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ABSTRACT
Recent studies have shown that the labels collected from crowd-
workers can be discriminatory with respect to sensitive attributes
such as gender and race. This raises questions about the suitability
of using crowdsourced data for further use, such as for training
machine learning algorithms. In this work, we address the prob-
lem of fair and diverse data collection from a crowd under budget
constraints. We propose a novel algorithm which maximizes the
expected accuracy of the collected data, while ensuring that the
errors satisfy desired notions of fairness. We provide guarantees
on the performance of our algorithm and show that the algorithm
performs well in practice through experiments on a real dataset.
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1 INTRODUCTION
Algorithmic decision-making is gaining popularity in many diverse
application areas of social importance. Examples include criminal
recidivism prediction, stop-and-frisk programs, university admis-
sions, bank loan decisions, screening job candidates, fake news
control, information filtering(personalization) and search engine
rankings etc. Recently, questions were raised about the fairness of
these algorithms. An investigation [26] found COMPAS (a popular
software used by courts to predict criminal recidivism risk) racially
discriminatory. Other software systems have also been found to
be biased against people of different races, genders and political
views [3, 18, 20, 25]. This has led to a widespread and legitimate
concern about the potential negative influence of such systems on
the society [2, 29]. One of the main reasons of algorithmic bias is
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the bias in the training datasets. In order to achieve algorithmic
fairness, the issue of data fairness needs to be addressed first. In
many interesting cases, data is directly or indirectly influenced
by some kind of human feedback. The influence is obvious and
direct if human assigned labels are used as a proxy for ground truth
labels. However, human feedback can also indirectly influence the
so-called “ground-truth" datasets (when the labels are not human
assigned but observed in reality). This is because the ground truth
labels can only be collected for a finite number of data points and
the selection of data points is often influenced by humans. For
example, there are no ground truth labels available for recidivism
of people who were never released by the judges. In this paper,
we focus only on the direct influence of human feedback on data
fairness i.e. the case in which humans assign labels for data.

Crowdsourcing is increasingly used to collect training data la-
bels. Inevitably, crowdworkers have different biases, which are
then reflected in the labels collected from the workers. A very re-
cent study [8] conducted on Amazon Mechanical Turk showed
that the crowdworkers were equally racially biased as COMPAS
in predicting recidivism. The difference in false positive rates of
crowd predictions for white and black defendants was significant
and nearly equal to that of the predictions made by COMPAS. The
same was true for false negative rates also. The bias didn’t change
much even when the crowdworkers were not explicitly displayed
the race of the defendants.

We consider settings similar to [8]. Workers are asked to provide
their answers (or labels) about some tasks with unknown ground
truth labels. Every task has some non-sensitive details that are
shown to the workers and a sensitive attribute (for example, race)
that is not explicitly shown. But the sensitive attribute may poten-
tially be correlated with the non-sensitive task details. A worker
inspects the tasks assigned to her and submits labels for the tasks.
Each task is assumed to have a ground truth label but the workers
don’t have any way of accessing the ground truth. They can only
use the task details, their prior knowledge and incomplete infor-
mation from other sources to make an “educated guess" about the
ground truth. The examples of such tasks are “Will a defendant with
given personal history recidivate within the next two years or not?"
or “Will a candidate with given CV be successful in the job applied
for?" or “Is given political news item fake?". The sensitive attributes
in these example tasks are race, gender and political group respec-
tively. Every worker charges a fee for answering the assigned tasks.
The requester has a budget constraint on the fees that she can pay
to the workers. In this paper, we make the following contributions:

(1) We propose a novel algorithm for assigning tasks to workers,
which optimizes the expected accuracy of labels obtained
from crowd while ensuring that the collected labels satisfy
desired notions of error fairness. The algorithm also ensures
diversity of responses by limiting the probability of assigning
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many tasks to a single worker. Our algorithm works even
when the values of the sensitive attribute of the tasks are
unavailable or can’t used because of ethical/legal reasons.

(2) With a novel formulation of the task assignment strategy as
a probability distribution over the workers, we can cast the
optimization problem as a linear program and avoid the use
of integer programming or other graph matching algorithms
which are popular in the task assignment literature but are
harder to solve exactly and analyze. This also makes our
algorithm suitable for online settings in which the requester
is not aware of the tasks in advance.

(3) We use a limited number of gold tasks (tasks with known
ground-truth answers) for estimating workers’ parameters
and then optimally assign non-gold tasks to the workers. We
provide performance bounds for our algorithm and show
empirical performance on a real dataset.

2 RELATEDWORK
Empirical Studies : [8] finds racial discrimination in recidivism
prediction tasks on Amazon Mechanical Turk (AMT). [23] analyzes
linguistic bias in labels collected through GWAP (Games with a
Purpose) on AMT. [24] analyzes the linguistic bias in collabora-
tively produced biographies. [13] finds discrimination in reputation
crowdsourcing systems in online marketplaces.
Proposed Solutions : In an independent and pioneeringwork, [28]
considers the problem of fairness in human decision-making tasks
like recidivism prediction, without budget and diversity constraints.
Criminal cases with known race information arrive in batches of
known sizes and an MDP based maximum weighted matching algo-
rithm assigns each case to exactly one human judge such that the
overall utility from decisions of releasing or keeping any defendant
is maximized, while ensuring demographic parity of release deci-
sions across two races. To the best of our knowledge this is the first
and the most recent work to consider settings somewhat similar to
ours but our work differs from theirs in several ways. We consider
general crowdsourcing settings, in which several assumptions from
their model don’t hold. In particular, they assume that “true" risk
scores of individual defendants are known to the human judges and
the case assignment algorithm. In general crowdsourcing settings,
one can only hope to have an overall label distribution for the pop-
ulation. In fact, finding the label probability for individual tasks is
the very objective of crowdsourcing. Further, it is not immediately
clear how their work can be extended for other important fairness
definitions. In their model, given true risk scores of the defendants,
judges only apply different thresholds for black and white defen-
dants to predict recidivism. The threshold parameters alone can’t
capture unfairness measures such as unequal error rates. Even if
one does improvise the model with more parameters, it remains
an open question whether the theoretical conjectures made in the
paper are still likely. This is because the conjectures assume that
every time a judge gives a decision, the model parameters of the
judge are updated. This becomes an issue with error rate param-
eters since the ground truth labels are not revealed for all tasks
in crowdsourcing. [21] considers a different but related problem
of bias resulting from adaptive data gathering (when the choice
of whether to collect more data of a given type depends on the

data already collected) and propose a differentially private data
collection process as a solution.

There is also a lot of work on task assignment in crowdsourcing,
which doesn’t consider fairness. [27] proposes a greedy knapsack
approach to satisfy limits on budget and the number of tasks any
worker can solve. [15–17] consider task assignment problem when
workers arrive online. [4] proposes optimal gold task assignment
when workers’ diligence change over time.

Beyond data collection, there is also recent work on making
algorithms fair and robust to bias in the training data [9, 12, 14, 19,
30] and on correcting bias in training datasets [5, 10]. Correcting
bias in a given dataset requires modifying the feature values and/or
the labels in the dataset. In this paper, we aim to collect unbiased and
high quality dataset to begin with, relaxing the responsibility and
the overhead of such post-processing from data users (for example,
data scientists and machine learning engineers).

3 MODEL
Let there be a finite set of n workers and a large pool of tasks with
unknown ground truth labels. The data requester randomly chooses
tasks from the pool one by one and assigns each to one (or more)
worker(s). The requester may not have knowledge of all the tasks
in the pool (not even the number of tasks in the pool) in advance.
A worker i charges a constant amount of fee ci for every label she
provides. The requester has a budget constraint for the maximum
expected money to be spent on acquiring one label from a worker.

Let Z be a random variable denoting the sensitive attribute and
Y denoting the (unknown) ground truth labels of the tasks such
that Z ,Y ∈ {0, 1}. For the tasks attempted by a worker i , let Ŷi ∈
{0, 1} denote the labels submitted by the worker. We denote the
realizations of random variables Z , Y and Ŷi by lower case letters
z, y and ŷi respectively and will drop the subscripts for brevity
when the context is clear. We will use [n] to denote {1, 2, . . . ,n}.
The workers are modeled using their accuracy matrices as follows:

Definition 1 (Accuracy Matrices of aWorker). The accuracy matri-
cesAiz , z ∈ {0, 1} of a worker i are two 2×2 row stochastic matrices
such that, ∀y, ŷi ∈ {0, 1}, the entry Aiz [y, ŷi ] is the probability of
the worker’s label on a task being ŷi given that the sensitive attribute
of the task is z and the ground truth label is y.

The two matricesAi0 andAi1 define the accuracy of the worker
i for tasks belonging to the two different values of the sensitive
attribute. The accuracy matrix model, also known as the Dawid-
Skene model [7] in the crowdsourcing literature, is strong enough
to capture different errors (for e.g. false positive and false nega-
tive rates) that a worker may make for tasks belonging to a given
sensitive attribute value. If a worker is unbiased in the sense that
her errors don’t depend on the value of sensitive attribute of the
task, her two accuracy matrices are identical. Note that this model
makes an implicit i.i.d. assumption on a worker’s answers.

The requester uses a probabilistic policy to assign the tasks to
workers and collects the labels from the workers.

Definition 2 (Crowdsourcing Policy). A crowdsourcing policy is an
n-dimensional stochastic vector S , such that an element S[i], i ∈ [n]
is the probability of assigning any task to worker i , regardless of the
sensitive attribute value of the task.
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Note that the requester’s policy doesn’t depend on the value of
the sensitive attribute of the task. This is an intentional modeling
choice to deal with the situations in which the sensitive attribute
values of the tasks may not be available. It may be due to missing
data, privacy reasons or legal/ethical requirements of not using the
sensitive attribute.

For any task, the requester randomly selects one (or more than
one) worker(s) with probabilities specified by the crowdsourcing
policy vector S and assigns the task to the selected worker(s). The la-
bels collected from the workers are obviously not guaranteed to be
error free. We can define the accuracy matrices of the crowdsourc-
ing policy in the same way as we defined the accuracy matrices of
workers.

Definition 3 (Accuracy Matrices of a Crowdsourcing Policy). The
accuracy matrices Az , z ∈ {0, 1} of a crowdsourcing policy are two
2 × 2 row stochastic matrices such that, ∀y, ŷ ∈ {0, 1}, the entry
Az [y, ŷ] is the probability that a crowdsourced label1 for a task is ŷ
given that the sensitive attribute of the task is z and the ground truth
label is y.

We use the letter A to denote accuracy matrices of the crowd-
sourcing policy as well as that of the workers but readers can
differentiate between the two by noting that A has an additional
subscript i when referring to the matrix of a worker i . It is easy to
see that we can express the accuracy matrices of a policy in terms
of the accuracy matrices of the workers as follows:

Az =

n∑
i=1

S[i] · Aiz ,∀z ∈ {0, 1} (1)

The requester is interested in finding a crowdsourcing policy that
maximizes the expected accuracy of the collected labels while en-
suring that the data is fair, diverse and is acquired within budget
constraints.

Crowd diversity is a subjective property and is generally defined
in terms of the demographics of crowdworkers. In this paper, we
work with a given set of crowdworkers and can’t control such a
measure of diversity. For settings like these, we define diversity as
follows:

Definition 4 (β-Diverse Crowdsourcing Policy). A crowdsourcing
policy is called β-diverse if and only if ∀ i ∈ [n], S[i] is upper bounded
by β , where β is a diversity parameter such that 0 ≤ β < 1.

This definition limits the influence of individual workers on the
overall crowdsourced dataset and aims to distribute the influence
across more workers.

Similar to diversity, fairness is also a subjective property. We use
some standard definitions of fairness from the machine learning
literature [1, 14, 30].

Definition 5 (False Positive Rate Parity). A crowdsourcing policy,
with accuracy matrices A0 and A1, is said to satisfy false positive
rate parity if and only

A0[0, 1] = A1[0, 1]
1We note that the accuracy of a crowdsourcing policy can also be defined in terms
of aggregated label when multiple labels per task are collected. But such definitions
depend on specific label aggregation algorithms used. However, in many cases, it
may be sufficient to assume that the accuracy of a policy with aggregated labels is an
increasing function of our accuracy, which is a reasonable assumption.

One can similarly define false negative rate parity, which requires
A0[1, 0] = A1[1, 0].

Definition 6 (Error Rate Parity). A crowdsourcing policy, with ac-
curacy matrices A0 and A1, is said to satisfy error rate parity if and
only if it satisfies both false positive rate parity and false negative
rate parity, i.e.

A0 = A1

It is easy to see that if all workers are unbiased, any crowdsourc-
ing policy satisfies the above fairness definitions and one only needs
to select a policy that maximizes accuracy while satisfying budget
and diversity constraints. In this paper, we address the general
problem scenario (when workers are not necessarily unbiased).

4 FINDING OPTIMAL CROWDSOURCING
POLICY

Let’s first assume that the accuracy matrices of all the workers are
known and the requester is interested in finding the optimal crowd-
sourcing policy maximizing the expected accuracy under budget,
fairness and diversity constraints. We model this as a constrained
optimization problem. The objective function in the minimization
problem is the negative of the expected accuracy of the policy
variable S :

−E[A(S )] = −
∑

z∈{0,1}
P (Z = z)

∑
y∈{0,1}

Pz (Y = y)
n∑
i=1

S [i]Aiz [y, y] (2)

where P(Z = z) is the known prior probability that any random
task in the pool will have sensitive attribute value equal to z and
Pz (Y = y) is the known prior probability that any random task
with sensitive attribute value z in the pool will have a ground truth
label equal to y.

Together with the fairness and diversity constraints, we get the
following optimization problem:

arg min
S

−
∑

z∈{0,1}
P (Z = z)

∑
y∈{0,1}

Pz (Y = y)
n∑
i=1

S [i]Aiz [y, y]

subject to
n∑
i=1

S [i] = 1

S [i] ≥ 0 , ∀i ∈ [n]
S [i] ≤ β , ∀i ∈ [n]
A0[0, 1] − A1[0, 1] ≤ α

− (A0[0, 1] − A1[0, 1]) ≤ α
n∑
i=1

S [i] · ci ≤ C

(3)

The first two constraints are due to the fact that the crowdsourcing
policy vectors are probabilistic and so, all elements must be positive
and sum to 1. The third is the diversity constraint as formalized in
Definition 4. The forth and fifth constraints together are equivalent
to
��A0[0, 1] − A1[0, 1]

�� ≤ α . For α = 0, we get the exact fairness
constraint (false positive rate parity) as formalized in Definition 5.
Other fairness constraints can also be similarly included. The last
constraint is due to the maximum expected budget (C) that can be
spent on acquiring one answer from a worker.
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4.1 Estimates of Worker Accuracy Matrices
Until now, we assumed that the accuracy matrices of the workers
are known. However, in practice, we need to estimate them. As is
common in the literature [22], we assume that the requester has
some limited number of gold standard tasks. Gold tasks are the tasks
for which the requester not only knows the sensitive attribute value
z but also the ground truth label y. We use gold tasks to estimate
unknown worker accuracy matrices. Estimating all the entries of
the worker accuracy matrices requires that every worker answers
some gold tasks of each “type" (the type of a task is specified by its
ground truth answer and its sensitive attribute value). We assign
Nд tasks of every type to each worker to estimate their accuracy
matrices. This is explained further in appendix A. Let Âiz be the
estimate of the worker accuracy matrices Aiz , ∀z ∈ {0, 1}. The
optimization problem 3 can now be written as follows, by replacing
the accuracy matrices with their estimates:

arg min
S

−
∑

z∈{0,1}
P (Z = z)

∑
y∈{0,1}

Pz (Y = y)
n∑
i=1

S [i]Âiz [y, y]

subject to
n∑
i=1

S [i] = 1

S [i] ≥ 0 , ∀i ∈ [n]
S [i] ≤ β , ∀i ∈ [n]

Â0[0, 1] − Â1[0, 1] ≤ α

− (Â0[0, 1] − Â1[0, 1]) ≤ α
n∑
i=1

S [i] · ci ≤ C

(4)

where,

Âz =

n∑
i=1

S [i] · Âiz , ∀z ∈ {0, 1} (5)

This is a linear program, which can be exactly solved in polynomial
time. In practice, the simplex method [6] can be used to find the
optimal solution efficiently with common optimization libraries
like IBM CPLEX and SciPy. Depending on the constraints, the cost
and the accuracy matrices of workers, it is possible that no feasi-
ble solution exists for the optimization problem. In this case, the
requester will have no choice but to relax the constraints.

We will now analyze our algorithm theoretically and empirically.
Readers can find a summary of steps of our complete crowdsourcing
algorithm in appendix B.

5 THEORETICAL ANALYSIS
When worker accuracy matrices are known, our method is guaran-
teed to provide the optimal solution, satisfying constraints. How-
ever, when estimates of the accuracy matrices are used, two inter-
esting questions arise:

(1) Does the solution of problem 4 (which is optimal and satisfies
fairness constraints only according to the estimated accuracy
parameters) also satisfy fairness in reality?

(2) How much does the requester lose in terms of actual ex-
pected accuracy of the policy because of using the estimated
accuracy parameters in optimization?

Theorem 1. With probability at least γ , the solution Ŝ to the opti-
mization problem 4 satisfies��A0[0, 1] − A1[0, 1]

�� ≤ α + δ

where

δ = 2

√
− ln (1 − 2n√γ ) + ln 2

2Nд
;Az =

n∑
i=1

Ŝ [i]Aiz, ∀z ∈ {0, 1}

and Nд is number of gold tasks.

The theorem states that when we use estimates of the worker
accuracy matrices instead of the real matrices, the obtained solution
Ŝ doesn’t violate the fairness constraints in reality by more than δ ,
with probability at least γ .

Theorem 2. Assuming that the optimal solution Ŝ of problem 4
satisfies fairness constraints of problem 3 and the optimal solution
S of problem 3 satisfies fairness constraints of problem 4, then with
probability at least γ ′

E[A(S)] −E[A(Ŝ)] ≤ 2nβ

√
− ln (1 − 4n

√
γ ′) + ln 2

2Nд

where

E[A(S )] =
∑

z∈{0,1}
P (Z = z)

∑
y∈{0,1}

Pz (Y = y)
n∑
i=1

S [i]Aiz [y, y],

E[A(Ŝ )] =
∑

z∈{0,1}
P (Z = z)

∑
y∈{0,1}

Pz (Y = y)
n∑
i=1

Ŝ [i]Aiz [y, y]

The theorem provides an upper bound on the loss in real ex-
pected accuracy of the crowdsourcing policy, when we use the
estimated worker matrices instead of the real accuracy matrices for
optimization. Note that in both the theorems, the bounds get better
with increasing number of gold tasks.

The proofs of the above theorem are not difficult and depend on
a simple application of the Hoeffding’s inequality.

6 EXPERIMENTAL EVALUATION
6.0.1 Datasets.We use the following datasets in our experiments.

(1) BrowardCountyDataset [26] : This dataset contains infor-
mation about 7214 defendants arrested in Broward County,
Florida between 2013 and 2014. The information includes
race of the defendants among other non-sensitive attributes
such as age, prior charges etc. The dataset also contains
ground-truth whether the defendants recidivated within 2
years or not. There are 3696 black defendants and 2454 white
defendants in the dataset and the base rate of recidivism is
51.43% among the black defendants and 39.36% among the
white defendants.

(2) Crowd Judgment Dataset : [8] randomly selected a subset
of 1000 defendants from the Broward County dataset and
asked 20 random workers on Amazon Mechanical Turk to
predict recidivism for each individual. In total, 400 workers
participated in their study and each worker submitted an-
swers for 50 different defendants. The dataset contains these
answers collected from the crowd.
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Figure 1: Varying Nд (Number of gold tasks), Settings : Uniform Costs, β = 0.01,α = 0.01
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Figure 2: Varying α (Fairness Constraint), Settings : Uniform Costs, β = 0.01,Nд = 20
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Figure 3: Varying Nд (Number of gold tasks), Settings : Non-Uniform Costs, β = 0.01,α = 0.01,C = 1.5
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Figure 4: Varying α (Fairness Constraint), Settings : Non-Uniform Costs, β = 0.01,Nд = 20,C = 1.5
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6.0.2 Experiment Outline. The idea is to split the set of defendants
into two sets. The first set acts as the gold standard set, which
we use to estimate worker accuracy matrices. Once we have the
estimates of the worker accuracy matrices, we can solve the opti-
mization problem 4 and learn optimal crowdsourcing policy. We
then pick non-gold defendants one by one and assign it to one of
the 400 workers, randomly selected according to the policy. The
workers’ responses are then compared with the ground-truth label
to evaluate fairness and accuracy of our crowdsourcing policy.

6.0.3 Handling Limitations of Datasets. Unfortunately, none of the
two datasets alone can be used for such experiment. The Broward
County dataset contains ground truth labels but doesn’t contain
workers’ answers. On the other hand, the Crowd Judgment dataset
does contain worker answers but is very limited for the following
reasons. In this dataset, tasks have already been assigned (randomly)
to workers and for every defendant, we have responses of only a
subset of 20 workers out of all 400 workers. If the crowdsourcing
policy learned by our algorithm decides that a worker outside that
subset of 20 workers should be assigned a task, then we will need
to know the answer of that worker but the answer of this worker is
not part of the dataset. The second reason is that every worker has
submitted answers for 50 defendants, which is sufficient for getting
good estimates of the accuracy parameters of the workers but not
big enough to be further split into gold and non-gold sets.
To overcome these limitations, we first create a bigger synthetic
dataset using the two real datasets as follows.We generate synthetic
answers of all the 400 workers for all the 3696 black and 2454
white defendants in the Broward County dataset. The answers are
generated using the worker accuracy parameters estimated from
the entire Crowd Judgment dataset. Note that even though this is
a synthetic dataset but none of the parameters of the dataset are
synthetic. The worker accuracy parameters are derived from the
entire real dataset of [8] and the base dataset (Broward County
dataset) is used as it is. Indeed, this is not ideal but is perhaps the
only option, given the limitations of the available datasets.
Worker Costs : The datasets also don’t contain workers’ costs. We
create this information in two different ways. In the first setting,
we associate a uniform cost of $1 to each worker. In the second
and more interesting setting, we probabilistically associate a cost
of $1 or $3. The probability of a worker’s cost being $3 is equal to
her average accuracy and of it being $1 is equal to 1−her average
accuracy. Thus, the higher the average accuracy of a worker, the
higher is the probability that she will charge a cost of $3.

Now this complete dataset is ready to be used in the experiment
outlined earlier in this section. We compare our approach (called
‘CrowdFDB’ in the figures) with two baselines (called ‘Random’ and
‘Greedy’ [27]). The baselines are discussed in appendix C.

6.1 Observations
We use equal error rate parity (Definition 6) as the desired fairness.
All results reported in the paper are averages over 100 repeated
runs. Parameter β was set to 0.01 in the first set of experiments.
In the uniform costs settings, C was set to $1 and in non-uniform
settings, C = $1.5.
6.1.1 Uniform Costs. In Figure 1, we keep the fairness constraint
α to be fixed (0.01) and observe the effect of increasing number

of gold tasks (Nд ). Figures 1a and 1b show that as we increase
Nд , the fairness i.e. the absolute difference in FPR (and FNR) for
black and white populations, gets closer and closer to α . In other
words, the δ of Theorem 1 gets closer to 0 as expected. Moreover,
the margin between our algorithm and the baselines also increases.
However, meeting the fairness constraints alone is not enough. This
could also be done by a bad algorithm that collects equally wrong
labels for both white and black populations. Hence, accuracy of the
collected labels is also an important measure. Figure 1c shows that
our algorithm has an accuracy competitive to the Greedy baseline
method, which is a highly efficient baseline in the literature for
accuracy optimization. Our algorithm can achieve same level of
accuracy while also providing fairness. In Figure 2, we keep Nд
fixed (20) and observe the effect of increasing value of α . As value
of α increases, the fairness constraints are more relaxed and the
algorithm can obtain better accuracy.
6.1.2 Non-Uniform Costs. In the non-uniform costs settings, we
observe similar patterns in Figure 3 and 4. There are a few notable
differences. The accuracy of our algorithm as well as the Greedy
baseline are lower. Our algorithm doesn’t select more accurate
workers because of budget constraints and the Greedy baseline also
finds the density of the more accurate workers comparatively lower
due to their high costs and prefers to choose other high density
workers. In this case, our algorithm beats Greedy in not just fairness
but also in accuracy by better utilizing the available budget.

Figures 5 and 6 of appendix D show the results with β = 0.01,C =
2.5. Figures 7 and 8 of appendix D show the results with β =
0.005,C = 2.5. Decreasing the value of parameter β makes the
algorithms (ours and the Greedy baseline) more constrained in
assigning tasks to the workers that they find to be better. This hits
the accuracy of both the algorithms but the general trends discussed
above (w.r.t. fairness and accuracy with different Nд and α ) remain
the same. The effect of increasing budget from 1.5 to 2.5 is that
our algorithm can get better accuracy but there is no effect on the
performance of other baselines as expected, since there was no
explicit budget constraint placed on them.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we addressed the problem of data fairness in crowd-
sourcing. We proposed a novel crowdsourcing algorithm that learns
an optimal selection probability distribution over the available set
of workers to maximize the expected accuracy of collected data,
while ensuring that the errors in the data are not unfairly discrimi-
natory towards any particular social group. There also remain many
challenges to be addressed. These include estimating accuracy with-
out requiring gold standard tasks, relaxing the assumption about
knowledge of prior label distribution and the i.i.d. assumption about
workers’ answers.

Another interesting challenge in slightly different settings is to
define data fairness for the case of subjective tasks, which have
no ground truth labels and thus, no clear notion of errors. Ensur-
ing fairness in subjective data collection is also likely to create a
challenging problem of lying incentives[11] for workers.
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A ESTIMATED ACCURACY MATRICES
Let Âiz be the estimate of the worker accuracy matricesAiz , ∀z ∈
{0, 1}. If a worker i answers k tasks correctly out of Nд gold tasks
of type z = 1,y = 1, then

Âi1[1, 1] =
k

Nд
and Âi1[1, 0] = 1 − Âi1[1, 1]

Similarly, if she answers k ′ tasks correctly out of Nд gold tasks of
type z = 1,y = 0, then

Âi1[0, 0] =
k ′

Nд
and Âi1[0, 1] = 1 − Âi1[0, 0]

This process is repeated with gold tasks of type z = 0,y = 1 and
z = 0,y = 0 to get estimates of all entries of the worker’s matrices.

B SUMMARY OF STEPS OF THE ALGORITHM
Algorithm1:Crowdsourcingwith Fairness, Diversity and Bud-
get Constraints (CrowdFDB)
1 Assign Nд gold tasks of every type

((z = 0,y = 0), (z = 0,y = 1), (z = 1,y = 0), (z = 1,y = 1)) to
every worker i in the provided set of n workers.

2 Get estimate of every worker i’s accuracy matrices Âi0 & Âi1.
3 Solve the linear program to find the best crowdsourcing policy

satisfying desired fairness, diversity and budget constraints.
4 Pick a task randomly from the task pool of tasks with

unknown ground truth labels. Randomly select one or more
workers from the set of n workers, with probabilities
specified by the crowdsourcing policy. Assign the task to the
selected worker(s).

5 Repeat Step 4 for all tasks in the pool.

C BASELINES
(1) Random Policy : In the random policy, all workers are

equally likely to be selected (probability 1
400 ) for any task.

(2) Greedy Optimization [27] : In this baseline, we first esti-
mate worker accuracy matrices using gold tasks in exactly
same way as we do in our algorithm. However, the optimiza-
tion is done using a bounded knapsack algorithm instead
of linear programming. This algorithm sorts the workers
in decreasing order of their “density", where density is de-
fined as the ratio of the expected accuracy of a worker and
her cost. The expected accuracy of a worker can be cal-
culated in the same way as we do for our algorithm i.e.∑
z∈{0,1} P (Z = z)∑д∈{0,1} Pz (Y = y)Âiz [y, y]. Then, the al-

gorithm assigns as many tasks as possible to the highest
density worker without violating the diversity constraint. If
T is the total number of tasks to be assigned, then a worker
can be assigned at most βT tasks. Note that, unlike our algo-
rithm, this baseline has to know the total number of tasks
in advance to enforce diversity constraint. Once this worker
has reached its capacity, the algorithm starts assigning tasks
to the worker with next highest density and continues this
for all tasks. However, it may be noted that the Greedy ap-
proach was originally proposed for a bit different setting,
in which there is an overall crowdsourcing budget and the
goal of the requester is to get as many tasks done as pos-
sible in that budget, maximizing total utility/accuracy and
respecting work limits of the workers.
To give extra advantage to the baselines, we don’t put an
explicit budget constraint for them and observe whether they
can compete with the fairness and accuracy of our algorithm,
which operates under budget constraint.

D ADDITIONAL EXPERIMENTAL RESULTS
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Figure 5: Varying Nд (Number of gold tasks), Settings : Non-Uniform Costs, β = 0.01,α = 0.01,C = 2.5
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Figure 6: Varying α (Fairness Constraint), Settings : Non-Uniform Costs, β = 0.01,Nд = 20,C = 2.5
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Figure 7: Varying Nд (Number of gold tasks), Settings : Non-Uniform Costs, β = 0.005,α = 0.01,C = 2.5
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Figure 8: Varying α (Fairness Constraint), Settings : Non-Uniform Costs, β = 0.005,Nд = 20,C = 2.5
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