
Constraint-Based Termination Analysis of
Logic Programs

STEFAAN DECORTE, DANNY DE SCHREYE, and
HENK VANDECASTEELE
Katholieke Universiteit Leuven

Current norm-based automatic termination analysis techniques for logic programs can be split
up into different components: inference of mode or type information, derivation of models,
generation of well-founded orders, and verification of the termination conditions themselves.
Although providing high-precision results, these techniques suffer from an efficiency point of
view, as several of these analyses are often performed through abstract interpretation. We
present a new termination analysis which integrates the various components and produces a
set of constraints that, when solvable, identifies successful termination proofs. The proposed
method is both efficient and precise. The use of constraint sets enables the propagation of
information over all different phases while the need for multiple analyses is considerably
reduced.

Categories and Subject Descriptors: I.2.2 [Artificial Intelligence]: Automatic Programming;
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving

General Terms: Languages, Verification

Additional Key Words and Phrases: Constraint solving, logic programming, termination
analysis

1. INTRODUCTION

As we see it, the norm or level mapping-based approach to termination
analysis for logic programs has gone through a number of research stages.
First important realizations in this area were by Ullman and Van Gelder
[1988] and Plümer [1990]. In these works, highly efficient termination
analysis procedures were proposed. These methods used fairly simple
well-founded orderings, based on norms that measure sizes of terms
according to the list-length or term-size measures. They also were much
“demand-driven,” starting from a desired decrease in the well-founded

S. Decorte was supported by GOA, “Non-Standard Applications of Abstract Interpretation,”
DPWB, Belgium. D. De Schreye is senior research associate of FWO Flanders.
Authors’ address: Department of Computer Science, K. U. Leuven, Celestijnenlaan 200A,
B-3001 Heverlee, Belgium; email: {stefaan; dannyd; henkv}@cs.kuleuven.ac.be.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0164-0925/99/1100–1137 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999, Pages 1137–1195.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330643.330645&domain=pdf&date_stamp=1999-11-01

order and traversing dependency graphs to actually prove the validity of
such a decrease through relations that were set up for intermediate calls to
predicates occurring to the left of recursive calls.

These works have been crucial for the entire development of the termina-
tion analysis area. Even today, very few methods can compete with them,
given that the efficiency-versus-precision trade-off is fully taken into ac-
count.

The main drawback of these methods—as can be expected from nicely
engineered approaches—is that they have a somewhat ad hoc flavor. At the
least, they were less targeted at gaining conceptual insight into the
termination problem as a whole, at clarifying the importance of certain
subproblems, and at providing conceptually clear frameworks for studying
the different trade-offs in termination analysis in general.

A second line of work has filled this gap. The work of Apt, Bezem, and
Pedreschi (e.g., see Apt and Bezem [1991], Apt and Pedreschi [1990; 1991],
and Bezem [1992]), but also work of others, such as Bossi et al. [1991;
1992], studied the problem from a more mathematical perspective, provid-
ing more insight into the various components of a termination analysis
proof. This highlighted the need for the well-founded ordering on atoms
(usually referred to as level mappings), (in the context of termination under
the left-to-right selection rule of Prolog) the need for models for the
programs, the need for boundedness or rigidity constraints (with respect to
the considered level mappings) on the sets of atoms for which termination
is proved, and the identification of the well-founding conditions (in terms of
decreases of the level mapping on atoms in the given classes) themselves.

This second line of research has clarified more than the early work the
difficulties involved:

—the selection of the level mapping, and, in many practical cases, in
particular the norm, that measures terms, that gives rise to this level
mapping,

—the inference of appropriate models, in automatic termination analysis
often referred to as the inference of interargument or size relations over
the selected norm,

—the role of the boundedness or rigidity constraints,
—the actual syntactic termination/well-foundedness constraints them-

selves.

The identification of these different components in the analysis has led to
a third line of work. Here, the issue was to revisit the solutions proposed
for all these components in the initial termination analysis approaches and
to improve on them, at least in terms of precision. This line of research
includes work on inferring norms and level mappings from mode and type
information [Verschaetse 1992; Decorte et al. 1993; Martin et al. 1996],
automatic inference of interargument and size relations [De Schreye and
Verschaetse 1995; Brodsky and Sagiv 1991; Lindenstrauss and Sagiv 1997],

1138 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

automatic verification of the well-founded constraints (for instance,
through CLP techniques) [De Schreye et al. 1992; Mesnard 1996].

At least on the level of automatic termination analysis, the current
status of all this work can be evaluated as follows. With respect to
precision, recent works outperform the results obtainable with the early
approaches. More refined well-foundings are proposed. More precise inter-
argument relations are computed. More programs can be proved to termi-
nate. At the level of efficiency, the situation is reverse. More recent
automated termination analysis techniques, such as Decorte et al. [1993],
De Schreye et al. [1992], and Lindenstrauss and Sagiv [1997], require
several stages in the analysis: to infer mode and type information, to infer
appropriate norms and level mappings (using the modes and types) that
satisfy rigidity constraints, to infer interargument relations, and finally to
prove the well-foundedness conditions themselves. This results in very
time-consuming analysis, which may be unrealistic in view of developing
practical program verification tools. Moreover, there is still a lack of
precision. Due to sequentializing the analysis in distinguished steps: mode/
type inference, norm/level mapping inference, interargument inference,
termination conditions verification, the analysis ceases to be demand-
driven. The actual “well-founding” termination conditions (e.g., the actual
decrease of the level mapping between the head and the body atoms of the
different clauses) is not taken into account for the generation of the
appropriate norm, level mapping, and interargument relations. The analy-
sis has become bottom-up instead of top-down.

In this article, we revise the original demand-driven termination analysis
methods, taking the conceptual insights on the different layers and their
optimization into account. This leads to a new analysis in which, starting
from the well-foundedness constraints, from the rigidity constraints, from
our current understanding of useful norms and level mappings, and from
our understanding of interargument relations, we automatically set up

—a symbolic, parametrized form of all the concepts involved (the norm, the
level mapping, the interargument relations),

—a set of constraints on the parameters in these concepts, sufficient to
obtain a termination proof.

By solving the generated constraints, we get a demand-driven solution
for all the intermediate concepts involved in the analysis. More precisely, if
a norm, level mapping, and interargument relation of the given generic
forms exist such that the program can be proved to terminate, then our
analysis will generate the required instance of the generic object that
proves the termination.

The new approach is both precise and efficient. The efficiency results
from the fact that information over the different stages of the analysis is
now propagated at once, starting from a general constraint set. Due to this
general propagation scheme, the enforced decisions at one component of the
analysis quickly narrow the options for other components, which signifi-

Constraint-Based Termination Analysis • 1139

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

cantly speeds up the analysis as a whole. Moreover, the analysis is now
performed in one single step, eliminating the need for a number of different
(abstract interpretation) phases.

The precision is due to the fact that we no longer need to fix certain
choices (e.g., which norm to use or which interargument relation to select)
before other stages of the analysis are started. Choices are postponed until
the constraint propagation forces the parameters to take specific values. As
a result, we avoid making the wrong choices. In theory, this is another
efficiency gain: we avoid the need for backtracking over previous choices. In
practice, backtracking over all possible choices is too inefficient, and
practical systems only consider a limited number of all possible options
(e.g., they might only consider the term-size and the list-length norm). In
this respect, our approach is more precise.

The structure of this article is as follows. In the next section, we present
some preliminaries on norms, level mappings, interargument relations, and
acceptability. In Section 3, we provide the basic motivation for our re-
search. In Section 4, we illustrate the main intuitions of our analysis
through an example. All introduced concepts are formalized in Section 5,
leading to a symbolic termination condition. In Section 6, we propose a
technique to derive simple constraints from the symbolic condition, and we
discuss how to solve them. We illustrate the practicality of the approach on
several examples in Section 7. In Section 8 we comment on experiments
performed on a prototype system. We discuss related work in Section 9, and
we end with a discussion.

2. PRELIMINARIES

2.1 Notational Conventions and Terminology

In the following, we assume familiarity with the terminology, the basic
concepts, and the main results of logic programming, as they are, for
instance, presented in Apt [1990] or Lloyd [1987].

By +P, we denote the first-order language associated to a program P. We
use ConstP, FunP, PredP, and VarP to denote respectively the set of
constants, the set of function symbols (without the constants), the set of
predicate symbols, and the set of variables of this language. In this article
we extend the definition of FunP to also include all functor symbols which
might occur in queries for P. The same holds for ConstP.

We use the following notational conventions. Variables, functors, and
predicate symbols start with a lowercase character. Constants start with
an uppercase character. The Prolog notation p/n is used to represent a
predicate with symbol p and arity n. If there is no risk of confusion, we
simply write p. We also use the Prolog conventions for representing lists.
We represent substitutions as sets of bindings { x1/t1, . . . , xn/tn}, and we
denote them by Greek characters. N-tuples of indexed objects—e.g., vari-
ables or terms—(x1, x2, . . . , xn) are denoted as x# .

1140 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Given a program P, we denote its Herbrand Universe by UP and its
Herbrand Base by BP. The extended Herbrand Universe, UP

E, and the
extended Herbrand Base, BP

E, associated to a program P, were introduced
in Falaschi et al. [1989]. They are defined as follows. Let TermP and AtomP
denote the sets of, respectively, all terms and all atoms that can be
constructed from the alphabet underlying to P. The variant relation,
denoted ;, defines an equivalence. UP

E and BP
E are respectively the quotient

sets TermP/; and AtomP/;. For any term t (or atom A), we denote its class
in UP

E (BP
E) as [t] ([A]). However, in order to reduce notational complexity,

we drop the brackets when no real confusion is possible.
If E and F are two expressions (a term, atom, n-tuple of terms, or n-tuple

of atoms) of the same type and the expressions unify, then mgu(E, F)
denotes their most general unifier. ?5 denotes logical consequence in the
first-order language. For any formula F, @F and ?F denote the universal,
respectively existential, closure over the free variables occurring in F.

From this section onward, we denote a query as the sequence of its
literals, separating literals by commas. This is convenient, since it allows
us to view sets of atomic queries as sets of atoms. We take the convention
that a program does not include a query. A pair (P, Q) consisting of a
program P and a query Q is referred to as a queried program.

Whenever we talk about termination, we mean left-termination, which is
termination with respect to the left-to-right selection rule only.

2.2 Norms and Level Mappings

An essential component of any termination analysis framework is the
ability of measuring and comparing atoms and terms. The “size” of a term
is found by using norms.

Definition 2.1 (Norm). A norm is a mapping i.i;UP
E 3 N.

Observe that norms are defined on the extended Herbrand Universe. With
slight abuse of notation, we will often write iti, with t [TermP.

Several examples of norms can be found in the literature. Two well-
known instances are the list-length norm, which maps lists to their length,
and the term-size norm, which counts the number of functors in a term.

Definition 2.2 (List-Length, Term-Size). The list-length norm, denoted
i.il, is defined in the following way:

i@t1ut2#i l 5 1 1 it2i l , with t1 and t2 any term,
iti l 5 0 otherwise.

The term-size norm, denoted i.it, is defined in the following way:

i f~t1 , . . . , tn!it 5 1 1 O1#i#n i tiit , with f any function symbol and n . 0,

itit 5 0 otherwise.

Constraint-Based Termination Analysis • 1141

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Studying the termination of queries containing nonground terms is
known to cause problems in the analysis. As restricting to ground queries is
too limited, automatic termination analysis has resorted to concepts as
boundedness [Bezem 1992] or rigidity [Bossi et al. 1991]. Only the latter
property will be of further relevance.

Definition 2.3 (Rigid Term [Bossi et al. 1991]). Let i.i be a norm and t be
a term. We say that t is rigid with respect to i.i if, for any substitution s,
itsi 5 iti.

If a term is known to be rigid with respect to a given norm, it can be
considered a ground term: further substitutions can no longer affect its
size. Notice, however, that this property depends on the selected norm. In
light of the preceding discussion, the following class of norms, called
semilinear norms, are especially relevant for practical applications of
termination analysis. They allow us to detect syntactically whether or not a
term is rigid with respect to a norm.

Definition 2.4 (Semilinear Norm [Bossi et al. 1991]). A norm i.i is
semilinear if it is recursively defined by means of the following schema:

ivi 5 0 if v is a variable, and
i f~t1 , . . . , tn!i 5 c 1 iti1i 1 · · · 1 itimi,

with c [N, $i1 , . . . , im% # $1, . . . , n%

and c, i1 , . . . , im depending only on f/n, n $ 0.

Of the examples above, both the list-length and the term-size norm satisfy
this property. In Bossi et al. [1991] it is shown how semilinear norms allow
us to detect rigid terms syntactically. In this article we will consider norms
which are a slight variant of semilinear ones. All norms in this article take
the following form:

iti 5 0 if t is a variable or a constant, and

i f~t1 , . . . , tn!i 5 f0 1 O
i51

n fiitii

where fi [N, i [$0, · · · , n% and depend only on
f/n, n . 0.

To measure the size of atoms, level mappings were introduced.

Definition 2.5 (Level Mapping). A level mapping is a function u. u;BP
E 3

N.

A level mapping assigns to each atom a natural number which can be
interpreted as its size. Analogously to the concept of a rigid term, we define
an atom A to be rigid with respect to a level mapping u.u if its size under u.u
is invariant under substitution. We say that a level mapping u.u is rigid on a
set of atoms S if each atom in S is rigid with respect to u.u.

1142 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

In practice, level mappings are most often defined as a linear combina-
tion of the sizes of the terms on fixed (per-predicate) argument positions.
That is, it is defined as

u~ p~t1 , · · · , tn! u 5 O
i[Ip

itii, for some Ip # $1, · · · , n% and

for some norm i.i.

The set Ip is frequently selected to be the set of input positions. Ver-
schaetse [1992] describes how to automatically propose the set Ip and calls
the resulting level mappings natural level mappings. We return to the
concept with more detail in Section 4.

2.3 Acceptability with Respect to a Set of Atoms

In automatic termination analysis, it is common practice that the behavior
of a program must be investigated for some set of possible calls to the
defined predicates. To simplify the discussion, we make the assumption
that this set of queries consists of atomic queries only. Obviously, this is
not a limitation, as conjunctive goals can be reduced to the atomic case by
adding definitions for new predicates to the program with the conjunction
in their body.

In this subsection we briefly describe the main ideas of the termination
analysis framework of De Schreye et al. [1992]. We present the key notions
of De Schreye et al. [1992] here only in the context of directly recursive
programs. Full details on the framework can be found in De Schreye and
Verschaetse [1992].

Definition 2.6 (Call Set). Let P be a definite program and S a set of
atomic queries. The call set, Call(P, S), is the set of all atoms A, such that
a variant of A is a selected atom in some derivation for (P, Q), for some
Q [S and under the left-to-right selection rule.

In practice, the set of queries S will be specified as a call pattern, using
abstraction. Commonly, mode or type abstraction mechanisms are used.

The following definition is a key concept in De Schreye et al. [1992].

Definition 2.7 (Acceptability with Respect to S). Let S be a set of atomic
queries and P a definite directly recursive program. P is acceptable with
respect to S if there exists a level mapping u.u such that

—for any A [Call(P, S)
—for any clause A9 4 B1, . . . , Bn in P, such that mgu(A, A9) 5 u exists,
—for any atom Bi having the same predicate symbol as A and for any

computed answer substitution u9 for B1, . . . , Bi21:

uA u . uBiuu9 u

Constraint-Based Termination Analysis • 1143

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

The following proposition of De Schreye et al. [1992] characterizes
left-termination in terms of acceptability.

PROPOSITION 2.8. A directly recursive program P terminates under the
left-to-right selection rule for any query in S if and only if P is acceptable
with respect to S.

Because of the undecidability of the termination problem, verifying
whether a program is acceptable with respect to a set of atoms is, in
general, undecidable too. The main difficulty is in providing a suitable level
mapping. Still, the proposition will hand us a practical method for checking
the termination of a program with respect to a fixed set of queries, as
shown later in Proposition 4.1.

2.4 Interargument Relations

A final point to be addressed by automatic termination analysis techniques
concerns the computed answers which appear in Definition 2.7. In several
practical approaches these are provided under the form of interargument
relations.

Definition 2.9 ((Valid) Interargument Relation). Let P be a definite
program and p/n a predicate in P. An interargument relation for p/n is a
relation Rp # Nn. Rp is a valid interargument relation for p/n with respect
to a norm i.i if and only if for every p(t1, . . . , tn) [AtomP;if P ?5
p(t1, . . . , tn) then (it1i, . . . , itni) [Rp.

Example 2.10 (Delete). Consider the following well-known delete pro-
gram:

delete(X, [X uT], T).
delete(X, [H uT], [H uT9]) 4 delete(X, T, T9).

A few interargument relations are

~Rdelete
1 ! ; $~ x1 , x2 , x3! ux2 $ x1 1 x3%

~Rdelete
2 ! ; $~ x1 , x2 , x3! ux1 5 x2 1 x3%

~Rdelete
3 ! ; $~ x1 , x2 , x3! ux2 5 x3 1 1%

~Rdelete
4 ! ; $~ x1 , x2 , x3! ux2 , x3%

The first interargument relation is valid with respect to the term-size
norm. Rdelete

2 is a valid interargument relation for delete with respect to the
constant zero-norm i.izero;UP

E 3 N;t 3 0. Interargument relation Rdelete
3 is

valid with respect to the list-length norm. Finally, it is impossible to find a
norm i.i such that the last interargument relation is valid with respect to
i.i, as the following reasoning illustrates.

Let us suppose that Rdelete
4 is valid with respect to a norm i.i. As i.i is a

mapping from terms to natural numbers, we can find a term t2 [TermP
such that it2i is minimal. Then taking any term t1 [TermP, the atom

1144 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

delete(t1, [t1ut2], t2) is entailed by the delete program. But then, i[t1ut2]i ,
it2i, which is in contrast to our assumption of minimality of i.i on t2.

In the remainder of this article, we restrict ourselves to interargument
relations which express an inequality relation (it will turn out that in most
of the cases these are exactly the kind of relations we need for a successful
termination proof).

2.5 Termination Analysis Illustrated

Let us illustrate all these concepts by means of an example. We will also
use this example throughout the following sections. In order not to obscure
the issues through the complexity of the example, and to facilitate compar-
ison with other approaches, we select the very “standard” permute exam-
ple.

Example 2.11 (Permute).

permute~Nil, Nil! 4
permute~l, @el ut#! 4 delete~el, l, l1!, permute~l1 , t!.
delete~ x, @ x ut#, t! 4

delete~ x, @h ut#, @h ut9#! 4 delete~ x, t, t9!.

Suppose we would like to prove that permute terminates whenever it is
called with a nil-terminated list of any terms as its first argument and a
free variable on the second position. Note that calling permute in this way
issues calls to delete where the first argument is any term, where the
second argument is a nil-terminated list, and where the third argument is
a free variable.

In an (automatic) norm-based termination proof, one typically starts from
a fixed norm i.i, which could in our example be the list-length norm i.i l,
which was defined in the previous section. From this norm a level mapping
u.u is proposed. As the input to the permute and delete atoms is located in
respectively their first and second argument, one would naturally select a
level mapping:

upermute~t1 , t2! u 5 it1i l

udelete~t1 , t2 , t3! u 5 it2i l

Proving termination for delete is straightforward. Take any call to delete
satisfying the above-specified type of calls and which unifies with the head
of the second clause. Let us say delete(t1, t2, t3), and let u 5 mgu(delete(t1,
t2, t3), delete(x, [hut], [hut9])). It is then easy to see that udelete(t1, t2, t3)u .
udelete(x, t, t9)u u. Because of rigidity, udelete(t1, t2, t3) u 5 udelete(t1, t2,
t3)u u and udelete(t1, t2, t3)u u 5 udelete(x, [h ut], [h ut9])u u 5 i[h ut]ui l 5 1 1
itui l 5 1 1 udelete(x, t, t9)u u.

For the case of permute, a valid interargument relation for delete/3 with
respect to the list-length norm must be generated. Using abstract interpre-

Constraint-Based Termination Analysis • 1145

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

tation, for example, the following valid relation (with respect to the
list-length norm) can be derived:

$~n1 , n2 , n3! un2 5 n3 1 1%

At this point, all ingredients to show termination of permute are available.
Take any permute call permute(t1, v), where t1 is a nil-terminated list, and
which unifies with the recursive clause, and let u [mgu(permute(t1, v),
permute(l, [el ut])). Then upermute(t1, v) u 5 upermute(t1, v)u u 5 upermute(l,
[el ut])u u 5 ilui l, and we must prove that ilui l . il1usi l 5
upermute(l1, t)us u, for any computed answer substitution s for delete(el, l,
l1)u. Here comes the interargument relation in play, as for such delete
atoms, ilusi l 5 il1usi l 1 1.

3. REFINED MOTIVATION

Reconsider the permute program of Example 2.11, and let us summarize
the important observations. When using a traditional norm-based termina-
tion analysis, typically three sources of information must be provided. One
normally starts from a fixed norm i.i, which, in our example, was the
list-length norm i.i l. The next step involves proposing a level mapping u.u
from this norm. A useful level mapping is one that is rigid on all possible
calls. In addition, for the case of permute, a valid interargument relation
for delete/3 with respect to the list-length norm must be generated.

The sketch above immediately highlights three major problems with this
kind of automatic proof method. Each of these issues is an immediate
consequence of considering these inputs as unrelated to each other: feeding
the wrong inputs results in a failed termination proof. First of all, if the
analysis had been started from another norm, like the term-size norm,
termination could never have been proved. Apart from the trivial zero-
mapping, there exist no other rigid level mappings with respect to the
term-size norm and the above-proposed set of calls.

Similarly, on the level of the interargument relations, the selection of an
appropriate norm can have a major impact. Consider the following example
of Verschaetse [1992], where it is used as part of a program to compute the
power-set of a given set.

Example 3.1 (Combine). Combine adds its first argument at the begin-
ning of all lists appearing in the term occurring on the second argument
position:

combine~l, Nil, Nil! 4
combine~ x, @h ut#, @@ x uh# uu#! 4 combine~ x, t, u!

When trying to derive a linear interargument relation for combine from the
list-length norm, the relation.

$~k, n, m! [N3un 5 m%

1146 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

is valid. However, if term-size was selected, the analysis would be unable1

to infer any sensible interargument relation.
Several techniques, such as Ullman and Van Gelder [1988], are tailored

to the use of one specific norm (for Ullman and Van Gelder [1988],
list-length). Others, such as Verschaetse [1992] and Lindenstrauss and
Sagiv [1997] provide the user with the possibility of specifying a desired
norm, tuned to the program and query at hand. However, the above
discussion severely underlines the impact that the selection of a norm has
on the different components in the termination proof. Fixing a norm from
which to start the analysis has a constraining effect on all other compo-
nents.

The strong dependency on the choice (the definition) of the norm to
measure terms for success or failure of a termination proof has previously
been observed in several works, such as Bossi et al. [1992], Bronsard et al.
[1992], and Verschaetse [1992]. The solution proposed has been to increase
the precision of the norms through the integration of type information.
Still, the (even extensive) use of type information does not facilitate to
make a justified guess in favor of, for example, term-size or list-length
norms when ground information is concerned.

Second, even if a correct selection of a norm has been performed, a
successful termination proof can be missed because the level mapping
defined from it is not adequate. The following example illustrates this
point:

Example 3.2. Consider the following reverse predicate, which reverses
lists through the use of an accumulating parameter appearing as the third
argument of the revacc predicate.

reverse~l, lr! 4 revacc~l, lr , Nil!.
revacc~Nil, l, l ! 4

revacc~@el ut#, r, a! 4 revacc~t, r, @el ua#!.

It is not difficult to see that any calls to reverse terminate whenever the
predicate is used to reverse a ground list (on first argument position). In
this case, a perfectly natural level mapping is the following:

urevacc~l1 , l2 , l3! u 5 il1i t 1 il3i t

However, such a level mapping does not allow to prove a decrease between
a call revacc([el ul1], l2, l3) and the corresponding recursive call revacc(l1,
l2, [el ul3]). The accumulator is responsible for this behavior, and a level
mapping which does not consider this accumulator is necessary:

urevacc~l1 , l2 , l3! u 5 il1i t

1Our course, {(k, n, m) [IN3um # n} is a valid interargument relation for combine with
respect to the term-size norm, but it cannot be inferred in the setting of De Schreye and
Verschaetse [1995]. Only linear interargument relations expressing an equality relation can.

Constraint-Based Termination Analysis • 1147

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Finally, even in cases where a reasonable norm and level mapping have
been proposed, the analysis may fail because of the derivation of unsuitable
interargument relations. To illustrate this point, reconsider the permute
program of Example 2.11, and this time let us investigate termination for
calls to permute with both arguments ground. As both arguments are
ground, a good candidate norm to base the proof on is the term-size norm.
To fix a level mapping on this norm, we choose to measure permute calls by
regarding their first argument only. A perfectly natural and detailed valid
interargument relation for delete with respect to the term-size norm is the
following:

$~ x1 , x2 , x3! ux1 1 x2 $ x3 1 1% (1)

However, the relation takes too much information into account, and prov-
ing termination becomes impossible. There are two solutions: either the
level mapping must be extended on permute atoms to measure both
arguments, or the interargument relation must be weakened:

$~ x1 , x2 , x3! ux2 $ x3 1 1%

From the examples it should be clear that there exists a lot of interde-
pendency between the three central concepts of a termination analysis. It
might, therefore, not be such a good idea to provide the level mapping,
norm, and interargument relations more or less independently from one
another. This is the key idea for the rest of this article where we work the
other way around. At the beginning of the analysis, we still do not assume
anything known about the level mapping. Neither do we make any assump-
tions about the norm or the interargument relations which depend on such
a norm. Instead, we work at a higher level by providing generic forms of all
three concepts. In the remainder of this article, we then propose a method
for automatically deriving a suitable norm, level mapping, and the neces-
sary interargument relations from which to start the analysis. In the
following, the framework is formulated for direct recursive programs only.
This allows us to focus on the essence of the approach, free from the
resulting notational complexity. We immediately want to emphasize that
this is just a presentation matter and does not impose any restriction upon
the applicability of the proposal. To begin with, most of the time a mutually
recursive program can be transformed into a directly recursive one. We
refer to the extensive discussion in Plümer [1990] on how termination
analysis for indirectly recursive programs can most often be solved using
techniques for directly recursive ones. Next, the concepts proposed for the
technique can be reformulated for the mutually recursive case by moving
from the clause level to more general syntactic structures, as there are the
cyclic collections of the program (see De Schreye et al. [1992]) or its
strongly connected components.

1148 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

4. TERMINATION ANALYSIS REVISITED

In the remainder of this article, we make the assumption, for each
predicate in the program, that each of its argument positions is fixed as
being an input or an output position. A generic view on input/output
applies here: input arguments do not have to correspond to ground terms,
neither do output arguments have to be free. This is completely in the line
of reasoning of well-typed programs, as introduced by Bronsard et al.
[1992]. If the program is not well-moded nor well-typed, the positions in a
predicate corresponding to these generalized notions of input/output can be
inferred through an inspection of its call types. We refer to Decorte et al.
[1993] where the problem has been discussed in the context of type
information, and heuristics for appropriate selection of both sets are given.

First, the following notion of acceptability, derived from the notion in
Definition 2.7, is very useful.

PROPOSITION 4.1 (RIGID ACCEPTABILITY WITH RESPECT TO S). Let S be a set
of atomic queries and P a definite, directly recursive program. Let i.i be a
norm, and, for each predicate p in P, let Rp be a valid interargument
relation for p with respect to i.i. If there exists a level mapping u.u which is
rigid on Call(P, S) such that

—for any clause H 4 B1, . . . , Bn [P, and
—for any atom Bi in its body which has the same predicate symbol as H,
—for substitution u such that the arguments of the atoms in (B1, . . . ,

Bi21)u all satisfy their associated interargument relations RB1
, . . . ,

RBi21

uHu u . uBiu u,

then P is acceptable with respect to S.

PROOF. Suppose the above condition is satisfied for P. Take any A [
Call(P, S) and any clause A9 4 B1, . . . Bi21, Bi, Bi11, . . . Bn such that
mgu(A, A9) 5 u. Suppose A9 and Bi have the same predicate symbol and
suppose that (B1, . . . , Bi21)us is a computed instance of (B1, . . . ,
Bi21)u. Because Au 5 A9u, uAus u 5 uA9us u. Now, since A [Call(P, S),
and u.u is rigid on Call(P, S), then uAus u 5 uA u. Thus, uA u 5 uA9us u.

Finally, since (B1, . . . , Bi21)us is a computed instance, P ?5 Bjus, for
all j , i. Thus, by definition of valid interargument relation, the argu-
ments of Bjus satisfy RBj

, for all j , i. Then, by the rigid acceptability
assumption, uA9us u . uBius u. Combined with uAus u 5 uA u, we get uA u .
uBius u. e

Observe that through the rigidity constraint on the level mapping we are
no longer forced to reason on “calls” in the termination condition. The
condition is now fully at the clause level. Secondly, the condition on
computed answers has been generalized to one on instances satisfying the
interargument relations.

Constraint-Based Termination Analysis • 1149

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Also note that the condition is not unreasonably too strong. For example,
consider the well-known append program:

append~Nil, l, l ! 4
append~@el ul1#, l2 , @el ul3#! 4 append~l1 , l2 , l3!

A level mapping measuring the list-length of the first or third argument
(or both) will satisfy rigid acceptability. Any call set on which this mapping
is rigid will be terminating (e.g., append queries where the first or the third
argument (or both) is a nil-terminated list). However, in general, the
condition is not a necessary one.

In the remainder of this section, we illustrate the underlying intuitions
that form the basis for our new approach through an example. Reconsider
the permute program of Example 2.11. Suppose that we aim to prove
left-termination for all atomic goals in the set

S 5 $permute~t1 , t2! u t1 is a nil-terminated list and
t2 is a free variable%.

Initially, a separate analysis is needed to determine the set Call(P, S). In
this particular example, type inference (for instance, through the abstract
interpretation of Janssens and Bruynooghe [1992]) allows us to determine
that Call(P, S) is the set

S ø $delete~t1 , t2 , t3! u t1 and t3 are free variables and
t2 is a nil-terminated list%.

The analysis starts by setting up symbolic versions of all concepts needed
in the analysis, followed by a formulation of all conditions on these
symbolic expressions, and finally, by solving the constraints these condi-
tions entail.

We first fix a symbolic semilinear norm:

i@t1ut2#i 5 •0 1 •1it1i 1 •2it2i, for any terms t1 and t2 .

Since the list-constructor is the only functor occurring in the program, we
leave i.i unspecified elsewhere. The symbols •0, •1, and •2 denote natural
numbers. The purpose of the analysis is to determine their value in such a
way that a successful termination proof can be based on i.i.

Similarly, we introduce a symbolic version of the level mapping u.u:

udelete~t1 , t2 , t3! u 5 d1it1i 1 d2it2i 1 d3it3i and
upermute~t1 , t2! u 5 p1it1i 1 p2it2i

where t1, t2, and t3 again denote any terms, and d1, d2, d3, p1, and p2
denote natural numbers that need to be determined.

1150 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Finally, a symbolic interargument relation for delete is needed. In this
article, we allow interargument relations which express an inequality
relation of the following form:

Rp/n 5 H ~ x1 , · · · , xn!U O
i[Ip

pi
e xi $ O

j[Jp

pj
e xj 1 p0

eJ ,

with pi
e [N, i [{1, . . . , n}, Ip ø Jp # {1, . . . , n}, and Ip ù Jp 5 À.

The sets Ip and Jp are the sets of generalized input and output arguments,
which were mentioned at the beginning of this section.

Back to the example, the sets Idelete and Jdelete have not yet been fixed.
Following the heuristics proposed in Decorte et al. [1993], the heart of
which states that only argument positions which are never called with a
free variable can be considered as “input,” we propose Idelete 5 {2} and Jdelete
5 {1, 3}. This gives rise to the symbolic interargument relation

$~n1 , n2 , n3! ud2
e n2 $ d1

e n1 1 d3
e n3 1 d0

e%.

Next, we formulate the conditions needed for a successful termination
proof, and we set up the constraints on the introduced symbolic coefficients
from them. In general, there are three conditions, following immediately
from the rigid acceptability (Proposition 4.1):

—the atoms in Call(P, S) must be rigid with respect to the level mapping,
—any introduced interargument relation must be valid,
—the rigid acceptability condition, with respect to this level mapping and

interargument relations, must hold.

Let us consider the first condition. Recall from Section 2.2 that the theory
of semilinear norms was especially designed to characterize rigid terms and
atoms in a syntactic way. Specifically, (sub)argument positions which are
taken into account by the norm or level mapping should never contain a
variable.

For delete(t1, t2, t3) atoms in Call(P, S), variables may occur for t1 and
t3. Moreover, if t2 is of the form [t91ut92], then t91 may also be a variable.
Thus, rigidity of the level mapping imposes d1 5 d3 5 •1 5 0. Similarly,
for the permute predicate, rigidity enforces the constraint •1 5 p2 5 0. As
a result, the symbolic norm and level mapping reduce to

i@t1ut2#i 5 •0 1 •2it2i
udelete~t1 , t2 , t3! u 5 d2it2i
upermute~t1 , t2! u 5 p1it1i

Next, the interargument relation for delete must be valid. In several
previous works, (e.g., De Schreye and Verschaetse [1995], Bruynooghe and
Boulanger [1994], and Cousot and Halbwachs [1978]) inference of valid
interargument relations was performed through abstract interpretation

Constraint-Based Termination Analysis • 1151

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

and was computationally rather expensive. Here, we solve this problem by
considering our proposed interargument relation(s) as a generalized (non-
ground) interpretation, I, of the program, and by imposing (as a condition
on the symbolic coefficients) that TP(I) # I should hold, where TP is the
generalized (nonground) immediate consequence operator of Falaschi et al.
[1989].

In the case of delete, this gives rise to the conditions

@x, t;d2
ei@ x ut#i $ d1

ei xi 1 d3
eiti 1 d0

e ~for the nonrecursive clause!

and

@x, h, t, t9;d2
eiti$d1

ei xi 1 d3
eit9i 1 d0

e f

d2
ei@h ut#i $ d1

ei xi 1 d3
ei@h ut9#i 1 d0

e .

Combining these conditions with those for i.i simplifies to

@x, t;~d2
e •2 2 d3

e!iti 2 d1
ei xi 2 d0

e 1 d2
e •0 $ 0 and

@x, h, t, t9;d2
eiti 2 d1

ei xi 2 d3
eit9i 2 d0

e $ 0 f

d2
e •2iti 2 d1

ei xi 2 d3
e •2it9i 2 d0

e 1 •0~d2
e 2 d3

e! $ 0.

Reducing such conditions to explicit constraints on d0
e , d1

e , d2
e , d3

e , •0 and
•2 is a nontrivial matter. As far as we know, no general approach for
dealing with such constraints exists. In Section 6 we propose a specific
reduction method, based on combining such conditions to infer sufficient
preconditions in terms of basic constraints on the symbolic coefficients.

Finally, consider the rigid acceptability condition. For delete, only the
recursive clause imposes a condition, namely that

@x, h, t, t9; udelete~ x, @h ut#, @h ut9#! u . udelete~ x, t, t9! u.

Simplifying both sides we get

udelete~ x, @h ut#, @h ut9#! u 5 d2i@h ut#i 5 d2•0 1 d2•2iti and

udelete~ x, t, t9! u 5 d2iti

Thus the condition is d2•0 1 d2•2iti . d2iti or d2(•0 1 (•2 2 1)iti) . 0.
Since t ranges over all nil-terminated lists, iti will take infinitely many
values in the natural numbers, including 0 (for sensible norms that count
the empty list as 0), so that this can be further reduced to d2 . 0, •0 . 0,
and •2 $ 1. Choosing any remaining values for d2, •0, and •2 already
yields a successful termination proof for delete. For instance, d2 5 •0 5
•2 5 1, with list-length as the resulting norm, and udelete(t1, t2, t3) u 5
it2i l will do.

The treatment of predicate permute itself is more complex. Rigid accept-
ability states, that, if delete(el, l, l1)u satisfies the interargument relation

1152 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

(under i.i), then

upermute~l, @el ut#!u u . upermute~l1 , t!u u.

Using the form of the imposed interargument relation for delete and the
definitions of u.u and i.i, this reduces to

d2
eilui $ d1

eielui 1 d3
eil1ui 1 d0

e f p1ilui . p1il1ui.

Again, the special reduction method of Section 6 will simplify this condition
into constraints on the coefficients.

In the remainder of the article, we reexamine the termination condition
which was presented in this section, and we reformulate it as a condition in
terms of symbolic counterparts of level mapping, norm, and interargument
relation. Using two simple rewrite rules, it is shown that the condition can
be rewritten into a solved form. For such solved forms, constraints on the
symbols can be derived without much difficulty, and algorithms for con-
straint derivation are available. The termination condition is only one
source of constraints. In an analogous way, constraints are derived when-
ever interargument relations are necessary. An inspection of the call set
provides a final subset of constraints. Such a system of constraints identi-
fies sets of suitable level mappings, norms, and interargument relations
which can be used in the original termination condition. In other words, if a
solution for the constraint system exists, termination can be proved.

5. SETTING UP THE SYMBOLIC CONDITIONS

In this section, we formalize the notions introduced in the example. We
first define symbolic versions of semilinear norms, level mappings, and
interargument relations. These will then form the basis for a symbolic
termination condition. The condition will be formulated as a search for
suitable mappings of all introduced symbols. In the next section, we will
describe how this search can be automated efficiently.

5.1 Symbolic and Natural Formulae

Definition 5.1 (Functor, Predicate, and Extended Predicate Coefficients).
The set of functor coefficients, respectively predicate coefficients, respec-
tively extended predicate coefficients, associated to a program P are the sets
of symbols

FC~P! 5 $ fiuf/n [FunP ` i [$0, . . . , n%%

PC~P! 5 $ piup/n [PredP ` i [$1, . . . , n%%

EC~P! 5 $ pi
eup/n [PredP ` i [$0, . . . , n%%

Intuitively, FC(P), PC(P), and EC(P) are the sets of parameters we
intend to compute for, respectively, the symbolic norm, the symbolic level
mapping, and the interargument relations.

Constraint-Based Termination Analysis • 1153

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Example 5.2. Reconsider the above permute program. It has the follow-
ing sets of coefficients:

FC~permute! 5 $•0 , •1 , •2%,
PC~permute! 5 $permute1 , permute2 , delete1 , delete2 , delete3%,
EC~permute! 5 $permute0

e , permute1
e , permute2

e , delete0
e ,

delete1
e , delete2

e , delete3
e

where • stands for the list constructor. To reduce the verbosity of the
notation, in the sequel we abbreviate symbols as permute1 and delete1 to p1
and d1.

Let # denote the set of symbols FC(P) ø PC(P) ø EC(P). The symbol
L^#; 1, .; $& denotes the language containing the symbols in the set # as
constants, the infix functor 1/2, the infix functor ./2, the relation symbol
$/2, and the set of variables in the first-order language of the program P.
Terms in that language are defined in the usual way and are denoted by
the set Term^#; 1, .; $&. To simplify the notation, we use shorthands like fx
for f. x and 3f1x 1 2f2y for a term as f1x 1 f1x 1 f1x 1 f2y 1 f2y. The
relational symbols 5 and . are defined in terms of $ as usual and
considered as additional primitive predicates. We denote the set of all
possible atoms in that language by Atom^#; 1, .; $&. We call such atoms
symbolic expressions. A (linear) symbolic equation is an expression in
Atom^#; 1, .; $& of the form (i51

n aixi 5 (j51
m bjyj 1 c. A (linear) symbolic

inequality is an expression in Atom^#; 1, .; $& of the form (i51
n aixi $ (j51

m

bjyj 1 c. We denote the set of all logical formulae over Atom^#; 1, .; $& by
F ^#; 1, .; $&. Such formulae are called symbolic formulae. By natural formu-
lae, we denote formulae in F ^{0, 1}; 1, .; $&.

As one can apply substitutions to natural expressions and formulae, one
can also apply substitutions in the symbolic context.

5.2 From the Natural to the Symbolic Level

Symbolic terms will now be chosen to abstract concrete terms (and atoms).
Such symbolic terms abstract concrete terms on two different levels. On
one hand, such terms include information about the instantiation level of
the term in the sense that they account for those parts of the concrete
terms whose size may still change under instantiation. On the other hand,
they make abstraction of the way in which the term or atom actually is
measured. The following definitions formalize this idea.

Definition 5.3 (Symbolic Norm i.is). Let FC(P) be a set of functor
coefficients.

i.is;TermP 3 Term ^#;1, .;$&

t 3 f0 1 O
i51

n fiitiis if t 5 f~t1 , · · · , tn!, n . 0,

t 3 x if t 5 x [VarP ,
t 3 0 if t [ConstP

1154 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

In the same way, we can define a symbolic level mapping by symbolizing its
coefficients.

Definition 5.4 (Symbolic Level Mapping u. us). Let PC(P) be a set of
predicate coefficients and i.is a symbolic norm.

u. us;AtomP 3 Term ^#;1, .;$&

p~t1 , · · · , tn! 3 O i51
n piitiis

Finally, we can abstract success sets through a similar scheme.

Definition 5.5 (Symbolic Size Expression !s). Let EC(P) be a set of
extended predicate coefficients, i.is a symbolic norm, and Ip and Jp the sets
of argument positions fixed for predicate p/n.

!s; AtomP 3 Atom ^#;1;$&

t1 5 t2 3 it1is 5 it2is

p~t1 , · · · , tn! 3 O i[Ip
pi

eitiis $ O j[Jp
pj

eitjis 1 p0
e , where p Þ 5/ 2

Example 5.6. Consider again the delete program of Example 2.11. On
lists, the norm i.is would measure a term like [1, x uy] as

i@1, x uy#is 5 •0 1 •2~•0 1 •1x 1 •2y!.

On an atom like delete(x, [1 uy], z), the level mapping u. us would yield

udelete~ x, @1 uy#, z! us 5 d1x 1 d2~•0 1 •2y! 1 d3z.

Assuming again that Idelete 5 {2} and Jdelete 5 {1, 3}, the size expression
would map an atom delete(x, [x uy], y) to

!s~delete~ x, @ x uy#, y!! 5 d2
e~•0 1 •1x 1 •2y! $ d1

e x 1 d3
e y 1 d0

e .

5.3 Symbolic Termination Condition

Whenever we have a formula over F ^#; 1, .; $&, we can associate a natural
formula to it by fixing a symbol mapping.

Definition 5.7 (Symbol Mapping). A symbol mapping is a mapping
s;# 3 N.

Expressions involving only symbols from # are mapped into the natural
numbers by substituting the symbols by their mapped value. With abuse of
notation, if F is a symbolic formula, and s a symbol mapping, we denote the
associated natural formula as s(F).

Each symbol mapping s induces in a natural way a norm and a level
mapping by mapping the symbols in the generic symbolic definitions to
their actual value under s. A symbol mapping s also characterizes an
interargument relation Rs

p/n for each predicate p/n of P from the symbolic
size expression as follows:

Constraint-Based Termination Analysis • 1155

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Rs
p/n 5 $~s~it1is!, · · · , s~itnis!! ut1 , · · · , tn [TermP

and s~!s~ p~t1 , · · · , tn!!! holds%.

Definition 5.8 (Rigid Symbol Mapping). A symbol mapping s is rigid
with respect to a set of atoms S if and only if the level mapping induced by
s is rigid with respect to S.

Following the syntactic characterization of rigidity of terms under semi-
linear norms of Bossi et al. [1991], this condition entails the following
sufficient condition on s:

PROPOSITION 5.9 (RIGID SYMBOL MAPPING: SUFFICIENT CONDITION). Let P
be a program, S a set of atoms, and s a symbol mapping on #. Then, s is
rigid with respect to S if,

—for any predicate p/n in P, such that Call(P, S) contains an atom,
p(t1, . . . , ti, . . . , tn), with ti a free variable: s(pi) 5 0, and

—for any term t 5 f(t1, . . . , ti, . . . , tn) occurring (possibly as a subterm)
within some argument of an atom in Call(P, S), with ti a free variable:
s(fi) 5 0.

PROOF. Follows directly from Bossi et al. [1991, Prop.2.1.13]. e

Example 5.10. Consider permute queried as in Section 4. For permute,
the rigidity conditions obtained through Proposition 5.9 are identical to the
ones presented in Section 3, up to syntactic renaming:

~C1!s~d1! 5 s~d3! 5 s~•1! 5 0 ~for delete atoms!,

~C2!s~ p2! 5 s~•1! 5 0 ~for permute atoms!.

In Section 6.5 we show how the above proposition can be further refined
when the set Call(P, S) is abstracted by means of mode or type informa-
tion.

One of the desirable properties a symbol mapping could have is that the
interargument relations induced by it be valid. This is the case for valid
symbol mappings.

Definition 5.11 (Valid Symbol Mapping). A symbol mapping s is valid if
all interargument relations induced by s are valid with respect to the norm
induced by s.

This relates to a symbolic condition following the TP(I) # I condition for
characterizing models.

PROPOSITION 5.12 (VALIDITY OF A SYMBOL MAPPING). Let P be a program
and s a symbol mapping on #. If for each clause H 4 B1, . . . , Bn [P it
holds that

s~@@!s~B1! ` · · · ` !s~Bn! f !s~H!#!

1156 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

then s is valid.

PROOF. The union of the relations Rs
p/n

5 $~s~it1is!, · · · , s~itnis!!ut1 , · · · , tn [TermP and s~!s~p~t1 , · · · , tn!!! holds%,

p/n [P, defines an (nonground) interpretation of P on the domain N. The
condition expresses, for this interpretation, that TP(I) # I holds. Thus, the
interpretation is a (nonground) model, and therefore each Rs

p/n is a valid
interargument relation. e

Example 5.13. Reconsider the permute example, where we need a model
for the delete predicate. The validity condition for the delete predicate
states that

~C3!s~@@true f d2
e~•1x 1 •2t 1 •0! $ d1

e x 1 d3
e t 1 d0

e#!

~C4!s~@@d2
e t $ d1

e x 1 d3
e t9 1 d0

e f

d2
e~•1h 1 •2t 1 •0! $ d1

e x 1 d3
e~•1h 1 •2t9 1 •0! 1 d0

e]).

We can now formulate a proposition analogue to Proposition 4.1, but
which is formulated in symbolic terms.

PROPOSITION 5.14. Let P be a directly recursive program and S a set of
atoms. If there exists a valid symbol mapping s which is rigid with respect
to Call(P, S) such that for each clause A 4 B1, . . . , Bi21, A9, Bi11, . . . ,
Bm [P, and such that for each A9 having the same predicate symbol as A,

s~@@!s~B1! ` · · · ` !s~Bi21! f uA us . uA9 us#!,

then P is acceptable with respect to S.

PROOF. Suppose that for some program P there exists a symbol mapping
s satisfying the above condition. Obviously, if s(@[!s(B1) ` . . . `
!s(Bi21) f uA us . uA9 us]) holds, then the condition also holds for any
instantiation of it:

s~@;@!s~B1s! ` · · · ` !s~Bi21s! f uAs us . uA9s us#! (1)

Now, let su. u be the level mapping induced by s, si.i the norm induced by
s, and, for each predicate p/n in P, Rs

p/n the interargument relation
induced by s.

Because s is rigid with respect to Call(P, S), su. u is also rigid with respect
to Call(P, S). Because s is valid, each Rs

p/n is valid.
Take any clause A 4 B1, . . . , Bi21, Bi, . . . , Bn of P, with Bi having

the same predicate as A. Let u be any substitution such that the arguments
of B1u, . . . , Bi21u satisfy Rs

B1, . . . , Rs
Bi21 respectively. By definition of the

interargument relation induced by s, this means s(@;[!s(B1u) ` . . . `

Constraint-Based Termination Analysis • 1157

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

!s(Bi21u)]) holds. Thus, by (1), (suAs u . suA9s u) holds, which reduces to
suAu u . suA9u u. e

Example 5.15. In the case of permute, the symbolic version of the rigid
acceptability imposes the conditions

~C5!s~@@true f d1x 1 d2~•1h 1 •2t 1 •0! 1 d3~•1h 1 •2t9 1 •0!

.d1x 1 d2t 1 d3t9])

~C6!s~@@d2
e l $ d1

e el 1 d3
e l1 1 d0

e f p1l 1 p2~•1el 1 •2t 1 •0! . p1l1

1 p2t]).

For completeness, we recall the other conditions on the symbol mapping s:

~C1!s~d1! 5 s~d3! 5 s~•1! 5 0

~C2!s~ p2! 5 s~•1! 5 0

~C3!s~@@true f d2
e~•1x 1 •2t 1 •0! $ d1

e x 1 d3
e t 1 d0

e#!

~C4!s~@@d2
e t $ d1

e x 1 d3
e t9 1 d0

e f d2
e~•1h 1 •2t 1 •0!

$ d1
e x 1 d3

e~•1h 1 •2t9 1 •0! 1 d0
e])

At this point, we have transformed the general problem of proving
termination into the problem of searching for a symbol mapping validating
all of the above formulae. Obviously, given a symbol mapping, checking the
validity of C1 and C2 is a problem of a different complexity than that of
verifying the formulae C3 to C6. In the next section we develop a method
for reducing these complex formulae into basic formulae involving the
introduced symbols only. In addition, the reduction method will be of a
constructive nature, in the sense that these basic formulae can guide the
process of finding a suitable symbol mapping. The resulting system of
formulae will in general be easy to solve.

6. THE QUEST FOR CONSTRAINTS

The problem with most of the symbolic conditions derived in the previous
section is that they include two different types of variables: the actual
symbolic coefficients for which we aim to fix a symbol mapping and the
universally quantified variables, which express that the derived conditions
should hold for any values for these. The point is to eliminate the latter
variables and obtain new conditions in terms of the symbolic coefficients
only. First, we need some theory on linear equations and inequalities. We
assume that the basic concepts which are related to linear inequalities are
familiar.

1158 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

6.1 Solved Inequalities and Constraint Sets

In the following, the symbol f stands for either one of the two relational
symbols $ and ..

Definition 6.1 (Positive Inequality). A linear (natural) inequality (i51
n

aixi 1 c1 f (j51
k bjyj 1 c2 is in positive form if and only if

@1 # j # k;bj 5 0, c2 5 0, and @1 # i , j # n;xi Þ xj .

Note that each linear inequality can be written in positive form, thus in
the form (i51

n aixi 1 c 0.

Definition 6.2 (Solved Inequality). A positive inequality (i51
n aixi 1

c f 0 is a solved inequality if and only if

@1 # i # n;ai $ 0 and c f 0.

Proposition 6.3. Let (i51
n aixi 1 c f 0 be a solved inequality. Then

@~N1 , · · · , Nn! [Nn;O
i51

n

aiNi 1 c f 0.

PROOF. Trivial. e

Solved inequalities are the keystone of the technique we propose for
generating appropriate symbol mappings. The idea is to rewrite each of the
conditions obtained in the previous section into a form closely resembling
the solved natural form. We then interpret the solved inequality definition
as a constraint on the symbol mapping. By doing so, we no longer need to
spend attention to the universally quantified variables, as Proposition 6.3
suggests.

First, we show how to (partially) characterize symbol mappings by means
of constraint sets. Based on this characterization, we propose a method to
rewrite the conditions of the previous section into a solved form.

Definition 6.4 (Constraint Set). A constraint set is a set of equations and
inequalities over the symbols in #.

Definition 6.5 (Solution of a Constraint Set). A symbol mapping s is a
solution of a constraint set S if and only if @E [S;s(E).

The above characterization of symbol mappings as solutions of a con-
straint set allows us to reformulate the condition in Proposition 5.14 as the
search for a convenient constraint set. The main idea of our method for
deriving constraint sets consists in transforming the initial symbolic in-
equality in such a way that the inequality becomes trivial to solve. Above,
we have seen that so-called solved inequalities are always satisfied. There-
fore, the transformation process is targeted at rewriting the condition in
Proposition 5.14 into a solved inequality. Considering the transformation

Constraint-Based Termination Analysis • 1159

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

itself, we use two main rules for rewriting. Although they look simple at
first sight, transforming with them allows us to impose valuable con-
straints on the symbol mapping. Furthermore, similar methods are neces-
sary to express the validity of symbol mappings in terms of constraint sets.

6.2 Constraint Generation

Reexamining the results obtained in Section 5, we observe that all condi-
tions set up from the validity condition or the symbolic rigid acceptability
take the following form:

sS @F I1 ` · · · ` Ik f O
i

aixi f O
j

bj yj 1 b0G D
where @ universally quantifies the formula between the square brackets.
Here, each Im is either an inequality of the form (cpxp $ (dqyq 1 c0, or
it is an equality it1is 5 it2is. The relation f stands for either $ (in the
case of a validity condition) or . (in the case of a symbolic rigid acceptabil-
ity condition). For validity conditions on facts of P, and for symbolic rigid
acceptability conditions for recursive clauses without intermediate body-
atoms, the left-hand side of the implication reduces to “true.” In the case of
permute, C3, C4, C5, and C6 are instances of this general form.

In order to reduce such conditions to constraints, we first rewrite them
into a normal form by grouping all subexpressions in f-inequalities to the
left-hand side of the f-sign and merging the coefficients of identical
variables, obtaining formulae

sS @F I91 ` · · · ` I9k f O
i51

n

eixi 1 c f 0G D
where all I9m are either of the form (j fjyj 1 c $ 0 or it1is 5 it2is. From
this point on, we will refer to such formulae as normal formulae.

Example 6.6. In the permute example, we get the following normalized
conditions, after substituting (C1) and (C2) to reduce the complexity:

~C93!s~@@true f ~d2
e •2 2 d3

e!t 2 d1
e x 1 ~d2

e •0 2 d0
e! $ 0!

~C94!s~@@d2
e t 2 d1

e x 2 d3
e t9 2 d0

e $ 0 f

d2
e •2t 2 d1

e x 2 d3
e •2t9 1 ~~d2

e 2 d3
e!•0 2 d0

e! $ 0])

~C95!s~@@true f d2~•2 2 1!t 1 d2•0 . 0#!

~C96!s~@@d2
e l 2 d1

e el 2 d3
e l1 2 d0

e $ 0 f p1l 2 p1l1 . 0#!

1160 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Since the universally quantified variables range over all natural num-
bers, the above conditions are guaranteed to hold whenever all coefficients
for these variables (occurring at the right-hand side of the implication) are
larger than or equal to zero. In addition, constant summands in strict
inequalities (e.g., d2•0 in C95) need to be strictly positive. We can then use
the following proposition to distillate constraints on the symbol mapping
involving the symbolic coefficients only.

PROPOSITION 6.7 (DERIVATION OF CONSTRAINTS). Let s(F) [s(@[I91 ` . . .
` I9k f (i eixi 1 c f 0]) be a formula normalized along the lines above.
Then

If s is a solution of the set $ei $ 0 u1 # i # n% ø $c f 0%

then s~F! holds.

PROOF. Immediate, since we can prove the stronger proposition that for
such a symbol mapping the formula s(@[true f (i eixi 1 c f 0]) holds.
Obviously, the right-hand-side formula becomes a solved formula for such
s, and since the universally quantified variables xi range over the natural
numbers, the claim is proved through Proposition 6.3. e

Example 6.8. Consider the condition C93. We get the following explicit
constraints on the symbol mapping:

5 d2
e •2 2 d3

e $ 0 ~c1!

d2
e •0 2 d0

e $ 0 ~c2!

2d1
e $ 0 ~c3!

From constraint c3 it becomes clear already that whenever the norm is
restricted to exclude the elements of a list (as imposed by the rigidity
conditions), then any further valid interargument relation is of the form

$~ x1 , x2 , x3! ud2
e x2 $ d3

e x3 1 d0
e%.

Applying the proposition on condition C95 generates the following con-
straints:

H d2~•2 2 1! $ 0 ~c4!

d2•0 . 0 ~c5!

Let us analyze constraint c5. It says that the only way to prove delete to be
terminating with respect to the previously fixed set of queries is to first
make the level mapping measure the second argument, which is no
surprise, as this is the only remaining argument after rigidity analysis,
and, secondly, to let the norm count the list constructor. Again, this is not a
surprise, as this is the only nontrivial functor in the program, and for a
reduction to appear somewhere, at least one functor must effectively be
weighted.

Constraint-Based Termination Analysis • 1161

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

In general, the constraint set derived above will be a too strong condition
on the symbol mapping. This is clear, since applying the rule on the initial
conditions does not account for success information (the valid interargu-
ment relations occurring in the definition of rigid acceptability), which is
explicitized through the left-hand side of the implication. In fact, if there
exists a symbol mapping satisfying the constraint sets derived in the above
way for all validity and rigid acceptability conditions, one can prove that
the program is terminating with respect to any possible selection rule. The
following example illustrates the above point.

Example 6.9. Consider the condition C96, for which the following set of
three constraints is generated:

5 p1 $ 0
2p1 $ 0
0 . 0

The first two constraints can be satisfied only by deriving the zero-mapping
to measure permute atoms. Moreover, the last constraint can never be
satisfied.

In the next section, it is explained how the success information captured
in the left-hand side can be exploited in the right-hand side to weaken the
derived constraints.

6.3 Rewrite Rules

The following propositions are defined on symbolic formulae and are of
extreme importance. They are called the substitution rule and the evalua-
tion rule. Although simple at first sight, they will allow us to introduce the
necessary success information available in the left-hand side of implica-
tions into the right-hand side.

PROPOSITION 6.10 (SUBSTITUTION RULE). Let s be any symbol mapping,
@[I1 ` . . . ` Ik f (i51

n eixi 1 c f 0] a symbolic formula which is
quantified over the variables in { x1, . . . , xn}, and Ip [(xj 5 F), for some
1 # p # k, 1 # j # n, and F of the form (l51

n blxl 1 d.
Then we have

s~@@I1 ` · · · ` Ik f ~O i51
n eixi 1 c!$ xj/F%#! f 0

iff

s~@@I1 ` · · · ` Ik f O i51
n eixi 1 c f 0#!.

PROOF. If ej [0, then the proof is trivial. Otherwise, the following holds:

sS @F I1 ` · · · ` Ik f O
i51

j21

eixi 1 O
i5j11

n

eixi 1 ejS O
l51

n

blxl 1 dD 1 c f 0G D

1162 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Now take any (N1, . . . , Nn) [Nn such that s((I1 ` . . . ` Ik){ x1/N1, . . . ,
xn/Nn}) holds. Then

sS O
i51

j21

eiNi 1 O
i5j11

n

eiNi 1 ejS O
l51

n

blNl 1 dD 1 c f 0D
holds. Because of s(Ip), we know that s(ej (l51

n blNl 1 d) 5 s(ejNj) or that
s((i51

j21 eiNi 1 (i5j11
n eiNi 1 ejNj 1 c f 0), which proves our claim.

The reverse is trivial because whenever s(@[I1 ` . . . ` Ik f (i51
n eixi 1

c f 0]) holds, it also holds for a weaker condition with xj 5 s(F). e

This proposition teaches us that we can safely substitute the information
of (certain) equality constraints of the left-hand side into the right-hand
side of the implication, without restricting the class of applicable symbol
mappings.

Example 6.11. To illustrate the information brought in by the rule,
consider the delete fact, written in normalized form, making the unification
explicit:

delete~u, v, w! 4 v 5 @u uw#

The validity condition, C3, would become

s~@;v 5 •0 1 •2w f d2
e v 2 d1

e u 2 d3
e w 2 d0

e $ 0!.

Deriving constraints at this point results in the system

5
d2

e $ 0
2d1

e $ 0
2d3

e $ 0
2d0

e $ 0

and thus characterizes the class {(x1, x2, x3) ud2
e x2 $ 0} as the only

remaining class of valid interargument relations for delete. Obviously, no
successful termination proof for permute can be based on such interargu-
ment relation, since the model designates all delete atoms. Applying the
substitution rule yields

s~@;v 5 •0 1 •2w f ~d2
e •2 2 d3

e!w 2 d1
e u 1 ~d2

e •0 2 d0
e! $ 0!.

Generating constraints along the lines above then gives

5 d2
e •2 2 d3

e $ 0
2d1

e $ 0
d2

e •0 2 d0
e $ 0

Constraint-Based Termination Analysis • 1163

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

which are the same as those we obtain from the original delete clause,
whose associated condition has a “true” left-hand side.

Let us restrict to boolean values for a moment. Only considering the
delete fact, we are already able to make the following conclusions. A valid
interargument relation for delete can only be one of the following possibil-
ities: either

$~ x1 , x2 , x3! ud2
e x2 $ 0%

with respect to any possible norm or

$~ x1 , x2 , x3! ud2
e x2 $ d3

e x3 1 c ` c [$0, 1%%

with respect to any norm i[thutt]i 5 itti 1 c, with c [{0, 1}.

The equality relation is not always of the form x 5 F but may in general
be of the form it1is 5 it2is. In such a case, we first reduce the unification to
solved form using Martelli and Montanari [1982]. Then the complex unifi-
cation can be replaced by the separate components of the solved form.

The second rewrite rule is the evaluation rule and applies to inequalities
of the left-hand side.

PROPOSITION 6.12 (EVALUATION RULE). Let s be any symbol mapping and
@[I1 ` . . . ` Ik f (i51

n eixi 1 c f 0] a symbolic formula which is
quantified over { x1, . . . , xn}. If s(@[I1 ` . . . ` Ik f (i51

n eixi 1 c f p]),
with p [N, then s(@[I1 ` . . . ` Ik f (i51

n eixi 1 c f 0]).

PROOF. Take any (N1, . . . , Nn) [Nn, and suppose s((I1 ` . . . `
Ik){ x1/N1, . . . , xn/Nn}) holds. Then we must prove s((i51

n eiNi 1 c f 0)
holds, which is trivial, as we know s((i51

n eiNi 1 c f p) holds and p is
positive. e

This rule will be applicable to implications involving at least one J $ 0
conjunct on the left-hand side:

s~@@I91 ` · · · ` J $ 0 ` · · · ` I9n f O
i

eixi f 0#!

Using the proposition, we can then safely move to the implication

s~@@I91 ` · · · ` J $ 0 ` · · · ` I9n f O
i

eixi 2 J f 0#!.

Example 6.13. In the example, we can apply the following reductions of
this type:

~C 04!s~@@d2
e t 2 d1

e x 2 d3
e t9 2 d0

e $ 0 f

d2
e~•2 2 1!t 1 d3

e~1 2 •2!t9 1 ~d2
e 2 d3

e!•0 $ 0])

1164 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

~C 06!s~@@d2
e l 2 d1

e el 2 d3
e l1 2 d0

e $ 0 f

~ p1 2 d2
e!l 1 ~d3

e 2 p1!l1 1 d1
e el 1 d0

e . 0])

Now, all necessary information is present in the right-hand side, and we
derive the following constraints on the symbol mapping:

~C 04!5 d2
e~•2 2 1! $ 0 ~c6!

d3
e~1 2 •2! $ 0 ~c7!

~d2
e 2 d3

e!•0 $ 0 ~c8!

~C 06!5
p1 2 d2

e $ 0 ~c9!

d3
e 2 p1 $ 0 ~c10!

d1
e $ 0 ~c11!

d0
e . 0 ~c12!

Let us examine the strength (in terms of completeness) of the evaluation
rule. At first sight, the rule seems pretty weak: mere subtraction of the
given equations. Here, we will argue that it gives a good, practical approx-
imation of a complete reduction rule.

We restrict this discussion to the case of the implications resulting from
the rigid acceptability condition. The ones resulting from the validity
conditions can be discussed in a very similar way.

Just to illustrate the issues, let us reduce the abstraction and complexity of
the general case by assuming that we are dealing with a clause of the form

p~ x! 4 q~ x, y!, r~ y, z!, p~ z!,

for which we aim to study the induced constraints:

@x, y, z;s~!s~q~ x, y!! ` s~!s~r~ y, z!! f si xi . si zi

By making some arbitrary, but reasonable assumptions on the input and
output arguments in such a rule, this might give rise to a general
constraint of the form

@x, y, z;q1
e z si xi $ q2

e z si yi 1 q0
e ` r1

e z si yi $ r2
e z si zi 1 r0

e f si xi . si zi.

A first important observation in this context is the following. Although the
evaluation rule seems to be used as a mere subtraction of the inequalities in
the left-hand sides from the right-hand sides of the implications (with the aim
of finding a trivial inequality), it actually looks for any positive linear combi-
nation of the inequalities in the left-hand sides that yield the right-hand side.

The reasons for this are the following:

—Every inequality in the left-hand side (e.g., q1
e z si xi $ q2

e z si yi 1 q0
e) is

equivalent with any positive multiple of itself (e.g., n.q1
e z si xi $ n z q2

e z

Constraint-Based Termination Analysis • 1165

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

si yi 1 n z q0
e); and, as the coefficients q1

e , q2
e , q0

e are still undetermined,
all such multiples are covered by the inequality.

—In Algorithm 6.14 (below), we will apply the evaluation rule to all
available left-hand-side inequalities.

Thus, we are actually trying to derive the inequality si xi . si zi as any
positive linear combination out of the given assumptions. Even stronger, it
is sufficient that the subtraction of a positive linear combination reduces
the inequality si xi . si zi to a positive inequality (e.g., something of the
form 2. si xi 1 si yi 1 3 $ 0). As the norms are all positive, the subtraction
is allowed to leave us with a positive linear combination of norms, which
remains positive.

This being said, it is not hard to verify, in the case of a single intermedi-
ate body atom, e.g., clauses of the form

p~ x! 4 q~ x, y!, p~ y!,

that the evaluation rule is complete. Inequalities (i51
n aii xii 1 a0 $ 0 can

geometrically be interpreted as parts of an n-dimensional space bounded by
an (n 2 1)-dimensional hyperspace, of which we are only interested in the
intersection with i x1i $ 0 ` . . . ` i xni $ 0. The implication constraint
resulting from the rigid acceptability condition corresponds to the require-
ment that one such space is a subspace of another. It is not hard to verify
that this only holds if their subtraction yields an inequality (i51

n pii xii 1
p0 $ 0, with pi $ 0, for all j;1, . . . , n.

In the case of more than one intermediate body atom, the evaluation rule
is not complete. Consider the following example.

Example 6.14 (Incompleteness of Evaluation Rule).

p~ x! 4 at_least_double~ x, y!,
sum_at_least_1~ y, x!, p~ y!.

at_least_double~ x, Nil! 4
at_least_double~@ x1 , x2ut#, @ y ut#! 4 at_least_double~t, s!.
sum_at_least_1~Nil, @ x ut#! 4
sum_at_least_1~@ y ut#, s! 4

The strongest interargument relations that hold for at_least_double and
sum_at_least_1 are x 2 2y $ 0, and x 1 y 2 1 $ 0, respectively. The
conjunction of x 2 2y $ 0 and x 1 y 2 1 $ 0 implies x . y. However,
subtracting positive linear combinations of these interargument relations
from x 2 y 2 1 $ 0 gives

~1 2 p 2 q! x 1 ~2p 2 q 2 1! y 1 ~q 2 1! $ 0, with p $ 0 and q $ 0.

1166 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

This reduces to a trivial inequality if

5 1 $ p 1 q
2p $ q 1 1
q $ 1

which is unsolvable over the natural numbers.

To conclude the discussion, the evaluation rule is incomplete in general,
but it is very useful in practice. For instance, for the benchmarks of Speirs
et al. [1997], collected by Lindenstrauss and Sagiv [1997], it never failed
(see Section 6). A complete reduction rule for deciding implications of
concrete inequalities exists (e.g., see Cousot and Halbwachs [1978] for
several key references). It is based on computing convex hulls. However,
our inequalities have symbolic coefficients, thereby moving the problem to
one dealing with quadratic inequalities. As far as we know, no general
method exists for this case.

We can now use the following algorithm for reducing complex symbolic
conditions as those obtained in the previous section into constraints. For
simplicity, we assume that all explicit unification occurring in the program
is of the form x 5 t, where x is a variable, thus giving rise to constraints of
the x 5 expression, although more complex forms of unification impose no
problems.

Algorithm 6.15 (Deriving Constraint Sets). Let 6 be a set of conditions
imposed by the validity condition and by the reduction part of the rigid
acceptability Proposition 4.1 for some logic program P. If each condition in
6 is in normal form, then the following algorithm Reduce returns a
constraint set.

Reduce(6):
Scon 4 À
while 6 Þ À Do
—Select any C [(I1 ` . . . ` In f J f0) [6

—6 4 6\{C}
—SC 4 {Iju1 # j # n}
—Rewriting Phase

while SC Þ À Do
—select I [SC

—SC 4 SC\{I}
—Rewrite C using one of the following rules.

if I is an equality
then
apply substitution

Constraint-Based Termination Analysis • 1167

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

C;@@I1 ` · · · ` In f J f 0# I ; ~ x 5 E!

C;@@I1 ` · · · ` In f J$ x/E% f 0#

else if I is an inequality
apply evaluation

C;@@I1 ` · · · ` In f J f 0# I ; ~P $ 0!

C;@@I1 ` · · · ` In f J 2 P f 0#

end if
Regroup all variables.

end while

—Constraint derivation phase
Let C [@[I1 ` . . . ` In f (i51

n eixi 1 c f 0] be the result of the
rewriting phase.

Scon 4 Scon ø {ei $ 0 u1 # i # n} ø {c f 0}

end while
return Scon

PROPOSITION 6.16. Let 6 be any set of normal symbolic formulae. If a
symbol mapping s is a solution of Reduce(6) then @C [6;s(C).

PROOF. First of all, notice that each rewrite step transforms a normal
formula into another normal formula.

Let C be any formula of 6. After each basic step of the rewriting phase,
we know at least that s(Cafter) f s(Cbefore): if we had rewritten using
substitution, then s(Cafter) N s(Cbefore) because of the substitution rule. If
we had rewritten using the evaluation rule, then s(Cafter) f s(Cbefore)
because of the evaluation rule.

Thus, after rewriting we can conclude that s(Cfinal) f s(Coriginal). Since
the constraint set is derived from Cfinal and s is a solution of that
constraint set, it follows that s(Coriginal) holds. e

6.4 Solving the Constraints

Solving systems such as {c1, . . . , c12} is rather simple by employing for
example, a finite domain solver or a boolean solver. In practice, in most of
the cases restricting to boolean values for the variables is sufficient. Then,
standard enumeration techniques can be applied. In the case of permute,
mapping to boolean values gives a correct solution. To clarify the discus-
sion, we repeat all constraints derived through the previous sections:

1168 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

5
d2

e •2 2 d3
e $ 0 ~c1!

d2
e •0 2 d0

e $ 0 ~c2!

2d1
e $ 0 ~c3!

d2~•2 2 1! $ 0 ~c4!

d2•0 . 0 ~c5!

d2
e~•2 2 1! $ 0 ~c6!

d3
e~1 2 •2! $ 0 ~c7!

~d2
e 2 d3

e!•0 $ 0 ~c8!

p1 2 d2
e $ 0 ~c9!

d3
e 2 p1 $ 0 ~c10!

d1
e $ 0 ~c11!

d0
e . 0 ~c12!

The following conclusions can be drawn immediately from individual
constraints: from c3;d1

e 5 0, from c5;d2 5 1, •0 5 1, and from c12;d0
e 5

1. Notice also that c11 is redundant. Next, using this information, c4
imposes •2 5 1. At this point, c6 and c7 become redundant. c2 then imposes
d2

e 5 1, making c1 and c8 redundant. From c9, we learn that we must take
p1 5 1, and c10 then requires d3

e 5 1. At this point, all inequalities are
satisfied by this mapping. If any inequalities would remain, an enumera-
tion on the remaining variables would have provided a solution. In our
case, any remaining variable can be freely mapped onto any value, but as
there are not any of them left, this is the only solution of the system.

The resulting norm, level mapping, and interargument relation are

i@t1ut2#i 5 1 1 it2i

upermute~t1 , t2! u 5 it1i

udelete~t1 , t2 , t3! u 5 it2i

Rdelete 5 $~ x1 , x2 , x3! ux2 $ x3 1 1%.

Sometimes, restricting to boolean values for all variables is not sufficient,
and other solution methods must be adopted. In such a case, the system can
be solved by restricting only part of the symbols to boolean values, e.g., like
restricting the values of the functors and level mappings to booleans. Then,
our system of constraints becomes linear and can be solved through a
simplex algorithm.

6.5 Rigidity Constraints

In the previous sections, we have described how to derive symbol mappings
that are valid and are suited for a termination proof as they satisfy the
condition imposed on each clause. Proposition 5.14 expresses one more

Constraint-Based Termination Analysis • 1169

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

condition on such symbol mappings: they must be rigid with respect to the
call set Call(P, S) for some initial set of queries S. For automation
purposes, it is convenient to express the initial set S as a pattern of
symbolic information. In such a way, infinite sets can be expressed. Several
formalisms have been proposed in the literature. One of the simplest is
modes. Modes distinguish between ground terms, uninstantiated terms,
and any possible term. As this is not part of the main focus of this article,
we only present the basics on modes. More detailed information can be
found in Mellish [1985] or Debray and Warren [1986], among others.

Definition 6.17 (Mode of a Predicate). Let P be a program and p/n a
predicate defined in P. A mode for p/n is a mapping mp;{1, . . . , n} 3 { g,
f, a}, where g, f, a are three constant symbols in a language different from
+P.

Frequently, the pattern p(mp(1), . . . , mp(n)) is used to denote a mode.
For termination analysis, modes are often used to specify the initial set of

atoms S. Frequently, this set is specified in terms of one top call mode
mp;where S is defined as the set of atoms with mode mp. For the sake of
termination, one must be able to derive the set of all possible calls
Call(P, S) from S. We refer to Bruynooghe [1991] and Debray [1989],
where mode-inferencing algorithms are proposed.

Finally, in order to ensure the rigidity property required in Proposition
5.14, it is straightforward to verify that the following constraints are
sufficient:

øp/n[PredP$ pi 5 0 ui [$1, · · · , n% ` mp~i! [$ f, a%%

Example 6.18. Consider the mode permute(g, f) denoting the set of all
permute atoms having a ground first argument and a variable on the
second argument position. If we apply a mode-inferencing algorithm, we
obtain the following modes:

permute~ g, f !

delete~ f, g, f !

The following constraints are derived:

$ p2 5 0, d1 5 0, d3 5 0%

A possible symbol mapping s satisfying the above constraint set defines the
following level mapping:

permute~t1 , t2! 5 sit1i

delete~t1 , t2 , t3! 5 sit2i

1170 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

For any possible norm si.i, this level mapping is rigid with respect to
Call(P, S), where S is the set of atoms denoted by permute(g, f).

Next, let us consider the case in which the call set is represented in the
form of types. Types extend the limited precision of modes by taking into
account functor information in addition to instantiation information. They
allow, for example, to distinguish between lists and other terms, which is
impossible by modes.

In the literature, several type formalisms have been proposed (e.g., see
Pfenning [1992]). In this article, we pick out one particular instance, called
rigid types, to illustrate the main ideas. We refer to Janssens and Bruy-
nooghe [1992] for a deeper study on rigid types and their properties. Other
formalisms can be used with minor changes only. In the following, we recall
the basic ideas, and we give an example.

There exist a number of primitive types (e.g., INT , REAL), which represent
subsets of the set of constants in the language. We denote the set of all
primitive types by 3, and we assume that there exists a function De-
note;3 3 2ConstP, mapping each primitive type to a corresponding set of
constants.

Rigid types are formally defined by means of type graphs, which are a
particular instance of directed graphs. We assume that the reader is
familiar with the basics of graph theory.

Definition 6.19 (Rigid Type Graph, Adapted from Janssens and Bruy-
nooghe [1992]). A rigid type graph T is a five-tuple, (Nodes, ForArcs,
BackArcs, Label, ArgPos), where

(1) Nodes is a finite, nonempty set of nodes,
(2) ForArcs # Nodes 3 Nodes such that (Nodes, ForArcs) is a tree,
(3) BackArcs # Nodes 3 Nodes such that for each arc (m, n) [BackArcs,

node n is an ancestor of node m in ForArcs,
(4) Label is a function Nodes 3 3 ø ConstP ø FunP ø {Max, OR}, and
(5) ArgPos is a function øk.0({m [NodesuLabel(m) 5 f/k [FunP} 3

{1, . . . , k}) 3 Nodes\{root}, such that for each m [Nodes, with
Label(m) 5 f/k, ArgPos(m, z): {1, . . . , k} 3 Nodes is a bijection from
{1, . . . , k} onto {n [Nodesu(m, n) [ForArcs ø BackArcs}.

Each node labeled with a function symbol with arity k has k immediate
descendants; each node labeled ORhas at least two immediate descendants;
and the other nodes have no descendants and are called terminal nodes.
For a functor node n, we use the shorthand n/i to denote the ArgPos(n, i).
Descendants of OR-nodes or functor-nodes are found using the Desc func-
tion.

Definition 6.20 (Desc Function). Desc;{n [NodesuLabel(n) [FunP ø
{OR}} 3 2Nodes;Desc(n) 5 {n9 u(n, n9) [ForArcs ø BackArcs}.

A rigid type graph T describes a (possibly infinite) set of finite terms.
This set of finite terms is found by means of the denotation function, D. The

Constraint-Based Termination Analysis • 1171

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

next couple of definitions were inspired by similar definitions in Mulkers
[1993].

Definition 6.21 (Adapted from Mulkers [1993, Definition 2.3.2]. Let T be
the function T;Nodes 3 2(Nodes3TermP) 3 2TermP:

if Label~n! [ConstP then T~n, I! 5 $Label~n!%

if Label~n! [3 then T~n, I! 5 Denote~Label~n!!

if Label~n! 5 Max then T~n, I! 5 TermP

if Label~n!5OR then T~n, I! 5 øn9[Desc~n!
$tu~n9, t! [I%

if Label~n!5f/k then T~n, I! 5 $ f~t1 , . . . , tk!uArgPos~n, i!
5 ni , ~ni , ti! [I%.

The set 2(Nodes3TermP) forms a complete lattice with respect to #, ù, and
ø. The bottom element is À, while Nodes 3 TermP is the top element.

Definition 6.22 (Adapted from Mulkers [1993]). Let TNodes be the func-
tion TNodes;2(Nodes3TermP) 3 2(Nodes3TermP): TNodes(I) 5 I ø {(n, t) un [
Nodes, t [T(n, I)}. Observe that TNodes is continuous.

Definition 6.23 (Denotation of a Node in a Type Graph). Let T 5
(Nodes,ForArcs,BackArcs,Label,ArgPos) be a rigid type graph. The denota-
tion of n [Nodes is defined as D(n) 5 {t u(n, t) [TNodes1v}.

Definition 6.24 (Denotation of a Rigid Type). Let T be a rigid type with
root nroot. Then D(T) 5 D(nroot).

Sometimes we use D(p(T1, . . . , Tn)) as an abbreviation for the set
{ p(t1, . . . , tn) u@1 # i # n;ti [D(Ti)}.

Example 6.25. Two examples of rigid types are presented in Figures 1
and 2. The denotation of Tlist comprises the set of all nil-terminated lists of
any terms. The type Tlla of Figure 2 comprises all nil-terminated lists of
nil-terminated lists of any terms. The first type could be used, for example,
in the permute program to specify the set of queries of interest: permu-
te(Tlist, Max). The pattern abstracts the set of all permute atoms having a
list of any terms on the first argument position and any term on the second

Fig. 1. Tlist, type graph representing lists of terms.

1172 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

one. The complete call set Call(permute,D(permute(Tlist, Max))) is then
safely approximated by the denotation of the patterns permute(Tlist, Max)
and delete(Max, Tlist, Max).

In the remainder of this subsection, our interest is in deriving constraints
when the call set is provided under the form of such type information.
Decorte et al. [1993] proposed a method to automatically infer a norm from
such type graphs. The main achievement there, which has practical value
for the constraint generation that will come next, is that the derived norm
i.iT is rigid on the set of terms D(T). We slightly reformulate the main
result of the paper to the symbol-mapping context.

Definition 6.26 (Critical Path). Let T 5 (Nodes, ForArcs, BackArcs,
Label, ArgPos) be a rigid type. A critical path in T is a path from the root
node to a node labeled Max.

PROPOSITION 6.27 (ADAPTED FROM DECORTE ET AL. [1993, PROP. 3.4]. Let
T 5 (Nodes, ForArcs, BackArcs, Label, ArgPos) be a rigid type whose
functors occur in FunP, and let s be a symbol mapping. If on each critical
path P of T there exists an arc (n1, n2), with Label(n1) 5 f/k and
ArgPos(n1, i) 5 n2 such that s(fi) 5 0, then si.i is rigid with respect to
D(T).

Informally, the proposition states that on each path to a Max node, there
should occur (at least) one functor node for which the norm does not
measure arguments according to the next node on the path, i.e., the norm
never manages to measure terms corresponding to Max arguments.

This proposition forms the basis for the following algorithm. It assumes
the call set Call(P, S) abstracted by one separate call-type pattern per
predicate:

Call~P, S! 5 øp/n[PredPD~ p~T1
p , · · · , Tn

p!!.

Fig. 2. Lists of lists of finite length.

Constraint-Based Termination Analysis • 1173

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

The algorithm RigCon(Spat) takes any set of rigid type patterns and
returns a set of rigidity constraints. In the algorithm, we denote the set of
all critical paths in a type graph T by Critic(T).

Algorithm 6.28 (Generation of Rigidity Constraints from Types).

RigCon(Spat):

Initialization
Scon 4 À
Constraint generation
while Spat Þ À
do

—select a type pattern p(T1, . . . , Tm) [Spat

—Spat 4 Spat\{ p(T1, . . . , Tm)}
—Scon 4 Scon øk51

m { pk 5 0 uTk 5 Max}
—Scon 4 Scon øk51

n {øPath[Critic(Tk){ pk) f[FA(Path) f 5 0}} where FA(Path)
stands for the set { fiuthere is an arc (n1, n2) in Path, with Label(n1) 5
f/k and ArgPos(n1, i) 5 n2}

end do
return Scon

Example 6.29 (Delete). Consider the following calls to delete: delete-
(Max, Tlla, Max), where Tlla is the type of Figure 2. For the two types with
label Max, we get d1 5 d3 5 0. The type graph for the second argument
contains one critical path CP 5 (n1, n3, n4, n6, n7), where we have
numbered all nodes in a breadth-first, left-right way. Then, FA(CP) 5 {•1}
(both the nodes n3 and n6 are responsible for introducing •1 in FA(CP)).
As a result, a constraint d2•1 5 0 is obtained for the second argument
position.

PROPOSITION 6.30. Let Spat be any set of type patterns for predicates in a
program P, and let s be a symbol mapping on P. If s is a solution of
RigCon(Spat), then s is rigid on D(Spat).

PROOF. Take any p(T1, . . . , Tm) [Spat. Then su. u has to be rigid on
D(p(T1, . . . , Tm)). Now, @1 # i # m;if pi Þ 0, then we must prove that
si.i is rigid with respect to D(Ti).

Consider now Ti. For any of its nodes n with Label(n) 5 Max and for any
critical path Path from nroot to n, we know that RigCon(Spat) contains a
constraint pif1

. . . fk, where each fi corresponds directly to one arc
(n1, n2) [Path with Label(n1) 5 f/k and ArgPos(n1, i) 5 n2.

Obviously, as pi Þ 0, there is an i such that s(fi) 5 0 (s is a solution of
RigCon(Spat)), or, in other words, on each forward path toward any Max
node, we can find an arc (n1, n2) with ArgPos(n1, i) 5 n2 and Label(n1) 5
f/k such that s(fi) 5 0. Then we can use Proposition 6.27 to infer that si.i
is rigid on D(Ti). e

1174 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Example 6.31 (Permute). Let us reconsider the permute example. We
are interested in the termination behavior of calls permute(Tlist, Max),
where Tlist denotes the type of lists of any terms. For ease of explanation,
let us name all nodes in that type graph in a breadth-first, left-to-right
fashion n1 till n4. The call set, specified by the patterns permute(Tlist, Max)
and delete(Max, Tlist, Max), can then be fed into the algorithm.

For delete, we derive the following constraints, one for each argument
position. The first and third argument positions may contain terms denoted
by the Max type. Thus, the following constraints are immediate: d1 5 0
and d3 5 0. In the call type Tlist for the second argument position, there is
the following critical path from the root (n1) to the Max node (n4):
{(n1, n3), (n3, n4)}. There is only one functor node (corresponding to the
list constructor) on this path. The constraint generated is d2•1 5 0.

A similar analysis for permute results in constraints p1•1 5 0 and p2 5
0.

7. EXAMPLES

7.1 Quicksort

~q1! quicksort~Nil, Nil! 4

~q2! quicksort~@h ut#, s! 4 partition~h, t, t1 , t2!,
quicksort~t1 , s1!,
quicksort~t2 , s2!,
append~s1 , @h us2#, s!.

~ p1! partition~el, Nil, Nil, Nil! 4
~ p2! partition~el, @v ut1#, @v ut2#, l ! 4 el # v,

partition~el, t1 , t2 , l !.
~ p3! partition~el, @v ut1#, l, @v ut2#! 4 el . v,

partition~el, t1 , l, t2!.
~a1! append~Nil, l, l ! 4
~a2! append~@h ut1#, l, @h ut2#! 4 append~t1 , l, t2!.

Let us investigate whether quicksort is terminating whenever a query
quicksort(t1, x), with t1 a ground term and x a free variable, is made.
Using mode information, we can represent this kind of query by quick-
sort(g, f). A safe approximation of the call set is then given by the call
modes quicksort(g, f), partition(g, g, f, f), and append(g, g, f).

We can start the analysis by performing a rigidity analysis. We obtain
the set of constraints

$q2 5 0, p3 5 0, p4 5 0, a3 5 0%,

where symbols as quicksorti are abbreviated by qi.

Constraint-Based Termination Analysis • 1175

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

In a second step, we address the rigid acceptability condition. Let us for a
moment assume that partition is known to be terminating with respect to
partition(g, g, f, f), and assume that append terminates with respect to
append(g, g, f) (which is not difficult to verify), so that we can concentrate
on the termination of quicksort itself.

Given the above call set, the set Ipartition is fixed as {1, 2} and Jpartition as
{3, 4}.

We can then apply the rigid acceptability condition with respect to the
first recursive call to quicksort in (q1), and after normalizing, we obtain

~Q1!;s~@@ p1
e h 1 p2

e t 2 p3
e t1 2 p4

e t2 2 p0
e $ 0 f

q1•0 1 q1•1h 1 q1•2t 1 q2s 2 q1t1 2 q2s1 . 0#!.

For the second recursive call, we obtain the following condition:

s~@@~ p1
e h 1 p2

e t 2 p3
e t1 2 p4

e t2 2 p0
e $ 0! ` ~q1

e t1 2 q2
e s1 2 q0

e $ 0! f

q1•0 1 q1•1h 1 q1•2t 1 q2s 2 q1t2 2 q2s2 . 0#!.

To simplify the discussion, we remove the second condition on the
left-hand side. Keeping this condition would additionally involve deriving
an interargument relation for quicksort and one for append. The reader can
verify that this will have no influence on the eventual solution. Our
condition then becomes

~Q2!;s~@@~ p1
e h 1 p2

e t 2 p3
e t1 2 p4

e t2 2 p0
e $ 0! f

q1•0 1 q1•1h 1 q1•2t 1 q2s 2 q1t2 2 q2s2 . 0#!

Let us now consider that the validity constraints hold for the partition
predicate. For each of the three clauses (p1), (p2), and (p3), a correspond-
ing validity condition must hold. After normalizing, they are

~P1!; s~@@true f p1
e el 2 p0

e $ 0#!

~P2!; s~@@ p1
e el 1 p2

e t1 2 p3
e t2 2 p4

e l 2 p0
e $ 0 f

p1
e el 1 p2

e~•0 1 •1v 1 •2t1! 2 p3
e ~•0 1 •1v 1 •2t2! 2 p4

e l 2 p0
e $ 0#!

~P3!; s~@@p1
e el 1 p2

e t1 2 p3
e l 2 p4

e t2 2 p0
e $ 0 f

p1
e el 1 p2

e ~•0 1 •1v 1 •2t1! 2 p3
e l 2 p4

e ~•0 1 •1v 1 •2t2! 2 p0
e $ 0#!.

Any symbol mapping s satisfying these five conditions (Q1), (Q2), (P1),
(P2), and (P3) and which is rigid with respect to the proposed call set
guarantees the termination of quicksort for that call set. To ease the
verification of the existence of such s, we rewrite these conditions into a
system of constraints.

As stated before, to enforce rigidity on the call set, we have the following
system of constraints:

1176 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

~C0!5
q2 5 0
p3 5 0
p4 5 0
a3 5 0

The next step is to rewrite the validity and rigid acceptability conditions.
This is done using algorithm 6.15. Consider (Q1), which after performing
one evaluation step reduces the right-hand side to the following more
suitable condition:

~q1•1 2 p1
e!h 1 ~q1•2 2 p2

e!t 1 ~ p3
e 2 q1!t1 1 q2s

1 p4
e t2 2 q2s1 1 q1•0 1 p0

e . 0

This condition translates into the following system of constraints:

~C1!5
q1•1 2 p1

e $ 0
q1•2 2 p2

e $ 0
p3

e 2 q1 $ 0
q2 $ 0
p4

e $ 0
2q2 $ 0
q1•0 1 p0

e . 0

Remark the expressivity of the last constraint. It says, that, for a valid
termination proof, a reduction can only come from two sources: either data
are consumed through the intermediate call to partition, or the reduction
must happen through the first argument of quicksort in combination with a
norm counting (at least) list constructors.

For (Q2), we can rewrite the right-hand side of the implication in a
similar way, leading to

~q1
e •1 2 p1

e!h 1 ~q1•2 2 p2
e!t 1 ~ p4

e 2 q1!t2

1 q2s 1 p3
e t1 2 q2s2 1 q1•0 1 p0

e . 0

from which condition we obtain the following constraints:

~C2!5
q1

e •1 2 p1
e $ 0

q1•2 2 p2
e $ 0

p4
e 2 q1 $ 0

q2 $ 0
p3

e $ 0
2q2 $ 0
q1•0 1 p0

e . 0

Constraint-Based Termination Analysis • 1177

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

From validity condition (P1), we immediately generate the following con-
straints:

~C3!H p1
e $ 0

2p0
e $ 0

After we apply one application of the evaluation rule, the right-hand side of
condition (P2) becomes

~ p2
e 2 p3

e!•1v 1 ~•2 2 1! p2
et1 1 ~1 2 •2! p3

et2 1 ~ p2
e 2 p3

e!•0 $ 0.

The following system of constraints is derived:

~C4!5
~ p2

e 2 p3
e!•1 $ 0

~•2 2 1! p2
e $ 0

~1 2 •2! p3
e $ 0

~ p2
e 2 p3

e!•0 $ 0

Finally, one evaluation step on (P3) results in

~ p2
e 2 p4

e!•1v 1 ~•2 2 1! p2
et1 1 ~1 2 •2! p4

et2 1 ~ p2
e 2 p4

e!•0 $ 0

translating into the following four constraints:

~C5!5
~ p2

e 2 p4
e!•1 $ 0

~•2 2 1! p2
e $ 0

~1 2 •2! p4
e $ 0

~ p2
e 2 p4

e!•0 $ 0

After removing all duplicate constraints and deleting redundant con-
straints like q2 $ 0, we obtain the following system:

5
q1•1 2 p1

e $ 0 ~c1!

q1•2 2 p2
e $ 0 ~c2!

p3
e 2 q1 $ 0 ~c3!

q1•0 1 p0
e . 0 ~c4!

2q2 $ 0 ~c5!

p4
e 2 q1 $ 0 ~c6!

2p0
e $ 0 ~c7!

~ p2
e 2 p3

e!•1 $ 0 ~c8!

~1 2 •2! p3
e $ 0 ~c9!

~ p2
e 2 p3

e!•0 $ 0 ~c10!

~ p2
e 2 p4

e!•1 $ 0 ~c11!

~•2 2 1! p2
e $ 0 ~c12!

~1 2 •2! p4
e $ 0 ~c13!

~ p2
e 2 p4

e!•0 $ 0 ~c14!

1178 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

c5 forces us to take s(q2) 5 0, and because of c7 we fix s(p0
e) 5 0. If we

restrict to boolean values, then c4 imposes that s(q1) 5 1 and s(•0) 5 1.
Then, from c6, (p4

e) 5 1, and from c3, we have s(p3
e) 5 1. Next, c10 and c14

are immediate, and they result in s(p2
e) 5 1. From c2 we derive that

s(•2) 5 1. Finally, c8, c11, c9, c12, and c13 are satisfied by this assign-
ment. Only constraint c1 remains: •1 2 p1

e $ 0. Our conclusion is, that, if
c1 is solvable, then quicksort is terminating with respect to our proposed
set of queries. Moreover, the level mapping has the following general form:

uquicksort~t1 , t2! u 5 it1i

i@t1ut2#i 5 1 1 s~•1!it1i 1 it2i

Rpartition 5 $~ x1 , x2 , x3 , x4! us~ p1
e! x1 1 x2 $ x3 1 x4%

Constraint c1 has three different solutions, each of them corresponding to
a different termination proof:

—s(•1) 5 1: The norm is the term-size norm, and the interargument
relation for partition can be either {(x1, x2, x3, x4) ux1 1 x2 $ x3 1 x4} or
{(x1, x2, x3, x4) ux2 $ x3 1 x4}.

—s(•1) 5 0: Termination can be proved using the list-length norm and the
interargument relation {(x1, x2, x3, x4) ux2 $ x3 1 x4}.

7.2 Reverse with Accumulating Parameter

Reconsider the reverse program using an accumulating parameter:

reverse~l, lr! 4 revacc~l, lr , Nil!
revacc~Nil, l, l ! 4
revacc~@el ut#, r, a! 4 revacc~t, r, @el ua#!

Let S be all queries to reverse with a nil-terminated list in their first
argument: reverse(Tlist, Max). We can then abstract the corresponding call
set by type patterns reverse(Tlist, Max) and revacc(Tlist, Max, Tlist).

Applying the rigidity conditions of Algorithm 6.28 on these patterns
produces the following constraints:

5
r2 5 0 ~c1!

ra2 5 0 ~c2!

r1•1 5 0 ~c3!

ra1•1 5 0 ~c4!

ra3•1 5 0 ~c5!

where we abbreviate reverse by r and revacc by ra.
If we set up the rigid acceptability condition, we obtain the following

(normalized) formula to be satisfied:

Constraint-Based Termination Analysis • 1179

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

s~@@true f ~ra1 2 ra3!•1el 1 ~•2 2 1!ra1t 1 ~1 2 •2!ra3a

1 ~ra1 2 ra3!•0 . 0#!

The following additional constraints are generated:

5
~ra1 2 ra3!•1 $ 0 ~c6!

~•2 2 1!ra1 $ 0 ~c7!

~1 2 •2!ra3 $ 0 ~c8!

~ra1 2 ra3!•0 . 0 ~c9!

Let us again restrict to boolean values for all symbols. From constraint c9,
we are forced to take s(•0) 5 1, and the remainder of the constraint ra1 2
ra3 . 0 enforces that s(ra1) 5 1 and s(ra3) 5 0. Now, by c3, we get •1 5
0. Then, from constraint c7, we must fix s(•2) 5 1. With this mapping, all
constraints are satisfied.

Concluding, we say that termination can be proved using the list-length
norm, and the level mapping is fixed to

urevacc~t1 , t2 , t3! u 5 it1i l .

Note if we had started the analysis from a mode pattern reverse(g, a)
instead, then the constraints c3, c4, and c5 would not have been generated,
and no value for s would have been fixed on •1. In that case, both the
term-size and the list-length norms allow us to prove termination.

7.3 Reverse with Encapsulated Accumulating Parameter

reverse~l, lr! 4 revacc~@Nil ul#, lr!

revacc~@l#, l ! 4
revacc~@a, el ut#, r! 4 revacc~@@el ua# ut#, r!

Let the set of queries to reverse be the same as in the previous example.
Then the call set can be abstracted through reverse(Tlist, Max) and
revacc(Tlist, Max).

From a rigidity analysis, Algorithm 6.28 gives the following constraints:

5
r2 5 0 ~c1!

ra2 5 0 ~c2!

r1•1 5 0 ~c3!

ra1•1 5 0 ~c4!

The rigid acceptability condition on revacc now is the following (after
normalizing and cleaning up):

~1 2 •2!ra1•1a 1 ~•2 2 •1!ra1•1el 1 ~•2 2 1!ra1•2t 1 ~•2 2 •1!ra1•0 . 0

1180 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

The following constraints are derived:

5
~1 2 •2!ra1•1 $ 0 ~c5!

~•2 2 •1!ra1•1 $ 0 ~c6!

~•2 2 1!ra1•2 $ 0 ~c7!

~•2 2 •1!ra1•0 . 0 ~c8!

Due to constraint c8, the symbol mapping must be fixed as s(ra1) 5 1
and s(•0) 5 1, and from the remaining part •2 2 •1 . 0, s must be defined
as follows: s(•2) 5 1, s(•1) 5 0. Such a symbol mapping satisfies all
constraints:

We can thus prove termination with

urevacc~t1 , t2! u 5 it1i l .

In this example, by moving again to the case of ground input, rever-
se(g, a), no additional proof (e.g., using term-size) is found.

7.4 Normalizing Expressions

Consider the following program normal/2, which rewrites expressions built
up of some associative operator op into a normalized form:

~n1! normal~ f, f ! 4
~n2! normal~ f, n! 4 rewrite~ f, f1!, !

normal~ f1 , n!

~r1! rewrite~op~op~a, b!, c!, op~a, op~b, c!!! 4 !
~r1! rewrite~op~a, op~b, c!!, op~a, l !! 4 rewrite~op~b, c!, l !

Notice that the program is not a pure logic program, because of the cut
operator !, whose operational behavior is to remove part of the SLD-tree. In
our analysis, we will investigate finiteness of the complete SLD-tree,
which, if satisfied, implies in a trivial way the same conclusion for any part
of it.

Let us use the program to derive normal forms for expressions, thus
querying it along the mode normal(g, f). This entails calls to rewrite from
D(rewrite(g, f)).

The usual first step in the analysis handles rigidity. The following
constraints are obtained from the modes:

H n2 5 0
r2 5 0

Next, we set up the rigid acceptability conditions on normal and rewrite,
which, after normalizing, boil down to

~N1!;s~@@r1
e f 2 r2

e f1 2 r0
e $ 0 f n1f 2 n1f1 . 0#!

Constraint-Based Termination Analysis • 1181

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

for the recursive normal clause, and for the rewrite clause, we obtain

~R1
t !;s~@@true

f r1~o0 1 o1a 1 o2o0 1 o2o1b 1 o2o2c! 2 r1~o0 1 o1b 1 o2c! . 0!#).

As the first condition postulates an interargument relation for rewrite,
we have to ensure its validity. Two conditions, corresponding to each
defining clause, pop up:

~R1!;s~@@true f r1
e~o0 1 o0o1 1 o1o1a 1 o1o2b! 1 o2c 2 r2

e~o0 1 o1a 1 o2o0

1 o2o1bo2o2c! 2 r0
e $ 0#!

~R2!;s~@@r1
e~o0 1 o1b 1 o2c! 2 r2

e l 2 r0
e $ 0 f r1

e~o0 1 o1a 1 o2o0 1 o2o1b

1 o2o2c! 2 r2
e~o0 1 o1a 1 o2l ! 2 r0

e $ 0#!

The next step is to rewrite the conditions into explicit constraints. (N1)
needs one evaluation step, and this results in the following right-hand-side
formula:

~n1 2 r1
e! f 1 ~r1

e 2 n1! f1 1 r0
e . 0

from which we obtain the following system of constraints:

5 n1 2 r1
e $ 0

r1
e 2 n1 $ 0

r0
e . 0

No evaluation nor substitution steps apply to R1
t and R1, and after

rewriting them in a more suitable form, we obtain

s~@@true f r1o1a 1 ~o2 2 1!r1o1b 1 ~o2 2 1!r1o2c 1 r1o2o0 . 0#!

s~@@true f ~r1
e o1 2 r2

e!o1a 1 ~r1
e 2 r2

e!o1o2b 1 ~1 2 r2
e o2!o2c 1 ~1

1 o1!r1
e o0 2 ~1 1 o2!r2

e o0 2 ro
e $ 0#!

These conditions are translated into the following constraints, for R1
t :

5
r1o1 $ 0
~o2 2 1!r1o1 $ 0
~o2 2 1!r1o2 $ 0
r1o2o0 . 0

1182 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

and for R1 into the system

5
~r1

e o1 2 r2
e!o1 $ 0

~r1
e 2 r2

e!o1o2 $ 0
~1 2 r2

e o2!o2c $ 0
~1 1 o1!r1

e o0 2 ~1 1 o2!r2
e o0 2 ro

e $ 0.

Finally, we rewrite the right-hand side of R2 using evaluation with its
left-hand side into the following formula:

~r2
e 2 r1

e!o1a 1 ~1 2 o2!r1
e o1b 1 ~1 2 o2!r1

e o2c 1 ~o2 2 1!r2
e l

1 ~r2
e 2 r1

e 02!o0 $ 0

from which we derive following constraints:

5
~r2

e 2 r1
e!o1 $ 0

~1 2 o2!r1
e o1 $ 0

~1 2 o2!r1
e o2 $ 0

~o2 2 1!r2
e $ 0

~r2
e 2 r1

e 02!o0 $ 0

Consider the strict inequality constraints r0
e . 0 and r1o2o0 . 0. They

impose the following conditions on s: s(r0
e) 5 1, s(r1) 5 1, s(o2) 5 1, and

s(o0) 5 1. After reflecting these fixes into the remaining constraints, and
removing duplicate and redundant constraints, we are left with the follow-
ing system:

5
n1 2 r1

e $ 0 ~c1!

r1
e 2 n1 $ 0 ~c2!

~r1
e o1 2 r2

e!o1 $ 0 ~c3!

~r1
e 2 r2

e!o1 $ 0 ~c4!

~1 1 o1!r1
e 2 2r2

e 2 1 $ 0 ~c5!

~r2
e 2 r1

e!o1 $ 0 ~c6!

r2
e 2 r1

e $ 0 ~c7!

At this point, no further reductions can be made. Instead, we must
iterate over the values of the remaining symbols. Let us select the symbol
n1 to iterate over. This is a good choice, as it is the only nonfixed symbol for
the level coefficients for normalize, and its other coefficients are fixed to 0.
The obvious assignment to make is s(n1) 5 1. (Starting with s(n1) 5 0
immediately leads to the unsolvable (over the booleans) system 22r2

e $ 1.)
(c2) then implies s(r1

e) 5 1, and because of (c4), we must take s(r2
e) 5 1.

We end up with one more constraint, from (c5): o1 2 2 $ 0.

Constraint-Based Termination Analysis • 1183

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

This constraint is not solvable over the boolean values, and the conclu-
sion is that we are unable to prove termination when mapping all coeffi-
cients to boolean values.

The obvious solution is to map the functor coefficients to the natural
numbers. In that case, the final constraint becomes solvable, and a possible
mapping could be s(o1) 5 2.

As a conclusion, we can prove termination for normal/2 using the
following level mapping, norm, and interargument relation:

unormal~t1 , t2! u 5 it1i

urewrite~t1 , t2! u 5 it1i

iop~t1 , t2!i 5 1 1 2it1i 1 it2i

Rrewrite 5 $~ x1 , x2! ux1 $ x2 1 1%

8. EXPERIMENTAL EVALUATION

We have implemented a prototype of the technique. Currently it consists of
two different parts. The core of the system, which derives the constraint
set, has been coded in Prolog by BIM, version 4.1.0. For the second part,
which concentrates on the constraint solving, we have built on the finite-
domain CLP-language ROPE [Vandecasteele and De Schreye 1994], which
is written in Mercury.

As in Speirs et al. [1997], we have tested the performance of the system
on three well-known test suites (collected by Lindenstrauss and Sagiv
[1997]). Tables I–III show our results on each of the three test suites. The
first two columns specify the program within the test suite and how it was
queried. In the next column, we display the timings obtained from the
mentioned prototype. The next two columns display the timings obtained
from respectively the approaches in Lindenstrauss and Sagiv [1997] and
Speirs et al. [1997]. The results of Speirs et al. [1997] were obtained after
transforming the programs to Mercury. Both2 sets of timings emerge from

2A third system, proposed in Codish and Taboch [1997], provides similar success and timing
behavior as Lindenstraus and Sagiv [1997], on several example programs. As the authors did
not yet provide success/timing results for the benchmarks, we have left the system out of the
comparison.

Table I. Results on the Examples in De Schreye and Decorte [1994]

Program Query Us LS SSS Suc Term

permute (g,f) 0.08 0.69 0.04 111 1
duplicate (g,f) 0.03 0.08 0.02 111 1
sum (g,g,f) 0.03 0.35 0.01 111 1
merge (g,g,f) 0.06 2.06 0.03 111 1
reverse (g,f,g) 0.04 0.17 0.04 111 1
dis-con (g) 0.18 0.34 0.02 111 1

1184 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

the respective papers. The next column displays success or failure for each
respective system: it contains a plus symbol if the system succeeds in
proving termination and a minus symbol if it failed to do so. In the final

Table II. Results on the Apt Test suite [Apt and Pedreschi 1994]

Program Query Us LS SSS Suc Term

append (g,g,f) 0.03 0.17 0.03 111 1
append (f,f,g) 0.04 0.36 0.04 111 1
list (g) 0.02 0.06 0.03 111 1
fold (g,g,f) 0.04 0.29 0.03 111 1
lte none 0.03 0.14 0.04 111 1
map (g,f) 0.04 0.15 0.04 111 1
member (f,g) 0.02 0.09 0.01 111 1
mergesort (g,f) 0.27 36.0 0.04 222 1
mergesort_ap (g,f,f) 0.34 27.96 0.07 111 1
naive_rev (g,f) 0.04 0.32 0.02 111 1
ordered (g) 0.03 0.21 0.02 111 1
overlap (g,g) 0.05 0.23 0.03 111 1
permutation (g,f) 0.13 1.39 0.07 111 1
quicksort (g,f) 0.28 129.48 0.05 111 1
select (f,g,f) 0.03 0.14 0.01 111 1
subset (g,g) 0.05 0.33 0.06 111 1
subset (f,g) 0.07 0.33 0.06 222 2
sum (f,f,g) 0.02 0.12 0.02 111 1

Table III. Results on the Plümer Test Suite [Plümer 1990]

Program Query Us LS SSS Suc Term

mergesort.t mergesort(g,f) 0.43 0.43 0.06 212 1
pl1.1 append(g,g,f) 0.03 0.14 0.03 111 1
pl1.1 append(f,f,g) 0.03 0.11 0.03 111 1
pl1.2 perm(g,f) 0.16 1.05 0.08 121 1
pl2.3.1 p(g,f) 0.04 0.01 0.03 222 2
pl3.5.6 p(f) 0.06 0.01 0.04 222 2
pl3.5.6a p(f) 0.05 0.06 0.05 112 1*
pl4.01 append3(g,g,g,f) 0.05 0.26 0.07 111 1
pl4.4.3 merge(g,g,f) 0.08 1.99 0.04 111 1
pl4.4.6a perm(g,f) 0.09 0.31 0.06 111 1
pl4.5.2 s(g,f) 0.03 0.03 0.03 222 2
pl4.5.3a p(g) 0.03 0.00 0.04 222 2*
pl5.2.2 turing(g,g,g,f) 0.09 4.26 0.07 222 2
pl6.1.1 qsort(g,f) 0.13 131.18 0.07 111 1
pl7.2.9 mult(g,g,f) 0.08 0.43 0.03 111 1
pl7.6.2a reach(g,g,g) 0.10 0.05 0.03 222 2
pl7.6.2b reach(g,g,g,g) 0.14 0.25 0.18 222 2
pl7.6.2c reach(g,g,g,g) 0.11 28.23 0.03 111 1
pl8.2.1 mergesort(g,f) 0.29 35.82 0.06 222 1
pl8.2.1a mergesort(g,f) 0.31 26.52 0.06 111 1
pl8.3.1 minsort(g,f) 0.24 2.90 0.04 222 1
pl8.3.1a minsort(g,f) 0.20 5.72 0.06 111 1
pl8.4.1 even(g)/odd(g) 0.02 0.22 0.03 111 1
pl8.4.2 e(g,f) 0.44 4.64 0.18 111 1

Constraint-Based Termination Analysis • 1185

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

column, we specified whether the program is indeed terminating for the
considered queries. Again, plus means terminating, and minus means that
there exist queries among the ones considered for which the program gets
into an infinite computation. Note, that, in some cases, the transformation
to Mercury changes the termination properties of the program. Our conven-
tions in such cases for expressing this in the tables is that we place either
1* or 2* in the final column. Here, 1* (resp., 2*) should be read as 1
(resp., 2) for the columns for our own prototype and the one of Linden-
strauss and Sagiv [1997], but read as 2 (resp., 1) for the column of Speirs
et al. [1997].

Let us first discuss the precision of the approach. Of all terminating test
suites, there were only four programs for which the system failed to prove
termination with respect to the considered queries: mergesort of Table II
and minsort and two versions of mergesort of Table III. In each case we fail
because the interargument relation derived is too general for the specific
case. Consider for example the mergesort program with the call pattern
mergesort(g, f):

mergesort~Nil, Nil! 4
mergesort~@e#, @e#! 4

mergesort~@e, f uu#, v! 4 split~@e, f uu#, w, y!,
mergesort~w, x!, mergesort~ y, z!,
merge~ x, z, v!.

merge~ x, Nil, x! 4
merge~Nil, x, x! 4

merge~@a ux#, @b uy#, @a uz#! 4 a # b,
merge~ x, @b uy#, z!.

merge~@a ux#, @b uy#, @b uz#! 4 a . b,
merge~@a ux#, y, z!.

split~Nil, Nil, Nil! 4
split~@e uu#, @e uv#, w! 4 split~u, w, v!.

Whereas the split predicate is never called with its arguments being empty
lists, this can not be detected by the system, which derives the following
relation:

$~ x1 , x2 , x3! ux1 $ x2 1 x3%

To prove termination, the relation should express (for the first recursive
call) that x1 . x2, as the partial data in the atom split([e, f uu], w, y)
prevents it from matching with split(Nil, Nil, Nil). The other systems
cannot deal with these examples either, with the exception of Linden-
strauss and Sagiv [1997] on mergesort.t of Table III. Most likely this is
achieved through a better propagation of call information into the interar-
gument derivation. On the other hand, Lindenstrauss and Sagiv [1997] fail

1186 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

on the perm example of Table III, for which the two other systems are
successful. On the whole, for these benchmarks, the precision of the three
systems seems very comparable.

Note though that some examples of De Schreye and Decorte [1994] were
not included in the benchmark of Lindenstrauss and Sagiv [1997]. Consider
the confused delete program:

conf~ x! 4 delete2~ x, z!, delete~u, y, z!, conf~ y!

delete2~ x, y! 4 delete~u, x, z!, delete~v, z, y!

Dealing with this program requires linear interargument relations of the
type x 5 y 1 2 (for delete2) and y 5 z 1 1 (for delete). Only our system is
precise enough to generate them.

Other issues in enhanced precision relate to our ability to (automatically)
consider any norm or level mapping of the given forms. In Lindenstrauss
and Sagiv [1997] and Speirs et al. [1997], the norm is given as input to the
systems. Below we discuss cases in which more refined norms are useful.
To use them in the systems of Lindenstrauss and Sagiv [1997] or Speirs et
al. [1997], one would either need to backtrack over different proof attempts
(which would be extremely inefficient) or be very demanding on the
creativity of the user. In our system, as opposed to Lindenstrauss and
Sagiv [1997] and Speirs et al. [1997], the only input consists of the query
pattern. We return to this discussion in Section 9.

Next, we evaluate the efficiency. All tests have been performed on similar
machines. In the case of Lindenstrauss and Sagiv [1997], the machine was
a SPARCstation 10 model 51 clone. Both the results from Speirs et al.
[1997] and ours were obtained on a SPARCserver 1000. We deliberately did
our experiments on this fairly old machine in order to make the comparison
with the two other systems feasible. The SPECint92 ratings for these two
machines are respectively 65.2 and 60.3, which are quite comparable.

Overall, Speirs et al. [1997] tends to be the fastest system, ours being
somewhat slower and the one of Lindenstrauss and Sagiv [1997] the
slowest. On most of the very small examples in the benchmark (those in
Table I and most of those in Table II) our timings range between being
equal to, to being at most double of the ones of Speirs et al. [1997]. On the
somewhat larger examples, including most of the sorting examples, Speirs
et al. [1997] tends to be up to five times faster than we. In these cases, note
that Lindenstrauss and Sagiv [1997] can sometimes be 500 or more times
slower than Speirs et al. [1997].

In evaluation of these differences, it should be noted that the work in
Speirs et al. [1997] was not aimed at developing a novel approach to
termination analysis, but at providing a highly optimized implementation
of an existing termination analysis technique—optimizing some aspects of
that technique in the process—using the very efficient programming lan-
guage Mercury. Our own Prolog implementation is only prototypal. Provid-
ing an optimized implementation, in the style of Speirs et al. [1997], would
be a different research issue. Moreover, our system was designed to be able

Constraint-Based Termination Analysis • 1187

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

to cope with partially instantiated input, while Speirs et al. [1997] is for
well-moded programs only. As a result, our analysis includes a richer
component for combined mode-and-type analysis, which is likely to be
(partly) responsible for the increased performance gap between our results
and those of Speirs et al. [1997] for larger programs.

Note that our technique has been developed for directly recursive pro-
grams only. In order to deal with the mutually recursive programs in the
benchmarks (dis-con in Table I, mergesort.t, pl8.4.1, and pl8.4.2 in Table
III) we extended the system with a straightforward mutual-to-direct recur-
sion transformation. In the case of predicates with only one argument
position (dis-con and the even and odd of pl8.4.1), this transformation just
adds a predicate symbol on top of the original predicates. As an example,

even~0! 4
even~s~ x!! 4 odd~ x!

odd~s~ x!! 4 even~ x!

becomes

m~even~0!! 4
m~even~s~ x!!! 4 m~odd~ x!!

m~odd~s~ x!!! 4 m~even~ x!!.

For predicates with multiple arguments, this transformation is unrea-
sonably weak, because the m/1 predicate has only one argument, and
therefore the mode information for the original predicates gets lost (the
single argument of m/1 will typically get mode “any” for all calls). Also,
interargument relations ranging over the arguments of the original predi-
cates can no longer be expressed in terms of the one argument of m/1.

In these cases, we used a transformation similar to the one above, but
now we maintain the old arguments of mutually recursive predicates as
different arguments of the m predicate and add one extra argument to
represent the old predicate symbol (as a functor of arity one). Going back to
the even/odd example, the transformation would then yield

m~even~_!, 0! 4
m~even~_!, s~ x!! 4 m~odd~_!, x!

m~odd~_!, s~ x!! 4 m~even~_!, x!.

Note that this is a very weak approach to dealing with mutual recursion
and that it puts extra precision requirements on the termination analysis.
Specifically in clauses of the type

e~ x, y! 4 t~ x, y!

taken from pl8.4.2, which become transformed to

m~e~_!, x, y! 4 m~t~_!, x, y!,

1188 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

it is now crucial to allow norms that measure different functor symbols in
different ways. In particular, the term-size norm would be insufficient.

In the tables, this weak treatment has its effect on the relatively slow
treatment of dis-con, mergesort.t, and pl8.4.2. In future work, we aim to
reformulate the entire technique in terms of mutual recursion, using the
minimal cyclic collections of De Schreye et al. [1992].

Another observation that can be made from the tables is that we have a
relatively slow performance on those examples which do not terminate, or
for which we fail to find a proof. The reason for this is that we consider
more potential termination proofs than the other approaches. Because we
do not commit to one specific norm, when our analysis fails to prove
termination, it has actually shown that the termination condition fails for
all possible norms of the given type. In a successful proof, this has little
effect on the efficiency of the analysis, since the system will terminate as
soon as it finds one successful proof. In a failing proof, the constraint solver
will take more time in establishing that no solution can be found. This
inefficiency might be reduced by taking a satisfiability-checking approach
to the constraint solving, instead of the finite-domain-, enumeration-, and
pruning-based approach that we currently use.

Given the above observations, we believe that the experiments show the
feasibility of the approach. For future work, it would be interesting to
develop a much more optimized version of our prototype, preferably written
in Mercury or C, and focused on well-moded programs only, so that a more
accurate comparison with Speirs et al. [1997] would be possible.

9. RELATED WORK

Our technique is an instance of the “norm-based” approach to logic program
termination analysis. There are many other techniques, both within the
norm-based approach and outside it.

In De Schreye and Decorte [1994], we present an extensive survey of the
different techniques proposed up till 1994. This includes discussions and
comparisons between the different lines of work. In particular, it includes
discussions on relations between different norm-based approaches, compar-
isons with transformational approaches (e.g., Rao et al. [1992]), with
theorem-proving approaches (e.g., Baudinet [1992]), and others (e.g., Wang
and Shyamasundar [1994], Brodsky and Sagiv [1989], and Franchez et al.
[1985]). In Rao et al. [1998], this discussion is nicely summarized, extended
with valuable additional issues, and brought up to date, especially on the
level of the transformational techniques (including a.o. Aguzzi and Modigli-
ani [1994], Arts and Zantema [1993], Ganzinger and Waldmann [1993], and
Marchiori [1994]). We do not repeat these general comparative arguments
here, but refer to De Schreye and Decorte [1994] and Rao et al. [1998]
instead.

In this section, we discuss the relation between our technique and some
other more recent contributions to the norm-based approach. We also argue

Constraint-Based Termination Analysis • 1189

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

how our technique reduces the differences with the transformational ap-
proach to some extent.

First, with respect to other norm-based approaches, apart from our own
previous work in Decorte et al. [1993] and Decorte et al. [1997], we are not
aware of any other techniques in which suitable norms are automatically
generated. This includes the techniques in Lindenstrauss and Sagiv [1997]
and Speirs et al. [1997] mentioned in the previous section, but also the
constraint-based approach in Mesnard [1993; 1996] and Mesnard and
Maillard [1998]. In all these works, the norm is given as input to the
analysis.

For the programs in the benchmarks of Section 8 this has no effect. For
all terminating programs in these benchmarks the term-size norm is
sufficient. In Section 8, we already provided some examples that require
other norms. Note, though, that even for the programs in the benchmarks,
term-size is insufficient to prove termination for non-well-moded queries.
As soon as queries with partial input are considered, more-refined norms
are needed to prove termination. The point is already illustrated with the
permute example in Section 3. We feel this is not a minor point. The ability
to compute with partially instantiated input is one of the most distinguish-
ing features of logic programming. Thus, the termination analysis should
be able to cope with it. In Section 3, we also discussed the combine example,
in which term-size is unable to provide an appropriate linear interargu-
ment relation.

Probably the most relevant example, illustrating the need for generating
appropriate norms, is given in Rao et al. [1993], which discusses the use of
a transformational approach to logic program termination analysis in the
context of verifying the ProCos compiler. The technique was successful in
proving its termination. Rao et al. [1993] observed that norm-based tech-
niques were unable to prove termination in this case. The heart of the
problem is that the ProCos compiler contains clauses of the form

p~ f~ x!, . . .! 4 p~ g~ x!, . . .!

p~ g~ x!, . . .! 4 p~ x, . . .!.

Similar to the even/odd example mentioned above, norm-based approaches
have problems in finding a norm that decreases on the atoms in the first
clause. As no real data consumption results from using the first clause,
proving termination of the program requires an order relation on function
symbols. Especially if there are a number of clauses of this type in the
program, the way in which the norm measures the different functions (e.g.,
f/1 and g/1) needs to be tuned very carefully. Alternatively, a partial
evaluation step would be needed to eliminate the problematic clause.

Transformational approaches to termination analysis do not have prob-
lems with such cases. Appropriate term orderings, in particular the simpli-
fication orderings [Dershowitz 1987], can automatically be generated by
rewrite theorem provers.

1190 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Thanks to our symbolic norms and to the constraint-based termination
analysis, our approach also automatically tunes the relative weights that
the norm should assign to these different functors. In this respect, the
technique brings the norm-based and transformational approaches closer
together.

The concepts of symbolic level mappings and norms were already pro-
posed in Verschaetse [1992] and Plümer [1990], but no elegant and practi-
cal use of them has been developed before, as far as we know. Rather, the
only solution method which was advocated in these works was to perform
an exhaustive search over all possible alternatives, i.e., considering all
possible subsets of input positions for each predicate, and performing one
separate analysis for each alternative. This of course strongly increases the
complexity of the analysis.

To the best of our knowledge, the only attempt we are aware of for
solving this problem in an elegant way is that of Sohn and Van Gelder
[1991], who propose a solution based on linear programming techniques.
However, we immediately stress that also their approach starts off from a
fixed norm, namely list-length. Only the level mapping and the interargu-
ment relations are generated from symbolic versions. We refer to De
Schreye and Decorte [1994] for a concise description of the approach,
formulated in terms of the concepts introduced above.

In theory, this approach could be generalized to start off from a symbolic
norm. However, by doing this, the linearity property, which is fundamental
for applying the linear programming techniques, gets lost. Furthermore,
inferring the interargument relations, using Van Gelder [1991] for exam-
ple, on the basis of a symbolic norm seems difficult, since it involves global
analysis. Introducing a further level of abstraction in the norm would make
the analysis very complex.

Mesnard [1993; 1996] and Mesnard and Maillard [1998] use the tech-
nique of Sohn and Van Gelder [1991] in a constraint-based approach to
prove termination of constraint logic programs. Technically, the main
novelty in the approach is the introduction of several abstract versions of
the analyzed program. Such programs are referred to as approximations.
The final approximation is a constraint logic program over the domain of
the booleans. From this program, using the techniques of Sohn and Van
Gelder [1991], sufficient boundedness conditions on the arguments of the
predicates can easily be inferred to ensure termination. As such, the
approach has the advantage that the set of queries of interest does not need
to be specified. Maximal sets of terminating queries are automatically
inferred. Note, though, that the technique is again restricted to use of a
specific norm.

In Decorte and Schreye [1998], we adapt our approach to also support
this extended functionality. There, we automatically generate a finite set of
norms, such that the set of queries that can be proved to terminate using
these norms (and our termination condition) is maximized. However, in the
process, the termination condition is slightly weakened. As such, this

Constraint-Based Termination Analysis • 1191

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

extension is not strictly stronger than the technique presented here. Also,
the extension is considerably less efficient.

Finally, our technique is very strongly related to our previous work in
Decorte et al. [1993] and Decorte et al. [1997]. In Decorte et al. [1993], we
propose two different techniques for inferring norms from type information.
The first of these forms the basis of our rigidity analysis, presented in
Section 6. The second technique introduces a stronger class of norms, called
typed norms. Typed norms are strictly more expressive than the norms
defined in this article. However, the use of typed norms requires much
more complex methods for inferring interargument relations, as shown in
Decorte et al. [1997]. Our final evaluation of this work was that the gained
precision was not in proportion to the added complexity of the analysis.

10. CONCLUSION

We have proposed a termination condition which is parametrized by a set of
symbolic constants which identify generic level mappings, norms, and
interargument relations. We have shown how to explicitize systems of
constraints automatically from that condition, and we have established the
relationship between the solutions of the system of constraints and a
correct termination proof. It is exactly the formulation of each phase in a
constraint-based way that enables viable information to be shared. Because
of the way the constraints express which conditions must minimally be
satisfied for which symbols, there is only a minimal negative constraining
from one phase on another.

Like the condition in Definition 2.7 of De Schreye et al. [1992], the new
termination condition can, in principle, be used on any set of calls of
interest, and it focuses very naturally on the recursive structure of the
clauses, resulting in natural norms and level mappings in practice. Unlike
in Definition 2.7, the condition is expressed in terms of the syntactic
structure of the clauses themselves, and not in terms of Call(P, S).
Treating Call(P, S) is now considered as a separate condition on the level
mapping: it should be rigid on these atoms. As such, this condition comes
closer to the standard notions of acceptability found in the literature.

The approach is able to deal in an easy and natural way with examples,
such as the verification of the ProCos compiler [Rao et al. 1993], which
could not easily be handled by norm-based approaches before. It has also
been formulated in the context of nonground inputs, which is not supported
by many other systems.

A next feature is the ability to synthesize linear inequality interargu-
ment relations, which, as discussed, are more expressive than equality
relations. However, currently the approach is limited to the derivation of
only one inequality for each predicate. This could prove too restricting for
cases where independent relations between two sets of input and output
argument positions exist.

A final observation concerns the modularity of our condition which is
expressed in the computation of each phase as a separate system of

1192 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

constraints. The solvability of the unified system provides different in-
stances of termination proofs. However, the analysis can be started equally
well from incomplete data. Solving a system corresponding to the results of
only two phases expresses those conditions under which the third phase is
solvable. An example of an application here is the inference of sets of
terminating queries for the specific program under consideration. They are
obtained by considering as input only those systems corresponding to the
rigid acceptability and the validity condition. Decorte and Schreye [1998]
shows how a minor extension of the technique provides this functionality.

The approach is applicable with no further difficulties in modular pro-
gram development systems, mainly because the rigid acceptability condi-
tion is expressed completely at the clause level. Here, the information
obtained for one module (in the form of constraints) can be preserved for
later use. When later a new module is added (potentially supplying new
definitions for existing predicates), acceptability of the extended system
coincides with the solvability of the merged systems of constraints obtained
from each separate module. It is exactly the use of constraints that allows
us to express conditions in terms of predicates which do not have to be
known at that moment. For these predicates a number of minimally
required conditions are proposed. Moreover, the new module can be ana-
lyzed without having to restart the analysis for the modules on which it
builds, by simply importing the previously generated constraints for that
module.

A prototype implementation exists. The experiments performed with the
system are satisfactory. A more extensive implementation effort will be
required to establish whether the most efficient current system can be
surpassed.

ACKNOWLEDGMENTS

We thank Zoltan Somogyi and Naomi Lindenstrauss for valuable informa-
tion concerning their own tests. We also thank the anonymous referees for
their very relevant questions and remarks that helped us improve the
article.

REFERENCES

AGUZZI, G. AND MODIGLIANI, U. 1994. Proving termination of logic programs by transforming
them into equivalent term rewriting systems. In Proceedings of FST and TCS. LNCS, vol.
761. Springer-Verlag, 114–124.

APT, K. 1990. Logic programming. In Handbook of Theoretical Computer Science. Vol. B, J.
van Leeuwen, Ed. Elsevier Science Publishers.

APT, K. AND BEZEM, M. 1991. Acyclic programs. New Gen. Comput. 9, 335–363.
APT, K. AND PEDRESCHI, D. 1990. Studies in pure Prolog: Termination. In Proceedings Esprit

Symposium on Computational Logic. Springer-Verlag, 150–176.
APT, K. AND PEDRESCHI, D. 1991. Proving termination of general Prolog programs. In Proc.

International Conference on Theoretical Aspects of Computer Science.
APT, K. AND PEDRESCHI, D. 1994. Modular termination proofs for logic and pure Prolog

programs. In Advances in Logic Programming Theory. Oxford University Press, 183–229.

Constraint-Based Termination Analysis • 1193

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

ARTS, T. AND ZANTEMA, H. 1993. Termination of logic programs via labelled term rewrite
systems. In Proceedings of CSN’95. 22–34.

BAUDINET, M. 1992. Proving termination properties of Prolog programs: A semantic ap-
proach. J. Logic Program. 14, 1–29.

BEZEM, M. 1992. Characterizing termination of logic programs with level mappings. J.
Logic Program. 15, 1 & 2, 79–98.

BOSSI, A., COCCO, N., AND FABRIS, M. 1991. Proving termination of logic programs by
exploiting term properties. In Proc. CCPSD-TAPSOFT’91. Springer-Verlag, LNCS 494,
153–180.

BOSSI, A., COCCO, N., AND FABRIS, M. 1992. Typed norms. In Proc. ESOP’92, B. Krieg-
Brueckner, Ed. Springer-Verlag, LNCS 582, 73–92.

BRODSKY, A. AND SAGIV, Y. 1989. On termination of Datalog programs. In First Interna-
tional Conference on Deductive and Object Oriented Databases. 95–112.

BRODSKY, A. AND SAGIV, Y. 1991. Inference of inequality constraints in logic programs. In
Proceedings of the 10th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems. 227–240.

BRONSARD, F., LAKSHMAN, T., AND REDDY, U. 1992. A framework of directionality for proving
termination of logic programs. In Proc. JICSLP ’92, K. Apt, Ed. MIT Press, 321–335.

BRUYNOOGHE, M. 1991. A practical framework for the abstract interpretation of logic
programs. J. Logic Program. 10, 2, 91–124.

BRUYNOOGHE, M. AND BOULANGER, D. 1994. Abstract interpretation for (constraint) logic
programming. In Constraint Programming, J. P. B. Mayoh, E. Tyugu, Ed. NATO ASI Series,
vol. F/131. Springer-Verlag, 228–258.

CODISH, M. AND TABOCH, C. 1997. A semantic basis for termination analysis of logic
programs and its realization using symbolic norm constraints. In Proceedings of the Sixth
International Conference on Algebraic and Logic Programming. To appear.

COUSOT, P. AND HALBWACHS, N. 1978. Automatic discovery of linear restraints among
variables of a program. In Proceedings 5th ACM Symposium on Principles of Programming
Languages. 84–96.

DE SCHREYE, D. AND DECORTE, S. 1994. Termination of logic programs: the never-ending
story. J. Logic Program. 19 & 20, 199–260.

DE SCHREYE, D. AND VERSCHAETSE, K. 1992. Termination analysis of definite logic programs
with respect to call patterns. Tech. Rep. CW 138, Department Computer Science, K.U.Leu-
ven.

DE SCHREYE, D. AND VERSCHAETSE, K. 1995. Deriving linear size relations for logic programs
by abstract interpretation. New Gen. Comput. 13, 2, 117–154.

DE SCHREYE, D., VERSCHAETSE, K., AND BRUYNOOGHE, M. 1992. A framework for analysing
the termination of definite logic programs with respect to call patterns. In Proc. FGCS’92.
ICOT, Tokyo, 481–488.

DEBRAY, S. 1989. Static inference of modes and data dependencies in logic programs. ACM
Trans. Program. Lang. Syst. 11, 3 (July), 418–450.

DEBRAY, S. K. AND WARREN, D. S. 1986. Automatic mode inference for Prolog programs. In
Proceedings 1986 Symposium on Logic Programming. 78–88.

DECORTE, S. AND DE SCHREYE, D. 1998. Termination analysis: Some practical properties of
the norm and level mapping space. In Proceedings IJCSLP98, the International Joint
Conference and Symposium on Logic Programming, J. Jafar, Ed. MIT Press, 235–249.

DECORTE, S., DE SCHREYE, D., AND FABRIS, M. 1993. Automatic inference of norms: A
missing link in automatic termination analysis. In Proceedings ILPS’93, D. Miller, Ed.
420–436.

DECORTE, S., DE SCHREYE, D., AND FABRIS, M. 1997. Exploiting the power of typed norms in
automatic inference of interargument relations. Tech. Rep. 246, Department of Computer
Science, K.U.Leuven, Belgium.

DERSHOWITZ, N. 1987. Termination of rewriting. J. Symbol. Comput. 3, 1 & 2, 69–116.
FALASCHI, M., LEVI, G., MARTELLI, M., AND PALAMIDESSI, C. 1989. Declarative modelling of

the operational behaviour of logic languages. Theoret. Comput. Sci. 69, 3, 289–318.

1194 • Stefaan Decorte et al.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

FRANCHEZ, N., GRUMBERG, O., KATZ, S., AND PNUELI, A. 1985. Proving termination of Prolog
programs. In Logics of Programs, R. Parikh, Ed. Springer-Verlag, 89–105.

GANZINGER, H. AND WALDMANN, U. 1993. Termination proofs of well-moded logic programs via
conditional rewrite systems. In Proceedings of CTRS’92. LNCS 656. Springer-Verlag, 216–222.

JANSSENS, G. AND BRUYNOOGHE, M. 1992. Deriving descriptions of possible values of pro-
gram variables by means of abstract interpretation. J. Logic Program. 13, 2 & 3, 205–258.

LINDENSTRAUSS, N. AND SAGIV, Y. 1997. Automatic termination analysis of logic programs.
In Proc. 14th International Conference on Logic Programming, L. Naish, Ed. 63–77.

LLOYD, J. 1987. Foundations of Logic Programming. Springer-Verlag.
MARCHIORI, M. 1994. Logic programs as term rewriting systems. In Proceedings of ALP’94.

LNCS 850. Springer-Verlag, 223–241.
MARTELLI, A. AND MONTANARI, U. 1982. An efficient unification algorithm. ACM Trans.

Program. Lang. Syst. 4, 2, 258–282.
MARTIN, J. C., KING, A., AND SOPER, P. 1996. Typed norms for typed logic programs. In

Proceedings of LOPSTR’96: Logic Program Synthesis and Transformation, J. Gallagher, Ed.
Number 1207 in LNCS. Springer-Verlag, 143–153.

MELLISH, C. 1985. Some global optimizations for a Prolog compiler. J. Logic Program. 2, 1
(April).

MESNARD, F. 1993. Etude de la terminaison des programmes logiques avec contraintes au
moyen d’approximations. Ph.D. thesis, Paris VI.

MESNARD, F. 1996. Inferring left-terminating classes of queries for constraint logic pro-
grams. In Proc. IJCSLP96. MIT-Press, Bonn, Germany, 7–21.

MESNARD, F. AND MAILLARD, A. 1998. Clp(x) for automatically proving program properties.
J. Logic Program. 37 (1–3), 77–94.

MULKERS, A. 1993. Deriving Live Data Structures in Logic Programs by Means of Abstract
Interpretation. Number 675 in LNCS. Springer-Verlag.

PFENNING, F., ED. 1992. Types in Logic Programming. MIT Press.
PLÜMER, L. 1990. Termination Proofs for Logic Programs. Number 446 in LNAI. Springer-

Verlag.
RAO, M. K., KAPUR, D., AND SHYAMASUNDAR, R. 1998. Transformational methodology for

proving termination of logic programs. J. Logic Program. 34, 1, 1–42.
RAO, M. K., KAPUR, D., AND SHYAMASUNDAR, R. K. 1992. A transformational methodology for

proving termination of logic programs. In Proc. CSL’92. LNCS 626. Springer.
RAO, M. K., PANDYA, P., AND SHYAMASUNDAR, R. K. 1993. Verification tools in the develop-

ment of provably correct compilers. In Proceedings 5th Symposium on Formal Methods
Europe FME’93.

SOHN, K. AND VAN GELDER, A. 1991. Termination detection in logic programs using argu-
ment sizes. In Proceedings 10th Symposium on Principles of Database Systems. ACM Press,
216–226.

SPEIRS, C., SOMOGYI, Z., AND SONDERGAARD, H. 1997. Termination Analysis for Mercury. In
Proceedings of the Fourth International Symposium on Static Analysis, P. Van Hentenryck,
Ed. Number 1302 in LNCS. Springer, 157–171.

ULLMAN, J. AND VAN GELDER, A. 1988. Efficient tests for top-down termination of logical
rules. J. ACM 35, 2 (April), 345–373.

VAN GELDER, A. 1991. Deriving constraints among argument sizes in logic programs. Ann.
Math. Artif. Intell. 3.

VANDECASTEELE, H. AND DE SCHREYE, D. 1994. Implementing a finite-domain CLP-language
on top of Prolog: A transformational approach. In Proceedings of Logic Programming and
Automated Reasoning, F. Pfenning, Ed. Lecture Notes in Artificial Intelligence 822.
Springer-Verlag, 84–98.

VERSCHAETSE, K. 1992. Static termination analysis for definite Horn clause programs. Ph.D.
thesis, Dept. Computer Science, K.U.Leuven. Accessible via http://www.cs.kuleuven.ac.be/;lpai.

WANG, B. AND SHYAMASUNDAR, R. 1994. A methodology for proving termination of logic
programs. J. Logic Program. 21, 1, 1–30.

Received January 1998; revised October 1998; accepted March 1999

Constraint-Based Termination Analysis • 1195

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

