 
Nakashima et al. 2018]. These approaches opened up new avenues 
for reproducing shapes, by simplifying the production process and 
making the design workflow accessible to non-experts. This has 
been an essential step towards democratizing molding; however, 
reproducing complex free-form geometry by casting remains chal- 
lenging and is constrained by the available computational design 
tools. 

In this paper, we propose a novel method for the automatic design 
of composite molds for objects of complex geometry and topology 
(Figure 1.a). Our molds are made up of an elastic silicone part sur- 
rounded by a hard plastic shell (Figure 1.c). In art reproduction and 
prop-building, the use of composite molds ś often referred to as 
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mother-and-glove molding or brush-up molding ś is a common prac- 
tice that allows a skilled artisan to reproduce complex objects [Hart 
2013]. The composite nature of molds allows for an easy extraction, 
even in the presence of undercuts, while avoiding undesired defor- 
mations during casting. Nevertheless, this kind of molding approach 
has never been faced from a computational perspective. 

The key problem in the computational design of a composite 
mold is deciding how the mold should open up, that is, how to place 
cuts in the mold volume to allow for cast extraction. To address 
this problem, we propose a novel approach based on an analysis of 
the escape paths of mold volume elements. Intuitively, the escape 
path of a small mold volume element is the shortest path that this 
portion of the mold would follow when leaving the cast shape. 

The behavior of these escape paths can provide information about 
whether neighboring elements should belong to different mold 
pieces and whether they should be separated by additional cuts     in 
the silicone part to ease the extraction. We use geodesic shortest 
paths to the mold volume boundary as geometric proxies for the 
escape paths. Our cut configurations are modeled as a set of smooth 
3D surfaces, which we call membranes, that can intersect with each 
other to form a (possibly) non-manifold geometry. In Figure 1.b, the 
blue membranes separate the elements belonging to different mold 
pieces, while the red membranes correspond to additional cuts. 

In contrast to previous works, our formulation does not require 
solving a complex integer programming problem [Alderighi et al. 
2018] or heuristically testing a large number of cut layouts [Malomo 
et al. 2016]. It allows for elegantly, efficiently, and directly discerning 
the mold geometry within the volume. We also describe a novel 
technique to find the optimal liquid pouring directions that minimize 
the presence of artifacts in the cast object. 

We show how our workflow enables the automatic construc-  tion 
of re-usable composite molds and the accurate reproduction of free-
form geometries with a complexity significantly beyond what 
previous techniques can achieve. 

 

2 RELATED WORK 
Computational tools for shape processing have significantly con- 
tributed to novel, rapidly evolving digital manufacturing work- 
flows [Bermano et al. 2017; Bickel et al. 2018; Liu et al. 2014; Sá 
et al. 2016; Umetani et al. 2015]. In this section, we place our contri- 
bution in the context of automatic mold design. 

Molding is a widely employed process for efficiently producing 
replicas of a shape at a relatively low cost. Many everyday goods and 
commodities, such as packagings, plastic furniture, specific foods, 
and jewelry, are made by shaping materials using molds. There     is 
a wide range of molding techniques, for example, spin casting, 
injection molding, thermoforming [Schüller et al. 2016], or blow 
molding, which can be used with a variety of materials. 

When used in the context of mass or small-series production, a 
common challenge is designing a mold that allows for the extrac- 
tion of the fabricated object without destroying the mold, while 
making it efficient to open, close, and fill. In practice, designing    a 
high-quality mold is an art that requires years of training and 
expertise [De Garmo et al. 2011; Wannarumon 2011]. Several com- 
putational tools have been developed to support the design process. 

For simple objects, it is easy to identify the optimal parting surfaces 
and create molds made of two pieces [Chakraborty and Reddy 2009; 
Zhang et al. 2010], but complex objects may require being split into 
several simpler parts that are separately cast and reassembled after- 
ward [Lin and Quang 2014], or they may require multi-piece molds 
that can be disassembled to release the cast object. 

Herholz et al. [2015] introduced the problem to the computer 
graphics community by proposing an optimization method to auto- 
matically define parting surfaces for rigid molds. An input surface 
is segmented into multiple patches that approximate the surface 
as a set of height fields. When the input surface cannot conform 
to a height field, the surface is deformed trying to minimize visual 
distortions. Restricting the mold complexity to two rigid pieces, 
Nakashima et al. [2018] proposed an interactive technique to de- 
compose the shell of an object into moldable parts. However, with 
increasing geometric complexity, the number of rigid molds or cast 
pieces grows as well, making these methods impractical for complex 
objects. 

To overcome the limitations of rigid molding, a new generation of 
techniques have allowed for the creation of flexible molds to ease the 
extraction process. These techniques have significantly increased the 
range of reproducible shapes [Alderighi et al. 2018; Malomo   et al. 
2016]. Malomo et al. [2016] proposed FlexMolds, a single-piece, thin, 
and flexible mold whose cut design is driven by a physically- based 
simulation of the extraction process. FlexMolds are made of a thin 
layer of TPU, a flexible plastic material, and fabricated using 3D 
laser sintering. Although FlexMolds can theoretically handle very 
complex shapes, they still have some drawbacks. First, because the 
cuts are manually sealed with silicone, there is a high risk of cast 
material leakage. Moreover, when fabricating large objects, the thin 
layer of material is prone to becoming deformed under the casting 
pressure, resulting in possibly large deformations in the replicas. In 
addition, so far the fabrication of FlexMolds has only been 
demonstrated with laser sintering, as the removal of an internal 
support structure may be problematic. 

To overcome these limitations, Alderighi et al. [2018] proposed 
Metamolds, a method to create silicone molds. Silicone is a common 
material in casting and offers excellent flexibility and high accu- 
racy in the reproduction of surface details. Alderighi et al. [2018] 
generated multi-piece silicone molds by casting liquid silicone into 
custom 3D printed containers called metamolds. The mold parting 
surfaces were defined through a segmentation technique based on 
surface visibility coupled with local surface descriptors. This ap- 
proach might fail to capture and segment elongated thin features. 
Moreover, Metamolds only placed additional cuts in the volume 
corresponding to tunnel holes in the object surface. Not only would 
this approach fail for knotted objects, it would also miss geometric 
cuts that are not related to holes. Therefore, whereas Metamolds 
delivered good results for moderately complex objects, their applica- 
tion would still be limited to a certain set of shapes. On the contrary, 
we base our approach on a volumetric analysis, which places cuts to 
relieve the internal tension from the mold, even in the presence of 
thin features and intertwined topologies. 

The composite nature of our mold is a key advantage over both 
Flexmolds and Metamolds. Because the silicone part is thinner than 
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Fig. 2. A schema illustrating the concept behind the escape paths. Left: a 
torus, surrounded by the volume of its mold (light green), and a cutting 
plane. Right: the escape paths on the section of the mold volume cut by 
the plane: for each point in the volume, the escape path is the walk with 
minimal length toward the exterior of the volume. 

 
 

for Metamolds, it offers less resistance during extraction. Further- 
more, because the hard shell keeps the silicone part in the correct 
position during the casting operation, we nullify the deformations 
because of casting material pressure, which is something that af- 
fected Flexmolds. 

Finally, we note how our definition of membranes that insert cuts 
in the silicone is related to the notion of the medial skeleton of the 
mold volume [Tagliasacchi et al. 2016]. The medial axis transform 
associates to a shape the set of locations having more than one 
corresponding closest point on the shape boundary. Our membranes 
are located where the geodesic paths to the boundary of the mold 
volume diverge. 

 
3 OVERVIEW 
We introduce a novel technique to automatically design molds for 
casting highly complex shapes. The technique generates composite, 
two-piece molds. 

Probably the most critical part of the entire casting process is 
removing the mold from the cast object. To design how the mold 
should open up, we tessellate the volume surrounding the object, 
and analyze the behavior of the escape paths of volumetric elements. 
Escape paths are idealized paths that each element could follow 
while removing the mold from the model (Figure 2). 

We exploit the analysis of the escape paths in the mold volume 
for the following two tasks: 

• The definition of a parting surface that cuts the volume in two 
halves and thereby defines the two mold pieces (Figure 3.a, 
blue). If we partition the exterior boundary into two parts 
corresponding to two extraction directions, then the part- 
ing surface should separate the neighboring elements that 
have escape paths that end at different parts of the exterior 
boundary. 

• The definition of additional membranes around object features 
that allow for an easier and safer removal of the silicone mold 
(Figure 3.b, red). The rationale is that a cutting membrane 
should separate the neighboring volume elements whose 
escape paths pass on different sides of a feature in the cast 
object. 

Similar to [Alderighi et al. 2018], we fabricate the molds by pour- 
ing silicone into a 3D printed shape. We achieve the cuts in the mold 
by placing thin membranes in the 3D printed shape. 

(a) (b) 

 
(c) 

 

 
(d) 

 

 
(e) 

 

(f) 
 

Fig. 3. Our fabrication pipeline. The parting surface (a, blue) and the addi- 
tional membranes (b, red) define the cut layout; the two pieces of the hard 
plastic shell (c); the two metamolds whose geometry incorporates the cut 
layout (d); the closed container obtained by assembling the hard plastic 
shells and their corresponding metamolds, where we pour silicone to cast 
the flexible mold (e); the full composite mold and the cast object inside (f). 
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As geometric proxies for the escape paths, we take the shortest 
paths from the interior points to the external boundary of the vol- 
ume, according to an object-aware metric defined in the volume 
(Section 4.5). The soundness of a purely geometric approach to 
evaluate moldability, as opposed to costly and complex physical 
simulations, was demonstrated in [Alderighi et al. 2018]. However, 
while they generated multi-piece molds by analyzing local visibility 
and surface topology, we define a volume-aware algorithm to gener- 
ate cut layouts that enable the casting of extremely complex objects, 
with the molds here being made up of only two pieces. The mold- 
able objects are not limited to highly challenging geometries with 
elongated, thin features and surfaces of non-zero genus: they also 
include knotted shapes and objects made up of multiple entangled 
pieces that could not be cast using previous techniques. 

Figure 3 illustrates the steps required for the physical fabrication 
of the composite two-piece mold. We first 3D print the two parts of 

the hard plastic shell (Figure 3.c) and the metamolds whose shape 
incorporates the geometric details of the parting surface and of the 

additional membranes (Figure 3.d). Subsequently, we build a closed 
container by assembling each hard plastic shell part with its 

respective metamold (Figure 3.e); then, we pour silicone in the 
container to cast the two flexible silicone parts. Finally, we assemble 

the hard plastic shell and the flexible silicone parts to create the 
composite mold, and we use it to cast the input object by pouring 

casting material (e.g., resin) inside the resulting cavity (Figure 3.f). 
In the following: Section 4 describes the design of the cut layout, 
which includes the parting surface and the additional membranes; 

Section 5 details how to generate, fabricate and assemble the molds; 
Section 6 shows a number of fabricated objects and includes a com- 
parison with previous work. 

 

(a) (b) 
 

Fig. 4. A 2D schema of the entities involved in the silicone mold design. 
(a) The silicone mold corresponds to the volume O enclosed by an exterior 
surface ∂H and the object surface M. (b) Given two parting directions d1 
and d2, the parting surface separates the exterior surface into ∂H1 and 
∂H2; hence, the silicone mold is split into two pieces O1 and O2. 

 

4 CUTTING MEMBRANES DESIGN 

Our input is a closed triangulated manifold surface M ⊂ R3. Con- 
sider an offset surface of M, and let H be a tetrahedral tessellation 
of its convex hull, with M a subcomplex of H. Then, M separates 
H into two parts: an inside and an outside. The silicone mold part 
corresponds to the outside O, namely, to the portion of the volume 
bounded by the surface M and the boundary ∂H (Figure 4.a). 

Our membrane generation procedure is divided into two steps: 
first, we identify the parting surface that splits the mold into two 

parts (Section 4.1), and then, we locate the additional membranes 
required for the mold removal (Section 4.2). 

 
4.1 Parting surfaces 
Because we aim to have a two-piece mold, the first step is to identify 
the two parting directions d1 and d2 and the corresponding parting 
surface. The parting surface will decompose O into two parts, O1 and 
O2, which correspond to the two silicone mold pieces. We define 
the parting surface according to the idea that it should separate 
neighboring points that have escape paths that end at different parts 
∂H1 and ∂H2 of the external boundary (Figure 4.b). 

We begin by finding the parting directions. We uniformly sample 
k candidate parting directions on the Gaussian sphere. For each 
candidate direction, we use GPU-accelerated rendering to compute 
the visible and non-visible areas of M. Then, we simply select as the  
parting  directions  the  two  directions d1, d2  which minimize 
the non-visible surface area. Note that we do not require that the 
directions induce mold pieces that are fully extractable because we 
will enforce moldability with additional membranes in a second step 
(Section 4.2). 

Given the two parting directions, we partition the  boundary  ∂H 
into two parts, ∂H1  and ∂H2: we select the two faces F1  and F2  of 
∂H whose normals best align with d1 and d2 and then use a greedy 
region-growing approach from F1 and F2 to assign faces to ∂H1 and 
∂H2, according to the alignment of their normal to d1 and d2. 

The partition of the boundary surface induces a partition of the 
interior volume as follows: For each interior edge e = (vi , vj ) in 
the tessellated volume O, we compute the shortest paths from vi 
and vj to the boundary surface ∂H. Then, the edge is traversed 
by a parting surface if the destination vertices wi and wj belong 
to different parts ∂H1, ∂H2 of the boundary surface (Figure 5.a). 
The resulting parting surface will separate O into O1 and O2, which 
correspond to the two silicone mold pieces. We compute the shortest 
paths towards all vertices of ∂H, except for those whose distance 
from the boundary between ∂H1 and ∂H2 is 
less than a fixed threshold (see dashed lines in 
the inset). This is done to avoid discretization 
noise for the shortest paths computation. In our 
experiments, we set the threshold to 15% of the 
convex hull bounding box diagonal. 

 
4.2 Additional membranes 
Once the silicone mold volume has been partitioned into two pieces, 
for each piece we define additional membranes corresponding to 
features that could prevent the mold extraction. A membrane is 
introduced when the escape paths of two adjacent vertices traverse 
the volume on different sides of a portion of the object M. The 
rationale is that a mold piece can be extracted if all of its points can 
reach the boundary without having to separate around a geometric 
feature. Otherwise, an additional cut is needed. 

We can formalize the idea as follows: For each interior edge  e 
= (vi , vj ), let wi and wj denote the destination vertices of the 
shortest paths from vi and vj to the exterior boundary. We intro- 
duce a cutting membrane across the edge e to separate vi and vj if a 
discrete approximation of the minimal surface bounded by the edge 

 
 

 
 



Volume-Aware Design of Composite Molds • 110:5 
 

  

 
 

 
 
 
 
 
 
 
 
 

PARTING 

(a) (b) (c) 

NONE 

 

Fig. 5. Membrane computation in the mold volume. (a) The shortest paths from two adjacent interior vertices vi , vj end at different sides of the partitioned 
exterior boundary: the parting surface membrane will cut the edge (vi , vj ) to separate the vertices. (b) The minimal surface (yellow) spanned by the escape 
paths of vi , vj and the path between the destination vertices wi , wj (computed on the boundary), intersects the chair leg: an additional membrane will cut 
the edge (vi , vj ). (c) The minimal surface computed for an edge (vi , vj ) does not intersect the object: no membrane is inserted. 

 

(vi , vj ), the escape paths (vi , wi ), (vj , wj ), and the shortest path 
(wi , wj ) (computed on ∂H), intersects the object M (Figure 5.b,c). 
The minimal surface is used as a heuristic for defining a criterion to 
check whether the span of the escape paths from adjacent points 
encloses part of the object we want to cast. If an intersection is 
found, then those points cannot be freely extracted along their es- 
cape paths unless a membrane separates them. 

 
 

4.3 Membrane meshing 
At the end of the process described in the previous sections, we 
have a flag for each internal edge that states whether the edge is 
cut by a membrane (either the parting surface or additional mem- 
branes) or not. Extracting a surface from this information is not 
straightforward because the flags do not directly define a field on 
O [Bloomenthal 1988; de Araújo et al. 2015]. Indeed, the cutting 
surfaces can be non-manifold and might not admit an implicit rep- 
resentation on a scalar field. Therefore, we extend the classical 
marching tetrahedra algorithm [Treece et al. 1999] to include the 
additional cases needed to generate consistent non-manifold sur- 
faces, by following the ideas in [Bloomenthal and Ferguson 1995; 
Bonnell et al. 2003; Nielson and Franke 1997]. Specifically, because 
each of the six edges in a tetrahedron can be either cut or not, we 
encode a table of 26 = 64 possible configurations. An alternative 
solution would be to use dual methods, as in SurfaceNets [Gibson 
1998]. 

 
4.4 Membrane smoothing 

The triangulated surface C encoding the cut layout is composed 
using a set of patches that are interconnected by chains of non- 
manifold edges that are bounded by construction by the object sur- 
face mesh M and the external boundary ∂H. Unfortunately, C can 
be noisy. Indeed, because our cuts are identified as a set of traversed 
edges on the tetrahedral mesh, the resulting mesh C is inevitably 
affected by the quality and density of the tetrahedral tessellation 
(Figure 6, left). Therefore, we perform a Laplacian smoothing that 
preserves both the boundaries between the different patches com- 

posing C and the boundaries between C and the object M or the 
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boundary ∂H (Figure 6, right). The smoothing is performed by al- 
ternating two main steps. First we smooth the polyline that includes 
the boundary vertices only. After this smooth step, we re-project 
those vertices onto the original surface of M or the external bound- 
ary ∂H, depending on which of the two surfaces they belonged to 
originally. Then, we smooth all the interior vertices, keeping the 
ones on the boundary fixed (the ones smoothed in the previous 
step). Each smoothing step is performed using a damping factor 
(0.5 in our experiments) to ensure a proper convergence to the final 
solution. 

 
4.5 Shortest path computation 
The placement of cutting membranes in the mold volume depends 
on an analysis of the shortest paths from interior vertices to the 
boundary. We found that using standard geodesics could result in 
badly shaped membrane configurations (Figure 7). For example, 
membranes that travel the volume almost tangentially to the object 
surface would produce long, thin slivers of silicone that would be 
difficult to handle (Figure 7.a, top). To avoid this, we use weighted 
geodesics that push away membranes from the object surface. We 
compute the shortest paths from the interior vertices to the bound- 
ary according to a metric, which makes traveling near the object 

 
 

Fig. 6. Noisy membranes (left) and their smoothed version (right). 
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Fig. 7. The effects of the weighting factor for geodesics and the reshaping of the exterior boundary of two examples, here used both singularly and in 
combination with each other. (a) The membranes computed using plain geodesics and no exterior boundary reshape do not well adapt to the object geometry: 
(top) part of the membranes are tangent to the object surface, and (bottom) they do not align to the bowl’s tiny holes. (b) The effect of adding the exterior 
boundary reshape to the membrane computation. (c) The effect of adding the Euclidean distance weighting factor into the geodesic path computation: whereas 
(top) the membranes align to the object features, avoiding the creation of thin slivers near the surface, some artifacts can still be seen in the interior of the 
bowl (bottom). (d) The combined effect of both the reshape and the weighting factor. 

 
 

 
 

Fig. 8. We define the distance from an interior vertex v to a point w on ∂H 
as the sum d (v , w ) + λw , with d being the weighted geodesic distance and 
λw the weighted distance from w to an offset surface ∂F of M. The offest 
radius R is the maximum distance from points on the convex hull to M. 

 
 
 
 

longer. This is done by weighting the Euclidean arc length by a 
scalar function that depends on the squared distance from M. In 
detail, the shortest paths are computed by multiplying the Euclidean 
length l (e) of an edge e by a weighting factor we =   1  . The value 

e 

de  is the geodesic distance of the midpoint of e  from M, and ϵ  is a 
constant added to avoid division-by-zero and numerical issues  (set 
to 0.25 in our experiments). The shortest paths are computed using 
Dijkstra’s algorithm on the connectivity graph of the tetrahedra 
vertices. 

Our weighted geodesics produce paths that tend to align to the 
gradient of the distance field from the object surface and, therefore, 
membranes that tend to be perpendicular to the surface. 

In addition, computing the shortest paths to the boundary of 
the convex hull may result in membranes that do not align well 
to the object geometry because the shape of the convex hull may 
discard essential features of the original object shape. For example, 
for the bowl in Figure 7.a (bottom), the convex hull does not retain 

information about the bowl being shaped like a container. There- 
fore, we compute the shortest paths to a surface that better retains 
information about the shape of M, namely, an offset surface ∂F  of 
M that encloses the convex hull in its interior. The offset radius is 
set as the maximum distance from the points on the convex hull  to 
M. To avoid computing the tetrahedrization of the larger volume 
bounded by ∂F , we simply bias the metric by storing on the convex 
hull vertices their distance from ∂F and adding this distance to 
the computed one (Figure 8). Figure 7 shows the effects of the two 
design choices above, namely, the weighted geodesics and modified 
exterior boundary. 

 
 
 

5 COMPOSITE MOLD FABRICATION 
Figure 9 summarizes the whole fabrication and assembly pipeline 
once the parting and additional membranes have been designed. To 
physically fabricate the composite two-piece mold, we use liquid 
silicone casting for the two flexible parts, and 3D printing for the 
hard plastic shell. 

We 3D print a metamold whose shape incorporates the geometric 
details of the parting surface plus the additional membranes as solid 
shells, as in [Alderighi et al. 2018]. The hard shell is a prism aligned 
with the resin pouring direction, from which we then subtract the 
inner soft mold volume; the prism’s flat base is orthogonal to the 
resin pouring direction and shaped like the silhouette of the convex 
hull. The metamold and the plastic shell are cut so that they exactly 
match, using Boolean operations [Zhou et al. 2016] (see Figure 10). 
Section 5.1 describes our strategy to design the interface surface 
between the hard and the soft part, while Section 5.2 describes our 
strategy to choose the pouring directions that prevent the presence 
of air bubbles during both silicone and resin casting operations to 
avoid artifacts on the cast model. 
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Fig. 9. From left to right, the fabrication and assembly pipeline. Given the parting surface (blue) and the additional membranes (red), we 3D print four pieces: 
two hard shell pieces (light yellow) and two metamolds (light red). Then, we assemble the pieces (a metamold and a piece of the hard shell) to build two 
casting containers where we pour silicone (cyan). The two silicone molds are then used together with the hard shell to assemble our composite mold, where 
we pour the resin (orange). 

 
direction (Figure 11). The latter choice makes the silicone part thin- 
ner and more similar to traditional glove molds. The advantage of  a 
silicone part that is thinner and more fit to the input surface is  that 
it is more flexible and easier to remove. We set a fixed offset of 
15mm for all our models, whose size is in the range between 95mm 
to 300mm. For both of the silicone mold shape choices described 
above, this distance sets the minimal thickness of the soft part of the 
composite mold. The hard shell, being rigid, keeps this distance 
small even when increasing the object size. 

 

Fig. 10. Air vents and air pipes are considered in the final geometry of the 
hard shell and the of metamold to pour the casting liquid and let air out. 

 
 

We build a closed container by assembling one of the pieces of 
the hard plastic shell and the metamold, and pour silicone inside to 
cast the silicone part. Finally, we assemble the hard shell and the 
flexible silicone parts so that we can fabricate multiple copies of the 
input object by pouring resin (or another casting material) inside 
the cavity of the assembled composite mold. 

Perlin noise is added to the parting surface between the two 
silicone pieces to improve registration. Perlin noise favors the align- 
ment between fabricated mold pieces. Indeed, aligning irregular 
surfaces is less error-prone in contrast to flat or very smooth sur- 
faces. In this way, we aim to minimize the misalignment artifacts in 
the fabricated object. 

Once we have the optimal pouring directions, we add air vents in 
the hard plastic shell and air pipes in the metamolds to pour silicone 
and resin, respectively, and let air escape (Figure 10). 

 
5.1 Mold shape design 
The interface between the silicone part and the hard plastic shell can 
be designed in different ways. Hence, we evaluated two distinct 
choices: the inflated convex hull of the object surface and an offset 
surface modified to correspond to a height field in the resin casting 

5.2 Persistence pairing for selecting pouring directions 
Air bubbles may get trapped at the local maxima for the pouring 
direction. Assuming we can slightly tilt the mold while casting, 
some of the bubbles can flow away and some cannot, depending on 
the shape around the local maximum. Therefore, we need a criterion 
to select the silicone and resin casting directions that can minimize 
the presence of relevant local maxima. 

A pouring direction can be seen as a height function f : M → R. 
We use the pairing mechanism from persistence homology [Edels- 
brunner et al. 2000] to assess the relevance of local maxima for a 

 
 

 

Fig. 11. Different choices for the contact surface between the silicone part 
and the hard plastic shell. 
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For each piece P , P of the soft silicone part, we evaluate the 
1 2 

 
 
 
 
 
 
 

Fig. 12. Left: maximum-saddle pairs identify the regions where air bubbles 
can get trapped while pouring liquid (red areas); right: when tilting the 
mold by an angle α , air can escape from the green regions, yet it remains 
trapped in the red regions. For a candidate pouring direction, the area of 
the red regions gives an estimate of the visible artifacts that would result 
from air bubbles. 

 
 
 

given pouring direction. Persistence pairing is a method to compute 
sequences of critical points (m, n) for a real-valued function f de- 
fined on a topological space. According to Morse theory [Milnor 
1963], one can think of m as the point creating a topological feature 
(e.g., a connected component) and n as the point destroying it, while 
considering the sequence of superlevel sets Ma = f −1(a, +∞) as 
the value a decreases. We are interested in the pairs (m, n) where 
m  is a maximum and n  is a saddle: m  marks the birth of a new 
connected component and n marks its death as it merges with an- 
other component. Therefore, pairs (m, n) locate the areas where air 
bubbles can get trapped (Figure 12, left). 

Persistence pairs are usually sorted according to their persistence 
| f (m) − f (n)| under the assumption that the pairs with a high persis- 
tence indicate relevant features, while low-persistence ones indicate 
noise. This sorting creates a hierarchy that was used to filter out 
irrelevant pairs for simplification [Edelsbrunner et al. 2000] or, con- 
versely, to identify relevant features for segmentation and matching 
[Biasotti et al. 2013]. Here, we modify the sorting criterion, to get 
for a candidate pouring direction a hierarchy depending on the 
amount of air which would be trapped in each feature identified by 
a maximum-saddle pair. Low-ranked pairs can be neglected, whereas 
high-ranked, relevant pairs encode features that are likely to create 
visible artifacts in the cast model. 

Given a candidate pouring direction, we compute a relevance 
score that corresponds to the amount of air that would still remain 
trapped at m if tilting was considered. If no tilting was assumed, a 
measure of the amount of air trapped in a maximum-saddle pair 

score of a set of candidate directions for silicone pouring and choose 
from those scoring lowest a couple of nearly aligned directions f1, 
f2. The resin casting direction is then chosen as the lowest scoring 
one in a set of directions sampled in a small cone around the bisector 
of f1, f2 (opening angle of 10° in our experiments). Having nearly 
aligned silicone and resin pouring directions is required for the 
silicone to have a good surface to level out while casting. 

 
 

6 RESULTS 
We successfully fabricated a number of highly complex objects. Ta- 
ble 1 reports the statistics about the models and timings to complete 
the entire computational pipeline on a regular desktop machine. We 
used OpenVDB [Museth et al. 2013] to compute offset surfaces and 
TetWild [Hu et al. 2018] to produce a tetrahedral mesh of the mold 
volume. Even though TetWild produces a tetrahedral mesh that does 
not conform precisely to the boundaries, it is robust and produced a 
uniform tessellation that approximates the shapes well enough for all 
models except for Medusa, for which we used TetGen [Si 2015] 
instead. In TetWild, we set the target mean edge length to be 0.0065 
times the bounding box diagonal. 

The hard shell, the metamolds, and the pipes were printed using 
different 3D printers (Ultimaker 2+, Ultimaker 5S, and Stratasys 
J750). We used standard silicone (available at hobby stores) for cast- 
ing the soft molds and a simple bi-component resin for casting the 
final objects. 

Our approach can handle objects with intricate geometric features 
(Figure 13) as well as non-zero genus objects, up to knotted surfaces 
and objects consisting of multiple entangled pieces (Figure 14). To 
the best of our knowledge, no automatic molding pipeline enables 
the successful casting of objects of such complexity. The composite 
molds enabled us to fabricate multiple copies of objects easily (Fig- 
ure 15). The extraction process required little effort and time, and no 
damage was observed either to the mold or to the cast objects. 

A key ingredient to the success of our approach is the design of 
smart membranes that release tension while removing the silicone 
mold: our membranes are aware of the volume surrounding the 
object; they stick to the object features until they vanish in the 
volume, and they can freely intersect with each other (Figure 16). 

To quantitatively validate our results, we measured the error in- 
troduced by the fabrication process for three models (Table 2). The 
measurement is based on the Hausdorff distance between a 3D scan 

would be the area of the region An that grows from the maximum of the cast object and its digital model. We measured the error on 

m until points are reached with value f (n). If we assume that we 
can slightly tilt the mold while casting by an angle α , then we can 

two different replicas for each of the three models. The errors are 
relatively low, especially considering the unavoidable resin shrink- 

reduce An by starting from the saddle and growing a set T of faces age and the fact that the casts were performed by non-professionals 

whose normal forms an angle less than α with the direction f . Then, 
the relevance score of the pair (m, n) is the area of the region An −T 
(Figure 12, right). 

We filter out all maximum-saddle pairs whose relevance is below 
a fixed threshold (0.5mm in our experiments). Finally, we sum the 

scores of the remaining pairs to get a global score for each candidate 
pouring direction. Good pouring directions are those with a low 
score, that is, those that are likely to minimize the risk of causing 
visible artifacts. 
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and without any special equipment (e.g., vacuum chambers). 
We compared our method with the state-of-the-art Metamolds 

technique in [Alderighi et al. 2018]. Figure 17 shows how our method 
always provides a valid solution for all the models in their dataset; 
here, we can use a two-piece mold to cast the goblet model, which 
was shown to require three pieces in [Alderighi et al. 2018]. In ad- 
dition, our method leads to a valid mold design even for failure 
cases of Metamolds (Figure 18). Being based on surface properties 
only, Metamolds failed to produce a valid segmentation for some 
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Table 1. Model statistics and timings for the examples shown in results. The columns report the number of vertices and faces of the digital object, the 
number of tetrahedra of the surrounding volume discretization, and the execution times of the different algorithm steps: ttetrahedra is the time required by 
the tetrahedralization software we used (TetWild or Tetgen); tmembrane is the time required to compute the escape paths and membranes; tsmooth is the time 
required to apply the Laplacian smoothing; and tmold is the running time of the composite mold geometry generation procedure, requiring the computation of 
several boolean mesh operations. Timings were set using a desktop computer equipped with an Intel Core i7-6700K processor (4.00Ghz). 

 
Model Surface (#verts ś #faces) Volume (#verts ś #tets) ttetrahedra tmembrane tsmooth tmold 

Medusa 156,556 ś 313,260 2,829,558 ś 17,056,249 1m (Tetgen) 58m 5s 27m 
Laocoonte 30,944 ś 61,724 461,194 ś 2,523,800 39m 6m 2s 9m 

Dragon Head 418,566 ś 837,136 743,955 ś 1,958,062 47m 6m 3s 13m 
Dragon 14,510 ś 29,020 300,173 ś 1,658,964 35m 4m 3s 10m 

Wheel of Life 628,920 ś 1,257,856 479,375 ś 2,629,168 41m 6m 4s 9m 
Knot 28,729 ś 57,458 578,479 ś 3,221,235 37m 16m 3s 20m 

Caged Knot 30,593 ś 61,274 602,332 ś 3,354,202 47m 25m 9s 50m 
 

Table 2. Hausdorff distance RMS errors between a 3D scan of the cast object 
and its digital model. In parenthesis we show the percentage of RMS error 
over the diagonal length. All values are expressed in mm. Size stands for 
the diagonal of the bounding box for each model. The 3D scans were taken 
using a GOM Atos scanner that yields a precision of 0.2mm. 

 
Model Size Error #1 (%) Error #2 (%) 
Dragon Head 286 0.493 (0.172) 0.488 (0.171) 
Wheel of Life 181 0.264 (0.146) 0.357 (0.197) 
Laocoonte 173 0.178 (0.103) 0.181 (0.105) 

 
 

classes of models. Metamolds’ topological membranes are unable to 
handle complex knotted loops (Figure 18, top) or, depending only 
on topological features, in some cases might hinder the extraction 
(Figure 18, middle). Also, for complex geometries like the dragon 
model, Metamolds might fail to produce a valid segmentation (Fig- 
ure 18, bottom). Our method, instead, exploits all of the available 
information about the volume around the objects, thus providing 
membranes that accommodate even for such complex shapes. 

 
7 CONCLUSION 
We have introduced a novel technique to automatically design com- 
posite, two-piece molds that are well-suited for casting highly com- 
plex shapes. For the first time, the proposed approach extends com- 
putational design to a kind of mold type that so far has been reserved 
to skilled reproduction artisans to cast works of art. 

Our technique is based on an innovative volumetric analysis of 
the possible escape paths in the volume surrounding the object. This 
analysis allows us to understand how the mold could be released 
from the cast object and determines how it should be cut and opened. 
The proposed volumetric approach overcomes previous limitations 
in terms of the geometric and topological complexity. 

The main limitations of the method are mostly related to the 
intrinsic properties of casting. First of all, bottle-shaped objects with 
large cavities and small escape holes cannot be reproduced by 
simple casting. Another challenging configuration is extremely long 
thin parts that are almost isolated from the rest of the object (think, 
for example, of a long spear kept in a hand); although in this case 
our approach would produce a valid result, the resulting mold could 
be unnecessary large and complicated. These cases are traditionally 
solved by cleverly decomposing the object into a few separate parts 

that are significantly easier to cast; the problem of how to perform 
this kind of decomposition in a robust way on large complex models 
is an interesting open research direction. Furthermore, even if our 
formulation produced good membranes for the range of complex 
objects we fabricated, for certain cases, it is possible that our method 
would produce unfeasible silicone molds: for example, on a sphere 
with a thin and long cylindrical cavity, our method would produce a 
correctly extractable mold but with a very thin cylinder of silicone 

that would be deformed during the casting procedure. Detecting and 
handling this kind of problem is an interesting research challenge. 

Finally, a practical limitation is given by the need for a volumetric 
tetrahedral decomposition; although there are many robust tech- 

niques that claim to work for highly detailed boundaries, we have 
found that the sheer complexity of some of the models proposed by 
artists is challenging for all the available tools. Moreover, multireso- 
lution approaches are not trivial to apply because it is difficult to 
robustly transfer the generated geometry, such as the membranes 
defining the cuts, between models of different resolutions. 

Besides its limitations, we believe our approach significantly ex- 
tends the range of models that can be fabricated by molding. Also, 
a potential application could be metal casting. While we were able 
to get partially satisfying results with a pewter-based alloy (Fig- 
ure 19), metal casting presents very hard constraints, and further 
investigation is needed to get a truly robust solution. 
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Fig. 13. Successful casting of complex shapes. 
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Fig. 14. Successful casting of a surface of non-zero genus, a knotted shape, and an object composed of two entangled pieces. 

 

 
Fig. 16. Left and center: close-ups of the additional membranes on the 
protruding features of the Medusa head model. Right: parting surface and 
additional membranes on an ant model. 

 
 
 

Fig. 15. Multiple casts. 
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Fig. 17. Running our method on the dataset of Metamolds [Alderighi et al. 
2018] always produces a valid set of membranes. 
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Fig. 18. Some examples where Metamolds [Alderighi et al. 2018] failed to 
produce a valid surface partitioning (a), whereas our method produced a 
usable set of membranes (b). Metamolds’ membrane generation is unable to 
handle complex knotted loops (top) and might create membranes that render 
the extraction impossible (middle). For complex geometries, Metamolds’ 
visibility-based approach may produce isolated segments and induce silicone 
molds with non-zero genus (bottom). 
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Fig. 19. A first attempt to perform metal casting. 
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