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ABSTRACT
Phylogenetic (hybridization) networks allow investigation of evolu-

tionary species histories that involve complex phylogenetic events

other than speciation, such as reassortment in virus evolution or

introgressive hybridization in invertebrates and mammals. Retic-

ulation networks can be inferred by solving the reticulation net-
work problem, typically known as the hybridization network prob-
lem. Given a collection of phylogenetic input trees, this problem

seeks a minimum reticulation network with the smallest number of

reticulation vertices into which the input trees can be embedded

exactly. Unfortunately, this problem is limited in practice, since

minimum reticulation networks can be easily obfuscated by even

small topological errors that typically occur in input trees inferred

from biological data. We adapt the reticulation network problem

to address erroneous input trees using the classic Robinson-Foulds

distance. The RF embedding cost allows trees to be embedded into

reticulation networks inexactly, but up to a measurable error. The

adapted problem, called the Robinson-Foulds reticulation network
(RF-Network) problem is, as we show and like many other problems

applied in molecular biology, NP-hard. To address this, we employ

local search strategies that have been successfully applied in other

NP-hard phylogenetic problems. Our local search method bene-

fits from recent theoretical advancements in this area. Further, we

introduce in-practice effective algorithms for the computational

challenges involved in our local search approach. Using simulations

we experimentally validate the ability of our method, RF-Net, to
reconstruct correct phylogenetic networks in the presence of error

in input data. Finally, we demonstrate how RF-networks can help

identify reassortment in influenza A viruses, and provide insight

into the evolutionary history of these viruses. RF-Net was able to

estimate a large and credible reassortment network with 164 taxa.
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1 INTRODUCTION
Phylogenetic species trees have made significant inroads into en-

riching our fundamental knowledge of how various groups of

species have evolved through a tree-like structure of ancestry

and descendant relationships representing the events of specia-

tion. Studying phylogenetic trees is full of complexities that origi-

nate from trying to understand the general evolutionary principles

of how species have evolved to be the way they are today. The

potential applications of such studies are far-reaching, affecting

conservation biology, ecology, agriculture, drug development, epi-

demiology, and pandemic preparedness [18, 19, 22, 28, 37]. However,

species trees have remained imprecise tools when complex evolu-

tionary processes are involved, requiring more complex statistical

evolutionary models that allow researchers to fully comprehend

evolutionary principles.

Phylogenetic networks present a monumental leap in modeling

evolutionary species histories by adapting the standard presenta-

tion of these histories, i.e., rooted binary trees, to also to include

reticulation events. In contrast to speciation events that are repre-

sented by speciation vertices with at most one parent vertex and two

children vertices, reticulation events are represented by reticulation
vertices that have two distinct parent vertices and only one child

vertex. An example of a reticulation network is depicted in Figure 1

(right). Reticulation vertices enable representation of various ma-

jor evolutionary events other than speciation, like hybridization,

recombination, horizontal gene transfer, and gene duplication [25].

Another significant event that cause reticulate evolution is reas-

sortment. These events characterize the evolution of influenza A

viruses (IAVs) – single-stranded segmented RNA viruses – where

two viruses may infect the same cell and exchange complete gene

segments. Though reassortment is a major driver of IAV evolution,

events that generate lineages of viruses with sustained transmis-

sion are relatively infrequent. Further, reassorted viruses may have

pandemic potential [16, 31, 42] and, consequently, techniques that

Session 3: Biological Networks ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA.

77

https://doi.org/10.1145/3307339.3342151
https://doi.org/10.1145/3307339.3342151
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3307339.3342151&domain=pdf&date_stamp=2019-09-04


identify reassorted viruses and their evolutionary history can facil-

itate pandemic preparedness efforts.

Computing accurate reticulation networks in practice is still a

remarkably young research area, yet we have already seen credible

studies involving such networks. For example, Wen et al. [48] were

able to develop new reticulation network methods to quantify in-

complete lineage sorting and introgression during the evolution of

the malaria vector, Anopheles gambiae: in doing so, they identified

hybridization events that traditional approaches omitted. Similarly,

Willyard et al. [50] were able to use traditional phylogenetic meth-

ods and network approaches to address questions of hybrid ances-

try in a natural species. However, many unknowns still remain in

the challenging task of computing biologically credible networks;

specifically, estimating phylogenetic networks for large numbers

of taxa or for inferring large numbers of reticulation events [48].

In this work we focus on phylogenetic networks within the

hybridization framework pioneered by Baroni et al. [4]. Given a

collection of rooted input trees the networks in the hybridization

framework should allow each input tree to be embedded in them;

i.e., the networks display input trees – see Figure 1 for an example.

While this framework was originally introduced to model hybridiza-

tion events, another type of reticulation events – reassortment

in influenza A viruses – can be modeled using the hybridization

framework. Hereafter, when we refer to reticulation networks we
are considering hybridization and reassortment networks within a

hybridization framework.

The natural parsimonious problem in the hybridization frame-

work, the minimum reticulation network problem, seeks a reticula-

tion network with the smallest number of reticulation vertices that

displays each input tree. This problem has been well-researched

from the theoretical-algorithmic perspective; however, the phy-

logenetic community lacks scalable practical algorithms for this

problem, likely due to its advanced complexity [10].

Further, while reticulation networks can be powerful tools [2],

in practice the original definition of the minimum reticulation net-

work problem is mostly prohibitive for the accurate inference of

such networks, as they are dependent upon correct reconstruc-

tion of input trees. Evolutionary biologists have long realized that

phylogenetic trees are prone to small topological error (driven by

sampling error or the reconstruction method used) [44], and the

inference process of minimum reticulation networks is sensitive to

such error. Hence, in practice, small topological error in the input

trees can largely obfuscate the inference of their corresponding

median hybridization networks.

In this work, provided with the template of the minimum reticu-

lation network problem, we introduce a new adapted problem, re-

ferred to as RF median reticulation network problem, that addresses

error in input trees.

Related work. The problem of phylogenetic network inference

has been extensively studied from a multitude of application per-

spectives and concepts as well as input data types (see, e.g., [25, 26]

for a comprehensive review and [15] for a hybridization-focused

survey). The hybridization network perspective was formulated by

Baroni et al. [4] and has quickly become one of the central topics

in phylogenetic network research. From the algorithmic perspec-

tive the problem of finding the most parsimonious reticulation

(hybridization) network was shown to be NP-hard [10] but fixed

parameter tractable [9]; consequently, multiple parametrized algo-

rithms have been proposed for the exact computation of reticulation

networks [1, 49] as well as a reportedly fast approximation algo-

rithm [27]. It is important to note that the listed algorithms are

exponential-time algorithms in terms of the number of reticulations

in the resulting network.

The exact reticulation network approach assumes that the input

trees are correct and should be displayed in the optimum network

as is. This assumption is not always practical; therefore, in recent

years a series of methods have been proposed to address this short-

coming by incorporating the incomplete lineage sorting model (ILS)

into the hybridization framework. Specifically, a maximum parsi-

mony approach was explored in [51] and several other proposed

approaches use a probabilistic paradigm (e.g., [36, 43, 52]).

The parsimonious approach from Yu et al. [51] extended the clas-

sical deep coalescence measurement from [33] to the reticulation

networks model. Yu et al. presented a local search heuristic with a

goal to locate a network minimizing the overall deep coalescence

criterion. This local search procedure is an extension of the classical

local search strategy employed for phylogenetic tree inference [5].

The search is conducted over the space of all phylogenetic networks

that is represented by a solution graph and can be described as fol-

lows: (i) the solution space is partitioned into layers of phylogenetic
networks having the same number of reticulation vertices; (ii) each

layer is represented as a graph where the networks are vertices,

each vertex is decorated with the cost towards input trees (the deep

coalescence cost in case of the Yu et al. study) for the corresponding

network under the given problem instance, and an edge is drawn

between a pair of vertices when the networks they represent can

be transformed into each other by an edit operation of choice; fi-
nally, (iii) an edge is drawn between a pair of vertices located in

two neighboring layers when the corresponding networks can be

transformed into each other by an edit operation of choice that

changes the number of reticulation vertices by one.

The local search on the solution space then starts with an initial

network (vertex) on layer i and iteratively walks through the layer

– by moving to the neighboring vertex/network with smallest cost

on each iteration – until a local minimum is reached. At this point

the procedure examines the neighbors of the locally minimum

network that are located in layer i + 1; a best network out of these

neighbors is chosen to be the initial network for layer i + 1 and

the procedure is repeated for the new layer. The procedure stops

when a local minimum is found on a layer with r reticulations,

where r is specified by a user. The natural starting point for the

procedure is layer 0 – the layer of phylogenetic trees – as the

existing supertree/median tree methods can be used to compute

the starting tree.

Note that Yu et al. proposed their own edit operations on net-

works to design the local search heuristic. Later, similar edit opera-

tion were used in e.g., [53] and [43]. One important property that

was, however, not addressed in regards to these operations is the

connectedness of the space of phylogenetic networks in general as

well as of the layers of phylogenetic networks.

Recently Bordewich et al. [8] addressed this issue by introducing

an edit operation on networks, subnet prune and regraft (SNPR),
that generalizes the classical rSPR edit operation defined on trees.
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Further, Bordewich et al. proved that the general space of networks

is connected under this operation and that layers of networks with

a fixed number of reticulations are connected under SNPR when

restricting the networks to several well-studied subclasses; i.e., tree-

based, reticulation-visible, and tree-child networks. Perhaps, most

notably, tree-child networks represent a restricted class of networks

where each vertex is required to have at least one descendant (a

taxon) reachable by a reticulation-free path; this requirement can

be interpreted as follows: species involved in a reticulation (hy-

bridization/reassortment) event must leave a trace (a non-reticulate

descendant) among the extant taxa used in the analysis. Expanding

on Bordewich et al. results, more recently Janssen et al. [29] proved

that general layers of phylogenetic networks (not restricted to any

particular subclass) are also connected under SNPR.

Studies of the evolution of viruses (both clonal and non-clonal)

have led to a proliferation of techniques to detect reticulation events.

Broadly, these are categorized as phylogenetic or non-phylogenetic

methods. The phylogenetic methods typically search for incon-

gruence in the topology of inferred trees derived from different

gene segments (e.g., [6, 24]), and the non-phylogenetic methods

search for homoplasies (e.g., recombination breakpoints) in the se-

quence alignment (e.g., [7]). These approaches have had great utility

in the detection of novel lineages, highlighting how viruses may

co-circulate affecting epidemiology, but they do not provide a com-

prehensive evolutionary picture. To overcome this issue, a recent

approach based upon the mathematical property of homology was

proposed [13]. This method rapidly, and accurately, identified large

scale patterns of reticulation during the evolution of IAV and HIV.

The method was additionally applied to a number of flaviviruses

(Dengue virus, West Nile virus, and Hepatitis C virus) and found

little to no evidence for reticulation during evolution, aping prior

empirical data. Though this method has a number of strengths, it

represents a dramatic departure from the phylogenetic network

paradigm.

Our contribution. To incorporate error correction in the frame-

work of reticulation (hybridization) networks, we introduce a cost
of embedding an input tree into a candidate network. Such a cost

would measure how close an input tree is to be displayed in the

network by comparing it to each displayed tree. Generally, one can

use any established tree-comparison measurement to define the

embedding cost. In this work, we focus on perhaps the most popular

measurement, the Robinson-Foulds (RF) distance [41]. In addition

to the wide use, it is an appealing choice due to its sensitivity to

errors [45].

The embedding cost allows us to formulate the network inference

problem as a median network problem, where one wants to find a

network minimizing the sum of embedding costs over all input

trees subject to a constraint on the maximum number of reticulation

vertices. Similarly to the original error-free reticulation problem and

most of the studied supertree/median-tree problems, the median RF

network problem is NP-hard. Fortunately, in addition to the benefits

of error-correction, having a cost associated with each phylogenetic

network allows us to employ the search heuristic as described in

the related work. Note that in the original hybridization framework,

the requirement that input trees have to be exactly displayed in a

solution renders local search strategies infeasible.

In contrast to the search heuristic of Yu et al. [51], we employ the

recently introduced SNPR edit operation to shape the local search

space. Further, our method can operate in two modes: (i) estimation

of a general median RF network and (ii) estimation of a tree-child

median RF network. The second mode benefits applications where

the tree-child property can be expected; swine IAV serve as a good

example of such applications, as viruses involved in reassortment

events typically represent successful virus lineages. These lineages

are generally the major detectable genetic clades of endemically

circulating viruses, and routine surveillance such as that conducted

by the USDA Influenza A Virus in Swine Surveillance system can

be expected to sample both the putative parental strains and the

child strains [3, 54].

To make our method applicable for larger network inference

instances, we present two major optimized algorithms that enable

(i) fast computation of the embedding costs and (ii) fast traversal

of SNPR neighborhoods for local search respectively. We argue

that the problem of finding the RF embedding cost between a tree

and a network is NP-hard even for tree-child networks; in spite of

that, we design a practical algorithm parametrized by the number

of reticulation vertices in the candidate network. This algorithm

successfully employs the fact that phylogenetic networks, as di-

rected acyclic graphs, have the natural ordering of vertices, known

as the topological order. Further, we prove an important structural

property of the SNPR neighborhood of a network in regards to

the embedding cost. More precisely, we show that “close” SNPR

edit operations cannot change the RF embedding cost much. This

property allowed us to design a faster algorithm for SNPR neighbor-

hood traversal that, empirically, demonstrated significant savings

in computational time.

In a simulation setting, we show that RF-Net can reconstruct

correct phylogenetic networks from erroneous input trees with high

probability. Our simulation setting follows the popular study by

Solís-Lemus et al. [43] in terms of simulating the model networks.

However, while Solís-Lemus et al. constraint their study to the

so-called level-1 networks, we adopt a more general as well as a

larger-scale approach; in particular, for convenience, we constraint

the study and our method to the tree-child case. Additionally, we

demonstrate the advanced scalability of our method in comparison

with its closest counterpart – MP-PhyloNet by Yu et al. [51].

Finally, we apply our method to the evolution of influenza A

virus in swine to demonstrate its significance and utility in analyz-

ing a biologically relevant number of taxa. IAV gene tree estimation

may be error-prone due to sequencing methods (e.g., nanopore

sequencing) or tree reconstruction (e.g., error in alignments) and

therefore our RF-network estimation approach can help to recon-

struct a more accurate picture of evolutionary history. Indeed, the

results of our analysis confirm existing knowledge on reassortment

events in IAVs and suggest additional insights into the reticulate

evolution of the viruses.

Availability. RF-Net is available online: http://genome.cs.iastate.

edu/ComBio/software.htm.

2 BACKGROUND
A (phylogenetic) network is a directed acyclic graph (DAG) with a

designated root vertex of in-degree zero and all other vertices are
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Figure 1: From left to right: examples trees G and T , and an example network N . N contains one reticulation vertex r – the
reticulation edges are shown in red. Note that the treeG is displayed in N (by removing edge (p2, r )). Further, while second tree
T is not directly displayed in N , N displays a local modification of T indicated via the dashed edge.

either of in-degree one and out-degree two (tree vertices), in-degree
two and out-degree one (reticulation vertices), or in-degree one and
out-degree zero (leaves). The networks are planted implying that the

root has out-degree one. An example network with one reticulation

vertex r is depicted in Figure 1 (right).

Let N be a network, then its vertices, edges, root and leaves are

denoted by V (N ), E(N ), ρ(N ) and L(N ) respectively. The number

of reticulation vertices in N is denoted by r (N ). For every vertex

v ∈ V (N ) we denote the set of children, parent(s), and sibling(s) by

Ch(v), Pa(v), and Sb(v) respectively. Note that we let reticulation
vertices to have two siblings (one based on each of the parents) and

children of reticulation vertices have no siblings. The edges in E(N )

are distinguished by the edges that are entering (i) reticulation ver-

tices (reticulation edges) and (ii) tree vertices or leaves (tree edges).
A tree-path in N is a directed path that consists only of tree edges.

A vertex v ∈ V (N ) is a descendant of w ∈ V (N ) when there

is a directed path from w to v (we consider each vertex to be a

descendant of itself);w is also called an ancestor ofv . A (hardwired)
cluster of vertex v ,Cv , is the set of leaves that are descendants of v .

A (phylogenetic) tree T is a network with no reticulation vertices.

The least common ancestor (LCA) of two vertices v,w ∈ V (T ) is the
vertex, denoted by lca(v,w), that is the farthest from the root of T
such that v andw are descendants of x . For a vertex v ∈ V (T ), Tv
denotes the subtree ofT rooted at v . For convenience, |T | := | L(T )|
is the size of T . Given a set L ⊆ L(T ), T |L denotes a phylogenetic

tree obtained by restricting T to the set of leaves L.
A tree T is displayed in a network N (with the same leaf set),

if one can remove exactly one reticulation edge from each retic-

ulation node, then remove all potentially appearing non-labeled

vertices with out-degree zero, and obtain a subdivision of T . Fig-
ure 1 demonstrates an example of treeG (left) displayed in network

N (right).

Tree-child networks. A network is called tree-child if each non-

leaf vertex has at least one outgoing tree edge (i.e., a child that is a

tree-vertex). It is easy to see that each vertex in a tree-child network

must have a tree-path going to some leaf.

Robinson-Foulds (RF) distance. Let C(T ) denote the set of clus-
ters present in a tree T ; that is, each vertex v ∈ V (T ) contributes
cluster Cv to C(T ). Then for two trees G and T with identical leaf-

sets the RF distance is defined as the size of the symmetric difference

between C(G) and C(T ) [41]:

RF (G,T ) := |(C(G) \C(T )) ∪ (C(T ) \C(G))|.

In practice, for super-tree/super-network inference one often needs

to compare two trees where one of the trees has an incomplete set

of leaves (taxa); that is, L(G) ⊂ L(T ). The standard minus-method
approach [14] allows us to extend the RF definition to this case as

follows: RF (G,T ) = RF (G,T | L(G)).

3 RF RETICULATION NETWORKS
In this section we introduce the core concepts for our method

for inference of reticulate phylogenies (involving hybridization,

reassortment, or similar biological mechanisms).

3.1 Embedding cost
To enable error-correction in input trees we define the cost of

embedding a treeG into a network N using the standard Robinson-

Foulds (RF) distance. The cost should be zero, when the tree is

displayed in the network and positive otherwise. Hence, we define

the cost as follows: let PN be a set of all trees displayed in N , then

δ (G,N ) := min

T ∈PN
RF (G,T ),

Note that the leaf-set of G should be a subset of the leaf-set of N .

As an example, consider Figure 1. The tree G in that example is

displayed in N and therefore δ (G,N ) = 0. At the same time tree

T is not displayed in the network, while a small modification of

T indicated using the dashed edge is displayed (let us denote this

modified tree as T ′
). It is then not difficult to see that δ (T ,N ) =

RF (T ,T ′) = 2.

Consider the computational problem of finding the embedding

cost given a tree G and a network N . This problem is a generaliza-

tion of the tree location problem that asks whether a given tree is

displayed in the given network; the tree location problem is known

to be NP-hard for the general class of phylogenetic networks [30]

implying that our problem is NP-hard too.

However, the tree location problem is polynomial time solvable

for popular restricted classes of networks such as tree-child net-

works [47] and reticulation-visible networks [21]. In contrast, our

embedding cost problem is NP-hard even for tree-child networks

(and therefore all broader classes of networks). This result can be
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achieved by a reduction from the classic NP-complete Independent
Set problem (for the full proof please see the appendix from the

online preprint [34]).

Finally, a network inference method takes multiple trees as an

input; thus, for a set of input trees G and a network N (with L(G) ⊆
L(N ) for all G ∈ G) we naturally define the total embedding cost

as the sum of individual embedding costs:

δ (G,N ) :=
∑
G ∈G

δ (G,N ).

3.2 RF median network
Consider the problem of inferring a reticulation network repre-

senting the evolutionary history of a species or virus strain whose

evolution involved hybridization or reassortment events. Given

genes (loci) sampled from these species and the respective gene

trees, G, it is then a natural approach to search for a reticulation

network that minimizes the sum of embedding costs of all gene

trees. However, it is also important to account for the complexity

of the network, which is represented by the number of reticula-

tions. Indeed, if we do not restrict the type of the network and

use sufficiently many reticulations then the overall embedding cost

can be drawn down to 0. However, the resulting network might

be misleading and contain too many (or too few) reticulations, for

example, individual gene trees may have errors and consequently

should not be embedded in the network exactly.

Therefore, following the approach from Yu et al. [51] and the

parsimony principle we obtain the following problem:

Problem 1. RF median network

Input: A set of input trees G and a maximum number of reticu-

lations r ;
Output: Find a network N with at most r reticulations minimiz-

ing the embedding cost δ (G,N ). Note that N should

contain all leaves (taxa) from the input trees

The computational hardness of this problem follows from the

fact that it generalizes the RF supertree problem which is known to

be NP-hard [35]. The generalization can be observed via setting r
to zero.

4 METHODS
We now present our method for computation of RF reticulation

networks and the key optimized algorithms enabling application

of our method.

4.1 Method summary
To address the hard parsimony problem from the previous section

we propose a method that incrementally searches for the “best”

networks among those with the same number of reticulations. More

precisely, we design a local search heuristic that incrementally

explores different layers of the network candidates. We denote

these layers as N0,N1,N2, . . . where N i is a layer of networks

with exactly i reticulation nodes. Our method can be summarized

as follows.

(i) Find a supertree N 0
for the input gene (locus) trees.

(ii) Add a reticulation to N 0
in the best possible way that mini-

mizes the overall embedding score. Let N 1
denote the result-

ing network.

(iii) Explore theN1 layer using the SNPR edit operations (see [8])

starting with the N 1
network.

(iv) Once the local minimum within the layer is found, repeat

steps (ii)-(iv) incrementally increasing the explored layer of

networks.

In fact, there are several termination criteria that could be pro-

posed for this technique. As suggested earlier, an upper bound r on
the number of reticulations can be specified ahead of time. Alterna-

tively, the procedure can terminate when steps (ii) and (iii) do not

improve on the best found embedding cost from the previous layer.

Additionally, a desirable feature can be to restrict the search space

to only tree-child networks. As shown in [8] the SNPR operation

guarantees connectedness of networks within layers under this

restriction.

The utility and scalability of the outlined procedure depend on

the following two advancements that we present next: (1) an opti-

mized algorithm for computation of the embedding costs and (2) an

optimized approach for the exploration of the SNPR-neighborhood.

4.2 Computing the embedding cost
A (binary) phylogenetic network with r reticulations displays an
order of O(2r ) phylogenetic trees. The definition of the embedding

cost suggests finding a displayed tree among those with the smallest

RF distance to an input tree G.
The most natural algorithm for computing the embedding dis-

tance would be to iterate through all displayed trees and compute

RF distance for each of them individually. Below we demonstrate a

substantially optimized version of this algorithm that employs the

DAG (directed acyclic graph) structure of the network.

For a fixed tree T and a network N Algorithm 1 computes the

cost of embedding T into N . For simplicity, the algorithm assumes

thatT has the same leaf-set as N ; however, it can be easily modified

for the general case when T might have incomplete taxa. For each

displayed tree in N the algorithm spends linear time (in the worst

case) to compute its RF distance to T ; thus, yielding the O(2rn)
parametrized complexity overall with n denoting the number of

leaves inN . Further, the algorithm attempts tominimize the number

of operations needed to compute the RF distance for each next

displayed tree (in the order of their enumeration). This is achieved

by selecting an enumeration scheme of the displayed trees that

respects a topological ordering of reticulation nodes. Algorithm 1

uses the dynamic Algorithm 2 as a subroutine.

We now outline the preliminaries required to understand the

algorithm. For convenience, for each reticulation node in N we

arbitrarily designate one of the parent-vertices to be the first parent
and the other – the second parent. Note that each tree displayed in

N corresponds to a choice of a single parent for each reticulation

node (the other parent edge is removed). Hence, we can enumerate

displayed trees as binary vectors of length r , where each 0/1 bit

corresponds to a choice of the first/second parent respectively for

the corresponding reticulation node.

Further, we define three functions on vertices of network N
whose values depend on the choice of a displayed tree. That is, let
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Algorithm 1 Computing the embedding cost

1: Input: tree T and network N .

2: Preprocess T to enable finding LCAs for all pairs of nodes in T in

constant time.

3: O := reversed topological ordering of vertices in N .

4: Let D be the set of vertices in N that have a directed path to a reticula-

tion vertex (i.e., all ancestors of reticulation nodes).

5: P := O [D] (ordering O restricted to D).

6: s := 0. // max cluster similarity among processed displayed trees
7: for each r -bit binary vector A in the lexicographic order do
8: // e.g., 000, 001, 010, 011, ...
9: // Note: order of bits in A reflects the order of reticulations in O .
10: If A = 00 . . . 0 then ComputeSimilarityDynamic(O, 1, A)
11: Otherwise let 1 ≤ i ≤ |V | be the left-most position in A by which

12: A differs from the previous vector in the lexicographic order;

13: Then ComputeSimilarityDynamic(P, ri , A),
14: where ri is the index of i-th reticulation in O .

15: If after the computations σ (ρ(N )) > s , then s := σ (ρ(N )).

16: end for
17: return 2 · (2 |T | − 1) − 2s . // Return the minimum symmetric difference.

Algorithm 2 Bottom-up subroutine for Algorithm 1

1: function ComputeSimilarityDynamic(Vertex orderingO , start index

j , r -bit vector A)
2: for i ∈ j, j + 1, . . . , |O | do: Node v := O [i];
3: if v is a leaf then µ(v) := leaf from T with same label as v ;
4: λ(v) := 1; σ (v) := 1.

5: else
6: Let p ∈ {0, 1, 2} be # of children of v (as determined by A).
7: if p = 1 then // Let c be the only child.
8: µ(v) := µ(c); λ(v) := λ(c); σ (v) := σ (c)
9: else if p = 2 then let c1 and c2 be children of v ;
10: µ(v) := lcaT (µ(c1), µ(c2)); λ(v) := λ(c1) + λ(c2).
11: σ (v) := σ (c1) + σ (c2) + I [ |Tµ (v ) | = λ(v)].
12: // where I in the indicator function.
13: else // p = 0

14: µ(v) := null; λ(v) = 0;σ (v) = 0.
15: // In lines 10, 11 we extend notation with
16: // lca(x, null) := x and |T

null
| := −1.

17: end if
18: end if
19: end for
20: end function

S be a tree displayed in N and let F be a set of reticulation edges

that should be removed to display S . Consider the (not properly
phylogenetic) tree N ′

:= N − F that might contain additional non-

labeled leaves and let N ′
v denote the subtree of N ′

rooted at v for

each v ∈ V (N ′) = V (N ). Our functions with regard to displayed

tree S are defined as follows:

(i) µ : V (N ) → V (T ) with µ(v) = null if L(N ′
v ) = ∅ and µ(v)

representing the LCA of L(N ′
v ) in T otherwise;

(ii) λ : V (N ) → N with λ(v) = | L(N ′
v )|;

(iii) σ : V (N ) → N with σ (v) representing the number of com-

mon clusters between N ′
v and Tµ(v).

Observe that savings in Algorithm 1 are achieved by only per-

forming the sub-routine (Algorithm 2) on the part of the network

affected by the change of the displayed tree, which is controlled via

a topological ordering.

4.3 Exploring the SNPR-neighborhood
Our local search method is based on the SNPR edit operation intro-

duced by Bordewich et al. [8]. SNPR is an extension of the classical

subtree prune and regraft (rSPR) edit operation on trees. The orig-

inal definition of SNPR has three subtypes that either (i) add a

reticulation, (ii) remove a reticulation, or (iii) keep the same num-

ber of reticulations but change the network structure. Here we focus

on the third subtype, since it allows the local search to traverse a

layer of phylogenetic networks Nr [29].

Similarly to SPR, SNPR acts on two edges (u,v) and (w,x); hence,
the size of the SNPR neighborhood of a network N with r reticula-
tions is bound by the square of the number of edges in N , which

is O(n2 + r2). The basic concept is that one needs to process each

network N ′
in the SNPR neighborhood of N and find a one that

minimizes the embedding cost of the input trees – this comprises a

local search iteration (within a layer). Indeed, if the best embedding

cost in the SNPR neighborhood of N is not lower than δ (G,N ),

then the local search within the layer terminates.

In this section we describe a structural property of the SNPR

neighborhood of a network that allows us to optimize the local

search iteration. To do that we consider “close” SNPR moves (SNPR

operations that regraft the same edge (u,v) onto incident edges

(y,w) and (w,x)) and prove that the embedding costs computed

for networks obtained by some SNPR moves provide lower bounds

for embedding costs for networks obtained by “close” SNPR moves.

Note that [29] also explores the concept of “close” moves and they

refer to such operations as distance-1 moves.

4.3.1 Structural properties. For a network N with r reticulations
the SNPR operation that does not affect the number of reticulations

is defined as follows:

Definition 4.1 (SNPR). Let (u,v) and (w,x) be two edges such

that u is a tree vertex not equal to ρ(N ) andw is not a descendant

of v . Then SNPR acting on these two edges is performed by remov-

ing edge (u,v), contracting u, subdividing edge (w,x) with a new

vertex u ′, and adding an edge (u ′,v). We denote this operation by

SNPR((u,v), (w,x)).

Recall that a NNI operation defined on trees takes two edges

(u,v) and (w,x) such thatw is a child ofu (w , v) and interchanges
the subtrees rooted at vertices x andw .

We now formulate our main proposition.

Proposition 4.2. Let N be a network and let N ′ = SNPR((u,v),
(w,x)) be one SNPR away from N .

(i) If w is a tree vertex, let y denote its parent. Further, let N ′′ =

SNPR((u,v), (y,w)) andT ′ be any tree displayed in N ′. Then
there exists a treeT ′′ displayed in N ′′ such thatT ′′ is at most
one NNI away from T ′ (i.e., either T ′′ = T ′ or T ′′ can be
obtained from T ′ by one NNI).

(ii) Ifw is a reticulation vertex, let y and z denote its parents. Let
N1 = SNPR((u,v), (y,w)) and N2 = SNPR((u,v), (z,w)). If
treeT ′ is displayed inN ′ then exists a treeT ′′ displayed either
in N1 or N2, such that T ′′ is at most one NNI away from T ′.

To understand the applicability of the above proposition note

the following:

Observation 1. Let G and T be two trees over the same leaf-
set and let T ′ be a tree one NNI away from T . Then |RF (G,T ) −
RF (G,T ′)| ≤ 2.

Hence, we can adapt Proposition 4.2 as follows:
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Algorithm 3 SNPR neighborhood traversal

1: Input: Network N and input trees G.

2: Output: A network N ′
in the SNPR neighborhood of N minimizing

the embedding cost of G.

3: d := δ (G, N ); N ′
:= N .

4: for each (u, v) in N where u is a tree-vertex and u , ρ(N ) do
5: O := a topological ordering of vertices in N (without descendants

of v );
6: L := a vector of length |O | with initial ∞ values.

7: // For each vertex w in O apart from the root, L[w ] denotes a lower
bound on the embedding score δ (G, SNPR((u, v), (y, w ))) where y is a
parent of w .

8: for each vertex w in O and each child x of w do
9: if L[w ] − 2 · | G | ≥ d then
10: // Skip the computation
11: L[x ] := min(L[x ], L[w ] − 2 · | G |).
12: else
13: Nx := SNPR((u, v), (w, x )) on N .

14: L[x ] := δ (G, Nx ). // Compute the distance.
15: If L[x ] < d then d := L[x ] and N ′

:= Nx .
16: end if
17: end for
18: end for
19: return N ′

Corollary 4.3. Let N be a network, N ′ = SNPR((u,v), (w,x))
be one SNPR away from N , and G be a tree with L(G) ⊆ L(N ).

(i) Ifw is a tree vertex with parenty, then forN ′′ = SNPR((u,v),
(y,w)) | δ (G,N ′′) − δ (G,N ′)| ≤ 2.

(ii) If w is a reticulation vertex with parents y and z, then for N1

= SNPR((u,v), (y,w)) and N2 = SNPR((u,v), (z,w)) either

| δ (G,N1) − δ (G,N ′)| ≤ 2 or | δ (G,N2) − δ (G,N ′)| ≤ 2.

4.3.2 Proposed optimizations. We now describe a structured ap-

proach for traversing an SNPR-neighborhood of a network and

demonstrate how Corollary 4.3 allows us to save computation time.

For each fixed edge (u,v), where u is a tree vertex and u , ρ(N ),

we traverse all edges (w,x) on which edge (u,v) can be regrafted in

a topological order. This allows us to employ the result from Corol-

lary 4.3, since when processing an edge (w,x) the parents edges
ofw have been already processed. For convenience, we will refer

to δ (G, SNPR (u,v), (w,x)) as an embedding distance on edge (w,x).
Given an embedding distance on edge (y,w) (and (z,w) if exists)

Corollary 4.3 gives us a lower bound for the embedding distance on

edge (w,x); therefore, if this lower bound is larger than or equal to

the current lowest embedding distance, we can skip computation of

the embedding distance for edge (w,x). Algorithm 3 showcases this

idea in more details. The algorithm keeps track of lower bounds on

embedding distances for each vertexw as described above.

4.3.3 Moving between layers. Previously in this section we focused

on the subtype of SNPR operation that does not change the number

of reticulations. However, the described optimization strategy can

be easily adapted to the SNPR subtype that increases the number

of reticulations by 1. This would allow us to optimize the steps of

moving to the next layers in the local search procedure.

4.4 Maintaining the tree-child property
As mentioned earlier, our method can operate in two modes: (i)

estimation a general median Robinson-Foulds network and (ii) es-

timation of a tree-child median Robinson-Foulds network. For the

latter option we constrain the solution space for the local search

procedure to the tree-child networks only. This constraint requires

a modification of Algorithm 3. More precisely, on line 15 of that

algorithm one needs to verify whether SNPR((u,v), (w,x)) on N
results in a tree-child network prior to updating N ′

(i.e., if Nx is

not tree-child, then we do not update N ′
and d).

Such a tree-child verification step can be carried out in constant

time by observing the following.

Proposition 4.4. Let N be a tree-child network and let Nx be a
network resulting from SNPR((u,v), (w,x)) on N . Additionally, let
y denote the sibling of v and let z denote the parent of u (they are
fixed since u must be a tree vertex). Then Nx violates the tree-child
property if and only if one of the following statements holds:

(i) v and x are reticulation vertices.
(ii) z and y are reticulation vertices.
(iii) z is a tree vertex with children {u, t}, and t and y are reticu-

lation vertices.

5 SIMULATION STUDY
To demonstrate the ability of our proposed method to reconstruct

correct phylogenetic networks in the setting of erroneous input

trees, we devise an experiment on simulated data. Additionally, we

study the scalability of our method.

5.1 Simulation setting
Model network simulation. Similarly to Solís-Lemus et al. [43]

we first generate a random phylogenetic tree via a coalescent pro-

cess with constant population size. Then we randomly choose

r ∈ {2, 3, 4} pairs of edges to subdivide and add a reticulation

edge between them (that is, we introduce r reticulation vertices).

Note that for convenience of conducting the experiments and their

analysis we constraint the resulting network to be tree-child as

well as time-consistent (TCTC network). Time-consistence is a quite
intuitive notion which implies that it is possible to assign dates to

each vertex in the network such that (i) for each tree edge the date
assigned to the parent is strictly larger than the date of the child,

while (ii) the end-nodes of each reticulation edge have the same date

assigned to them (note that not all networks are time-consistent).

Simulating input trees. Given a network N with r ∈ {2, 3, 4}

reticulations we then randomly generate 50 trees that are displayed

in that network. That is, for each reticulation vertex we randomly

choose one of the incoming reticulation edges to be removed and

after suppressing redundant nodes, we obtain a binary phylogenetic

tree displayed in N .

Further, we introduce errors to the generated trees. Using the

classical approach, we define errors in terms of nearest neighbor
interchange (NNI) edit operations. That is, on each generated input

tree we perform up to three NNIs on randomly chosen edges. We

perform that step such that, in expectation, 80% of trees will have

at least one NNI error, ≈ 50% of trees will have at least two NNI

errors, and ≈ 25% of trees will have three NNI errors. In doing so,

we obtain 50 input trees with a quite high level of errors.

Networkmethods setting.We evaluate the accuracy and scalabil-

ity of our method (RF-Net) in comparison to the deep coalescence

based network inference method by Yu et al. [51]. The Yu et al.

method is available as a part of the popular PhyloNet package [46]
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Figure 2: The comparison in terms of the error-rate, measured as an average gRF distance to the true model networks (left two
plots), and the median runtime (right two plots) between RF-Net and MP-PhyloNet.

and we refer to it as MP-PhyloNet. We chose MP-PhyloNet since

it is most closely related to RF-Net among the currently available

methods for inference of reticulation (hybridization) networks; fur-

ther, MP-PhyloNet was reported to be the most scalable network

inference method in [23], which allowed us to conduct studies of

larger scale. RF-Net was implemented in Java (as is PhyloNet) and

was executed in this study in the tree-child mode, given that model

networks are TCTC.

The default setting for MP-PhyloNet is to run 5 independent

attempts of local search heuristic on the same dataset. However,

given that MP-Phylonet was generally slower than RF-Net, we

selected the option to run a single attempt. To improve the accuracy

of MP-PhyloNet, we increased the number of samples the method

draws from the network-neighborhood in each local search step

from 100 to 200 for input trees with 20 taxa and from 100 to 400

for input trees with 40 taxa. This improved accuracy beause MP-

Phylonet does not inspect the whole neighborhood of a candidate

network, as is performed by our method, but only a sampled subset

of the neighborhood.

Analogously, while in the default mode RF-Net uses up to 5

independent attempts to find a local minimum within each layer

of networks, for our simulations we constrained the method to

perform a single attempt.

Both methods were executed with the upper bound on the num-

ber of reticulations to be the true number of reticulations, r . A time

limit of 10 minutes was set for running these methods. The study

was conducted under Windows 7 on an Intel 2.5GHz CPU.

Inferred network validation. To estimate the accuracy of the

two methods, we compare the computed networks with the true

model network. We use one of the simplest network comparison

measurements, the generalized RF distance (gRF) [12], which was

proved to be a metric for the class of TCTC networks [12]. gRF

computes the symmetric difference between the sets of hardwired

clusters between two networks.

5.2 Simulation results
Overall, we used 6 different settings with the number of taxa n ∈

{20, 40} and number of reticulations r ∈ {2, 3, 4}; for each such

setting 100 independent model networks were generated and RF-

Net and MP-PhyloNet were executed on 50 erroneous input trees

generated for each of these networks. We report the accuracy (error-

rate) and the median runtime for each of the 6 settings.

The results are presented in Figure 2. In spite of the fact that

MP-Phylonet only inspects a subset of network-neighbors during

each local search iteration, whereas RF-Net performs a complete

search, RF-Net outperformed MP-PhyloNet in terms of runtime.

Further, RF-Net demonstrated a much higher network recon-

struction accuracy as compared to MP-Phylonet in this experiment.

In fact, observe that RF-Net stably demonstrated a very high preci-

sion with close to 0 error-rate. More precisely, for n = 20 RF-Net

reconstructed 93 out of 100 (for r = 2), 81/100 (r = 3), and 77/100

(r = 4) true model networks exactly. Similarly, for n = 40 RF-Net

reconstructed 96/100 (r = 2), 87/100 (r = 3), and 87/100 (r = 4) true

model networks exactly.

Technical note. Since MP-PhyloNet did not always terminate with

the desired number of reticulations, for fairness of the analysis pre-

sented in Figure 2, we omitted those attempts, where MP-PhyloNet

search did not reach the required r reticulations. Further, note that
in case a method’s runtime exceeded the specified time limit of 10

minutes it was forcedly terminated and the 10 minute runtime was

reported for that attempt (such attempts were then disregarded for

the error-rate comparison).

6 EMPIRICAL STUDY
Here we highlight the utility of our method by applying it to an

IAV dataset. In doing so, we demonstrate the ability of Robinson-

Foulds networks to provide insight into the evolutionary history of

influenza A viruses and to identify novel reassorted viruses.

Data collection. The infection of pigs with human IAV generally

results in low replication and rare pig-to-pig transmission, but

some human-origin IAV lineages have become endemic in swine.

Endemism is typically associated with marked genetic differences

from the precursor strain [32, 38], or reassortment with endemic

host-adapted viruses with the acquisition of gene segments that

facilitate replication and transmission. One such event was identi-

fied recently: a novel human seasonal H3N2 virus became endemic

in U.S. swine [39]. To study the evolution of this virus lineage, we

downloaded all swine H3N2 complete genomes (n=1336) from the

Influenza Research Database [55] on March 16 2018. We then con-

catenated the 8 genes for each strain, aligned the genomes using

MAFFT v7.294b, and the 164 genomes that contained a “human-

origin” HA gene were used for our study (n=164). To generate

the required input trees for our approach, the 164 genomes were

separated into the 8 constituent genes, and maximum likelihood

phylogenetic trees were inferred for each gene using RAxML v.8.2.3.
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We used the rapid bootstrap algorithm, a general time-reversible

(GTR)model of nucleotide substitutionwith gamma-distributed rate

variation among sites: the original and single record of a first gen-

eration “human-origin” virus (A/swine/Missouri/A01476459/2012)

was used as the outgroup.

Experimental setup. This study was conducted on a laptop with

Windows 7 and an Intel 2.5GHz CPU. Our method computed reas-

sortment network estimates with up to 9 reticulations in under 24

hours.

Due to comprehensive surveillance of IAV in U.S. swine over the

past 10 years, it is plausible that virus reassortment networks have

the tree-child property. Following reassortment, the parental viruses

are maintained, the reassortant child virus is similarly maintained,

and both these lineages are sampled. Consequently, our method was

executed in tree-child mode to produce the most credible results.

Results and Discussion. The method we develop based upon

reticulation networks demonstrates that it is possible to infer the

evolutionary history of a virus that is shaped by clonal and non-

clonal processes. Given the relative frequency of reassortment in

IAV, methods that do not consider reticulation processes may result

in error if there is a reliance on single-gene inference. Further,

we demonstrate that inference is possible on data derived from

state-of-the-art surveillance systems; specifically, our dataset was

generated by a surveillance system that produces the largest volume

of whole genome swine IAV data globally (the USDA Influenza A

Virus in Swine Surveillance System). In analyzing these data we

were able to detect and track the evolution of a novel H3 lineage in

swine as it reassorted multiple times. Notably, these viruses have

been phenotypically characterized [39], demonstrating that current

swine vaccines were likely ineffective and new formulations were

required.

In our study, we apply our method to a single lineage of “human-

origin” viruses that has at least three known reassortment events.

Our analysis recapitulates these events, each generating a virus

with a unique genome constellation that has been maintained in

the U.S. swine population (the phylogenetic network computed by

RF-Net is presented in the supplementary material from the on-

line preprint [34]). Specifically, the initial case (A/swine/Missouri/

A01476459/2012) contained a human seasonal H3 hemagglutinin

(HA), human N2 neuraminidase (NA), and internal genes from the

2009 pandemic H1N1 (H1N1pdm09). We also detected the second

generation virus (A/swine/Missouri/A01410818/2013), when the

N2-NA was replaced via reassortment by a classical swine N1-NA;

and then we successfully identified the third generation of reas-

sortants (e.g., A/swine/Minnesota/A01781222/2016) that emerged

with N2-NA derived from endemic swine 2002 N2 genes, a Matrix

(M) gene from H1N1pdm09, and the remaining internal genes from

the triple reassortant internal gene (TRIG) constellation. Given the

known minimum number of reassortment events in this virus lin-

eage, our method adequately recreates the evolutionary history of

this virus lineage.

Our method also allows the exploration of networks by manip-

ulating the maximum number of reticulations, r . Consequently,
we explored networks with r ranging from 0 to 9 and determined

whether biologically plausible reassortments were detected. In do-

ing so, we noted additional two reassortment events, both occurring

in contemporary swine strains (e.g., A/swine/Illinois/A02218757/

2017 and A/swine/Pennsylvania/A02218184/2017), where the in-

cluded parental strains were sampled in a similar temporal period,

and these reassortment events were also detected using single-gene

phylogenetic methods (i.e., topological incongruence). Notably, this

event may be a previously undetected but important reassortment

event. Specifically, strains from this lineage have maintained the

swine N2 2002 genes, but exhibit intralineage reassortment: this

reassortment event may be a factor in the recent spillover of these

viruses into the human population (see [11]).

7 CONCLUSION
Reticulation networks have advanced insight into the evolutionary

history of species shaped by complex processes other than specia-

tion. Our proposed Robinson-Foulds median reticulation networks

make the original reticulation networks more applicable in prac-

tice by addressing and accounting for error in the input trees. We

demonstrate its ability to address error in our study of IAV that

included error prone input trees. Further, our local search heuristic

allowed for the inference of networks with biologically realistic

numbers of virus taxa, and it is suitable for larger-scale studies.

To our knowledge, this is the first time network methods have

been applied to study the evolution of swine IAV. The dynamic of

non-swine IAV viruses and gene segments establishing in swine has

influenced the epidemiology of the virus so much so, that all swine

IAVs circulating in the U.S. contain genes derived from reassort-

ment between swine-, human-, and avian-origin viruses [17, 40].

In the future, methods that identify novel reassorted viruses from

swine IAV surveillance data will provide objective criteria that allow

us to select viruses for additional study, and identify viruses that

may have pandemic potential (e.g., [20]). This can aid preparedness

for new spillover events and improve biosecurity measures that

decrease viral spread and prevent establishment of novel lineages.

This will reduce the economic cost of IAV to producers, and min-

imize the potential for a swine-origin virus to spillover into the

human population.
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