Check for
Updates

Session 8: Medical Informatics |

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

PEARL: Prototype Learning via Rule Learning

Tianfan Fu”
tfu42@gatech.edu
Georgia Institute of Technology
Atlanta, Georgia, USA

Tengfei Ma
tengfei.mal@us.ibm.com
IBM Research
Yorktown Heights, USA

ABSTRACT

Deep neural networks have demonstrated promising prediction
performance on many health analytics tasks. However, the inter-
pretability of the deep models is often lacking. In comparison, clas-
sical interpretable models such as decision rule learning do not
lead to the same level of accuracy as deep neural networks (DNN)
and can also be too complex to interpret (e.g., due to large tree
depths). In this work, we propose Prototype LeArNing via Rule
Learning (PEARL), which iteratively constructs a decision rule list
to guide a neural network to learn representative prototypes that
can be explained by the associated rules. The resulting prototype
neural network inherits both the prediction power of DNNs and
interpretability associated with rules, thus can provide accurate and
interpretable predictions. Evaluated on real world health datasets,
PEARL demonstrates state-of-the-art accuracy to various DNN
baselines and interpretable results that are simpler than standard
decision trees can provide.

CCS CONCEPTS

« Computer systems organization Embedded systems; Re-
dundancy; Robotics; ¢ Networks Network reliability.

KEYWORDS

Deep Learning; Interpretable Machine Learning; Healthcare

ACM Reference Format:

Tianfan Fu, Tian Gao, Cao Xiao, Tengfei Ma, and Jimeng Sun. 2019. PEARL:
Prototype Learning via Rule Learning. In 10th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics (ACM-
BCB&AZ19), September 7-10, 2019, Niagara Falls, NY, USA. ACM, New York,
NY, USA. 10 pages. https://doi.org/10.1145/3307339.3343250

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM-BCB 19, September 7-10, 2019, Niagara Falls, NY, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6666-3/19/09....$15.00
https://doi.org/10.1145/3307339.3343250

Tian Gao*
tgao@us.ibm.com
IBM Research
Yorktown Heights, USA

223

Cao Xiao
cao.xiao@iqvia.com
Analytics Center of Excellence, IQVIA
Cambridge, USA

Jimeng Sun
jsun@cc.gatech.edu
Georgia Institute of Technology
Atlanta, Georgia, USA

1 INTRODUCTION

The rapid growth of sizes and complexities of electronic health
records (EHR) data has motivated the use of deep learning models,
which demonstrated state-of-the-art performance in many tasks,
including diagnostics disease detection [8, 35], medication predic-
tion [17, 38], risk prediction [10, 36], and patient subtyping [2, 4].
Although deep learning models can produce accurate predictions
and classifications, they are often treated as black-box models that
lack interpretability and transparency of their inner working [20].
This can limit the adoption of deep learning in medical decision
making, since in real clinical practice, clinicians often need to un-
derstand why a certain output is produced and how the model
generates this output for a given input [24].

Recently, there have been great efforts of trying to explain black-
box deep models, including via attention mechanism [8, 37], mimic
decisions of deep models with decision tree [5], visualization [29],
and explanation with prototype learning [18]. Among them, deci-
sion rule learning and prototype learning are two promising direc-
tions to achieve model interpretability.

Decision rule or rule list generates a set of rules from training
data, in which its prediction is done via checking the conditions
in each rule of the rule lists. More specifically, the results of rule
learning are rule lists composed of multiple if-then statements [1].
Those rules can be interpretable to domain experts as they are
expressed in simple logical forms [28]. However, because of such a
simple prediction model, the accuracy of rule-based models is often
lower than deep neural networks. Moreover, the interpretability
can be undermined as the depth of rules becomes very large and
thus incomprehensible to humans with tens or hundreds of levels
of the rules.

Prototype learning is another interpretable model inspired by
case-based reasoning [15], where observations are classified based
on their proximity to a prototype point in the dataset. Many ma-
chine learning models have incorporated prototype concepts [3,
13, 27], and learn to compute prototypes (as actual data points or
synthetic points) that can represent a set of similar points. However
prototypes alone may not lead to interpretability as we may still
need an intuitive way to represent and explain what a prototype is,
especially given recent deep prototype works [18].

Both approaches were explored in healthcare applications. For
example, rule learning was employed to identify how likely patients
were to be readmitted to a hospital after they had been released,
with each probability associated with a set of rules as decision

https://doi.org/10.1145/3307339.3343250
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3307339.3342159&domain=pdf&date_stamp=2019-09-04

Session 8: Medical Informatics |

criteria [6, 32]. In addition, prototypes have been selected from
actual patients and genes for clinicians to make sense of patient or
genetic data [3].

However, to our best knowledge no studies focus on combining
rule learning and prototype learning, which can provide more in-
terpretable prototypes. To combine them, we need to answer the
following questions: How to construct simple rules with accurate
prediction performance? How to produce accurate and intuitive
definitions of prototypes?

In this work, we propose Prototype LEArNing via Rule Learn-
ing (PEARL), which combines decision rule learning and prototype
learning on deep neural networks to harness the benefits of both
approaches and alleviate their shortcomings for an accurate and
interpretable prediction model. In particular, we iteratively learn
decision rules, via a data reweighing procedure using prototypes,
and then update prototypes via neural networks with learned rules.
PEARL not only generates simple and interpretable decision rules
and prototypes, but also provides neural network models which can
infer the similarity of a query to all the prototypes. To summarize,
we make the following contributions in this paper.

(1) We propose an integrative method to combine decision rules
and prototype learning, enabling PEARL to harness the power
of these methods.

(2) PEARL automatically learns prototypes corresponding to rules
in a decision rule list, which are more concise than conven-
tional decision rule learning methods and more explainable
than prototype learning methods by providing logic reasoning.

(3) On real-world electronic health record datasets, PEARL demon-
strates both accurate prediction and simple interpretation.

2 BACKGROUND

Prototype learning: A prototype is a representative of a set of
similar instances (e.g., a patient from a cohort) and can be a part
of the observed data points or an artifact summarizing a subset of
them with similar characteristics. Prototype learning is one type of
case-based reasoning approach [15] to find prototypes [3, 13, 27].
Prototype learning can be seen as an alternative approach to learn
centroids of clusters, and have been applied to few shot learning [22,
30, 31]. Let X = {x;}]_, be the data set. Various approaches have
been4 proposed to to learn a set of P prototypes {pj}jf.;l. Some
chooses actual data points as prototypes p; € X [3]. Some uses a
linear combination of the similar data points p; = X7 b;jx; [33],
or forms a Bayesian generative model [13]. In this work, we opt
to use a very general representation of p; = f;(X), where f; is
automatically learned via deep neural networks. In this case p; has
the same dimension as the learned representation of data, which is
a predefined hyperparameter.

Rule learning: Decision rule lists (or rule lists for short) are logical
statements over original features. A rule list R = (r1,r2, ..., 7k) of
length K is a K-tuple consisting of K distinct association rules,
re == zxp — qg for k = 1,...,K. Each rule r =
implication corresponding to the conditional statement, “if z, then
q” where z is premise and q is conclusion. In general, rule lists are
easy to understand. In this paper, we focus on one particular form
of decision rule list, decision tree. Decision trees can be written
in forms of a rule list, where each leaf node in a decision tree

z — gisan

224

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

corresponds to a rule in a rule list. Our rule learning was built upon
the decision tree learning method to iteratively guide the prototype
learning via neural networks. In addition, we use rule learning
methods where each individual rule consists of logic AND clauses
but not ORs.

Interpretability: Existing works define 4 aspects of interpretabil-
ity on decision rules [16]: size, length, cover, and overlap.

(1) Size. The size is defined as number of rules K in a rule list R.
The fewer the rules in a rule list, the easier it is for a user to
understand all of the conditions that correspond to a particular
class. In this paper, size is exactly the number of leaf node in
decision tree.

(2) Length. We use the term length to measure the number of clauses
in each rule r;. If the number of clauses in a rule is too large, it
will loose its natural interpretability.

(3) Cover. Cover measures the set of data points that satisfy each r;.
Cover measures how the data is divided by the rule classifiers.

(4) Overlap. Overlap between rules r; and r; is the number of points
that satisfy both rules. It measures the discriminative power of
each rule and whether decision boundary is clearly defined.

In this paper, we focus on reducing the size (by combining rule
in decision trees into prototypes) and the length (by replacing the
clauses in each rule using a prototype) of rule classifiers, while
improving on the accuracy of decision trees. We propose to use the
cover of each rule r; to re-weight data, which forces rule learning
methods to focus on more discriminative data points. By definition,
the rules derived from decision tree have no overlap. More detailed
are as follows.

3 PEARL: METHODOLOGY

Let X = {X1,---,XN} be N data samples with corresponding
weight {wy, - -+ , wn}, where each sample X}, (e.g., health records
for patient n) is a sequences of discrete event labels (such as medical
codes in electronic health records). We can represent X, as {e’, i},
where e}, € & is the i-th event label in X,, and t}, is the time
stamp of el. For each X, there is a class label y,. For example,
in health applications, y are the classification result of targeting
diseases such as the onset of heart failure (binary), or subtypes of
diabetes (multiclass). The goal of PEARL is to accurately predict
y ={y1, -+ ,y~n} and to provide explanation for such predictions.
We assume both X, and y, are categorical variables.

In this work, we aim to accurately predict y given X while
providing an interpretable representation of X and decision rules
with a deep neural network. The outputs of the network include the
class label y and a set of interpretable prototypes P corresponding
to a rule list R. The neural network is used to performing accurate
classification, under the guidance of prototypes defined by rule lists
generated from decision trees. Formally, the overall objective of
PEARL is:

Session 8: Medical Informatics |

M L1(h(X;61),P)

arg min
61,6,

+ A La(sr(h(X;61);62),y),

classification error

d(h(Xp; 01), pr)s
X) (h(Xn; 01), Pk)

distance of data to prototypes

where £1(h(X;61),P) = Z Wn ke{T.i.I.’,
XneX

and La(sg(h(X;01);62),9) = D wn La(sr(B(Xn: 01); 02), yn),
XneX

and P = f(h(X;6,),R). |P| <R,

where h(X; 01) is the learned representation of X with parameter
01. h(X; 01) is a vector and has the same predefined dimension as py,
R is the learned rule list, and P is the set of learned prototypes. A set
of prototypes P= {p1,p2, - , K} contains up to K representation
of data, which serve as prototypes. d(-,) is a distance measure; here
we use Euclidean distance. f is a fixed mapping that, given R and
learned h(X; 6;), P are determined without further learning. More
details on f can be found in Section 3.1.2. Each p; lies in the
same space as h(X; 61), and should correspond to one or more rules
in R. The second term L3 is the Cross Entropy loss for the final
prediction target, where sgr(h(X; 0;); 62) represents the predicted
label for X and y is the ground-truth label. Here 6; represents all
the model parameters for data representation learning h(X; 6;) and
0, represents those of classification model sg(-). We will drop 0s for
simplicity from now on. Minimizing £; would encourage training
examples to be as close as possible to at least one prototype in
the latent space, motivated by [18]. However, we do not use other
terms from [18] and instead introduce rule lists as the guidance for
prototype learning. Note that relative weights A; and A3 values are
chosen via hyperparameter tuning. In general we chose A3 > 15 to
emphasize the classification performance.

Since it is non-trivial to integrate rule and neural network learn-
ing, we propose a framework, PEARL, of integrating rule learning
and rule-guided prototype learning together. The main intuition is
to learn and produce prototypes that are closely related to rules in
R, with one-to-one or many-to-one rule-prototype mapping. This
serves as a constraint to make each prototype as a surrogate for
clauses in each rule, transforming “if data x satisfies z, then x = ¢"
to “if x is close to a prototype p, then x = ¢". We will discuss the
network structures in details next.

3.1 Model Architecture

The network architecture of PEARL, illustrated in Fig. 1, mainly
comprises two modules: an interpretation module with a decision
rule learning procedure, and a prediction module with a prototype
learning procedure.

The interpretation module generates a rule list given input data
X and passes it to the prediction module. The prediction module
consists of a representation network and a prototype learning net-
work. The representation network is made of a temporal modeling
component, followed by a highway network with skip connections
to alleviate the numerical issue of vanishing gradients [11]. The pro-
totype learning network learns prototypes based on both the rules
from the interpretation module and learned representation from
the representation network. PEARL then uses prototypes for the
final prediction. Moreover, the prediction module also re-weights

1

225

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

data per distance to learned prototypes. The re-weighted data is
then used to update a new rule list and new data representation,
repeating the above procedure until convergence.

Overall, the prediction module iteratively uses rule lists to guide
the prototype learning via a neural network. Then the interpretation
module iteratively re-weights the data and updates its own rule
learning. The two modules are discussed in more details below.

3.1.1 Interpretation Module: Rule Learning. The interpretation mod-
ule employs a rule list classifier (e.g., a decision tree) to provide

interpretable prototype definitions. Given data X, with weight wy,
we use a known rule list learning algorithm to generate a rule list

R, with size |R|. In general, any rule list algorithm can be adopted,
and we choose weighted decision tree method here. R is then used

to help the prediction module to define and interpret prototypes.
We will discuss prediction module next and then discuss how in-
terpretation module can benefit from the prediction module in an

iterative data re-weighting procedure.

3.1.2 Prediction Module: Neural Network. The prediction module
contains a patient representation learning and a prototype learning
network.

Data Representation via Neural Networks To encode data such
as patient longitudinal clinical events, we first embed the event
sequences using neural networks. Although we have flexible choices
of neural networks, in this paper we chose the recurrent convolution
neural networks (RCNN) [19] to learn distributed representations
of each event. In particular, we added one dimension filter and a
max-pooling layer in the CNN part, and used a bidirectional LSTM
for RNN. This representation learning procedure for patient n is
denoted as Eq. 2.

g, = RCNN(X,,) = RCNN([e}, 71, [€2, 721, - - - D), ()

where r,’f is the time difference between consecutive events, such
that & = tk — t5=1 for k > 1 and 70 = 0. By including 7 as
additional features, we incorporate the time information into pa-
tient representation learning. After RCNN we also use highway
network [39] to alleviate the vanishing gradient issue in network
training. A single layer of highway network is:

y=HxWg)oT(x,Wr)+x0(1-T(x,WrT)),

lens

®)

where x and y are input and output for a single layer, respectively.
Here O is element-wise multiplication, T is the transform gate, and
the dimensionality of x,y, H(x, W), and T(x, W) are the same.
T and H use sigmoid and Relu as activation function, respectively.
Multiple layers highway network are concatenated. Given g,, as
input of the first layer of highway networks, after multiple layers
of updating, we represent the output of the n-th sample as h(X,),
which can be simplified as

h(X,) = Highway-Network(g,,). (4)

Empirically we find the highway networks essential for prototype
qualities.

Data representation learning step is not limited to the combina-
tion or RCNN and highway network. To generalize this representa-
tion learning step, we can write

h(X;) = Encoder-NN(X},), (5)

Session 8: Medical Informatics |

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

Table 1: Notations used in PEARL.

Notation

Definition

Eel € (1,2, |E|}
tilie{1,---,T}

R=(ri,ro,++ , 1K, 10)
Xn = {ep, tps et }
Y:Yn

L1; Ly

P ={p1,p2,-* ,pk},pi € R¢

All events; Event i of subject n

Time stamp for event i

Rule list comprised of K rules, ry is the default rule

Event sequence of subject n

Labels for all data X; One label for sequence X,

Loss for prototype similarity; Cross-entropy loss for classification
K prototype vectors, prototype layer in network.

h(X) € R¢; sg(X)

Output of highway layer; Output of softmax layer

P2 H Prediction

or(X) e RK Output of prototype layer, subscript R mean it rely on rule list.
ri — Ppi One prototype p; corresponds to a rule r;
X; X0 Training subjects; Training subjects that satisfy rule r;
____RuleLearning Prototype Definitions Interpretation
: . 1 ER Module
, GeneraterulelistR ™ ———---_- \
1 0 1
———— (i}
lnpput [~ e—e—————-
data l
X Data Representation Prototype e
" Temporal Highway ! Learning P H
Modeling Network 1
1
1

Re-weighted Data

y=r=y=r=

.=

h(X,,) 2
Data Prediction
Reweighting Module

Figure 1: The PEARL architecture includes two modules: an interpretation module with a decisin rule learning procedure, and
a prediction module with a prototype learning procedure. Two modules iteratively improves each other during training,.

which is the composite of Equation 2 and 4.

Rule-guided Prototype Learning The embedded clinical events
h(Xp,) is then used in an iterative prototype learning procedure.
Specifically, we first generate prototype vectors from h(Xp). Given
arule list R, |R| = K, for each rule rj € R, we can find all positive
data samples for r;, denoted as XU, Thus we can get a pseudo
representation of r;:

1

22—('>W‘ Z wih(X;), forj=1,---,K.
X;eX0) "

X;eX0)

Pj (6)

where X0) ¢ X represent all the data samples that satisfy the j-th
rule rj. |XU)| represents its cardinality. The output of prototype
learning network is a vector of one training subject’s distance to

226

all the prototypes, as given by Eq. 7.

0R(Xn) = [d(h(Xp). p1). d(h(X,). p2). - . d(h(Xn). px)] " € RX.
™)

Here, d(v1, v2) = ||[v1 — V2|2, is the Euclidean distance of v and vy.
The dimension of o(X) depends on the number of rules. Since these
prototypes use rules as guidance, we also call them rule-prototypes,
in contrast to non-rule prototypes in [18]. The subscript R means
the function rely on rule list R.

Last, a fully-connected layer (with parameter W € , where
L is number of class) and a softmax activation are used to perform
the final classification.

RKXL

sr(Xn) = softmax(W " o(X,)), (8)

where sg(X},) is the estimated probability. We then used the stan-
dard cross-entropy loss for training.

Session 8: Medical Informatics |

3.1.3 lterative Data Reweighing. To enable the iterative learning
of prototypes and rule list, we use a data re-weighting procedure
based on results from the prediction module. We first provide some
intuition and then describe the detailed method.

Intuition Since learned prototypes are trained to represent spa-
tially close data samples from the new learned feature space h(X),
prototypes can be more discriminative and can reveal more of the
underlying data similarity relationships than the rules from the
original feature space as shown in the 2nd diagram of Figure 2. With
such a better similarity measure from the representation space, new
representations of data samples are more easily separable. More
importantly, the examples that are difficult to separate may often
be noise or low probability examples, i.e., if p(x,y) be the joint
distribution of data, a hard-separable example x; has low p(x;, y;).
Such a phenomenon has been observed previously in training sim-
pler models [9]. If we up-weight simpler samples that are more
separable, rule-list learning focuses these simpler samples more
and lead to easier training and more separation later. For examples,
the red dots shown in Figure 2 are the high-probability examples,
which should be given higher weights. We will also empirically
study data separation in experiments to justify this intuition.

Procedure The iterative learning and re-weighing procedure is
based on the similarity between data sample (such as patient sub-
jects) and prototypes. To start with, we measure the Euclidean
distance between subject h(X},) and each prototype vector py as
depicted by Eq. 9.

Snk = d(h(Xn), pi), ©)
where d is the Euclidean distance. We aim at boosting the proto-
types that have fewer subjects within its proximal neighbors in the
learned representation space, indicating these prototypes are far
away from other subjects and hence more discriminative.

For n-th data sample, we use

Sp = ank
k

to measure its similarity with prototype. Large s, indicates n-th
data is more separable, thus we should increase its weight.
Weight Normalization Here we set

(10)

(11)
After that, we do weight normalization by letting its mean equal
to 1 (by dividing its mean) and clipping the maximal and minimal
weights to be 3 and 0.33, respectively.

Wy O Sp.

Weight Smoothing If the weight changes greatly between neigh-
boring iterations, the decision tree may also change greatly. We
want to avoid this case. So after normalization, we smooth the
weight by let

wr = Ewp + (1 - Eweg, (12)
where £ is a value between 0 to 1 that balance the new weight (w;)
and the weight in previous iteration (w;—1). For example, we set
& = 0.8 in experiment.

We summarize the procedure in Algorithm 1. We alternately
optimize rule list R and prototype networks until convergence. The
convergence criteria is when the loss of the current epoch is within
a pre-specified threshold from the previous epoch.

227

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

Algorithm 1 PEARL Prototype Learning via Rule Learning
1

1: Input: Event sequence X,, = {el,tl;e2,t2;---}, label yy,
forn = 1,---,N.Let N = |X|. Hyperparameter 1, maximal
iteration number Tpyax. Initial weights are equal to 1,i.e., wp, = 1
forn=1,---,N.

2: foriter=1,---,Tpax do

3 A. weighted decision tree: Find rule R = {ry,r2,- -, } based
on {X1,---,Xn} and corresponding weight {wy,--- , wn}.

4 B. prototype neural network: Construct and train prototype

neural network (Section 3.1), based on {Xj,--- ,Xn} and R =
{r1,r2,- -+, }. Prototype is built based R.

5 C. Data Reweighing: Reweigh data according to Eq. 11. Per-
form weight normalization and smoothing (Eq. 12).

6: end for

7: Output: rule list R = {rq,r2,---,}, prototype based on R,
trained neural network.

Inference Procedure for New Samples For a new subject Xpew =
{elew» €Zew- - - - }» PEARL will generate two outputs. First is the pre-
dicted probability for classification, i.e., the output in softmax layer,
SR(Xnew) in Eq. 8. Second, we obtain the output of prototype layer,
i.e., 0(Xpew). As it indicate the similarity between the current ex-
ample and prototypes by their Euclidean distance, the new subject
can be explained by the characteristics of its closest prototype.

4 EXPERIMENT
4.1 Experimental Setup

We evaluate PEARL model by comparing against other baselines
on two tasks: heart failure (HF) detection and mortality prediction
on two EHR datasets. Models are implemented by Pytorch. All
methods are trained on a laptop with 8GB memory.

Dataset Description To evaluate the performance of PEARL, we
conducted experiments using the following real world datasets. The
statistics of the datasets are summarized in Table 2.

Heart Failure (HF) Data: The HF dataset is extracted from a propri-

etary EHR warehouse ! where subjects were generally monitored
over 4 years. The HF cohort includes 2, 268 case patients and 14, 526
matching controls as defined by clinical experts. The criteria for
being patients include 1) ICD-9 diagnosis of heart failure appeared
in the EHR for two outpatient encounters, indicating consistency in
clinical assessment, and 2) at least one medication was prescribed
with an associated ICD-9 diagnosis of heart failure. The diagnosis
date was defined as its first appearance in the record. These criteria
have also been previously validated as part of Geisinger Clinical
involvement in a Centers for Medicare and Medicaid Services (CMS)
pay-for-performance pilot [26]. For matching controls, a primary
care patient was eligible as a control patient if they are not in the
case list, and had the same gender and age (within 5 years) and the
same PCP as the case patient. More details could be found in [34].
MIMIC-III Data: We use the MIMIC III data for evaluation?. MIMIC
III was collected on over 58,000 ICU patients at the Beth Israel
Deaconess Medical Center from June 2001 to October 2012 [12]. We

!Data source is anonymized for blind review.
Zhttps://mimic.physionet.org/

https://mimic.physionet.org/

Session 8: Medical Informatics |

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

[] E ..

° o o® ° ¢ ..
: i e o i+1
E_ _____ ?___"2 —) . —) _e.. & . ,_._"rl
E (] ° E (]

o o, o
i i+1
X r X ry

Figure 2: Illustration of the process in which prototypes and decision rule learning affect each other via up-weighting more
discriminative samples (shown as bigger red dots). Best viewed in color.

Table 2: Basic statistics of datasets. Heart Failure and MIMIC-
III (mortality prediction).

Dataset Heart Failure | MIMIC-III
cases 2,268 2,825

controls 14,526 4,712

visits per patient 19.7 2.7

clinical variables per patient 41.0 21.6

unique clinical variables 1,865 942

clinical variables per visit 2.1 11.6

only included patients with at least two visits in our experiment,
resulting in a total of 7,537 ICU patients.
Baselines We consider the following baseline algorithms.

e Decision Tree: The original feature contains temporal informa-
tion, and decision tree cannot handle this case. Thus, we use
aggregate feature as the input feature for decision tree. That is,
for each patient, we have a fixed size vector that has binary value
(0 or 1). The size is equal to number of unique clinical variables.
If the i-th clinical variable occurs in any visit of the patient’s
history, the i-th value is equal to 1 and 0 otherwise. Thus, each
clinical variable corresponds to a feature in decision tree and only
has 2 states, “exists” or “don’t exist”. We use scikit [25] package
in Python, which support decision tree with weighted samples.

o Prototype Learning (without rules) [18]: RCNN+prototype (with-
out rule). Prototypes are randomly initialized.

e RNN (Doctor-Al) [7]: RNN+softmax. It concatenate multi-hot
vector with a difference of time stamp as input feature. A softmax
layer is added after bi-LSTM.

o RCNN: CNN+RNN+softmax. RCNN uses 1 dimensional filter, a
max-pool layer and bi-LSTM, followed by a softmax layer.

Evaluation Strategies We randomly split dataset 5 times and re-
peat the experiments 3 independent times with different random
seeds. For each split, we divide the dataset into training, validation
and testing setina 7 : 1 : 2 ratio. Then we report the mean and
standard deviation of results (both accuracy and run time). To mea-
sure the prediction accuracy, we used the area under the receiver
operating characteristic curve (ROC-AUC). For rule learning, we

228

report the average results of multiple runs. After tuning, we set
A1 = 1and A2 = le-3. To initialize embeddings, we use window
size of 15 for word2vec [23] and train medical code vectors of 100
dimensions on each training data, following [21]. For prototype
learning, we use the same number of prototypes with PEARL to
make sure that the parameter numbers are the same. For the RNN
model, we implemented a bidirectional-LSTM. For the RCNN model,
the number of filters for CNN is 30, stride is 1, and the windows size
is 1. We add a max-pooling layer following convolution with pool
size (5,1). PEARL uses the parameter of RNN and CNN in RCNN
model to get a warm start. In PEARL, RCNN of previous epoch can
be used as warm start for current epoch. For the highway network,
the number of layers of highway network is set to 2. Training is
done through Adam [14] at learning rate le-1. The batch size is set
to 256. The threshold in convergence criteria is set as 0.001. All the
hyperparameters are chosen via tuning against validation set.

We fix the best model on the validation set within 5 epochs and
report the performance in the test set.

4.2 Performance Comparison

Prediction accuracy: We first report the prediction performance.
Table 3 shows PEARL has the highest AUC performance among all
methods. As for the baseline models, the rule learning methods
(decision tree) have the lowest AUC because it classifies based
on the composition of simple logics. Prototype learning (RCNN +
prototype, but no rules) is better than rule learning but worse than
PEARL. It shows PEARL can improve upon both prototype and rule
learning.

Training Time: All deep learning methods required similar train-
ing time, while PEARL required more time but the overhead is mod-
erate. Decision tree method is fastest but the accuracy is much
lower.

Interpretability-Accuracy Tradeoff: We study the relationship
between accuracy and the interpretability in rule learning (i.e.,
decision tree) and the proposed PEARL model. Interpretability is
measured by the number of rules of different methods. For PEARL,
the number of rules is exactly as the number of leaf nodes in a
decision tree. For the decision tree method, we can adjust its maxi-
mum depth to control the number of nodes. Figure 3 shows that our

Session 8: Medical Informatics |

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

Table 3: Performance Comparison of Different Methods. More training time (runtime) is measured in terms of seconds. The

numbers in parenthesis are the standard deviation.

Model Heart Failure MIMIC-III
ROC-AUC | Runtime | #param | ROC-AUC Runtime | # param
Decision Tree 612(.007) | 2.87(.3) 0.4K | 0.657(0.008) | 0.92(0.09) | 0.6K
RCNN + Prototype [18] (no rule) .668(.003) | 768.3(6.3) 18.4K .761(.010) 178.0(5.7) 18.4K
RNN [7] 667(.003) | 643.0(45.6) | 95.8K | .724(.011) | 318.0(11.2) | 49.7K
RCNN .682(.009) | 718.0(13.7) | 8.4K 766(.009) | 144.0(3.4) | 8.4K
PEARL with 1 epoch (no reweight) | .674(.004) | 843.8(50) | o | 761(006) | 237(8.9) | . .
PEARL .679(0.004) | 1012.0(71) : 763(.004) | 543(12.3) :
method can use a small number of prototypes to achieve better accu-
racy than the decision tree method. For example, 3 rule-prototypes
can already explain more samples than rule lists with over 50 rules.
Note that the prototype learning result in Figure 3 is the standard 677
prototype learning without rule learning, which performs worse 0.66
than PEARL.
5 0.65 4 .
= —-- Decision Tree
£ 0.64 —— PEARL
-y N — - =
bttty i 0.63
Ftann
) ‘,7{ 3-prototype 1
O o625 fopeteype
2 R 061{ ——
2 000 ’__—"—’ 1 2 3 a 5
o e Epochs
g 0.575 A o
3] 0550 /' Figure 4: Average test accuracy of decision trees and PEARL in
). k| 7/
< \ different iterations in Algorithm 1. It shows data reweighing
0525 --- Test AUC (Decision Tree) can improve prediction accuracy.
—-- Test AUC (PEARL)
0.500 —-- Test AUC (prototype learning)

: y 4‘0 6‘0
Number of Rules

T
80 100

Figure 3: Tradeoff: Test Accuracy v.s. Interpretability (as the
number of rules). PEARL is more robust to fewer rules. Con-
ventional rule learning method may require lots of rule.

Rule learning accuracy as a function of epochs: We also study
the accuracy of rules at different iterations in Algorithm 1. We
conduct 5 independent trials using different hyperparameters and
report their average results, which are shown in Figure 4. We can
find that the accuracy of rules increase with iterative learning and
we conclude that the data reweighting scheme does improve the
accuracy of rules as well.

4.3 Evaluation of Stability of Decision Tree

To evaluate the stability of rule lists across iterations of reweighting,
we introduce the following quantitative metrics for stability, includ-
ing similarity and test accuracy. The first measures if the rules
learned from decision tree are stable across iterations, while the sec-
ond evaluates whether the learned decision tree retains sufficient
predictive power.

229

Table 4: Stability of Decision Tree under different weight
post-processing strategy. ’-’ means no any post-processing.

Method Sim(sp, ,sp,,,) | Test Accuracy
- 0.68 0.662
Norm 0.79 0.673
Smooth 0.78 0.671
Norm&Smooth 0.87 0.675

Similarity We transform the rule list of decision tree into a list of
sequences s = [sq, - - - |. Each leaf node in decision tree corresponds
to a sequence. The length of the sequence is the depth of the leaf
node. The i-th element of the sequence is the feature of i-th node
in the rule list. For example, the decision tree has 3 leaf nodes.
And the list of sequences is s [di — dy — dy,dy — do —
ds,d; — ds], each sequence corresponds to a path to a leaf node.
Now given two decision trees D and E, the corresponding sequence
list are sp = [s1,---,sp,] and sg = [s],--- ,s%k]. Length(s;) is
the length of sequence s;. LLCS(si,s]’.) is the Length of Longest
Common Subsequence between sequences s; and sJ'. . The similarity

between two decision trees D (sp is the corresponding sequence

Session 8: Medical Informatics |

No

-:

- N
Mo
Yes
No
Yes
a
Mo

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

-Wt'5

o

Yes
Mo
o
v R
a
Nu -

Figure 5: Decision Tree learned by PEARL. Each leaf node has a failure probability.

list) and E is defined as

Y sesp MaXy esy LLCS(s,s”)
Ysesp, Length(s)
Zs’EsE maXsesp LLCS(s’, s)
+ ;)
Sy csy Length(s)

Sim(sp, sg) =0.5 = (
(13)

In particular, the similarity will be 1 if two decision trees are identi-
cal.

To evaluate the stability of decision trees in PEARL (Algorithm 1),
we evaluate the similarity of decision trees for consecutive iterations
under different settings (different weight smoothing/normalization
settings).

The results are reported in Table 4. It shows that most of the
sequences between consecutive trees are highly overlapped. Es-
pecially, the final method with norm and smoothness constraints
lead to high similarity hence high stability of the resulting rule sets
across consecutive iterations. These results confirmed the consis-
tency and robustness of the proposed method.

230

4.4 Case Study on Interpretability

We study whether PEARL can provide more interpretable diagnosis
compared with conventional rule learning methods. In particular,
we find the corresponding prototypes learned in PEARL for a sets
of patients and retrieve the closest rule-prototypes, see Figure 6.
For each prototype with multiple patients, we retrieve their high
frequent events among the patients who satisfy the rule-prototype
while the remaining events that only occur to one or two patients
are discarded.

In general, the rule learning often yields complex rule lists that
involve hundreds of clinical events, many of which are duplicated
in multiple rules. As a contrast, PEARL only used ~ 10 rules to make
correct diagnosis. Below we provide one example of prototype-rules
from PEARL.

If a patient experience all following events, including chronic
airways obstruction, malignant neoplasm of trachea, lung and
bronchus, carcinoma in situ of respiratory system, Alprazolam, Es-
zopiclone, abnormal findings on radiological examination of body

Session 8: Medical Informatics |

|

hidden representation h(X)

Nearest Prototype is ps.

p1: Prototype 1

J

p2: Prototype 2

J

J

Pk Prototype k

Risk Prob: 0.1 Risk Prob: 0.7 Risk Prob: 0.2
CLINIC 1 CLINIC 1 CLINIC 1
CLINIC 2 CLINIC 2 CLINIC 2
CLINIC 3 CLINIC 3 CLINIC 3

Figure 6: Interpretation Procedure. Given a patient sample,
e.g., X, first we compute its hidden representation h(X). Then
we find its nearest prototype, e.g., p2, so we can see the risk
prob, e.g., 0.7 and some high-risk code for that prototype. We
can see that the interpretation of our method is simpler than
that of decision tree.

structure, acute bronchitis, Albuterol Sulfate, Hypertrophic condi-
tions of skin, and diltiazem hydrochloride, then the patient has a
high probability of experiencing heart failure.

The prototype-rules include 10 clinical events. Most of them
concern severe conditions of lung and respiratory systems (a com-
mon symptom of HF patients), and the medications for treating
HF, which are common comorbidities of heart failures. Patients
belong to this prototype can be diagnosed based on the occurrence
of these events on their EHR. For patients of this prototype, if using
conventional rule learning, diagnosis would require a much more
complex rule with more than 60 clinical events and rule depth for
about 6.

High Freq Clinical Code for each prototype

Now we list the high frequent Clinical Code for some prototype
(10 codes for each) on Heart Failure Dataset.

e Prototype 1: risk prob: 0.19; essential hypertension, gen-
eral symptoms, symptoms involving respiratory system and
other chest symptoms, other and unspecified disorder of
joint, diabetes mellitus, osteoarthrosis and allied disorders,
need for prophylactic vaccination and inoculation against
certain viral diseases, other disorders of soft tissues, other
and unspecified disorders of back, special investigations and
examinations.

e Prototype 2: risk prob: 0.09; general medical examination,
essential hypertension, need for prophylactic vaccination
and inoculation against certain viral diseases, general symp-
toms, special investigations and examinations, symptoms
involving respiratory system and other chest symptoms,
other dermatoses, cataract, other and unspecified disorder
of joint, other and unspecified disorders of back.

Prototype 3: risk prob: 0.09; disorders of lipoid metabolism,

essential hypertension, diabetes mellitus, acquired hypothy-

roidism, general symptoms, need for prophylactic vaccina-
tion and inoculation against certain viral diseases, other and

231

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

unspecified disorder of joint, other and unspecified anemias,

symptoms involving respiratory system and other chest

symptoms, osteoarthrosis and allied disorders.

Prototype 4: risk prob: 0.19; other forms of chronic ischemic

heart disease, disorders of lipoid metabolism, essential hyper-
tension, diabetes mellitus, symptoms involving respiratory

system and other chest symptoms, need for prophylactic

vaccination and inoculation against certain viral diseases,

general symptoms, simvastatin, other postsurgical states,

clopidogrel bisulfate.

Prototype 5: risk prob: 0.06; special screening for malignant

neoplasms, disorders of lipoid metabolism, essential hyper-
tension, general medical examination, special investigations

and examinations, need for prophylactic vaccination and

inoculation against certain viral diseases, acquired hypothy-
roidism, diabetes mellitus, other and unspecified disorder of
joint, general symptoms.

Prototype 6: risk prob: 0.14; special screening for malignant

neoplasms, other forms of chronic ischemic heart disease,

disorders of lipoid metabolism, essential hypertension, symp-
toms involving respiratory system and other chest symp-
toms, diabetes mellitus, general medical examination, ac-
quired hypothyroidism, need for prophylactic vaccination

and inoculation against certain viral diseases, general symp-
toms.

Prototype 7: risk prob: 0.25; cardiac dysrhythmias, essential

hypertension, disorders of lipoid metabolism, general symp-
toms, symptoms involving respiratory system and other

chest symptoms, need for prophylactic vaccination and inoc-
ulation against certain viral diseases, other and unspecified

aftercare, diabetes mellitus, acquired hypothyroidism, other

disorders of urethra and urinary tract.

Prototype 8: risk prob: 0.40; cardiac dysrhythmias, other

forms of chronic ischemic heart disease, essential hyperten-
sion, disorders of lipoid metabolism, symptoms involving

respiratory system and other chest symptoms, general symp-
toms, diabetes mellitus, other postsurgical states, other and

unspecified anemias, need for prophylactic vaccination and

inoculation against certain viral diseases.

Prototype 9: risk prob: 0.42; cardiac dysrhythmias, ill-defined
descriptions and complications of heart disease, disorders of

lipoid metabolism, essential hypertension, symptoms involv-
ing respiratory system and other chest symptoms, general

symptoms, other forms of chronic ischemic heart disease,

other and unspecified aftercare, other postsurgical states,

diabetes mellitus.

Prototype 10: risk prob: 0.14; cardiac dysrhythmias, special

screening for malignant neoplasms, essential hypertension,

disorders of lipoid metabolism, general symptoms, need for

prophylactic vaccination and inoculation against certain vi-
ral diseases, symptoms involving respiratory system and

other chest symptoms, special investigations and exami-
nations, general medical examination, acquired hypothy-
roidism.

Session 8: Medical Informatics |

5 CONCLUSION

In this paper, we proposed PEARL, an integrative prototype learning
neural network that combines rule learning and prototype learning
on deep neural networks to harness the benefits of these methods.
We empirically demonstrated that PEARL is more accurate , thanks
to an iterative data reweighing algorithm, and more interpretable
than rule learning, since it explains diagnostic decisions using much
fewer clinical variables. PEARL is an initial attempt to combine tradi-
tional rule learning with deep neural networks. In future research,
we will try to extend PEARL to other interpretable models.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation award
1IS-1418511, CCF-1533768 and IIS-1838042, the National Institute
of Health award 1R0OIMD011682-01 and R56HL138415.

REFERENCES

[1] Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia

[9

[10

[11

[12

[13

[14

[15

[16

(17

=

]

]

]

]

]

Rudin. 2018. Learning Certifiably Optimal Rule Lists for Categorical Data. Journal
of Machine Learning Research 18, 234 (2018), 1-78.

Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu Zhou. 2017.
Patient Subtyping via Time-Aware LSTM Networks. In SIGKDD. ACM, Halifax,
Canada, 65-74.

Jacob Bien and Robert Tibshirani. 2011. Prototype Selection for Interpretable
Classification. The Annals of Applied Statistics 5, 4 (2011), 2403-2424.

Chao Che, Cao Xiao, Jian Liang, Bo Jin, Jiayu Zho, and Fei Wang. 2017. An RNN
Architecture with Dynamic Temporal Matching for Personalized Predictions of
Parkinson’s Disease. In SIAM on Data Mining. SDM, Houston, USA, 198-206.
Zhengping Che, Sanjay Purushotham, Robinder G. Khemani, and Yan Liu. 2016.
Interpretable Deep Models for ICU Outcome Prediction. AMIA Annual Symposium
proceedings. AMIA Symposium 2016 (2016), 371-380.

Chaofan Chen and Cynthia Rudin. 2017. An Optimization Approach to Learning
Falling Rule Lists. CoRR abs/1710.02572 (2017), 02572.

Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F. Stewart, and
Jimeng Sun. 2016. Doctor Al: Predicting Clinical Events via Recurrent Neural
Networks. In Machine Learning for Healthcare Conference. JMLR.org, Stanford,
USA, 301-318.

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy
Schuetz, and Walter F. Stewart. 2016. RETAIN: An Interpretable Predictive
Model for Healthcare using Reverse Time Attention Mechanism. In Advances in
Neural Information Processing Systems. Curran Associates Inc., Barcelona, Spain,
1493-1501.

Amit Dhurandhar, Karthikeyan Shanmugam, Ronny Luss, and Peder Olsen. 2018.
Improving Simple Models with Confidence Profiles. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, 3-8 December 2018. Curran Associates Inc., Montréal,
Canada., 10317-10327.

Joseph Futoma, Jonathan Morris, and Joseph Lucas. 2015. A Comparison of Mod-
els for Predicting Early Hospital Readmissions. Journal of Biomedical Informatics
56 (2015), 229-238.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. IEEE, Las Vegas, NV, USA, 770-778.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G Mark. 2016. MIMIC-III, a Freely Accessible Critical Care Database.
Scientific data 3 (2016), 160035.

Been Kim, Cynthia Rudin, and Julie A Shah. 2014. The Bayesian Case Model:
A Generative Approach for Case-based Reasoning and Prototype Classification.
In Advances in Neural Information Processing Systems. Curran Associates Inc.,
Montreal Canada, 1952-1960.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014), 6980.

Janet L Kolodner. 1992. An Introduction to Case-based Reasoning. Artificial
intelligence review 6, 1 (1992), 3-34.

Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Interpretable
Decision Sets: A Joint Framework for Description and Prediction. In Proceedings
of the 22nd ACM SIGKDD International conference on Knowledge Discovery and
Data Mining. ACM, San Francisco, USA, 1675-1684.

Hung Le, Truyen Tran, and Svetha Venkatesh. 2018. Dual Memory Neural
Computer for Asynchronous Two-view Sequential Learning. In Proceedings of

232

[18

[19

[20

[
-

[22

[23

[24

~
2

[28

[29

[30

[31

[32

(33]

(34]

[35

&
2

[37

[38

(39]

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

the 24rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, London, UK, 1637-1645.

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. 2018. Deep Learning for
Case-based Reasoning through Prototypes: A Neural Network that Explains its
Predictions. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18). AAAI Press, New Orleans, USA, 3530-3537.

Ming Liang and Xiaolin Hu. 2015. Recurrent Convolutional Neural Network for
Object Recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, Boston, USA, 3367-3375.

Zachary Chase Lipton. 2016. The Mythos of Model Interpretability. CoRR
abs/1606.03490 (2016), 03490.

Tengfei Ma, Cao Xiao, and Fei Wang. 2018. Health-ATM: A Deep Architecture
for Multifaceted Patient Health Record Representation and Risk Prediction. In
Proceedings of the 2018 SIAM International Conference on Data Mining. SIAM, San
Diego, USA, 261-269.

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. 2013.
Distance-based Image Classification: Generalizing to New Classes at Near-zero
Cost. IEEE transactions on pattern analysis and machine intelligence 35, 11 (2013),
2624-2637.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2 (NIPS’13). Curran Associates Inc., USA, 3111-3119. http:
//dLacm.org/citation.cfm?id=2999792.2999959

Detlef Nauck and Rudolf Kruse. 1999. Obtaining Interpretable Fuzzy Classification
Rules from Medical Data. Artificial Intelligence in Medicine 16, 2 (1999), 149-169.
Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. J Mach. Learn. Res. 12 (Nov. 2011), 2825-2830.
http://dl.acm.org/citation.cfm?id=1953048.2078195

M. Pfisterer, P. Buser, H. Rickli, M. Gutmann, P. Erne, and P. Rickenbacher. 2009.
BNP-guided vs Symptom-guided Heart Failure Therapy. JAMA: the journal of
the American Medical Association. 301 (2009), 383-392.

Carey E Priebe, David] Marchette, Jason G DeVinney, and Diego A Socolinsky.
2003. Classification using Class Cover Catch Digraphs. Journal of classification
20, 1 (2003), 003-023.

Ronald L Rivest. 1987. Learning Decision Lists. Machine learning 2, 3 (1987),
229-246.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin,
and Klaus-Robert Miiller. 2017. Evaluating the Visualization of What a Deep
Neural Network Has Learned. IEEE transactions on neural networks and learning
systems 28, 11 (2017), 2660-2673.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical Networks for
Few-shot Learning. In Advances in Neural Information Processing Systems. Curran
Associates Inc., Long Beach, USA, 4077-4087.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. 2016. Match-
ing Networks for One Shot Learning. In Advances in Neural Information Processing
Systems. Curran Associates Inc., Barcelona, Spain, 3630-3638.

Fulton Wang and Cynthia Rudin. 2015. Falling Rule Lists. In Proceedings of
the Eighteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2015, May 9-12, 2015. JMLR.org, San Diego, USA, 1013-1022.

Chenyue Wu and Esteban G Tabak. 2017. Prototypal Analysis and Prototypal
Regression. CoRR arXiv:1701.08916 (2017), 08916.

J. Wu, J. Roy, and WF. Stewart. 2010. Prediction Modeling using EHR Data:
Challenges, Strategies, and a Comparison of Machine Learning Approaches.
Medical Care. 48 (2010), S106-113.

Cao Xiao, Edward Choi, and Jimeng Sun. 2018. Opportunities and Challenges
in Developing Deep Learning Models using Electronic Health Records Data: a
Systematic Review. Journal of the American Medical Informatics Association 25,
10 (2018), 1419-1428.

Cao Xiao, Tengfei Ma, Adji B. Dieng, David M. Blei, and Fei Wang. 2018. Read-
mission Prediction via Deep Contextual Embedding of Clinical Concepts. PLOS
ONE 13, 4 (04 2018), 1-15. https://doi.org/10.1371/journal.pone.0195024

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell: Neu-
ral Image Caption Generation with Visual Attention. In International conference
on Machine Learning. ACM, Lille, France, 2048-2057.

Yutao Zhang, Robert Chen, Jie Tang, Walter F Stewart, and Jimeng Sun. 2017.
Leap: Learning to Prescribe Effective and Safe Treatment Combinations for
Multimorbidity. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, Halifax, Canada, 1315-1324.
Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnik, and Jiirgen Schmidhu-
ber. 2017. Recurrent Highway Networks. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, 6-11 August 2017. JMLR.org, Sydney,
NSW, Australia, 4189-4198.

http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=1953048.2078195
https://doi.org/10.1371/journal.pone.0195024

	Abstract
	1 Introduction
	2 Background
	3 PEARL: Methodology
	3.1 Model Architecture

	4 Experiment
	4.1 Experimental Setup
	4.2 Performance Comparison
	4.3 Evaluation of Stability of Decision Tree
	4.4 Case Study on Interpretability

	5 Conclusion
	References

